
A
cc

ep
te

d 
A

rt
ic

le
 

Joint dynamic species distribution models: a tool for community ordination 

and spatiotemporal monitoring 

 

James T. Thorson
1*

, James N. Ianelli
2
, Elise A. Larsen

3
, Leslie Ries

4
, Mark D. Scheuerell

5
, Cody 

Szuwalski
6,7

, Elise F. Zipkin
8,9

 

 

1
 Fisheries Resource Assessment and Monitoring Division, Northwest Fisheries Science Center, 

National Marine Fisheries Service, NOAA, Seattle, WA, USA 

2
 Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, 

National Marine Fisheries Service, NOAA, Seattle, WA  

3
 National Socio-environmental Synthesis Center, Annapolis, MD, USA 

4
 Department of Biology, Georgetown University, Washington, DC, USA  

5
 Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, 

NOAA, Seattle, WA, USA 

6 
Bren School of Environmental and Resource Management, University of California, Santa 

Barbara, CA, USA  

7
 Marine Science Institute, University of California, Santa Barbara, CA, USA 

8
 Department of Integrative Biology, Michigan State University, East Lansing, MI, USA 

9
 Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East 

Lansing, MI, USA 

*
 Corresponding author: James.Thorson@noaa.gov 

 

Page 1 of 52 Global Ecology and Biogeography

This is the author manuscript accepted for publication and has undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process, which may lead to differences
between this version and the Version record. Please cite this article as doi:10.1111/geb.12464.

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1111/geb.12464
http://dx.doi.org/10.1111/geb.12464


A
cc

ep
te

d 
A

rt
ic

le
 

2 

 

Keywords:  Species distribution model; geostatistics; flight curve; Bering Sea; spatiotemporal 

model; species co-occurrence; dynamic factor analysis; species ordination 

Running title: joint dynamic species distribution models 

 

Number of words in abstract:  284 

Number of words in body: 5677 

Number of references: 51 

  

Page 2 of 52Global Ecology and Biogeography

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
 

3 

 

Abstract 

Aim: Spatial analysis of the distribution and density of species is of continued interest within 

theoretical and applied ecology.  Species distribution models (SDM) are increasingly used to 

analyze count, presence/absence, and presence-only data sets.  There is a growing literature 

regarding dynamic SDM (which incorporate temporal variation in species distribution), joint 

SDM (which simultaneously analyze the correlated distribution of multiple species), and 

geostatistical models (which account for similarity between nearby sites caused by unobserved 

covariates).  However, no previous study has combined all three attributes within a single 

framework.   

Innovation: We therefore develop spatial dynamic factor analysis for use as a “joint, dynamic 

SDM” (JDSDM), which uses geostatistical methods to account for spatial similarity when 

estimating one or more “factors.”  Each factor evolves over time following a density-dependent 

(Gompertz) process, and the log-density of each species is approximated as a linear combination 

of different factors.  We demonstrate JDSDM using two multispecies case studies (an annual 

survey of bottom-associated species in the Bering Sea, and a seasonal survey of butterfly density 

in the continental USA), and also provide our code publicly as an R package. 

Main conclusions: Case study applications show that that JDSDM can be used for species 

ordination, i.e., showing that dynamics for butterfly species within the same genus is 

significantly more correlated that species from different genera.  We also demonstrate how 

JDSDM can rapidly identify dominant patterns in community dynamics, including the decline 

and recovery of several Bering Sea fishes following 2008, and the “flight curves” typical of early 

or late-emerging butterflies.  We conclude by suggesting future research that could incorporate 
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phylogenetic relatedness or functional similarity, and propose that our approach could be used to 

monitor community dynamics at large spatial and temporal scales. 
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Introduction 

Understanding the spatial distribution of species is a central concern in ecology, and is necessary 

to evaluate spatial protections for threatened species, interpret abiotic and biotic impacts on 

species distribution, track the spread of invasive species, and interpret climate impacts on species 

and communities (Hooten & Wikle, 2010; Rassweiler et al., 2014).  Species distribution models 

(SDM) are increasingly used to approximate the distribution of a given species as a function of 

measured environmental variables and unobserved spatial covariation (Elith & Leathwick, 2009; 

Harris, 2015).   

 Species distribution models typically model either the distribution (presence/absence) or 

density of a given species as a function of measured environmental variables, while sometimes 

accounting for spatial covariation caused by geographic proximity.  However, the relationship 

between abiotic habitat and species distribution may vary over time due to species invasions, 

climate shifts, and many other factors (Pearman et al., 2008).  Biotic interactions and physical 

access to new habitats (e.g., changes in dispersal caused by changing climate or removal of dams 

on rivers) may also cause temporal changes in distribution (Soberón, 2007).  This concern has 

increased interest in modelling temporal variation in species distribution via dynamic SDMs 

(DeVisser et al., 2010; Merow et al., 2011), where environmental linkages or residual spatial 

variation is allowed to vary over time.    

 By estimating the presence or density of species across space, species distribution models are 

also a natural building block for understanding community dynamics.  However, stacking 

estimates of the distribution or density for individual species from multiple SDMs and 

subsequently using this as a summary of community distribution is likely to yield biased 

estimates of community-level patterns (Clark et al., 2013, and references therein).  Joint species 
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distribution models are an alternative procedure for simultaneously modeling the distribution of 

multiple species within a community, and were originally developed to estimate total species 

richness when accounting for imperfect species distribution (Dorazio & Royle, 2005).  Joint 

SDMs may also yield more accurate estimates of occupancy or density for rare or otherwise 

infrequently encountered species (Dorazio et al., 2006; Ovaskainen & Soininen, 2011; Rota et 

al., 2015; Thorson et al., 2015a).  For these reasons, interest has increased in developing joint 

SDMs that include covariation in occurrence or density among species, either at the landscape or 

sample level while also accounting for standard habitat predictors (Latimer et al., 2009; 

Ovaskainen et al., 2010; Clark et al., 2013; Pollock et al., 2014; Thorson et al., 2015a).   

 Finally, species density is likely to be more similar on average for nearby locations than for 

geographically distant sites (termed “spatial autocorrelation”).  Spatial autocorrelation in species 

density is likely to arise whenever an important but unobserved driver of species distribution is 

itself spatially autocorrelated (Dormann, 2007), or when dispersal patterns cause synchronous 

variation in density for nearby components of a population (Earn et al., 2000).  Spatial 

autocorrelation can bias estimates of habitat associations, inflate Type-I errors for statistical tests 

of habitat associations (Bahn & McGill, 2007), and decrease explanatory power for species 

distribution models (Dormann, 2007).  Ecologists have a growing ability to account for spatial 

autocorrelation in species density via geostatistical models and spatial statistics (Conn et al., 

2014; Thorson et al., 2015b).  In many cases, a simple linear or quadratic relationship between a 

habitat predictor variable and population density may be a poor approximation to the impact of 

habitat on density (Harris, 2015).   In these cases, a spatio-temporal model can be thought of as 

being “semi-parametric”, where measured habitat variables are used to account for simple habitat 
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relationships, and the spatio-temporal component accounts for remaining nonlinear and 

unmeasured habitat associations (Shelton et al., 2014).   

 We identify a need for a joint dynamic species distribution model (JDSDM) that accounts for 

spatial autocorrelation in density for multiple species, as well as changes in spatial distributions 

over time.  JDSMD has previously been developed for site-level dynamics (e.g., Dorazio et al., 

2010), but these models have not generally included spatial autocorrelation.  We envision that a 

JDSDM could be used for two major projects in community ecology.  First, JDSDM could be 

used for to access the degree to which species have similar or different spatiotemporal patterns 

(“species ordination”).  For example, classifying species based on similar spatiotemporal 

dynamics could be used to determine whether high-density species are useful as indicators of 

abundance trends for rare or poorly-surveyed species.  Second, JDSDM could be used for 

community monitoring to estimate dominant trends in community abundance, and whether 

trends are similar across spatial areas (“community monitoring”; see Dorazio et al. (2010)).  

Community monitoring has increasing importance given that species distributions are likely to 

shift in unexpected ways due to human-caused climate change.  Previous research suggests that 

jointly modelling density for multiple species is likely to be a more statistically efficient use of 

limited sampling data than single species models (Dorazio et al., 2006; Latimer et al., 2009; 

Ovaskainen & Soininen, 2011; Ovaskainen et al., 2015a; Thorson et al., 2015a), so community 

monitoring will likely be more efficient for detecting climate impacts than monitoring individual 

species.   

 We therefore develop a new spatial dynamic factor analysis (SDFA) model and propose its 

use as a JDSDM.  SDFA estimates one or more factors, where each factor represents a variable 

that is not directly observed but which contributes to the distribution of each species in the 
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community.  SDFA then approximates the log-density of each species at any given site and time 

as a linear combination of those factors.  Spatial variation in each factor is estimated as a 

Gaussian random field, and each factor evolves over time following a simple density-dependent 

process.  In the following, we use two case studies to demonstrate the use of SDFA in species 

ordination and to identify large-scale patterns in community dynamics.  The first involves 33 

years of data for ten numerically dominant, bottom-associated species in the Bering Sea.  This 

case study shows that a JDSDM is able to distinguish broad-scale spatial partitioning in the fish 

and invertebrate community, and also captures recent distributional changes caused by an 

intrusion of cold-waters (termed the “cold pool”).  The second case-study involves 16 biweekly 

samples of 63 butterfly species in Ohio during 2010. This case study demonstrates that seasonal 

patterns in density can be reconstructed for species with as few as 10 observations, while also 

showing that species within the same genus are significantly more correlated than otherwise 

unrelated species.  We conclude with research recommendations that can lead to rapid, generic 

monitoring of community spatiotemporal dynamics and species similarity. 

Methods 

A primer on dynamic factor analysis (DFA) 

Before describing spatial dynamic factor analysis (SDFA), we first present a short overview of 

dynamic factor analysis (DFA).  DFA is a dimension-reduction technique designed specifically 

for sequential observations of a variable (e.g., abundance) for different units of analysis (e.g., 

sub-populations of a species).  Although ecologists may be more familiar with rank-reduction 

using principle-components analysis or other multivariate techniques, these typically do not 

incorporate information about the time series ordering of observations from each unit.  There is a 
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long history of using DFA in the analyses of multivariate time series data in economics (Harvey, 

1989) and medicine (Molenaar, 1985) but it is relatively new to ecology (Zuur et al., 2003).  

The general motivation for DFA is as follows. If we had only a few time series (e.g., 

abundance for one of several sub-populations for a species), we might choose to model each of 

them as if they follow entirely independent dynamics over time.  However, as the number of time 

series gets much larger, some of the time series will likely show similar temporal patterns due to 

shared features of the environment (e.g., temperature) that tend to synchronize dynamics (e.g., 

similar population responses to an environmental driver). Therefore, we can model N time series 

as a linear combination of M latent variables using DFA, where M << N. These latent variables 

can be thought of as unmeasured or unknown environmental drivers of ecological processes.  

Recent applications of DFA including (1) identifying three dominant patterns in the abundance 

of 34 Pacific salmon stocks from North America and Asia (Stachura et al., 2014), and important 

differences in the sensitivity of 80 boreal streams to variation in summer air temperature (Lisi et 

al., 2015). 

Introducing Spatial Dynamic Factor Analysis (SDFA) 

We next develop a new spatial dynamic factor analysis (SDFA) model that provides a 

parsimonious approach to JDSDM.  Here and throughout, we use JDSDM to refer to any model 

that includes spatial and temporal variation in occupancy or density of multiple species, and use 

SDFA to refer to our specific hierarchical model for this JDSDM task.  We also use the terms 

dynamic SDM and joint SDM, respectively, to refer to SDMs with temporal dynamics for a 

single species or multispecies models without temporal dynamics.   

 SDFA simultaneously fits to data for multiple species at different sites and time intervals 

using one or more latent spatial variable (termed “factors” in our model, in analogy to DFA).  

Page 9 of 52 Global Ecology and Biogeography

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
 

10 

 

Latent variable models are seeing increased use in community ecology as a sparse method for 

analyzing correlations among multiple species (Ovaskainen et al., 2015a; Thorson et al., 2015a; 

Warton et al., 2015).  Each factor, ψ, is a function that returns a value (associated with positive 

or negative density for one or more species) at any location s within the spatial domain (� ∈ � ∈

ℛ�, where D is the domain, indexed by latitude/longitude or any other appropriate 2-dimensional 

measure), and any time interval t within the period of interest (� ∈ �1,2, … , �, where T is the 

maximum time interval).   

 Data for each species p are assumed to arise as a function of log-density θp for that species: 

( )( , ) ~ exp( ( , ))p pc s t g s tθ  (1) 

where cp(s,t) is data for species p at location s and time t, and g is a measurement process (i.e., a 

Bernoulli distribution for presence-absence data, or a Poisson distribution for count data, etc.). 

The log-density θp(s,t) at site s and time t of each species p is modeled as a linear combination of 

nj factors:  

, ,

1 1

( , ) ( , ) ( , )
j k

n n

p p j j k p k

j k

s t L s t x s tθ ψ γ
= =

= +∑ ∑   (2) 

where the loadings matrix L represents the association Lp,j between factor j and species p, and γk,p 

is the linear effect of the k-th of nk covariates, xk(s,t), for each site s and time t on log-expected 

counts for species p.  For the following case studies, we specify that xk(s,t)=1 for all observations 

and times (i.e., it represents an intercept governing differences in expected counts among 

species), but future studies could explore the impact of additional covariates on model 

performance.  Given that we do not include any measured covariates, dynamic factors ψj(s,t) are 

used to capture all spatial and temporal variation in each species.   

 The j-th dynamic factor follows a simple autocorrelated process over time: 
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( , 1) ( , ) ( ) ( , )j j j j js t s t s s tψ ρ ψ ω ξ+ = + +   (3) 

where ρj is the strength of autocorrelation for that factor (ranging from -1 to 1, where ρ=0 

implies independent fluctuations around the expected log-density, and ρ=1 implies a random 

walk with no tendency to revert to its long-term mean), ωj(s) represents spatial variation in 

density at site s, and ξj(s,t) represents otherwise unexplained spatiotemporal variation in 

dynamics for factor j.   Each factor therefore follows a spatial Gompertz process (Thorson et al., 

2015b), where ρ can be interpreted as the strength of density dependence.  Spatial variation ωj is 

represented as a Gaussian random field: 

~ MVN( , )j ωω 0 Σ   (4) 

where the covariance in average density Σω is assumed to be higher for nearby locations than for 

geographically distant locations.  We specifically model the relationship between geographic 

distance between location s and s+h (i.e., where |h| is the distance between locations) using a 

Matérn function: 

( ) 2

1 2

1
Var ( ), ( ) ( | |) ( | |) (| |, , )

2 ( )
j js s h h K h f hν

ω ν ω ω ων
ω

ω ω κ κ κ τ
ν τ−+ = =

Γ
  (5) 

where κω governs the range over which covariance declines as a function of distance |h|, ν 

governs the smoothness of the covariance matrix (we assume that ν=1 in the following) and τω 

governs the marginal variance of spatial variation.  The covariance in spatiotemporal variation ξj 

is defined similarly: 

~ MVN( , )j ξ ⊗0 Σ Iξ  (6) 

where covariance Σξ is calculated given range parameter κξ and precision τξ and I is an nt by nt 

identity matrix (where nt is the number of modeled time intervals). 
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 Each factor ψj is initialized given the assumption that ψj starts away from its long-term 

stationary distribution: 

( )
( ,1) ( , )

1

j

j j j

j

s
s s t

ω

ρ
ξψ φ= + +

−
 (7) 

where ��(�)/(1 − ��) is the median of the stationary distribution for this factor, and �� is the 

difference between the initial value and the median of its stationary distribution.  This initial 

condition allows us to reparameterize dynamics for each factor in a way that is more 

computationally efficient (see Thorson et al. (2015b) or Appendix S1 for details). 

 Finally, observation of density cp(s,t) for species p at site n in year t is assumed to follow a 

simple measurement process.  In the following case-studies, we use both counts (i.e., integer-

valued data) and catch-per-unit-effort (i.e., non-negative real-valued data).  For count data, we 

propose an overdispersed lognormal-Poisson process: 

( ) ( )Pr ( , ) Poisson ; ( , ) exp( ( , ))p p pC c s t C s t s tλ η= =  (8a) 

where mean count ��(�, �) = exp	���(�, �)� and  �(�, �)~"(0, $��) represents lognormal 

overdispersion with variance $�� for species p.  For catch-per-unit-effort data, we use a zero-

inflated gamma distribution, which describes the probability of the probability density function 

(PDF) for positive catches with an additional probability mass at zero (i.e., the probability of not 

encountering species p): 

( ) ( )

,2

2 2

,2 ,1 ,1

,2

exp( ( , )) if 0

( , )Pr ( , )
1 exp( ( , )) Gamma ; , if 0

1 exp( ( , ))

p p

pp

p p p p

p p

s t C

s tC c s t
s t C C

s t

ν λ

λ
ν λ ν ν

ν λ
−

− =


 = = 
− − >   − − 

 (8b) 

where Gamma(C,x,y) is the PDF of a gamma distribution with shape x and scale y, νp,1 is the 

coefficient of variation for positive catches for species p, and νp,2 controls the relationship 
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between the probability of encountering zero individuals and predicted density for species p, 

such that probability of not encountering a species (C=0) is identical to a Poisson distribution 

with intensity ν �,���(�, �). We here use the same linear prediction ��(�, �) to control positive 

catch rates and the probability of encounter, but future research could explore more-detailed 

models for the latter (Martin et al., 2005).  We also envision future research exploring alternative 

sampling data including presence-absence or repeated-measures sampling (e.g., Yamaura et al., 

2012).   

Estimation and interpretation 

Parameters for the generic spatial dynamic factor analysis model are not uniquely identifiable 

without further conditions.  We therefore impose constraints on the form of the loadings matrix 

L, and specify that the marginal variance of each factor %&'�(�� is one (Harvey, 1990; Zuur et 

al., 2003; Thorson et al., 2015a), as explained in Appendix S2.  Given these two conditions, the 

covariance between log-density of two species (labelled p1 and p2) at a given site and time can 

be calculated as: 

1 2 1, 2,Var( ( , ), ( , ))p p p j p j

j

s t s t L Lθ θ =∑   (9) 

This relationship has been noted previously for joint species distribution models (Pollock et al., 

2014; Thorson et al., 2015a; Warton et al., 2015), and can be generalized to calculate the 

covariance between species at different times and/or sites (see, e.g., (Ovaskainen et al., 2015b)).   

 Given this model and constraints, all fixed effects can in theory be uniquely identified.  In the 

following, the set of fixed effects includes density dependence ρ (we assume that �� = � for all 

factors), initial condition φj, variance ratio χ (used to calculate τω and τξ, and assumed to be 

constant among factors), range for spatial variation κω, range for spatiotemporal variation κξ, 

measurement error parameters ν, and loadings matrix L.  We treat spatial variation ωj and 

Page 13 of 52 Global Ecology and Biogeography

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
 

14 

 

spatiotemporal variation εj (used to calculate ξj) as random effects for each factor j.  Finally, the 

lognormal-Poisson distribution (used for applications involving count data) involves treating 

overdispersion η as a random effect.  

 We estimate fixed effects by identifying the value that maximizes the marginal likelihood 

function.  This is accomplished using the following three steps: 

1. We compute the joint likelihood of the data and random effects.  The joint likelihood is 

calculated as the product of the probability of the data (Eq. 7a/7b) and the probability of the 

dynamic factors (Eq. 3 and 5).   

2. We then use the Laplace approximation (Skaug & Fournier, 2006) to approximate the 

marginal likelihood, obtained when integrating the joint likelihood with respect to random 

effects (ωj, εj, and η).   

3. Finally, we use a nonlinear optimizer to identify the values of fixed effects that maximizes 

the marginal likelihood function.   

Steps 1 and 2 are implemented using Template Model Builder (TMB, Kristensen et al., In press; 

Kristensen, 2014), which computes gradients of the joint and marginal likelihoods using 

automatic differentiation techniques.  Step 3 is done in the R statistical environment (R Core 

Team, 2014) using gradients provided by TMB in Step 2.  After identifying the maximum 

likelihood estimates of fixed effects, we predict random effects (e.g., the value of factors ψj(s,t)) 

via Empirical Bayes.  To aid computational efficiency, we also use a stochastic partial 

differential equation approach to approximate the probability of Gaussian random fields (i.e., 

when computing the joint likelihood in Step 1 using Eq. 3 and 5 (Lindgren et al., 2011; Thorson 

et al., 2015b)).  Parameter estimation is feasible on a laptop using 1-6 factors in a matter of 

hours.  The time required to estimate parameters follows a close-to-linear increase with 
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increasing sites, years, and species, and a faster-than-linear increase with increasing number of 

factors.  We hypothesize that future developments (i.e., regarding spatial approximations or 

parallel processing) will lead to increased computational speed.   

 Similar to conventional factor analysis, the resulting estimates of loadings L and factors 

ψj(n,t) can be rotated to ease interpretation.  We therefore calculate a linear transformation 

matrix H, and then interpret L
*
=LH and Ψ

*
= ΨH

-1
.  We specifically propose a new 

transformation matrix H, which is designed to ensure that rotated Factor 1 explains the 

maximum proportion of total variance, Factor 2 explains the next-highest proportion of total 

variance, and so forth (see Appendix S3).  Hereafter, we refer to the loadings matrix and 

dynamic factors after transformation unless otherwise noted.   

 One advantage of SDFA is that it is estimated using maximum likelihood techniques, and 

therefore the number of factors (and other modelling decisions) can be informed using the 

Akaike Information Criterion (AIC) or other model-selection techniques.  In practice, however, 

we find that AIC favors selecting a large number of factors (i.e., as many factors as species in 

some cases), where many of these factors explain a very small proportion of total variance.  

Therefore, model selection using AIC becomes impractical for a model involving many species.  

We use an alternative strategy for selecting the number of factors in the following case-studies.  

Specifically, we estimate the SDFA model using 1 and 2 factors, and then successively increase 

the number of factors until the final factor explains less than 5% of total explained variance.  

This strategy is intended to allow analysis of very large communities, while only adding factors 

that explain a biological significant portion of community variance. 
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Case study examples 

To demonstrate the usefulness of SDFA to estimate species similarity and identify broad patterns 

in community spatiotemporal dynamics, we present results for two case-study applications that 

differ substantially in taxa, number of species, spatial scale, and temporal scale: 

1. Bering Sea demersal community: Our first case study analyzes data from annual bottom trawl 

surveys of the eastern Bering Sea during summers 1982-2014.  This survey has been 

conducted by the Alaska Fisheries Science Center with minimal changes in survey design 

over this period, and consists of about 375 bottom trawl tows per year.  Each tow is on 

bottom for about 30 minutes and data collection involves enumerating each species of finfish 

and invertebrate in the catch. This survey provides a synoptic picture of the demersal 

community of the Bering Sea.  The Bering Sea is often classified into three biogeographic 

regions: the inner (0-50 m. depth), middle (50-100 m. depth) and outer domain (100-200 m. 

depth (Schumacher & Stabeno, 1998)).  Some species are distributed broadly throughout the 

Bering Sea (e.g., Gadus chalcogrammus), while others have a more restricted spatial 

distribution (e.g., Chionoecetes opilio in the middle and outer domains).  Species distribution 

is additionally influenced by the intrusion of cold waters south from the northern border of 

the Bering Sea (termed the “cold pool”, (Wyllie-Echeverria & Wooster, 1998)).  For 

computational speed, we aggregate all surveyed locations to 100 “sites” distributed 

throughout the Bering Sea, where the location of these sites are determined by a k-means 

algorithm.  Model exploration suggests that increasing spatial resolution (i.e., by aggregating 

locations to a greater number of “sites”) has relatively little impact on parameter estimates.  

We also restrict analysis to the ten most abundant species (by weight) observed in the 
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demersal community (see Table 2) and, given that we analyze catches in weight, we use the 

delta-gamma distribution for measurement errors (Eq. 7b).   

2. Ohio butterfly assemblage:  As a second case study, we analyze count data from 2010 

regarding the distribution of butterflies at 58 sampled locations in Ohio.  This state-wide 

butterfly monitoring program, conducted by the Ohio Lepidopterist Society, consists of a 

local volunteer at each location conducting repeated transect surveys using protocols based 

on those developed by Pollard (1977) and utilized across North American and European 

butterfly monitoring programs.  All adult butterflies present at each site are counted 

approximately weekly during the period from April 1 to Oct. 31 (Julian dates 91-304), 

although not every location is surveyed every week.  These counts have previously been 

analyzed to demonstrate the “flight curve” for each species, i.e., the pattern of increase and 

subsequent decrease in counts for butterflies during a species’ flight period (Cayton et al., 

2015).  Changes in the flight curve among years have been used in a range of ecological 

studies, e.g. to identify phenological changes caused by climate change (Roy & Sparks, 

2000).  We analyze counts for all 63 butterfly species that are encountered 10 or more times 

during 2010 (Table 2), and use a lognormal-Poisson distribution for measurement errors (Eq. 

7a).  SDFA analyzes observations within discrete time periods, � ∈ �1,2, … , �, so we 

aggregate observations into 16 two-week “intervals” from April 1 to Oct. 31.   

The first case study demonstrates a smaller subset of important species at large spatial and 

temporal scales, while the second demonstrates the analysis of communities with a large number 

of species at fine spatial and temporal scales.  In each case study, we use a spherical projection 

based on latitude and longitude to compute distances among sites (Lindgren et al., 2011).     

Simulation experiment 
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We also conduct a simulation experiment intended to explore and validate the estimation 

properties of SDFA when confronted with small sample sizes.  To do so, we simulate dynamics 

at 20 “sites” over 20 years, where sites are randomly distributed within a 1x1 grid.  Dynamics 

evolve following five factors, where each factor has a spatial scale of 0.25, a marginal standard 

deviation for spatial variation and spatiotemporal process error of 0.5, and where each factor is 

weakly density-dependence (i.e., ρ=0.8) and starts in the first year with a small deviation away 

from its equilibrium (i.e., φj is drawn from a standard normal distribution).  Similarly, each 

element of the 5-by-5 loadings matrix L is drawn from a standard normal distribution (i.e., each 

factor contributes variance drawn from a chi-squared distribution with 5 degrees of freedom).  

Each site is surveyed once per year, yielding one count of every species, site, and year (2000 

counts total).  Counts arise from a lognormal-Poisson distribution with a log-standard deviation 

of 0.1 (to account for overdispersion in the measurement process), and each species has an 

expected log-count of 1.0 (i.e., γp=1).  Code to replicate this simulation experiment or to 

implement SDFA for a different data set is provided as an R package on the first author’s 

website (https://github.com/James-Thorson/spatial_DFA).   

Results 

Case study #1: among-year dynamics of Bering Sea demersal community 

Analyzing data from the Bering Sea demersal community, we find that the 6
th

 factor adds less 

than 5% of total variance, so we proceed by interpreting the SDFA model with 6 factors.  Given 

this model, SDFA illustrates three main groups (Fig. 1).  The first involves Gadus 

chalcogrammus and G. macrocephalus, which have a high correlation (0.91).  Chionoecetes 

bairdi and C. opilio also have highest correlation with one-another (0.46), and generally have a 

negative or close-to-zero correlation with all other species.  Finally, Limanda aspera and 
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Pleuronectes quadrituberculatus have a high correlation (0.65).  These ten species represent 

eight different genera, and the average within-genus correlation (0.68) is higher than the among-

genus correlation (0.15).   

 The first three factors capture 79% of total explained variance, and we present different 

summaries for these factors including the average spatial distribution, the average temporal 

trends, and the loadings of each species on the dominant factors (Fig. 2).  The spatial range 

(defined as the distance at which locations have a correlation of 10%, as calculated from 

estimates of κω and κξ) is larger for spatial (1987 km) than spatiotemporal variation (343 km).  

This suggests that the Bering Sea has large differences in community structure from northern to 

southern boundaries, but that annual variation at a given site is only predictive of variation at 

nearby sites.  Factor 1 (top row of Fig. 2) is highly associated with Gadus chalcogrammus and G. 

macrocephalus, and has weaker positive associations with Hippoglossoides elassodon, 

Hippoglossus stenolepis, Limanda aspera, and Podothecus accipenserinus.  This factor is highest 

at intermediate depths and the Southeastern shelf of the Bering Sea, and is lowest in the northern 

portion of the Bering Sea.  This factor shows a drop in 2008 followed by an increase through 

2013, and this trend is consistent with the abundance estimates from population dynamics 

models for these species, where Gadus chalcogrammus and G. macrocephalus had distributions 

that were restricted by a large cold pool starting in 2008 (Aydin et al., 2014).  Factor 2 is 

positively associated with Chionoecetes bairdi and C. opilio and negatively associated with 

Hippoglossus stenolepis and Platichthys stellatus.  It is highest in deep waters of the northern 

portion, and captures a previously documented “environmental ratchet” (Orensanz et al., 2004) 

in which the distribution of Chionoecetes opilio contracted north during the early 1990s and 

subsequently did not fully recolonise the southern area of the survey.  Factor 3 is positively 
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associated with Chionoecetes bairdi, Limanda aspera, Platichthys stellatus, and Podothecus 

accipenserinus, and is positive in the portion of the Bering Sea adjacent to the Aleutian Islands.   

Case study #2: within-year dynamics of the butterfly community in Ohio 

Analyzing data regarding within-year dynamics of butterflies in Ohio, we find that the 6
th

 factor 

adds less than 5% of total variance and we therefore proceed by interpreting a model with six 

factors.  This model estimates a positive correlation among most species (see Appendix S4 in 

Supporting Information).  These 63 species represent 44 genera, and the average within-genus 

correlation (0.52) is higher than the average among-genus correlation (0.45).  As a post-hoc test, 

we estimated the difference and its standard error (0.072, SE=0.036).  A one-sided Wald test 

therefore indicates that the increased correlation for species in a same genus relative to other 

species-pairs is statistically significant (p=0.023).   

 The first two factors explain 67% of total explained variance (Fig. 3).  The spatial range is 

smaller for spatial (14.7 km) than spatiotemporal variation (333.1 km), suggesting that both 

factors account for fine-scale spatial variation (e.g., there are high and low-density sites near 

Cleveland in Northeast Ohio) but that changes over time are generally synchronous among sites.  

Factor 1 is positively associated with almost all species (the major exception being Poanes 

viator), and captures an increase and subsequent decrease in butterfly densities (with a broad 

peak between 150 and 250).  Factor 2 is also strongly associated with many species but has a mix 

of positive and negative associations. It captures a declining trend in abundance during the 

summer, such that species with a positive association (e.g., #34, Megisto cymela) have a peak in 

the late spring, while species with a negative association (e.g., #53, Pyrgus communis) are 

predicted to peak in the late summer.  For model validation, we also compare predictions of peak 

density from our analysis with flight curves reported by Belth (2012) in Illinois (see Appendix 
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S5 in Supporting Information).  This comparison illustrates that SDFA is able to corrected 

predict narrow peaks in density (e.g., Satyrodes eurydice with 11 occurrences, or Euphydryas 

phaeton with 10 occurrences) and broad peaks for other data-poor species (e.g., Euphyes vestris, 

with 43 occurrences).  However, SDFA also provides poor estimates in some cases (e.g., 

Hermeuptchia sosybius, with 11 occurrences, where it misses the earliest of three peaks reported 

in nearby Illinois). 

Simulation experiment 

Estimated parameters from the simulation experiment (Fig. 4) illustrate that the SDFA model is 

able to accurately estimate parameters governing spatial and temporal variation.  In particular, 

the model can accurately estimate the degree of autocorrelation (0.8), the ratio of spatial and 

temporal variance (0.12), the spatial range of spatial variation ω (0.25, derived from κω), and the 

spatial range of spatiotemporal variation ε (0.25, derived from κε).  However, we note that one 

replicate resulted in an estimate of a spatial scale for spatial variation that approached infinity, 

indicating that the model in this replicate estimated essential zero spatial variation (ω=0).    

 Comparison of the estimated and true correlation in density among species )*''((+ , (�) also 

illustrates that the SDFA is able to precisely identify similarities and differences among species, 

given the magnitude of data available in the simulation experiment (Fig. 5).  In particular, a plot 

of the estimated and true correlation is generally on the 1:1 line, and this 1:1 line explains nearly 

90% of variation in the correlation among species. 

Discussion 

In this study, we have developed a spatial dynamic factor analysis (SDFA) model for use as a 

joint dynamic species distribution model (JDSDM), and used two case studies (involving 

different taxa, number of species, and spatial and temporal scales) to show that SDFA is useful 
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for species ordination.  In particular, phylogenetically related species had greater similarity in 

spatiotemporal dynamics than unrelated species in both case studies (analogous to the conclusion 

using spatial factor analysis in Thorson et al. (2015a)).  This result suggests that well-sampled 

species could be used as indicators for related species that are poorly sampled in each 

community.  If this result holds for other communities (and all else being equal), we also expect 

that phylogenetically diverse communities will be more stable (i.e., have a lower variance in total 

abundance spatially and over time due to the portfolio effect; see Doak et al. (1998)) than 

communities composed of phylogenetically related species.   

 We have also demonstrated that SDFA can be used for community monitoring.  In particular, 

our first case study identified a northward shift in bottom-associated fishes in the Bering Sea, 

where this recent shift coincides with a receding cold pool after its expansion in 2008.  The 

second case study showed that seasonal dynamics could be predicted with reasonable accuracy 

even for species with as few as 10 observations.  Many other taxa have shown responses to 

climate change through phenological shifts, leading to changes in their spatiotemporal 

distributions and correlations among species (Root et al., 2003).  Recent research suggests that 

bees (Kerr et al., 2015), butterflies (Parmesan et al., 1999), and marine fishes (Pinsky et al., 

2013), among other taxa, are already exhibit shifting ranges or phenology.  We hypothesize that 

SDFA and other JDSDMs will have a growing role in identifying spatial and phenological shifts 

in ecological communities.   

 We envision several fruitful lines of future research regarding spatiotemporal community 

monitoring.  Most obviously, future research could explore the benefits in precision or 

interpretation from including measured covariates (as can be easily done in SDFA).  Covariates 

may be particularly important for extrapolation, while our use of Gaussian random fields may be 
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sufficient when interpolating among densely located sampling data (Bahn & McGill, 2007).  We 

also recommend exploring the use of additional data types (e.g., presence/absence or repeated-

measures sampling) when fitting JDSDM to spatiotemporal community data.  Finally, there is 

great need for determining whether “hotspots” in species richness or density change substantially 

over time.  Hotspots are frequently used in conservation efforts when planning spatial protections 

of harvested or imperiled species, and changes over time in the location of hotspots has 

substantial implications for the usefulness of these spatial protections (Piacenza et al., 2015).   

 Recent multi-species occurrence models represent an alternative approach to estimate 

community dynamics relative to covariates (Zipkin et al., 2010; Iknayan et al., 2014).  These 

models generally focus on estimating species distributions using presence/absence data while 

explicitly accounting for detection biases that occur during sampling.  Detection probability 

could similarly be estimated in SDFA by incorporating an alternative distribution for repeated 

sampling at a given site and time (Royle & Dorazio, 2008).  While these community modelling 

approaches allow for joint estimation of species occurrence/abundance across a landscape, they 

typically assume that unexplained variation in dynamics (“process errors”) are independent 

among species.  Our multivariate approach for estimating spatial correlation among species may 

allow JDSDMs to more efficiently use available data to model spatiotemporal patterns. 

 We envision a complementary role between phenomenological and mechanistic models for 

community dynamics, and an increased emphasis on mechanism could be incorporated in many 

ways.  In particular, phylogenetic relatedness or similarity in functional traits could help inform 

estimates of species similarity.  Covariance among species ()*,((+ , (�)) could be estimated as 

an explicit function of phylogenetic distance, in addition to residual covariance modeled via the 

loadings matrix (--.).  Increased mechanism could also be incorporated into future JDSDMs by 
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estimating a “species interaction matrix” that is used to approximate density-dependent 

interactions among species (Ives et al., 2003).  However, we envision the need for substantial 

dimension-reduction when estimating a species interaction matrix within a large community 

(Kissling et al., 2012). 

 We conclude by offering guidance for future researchers interested in using SDFA as a 

JDSDM.  Our software is publicly available, and can be applied to other data sets involving 

count (discrete) or density (continuous data) for multiple species at multiple sites and time 

periods.  We recommend that parameters are estimated while sequentially increasing the number 

of factors (i.e., estimating 1 factor, then estimate 2 factors while starting parameters at their 

previous estimates, etc.) and stopping based on decreasing variance-explained or model-selection 

criteria.  We tested this process using communities with up to 100 species, sites, and time 

intervals, and it is feasible to estimate parameters for these data sets on a scale of hours.   We 

hypothesize that JDSDMs such as SDFA will continue to grow in importance for applied and 

community ecologists interested in either species ordination or spatiotemporal community 

monitoring.   
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Table 1 – List of symbols used in describing the spatial dynamic factor analysis model 

Symbol Description  Dimension 

Variables   

Ψ Dynamic factor ns × nj × nt   

Θ Expected log-density from dynamic factors ns × np × nt  

Ε Spatiotemporal variation ns × nj × nt  

Ω Spatial variation ns × nj 

L Loadings matrix np × nj 

H Varimax rotation matrix nj × nj 

X Measured environmental variables ni × nk 

C Count data for all species, sites, and time periods ni 

ρ Autocorrelation in spatiotemporal variation 1 

χ Ratio of spatiotemporal and spatial variance 1 

δ Lognormal overdispersion ni 

γ Effect of covariates nk 

σδ Standard deviation of overdispersion np 

� Ratio of initial and median value for dynamic factors nj 

τspace Magnitude of spatial variation 1 

τtime Magnitude of spatiotemporal variation 1 

κ Distance of spatial correlation 1 

η Overdispersion in observations (used for count data) ni 

σ Magnitude of overdispersion in observations (used for 

count data) 

np 

ν Measurement error parameters (used for zero-inflated 

continuous-valued data) 

np×2 

Dimensions   

nt Number of time intervals 1 

np Number of species 1 

ns Number of sites with available data 1 

nj Number of dynamic factors 1 

nk Number of covariates  

ni Number of observations  

Indices   

t Time interval 1 

p Species 1 

s Site with available data 1 

j Factor 1 

k Covariate 1 

i Observation 1 
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Table 2 – List of species (with common and scientific name) used in each case study, along with “species numbers” used to reference 

species in later figures. 

Species 

Number 
Case study #1: Interannual dynamics of Bering Sea 

demersal community 

Case study #2: Within-season dynamics of Ohio 

butterfly assemblage 
 Scientific Name Common Name Number of 

encounters  

(12210 total 

samples) 

Scientific Name Common Name Number of 

encounters  

(1132 total 

samples) 

1 Chionoecetes bairdi Tanner crab 7687 Anatrytone logan Delaware Skipper 19 

2 Chionoecetes opilio snow crab 8995 Ancyloxypha numitor Least Skipper 221 

3 Gadus chalcogrammus walleye pollock 11786 Asterocampa celtis 

Hackberry 

Emperor 78 

4 Gadus macrocephalus Pacific cod 11682 Asterocampa clyton Tawny Emperor 20 

5 
Hippoglossoides 

elassodon flathead sole 9228 Battus philenor 

Pipevine 

Swallowtail 39 

6 Hippoglossus stenolepis Pacific halibut 8253 Boloria bellona Meadow Fritillary 67 

7 Limanda aspera yellowfin sole 8297 Celastrina ladon 

Spring/Summer 

Azure 524 

8 Platichthys stellatus starry flounder 1591 Cercyonis pegala 

Common Wood-

nymph 190 

9 
Pleuronectes 

quadrituberculatus Alaska plaice 8284 Chlosyne nycteis 

Silvery 

Checkerspot 27 

10 
Podothecus 

accipenserinus sturgeon poacher 6772 Colias eurytheme Orange Sulphur 583 

11    Colias philodice Clouded Sulphur 629 

12    Cyllopsis gemma Gemmed Satyr 16 

13    Danaus plexippus Monarch 483 

14 
   

Enodia anthedon 

Northern Pearly-

eye 64 

15 
   

Epargyreus clarus 

Silver-spotted 

Skipper 476 

16 
   

Erynnis baptisiae 

Wild Indigo 

Duskywing 126 

17    Erynnis brizo Sleepy Duskywing 13 
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8 
   

Erynnis horatius 

Horace's 

Duskywing 42 

9 
   

Erynnis juvenalis 

Juvenal's 

Duskywing 34 

0 
   

Euphydryas phaeton 

Baltimore 

Checkerspot 10 

1    Euphyes vestris Dun Skipper 43 

2    Eurema lisa Little Yellow 40 

3    Eurema nicippe Sleepy Orange 11 

4    Eurytides marcellus Zebra Swallowtail 58 

5 
   

Everes comyntas 

Eastern Tailed-

blue 455 

6    Hermeuptychia sosybius Carolina Satyr 11 

7    Hylephila phyleus Fiery Skipper 44 

8    Junonia coenia Common Buckeye 358 

9    Libytheana carinenta American Snout 53 

0    Limenitis archippus Viceroy 228 

1 
   Limenitis arthemis 

astyanax 

Red-spotted 

Purple 241 

2    Lycaena hyllus Bronze Copper 13 

3    Lycaena phlaeas American Copper 44 

4    Megisto cymela Little Wood Satyr 224 

5    Nymphalis antiopa Mourning Cloak 111 

6 
   

Papilio glaucus 

Eastern Tiger 

Swallowtail 462 

7    Papilio polyxenes Black Swallowtail 289 

8 
   

Papilio troilus 

Spicebush 

Swallowtail 279 

9    Phoebis sennae Cloudless Sulphur 16 

0 
   

Pholisora catullus 

Common 

Sootywing 32 

1    Phyciodes tharos Pearl Crescent 786 

2    Pieris rapae Cabbage White 921 

3    Poanes hobomok Hobomok Skipper 73 

4    Poanes viator Broad-winged 15 
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Skipper 

5    Poanes zabulon Zabulon Skipper 102 

6    Polites mystic Long Dash 24 

7    Polites origenes Crossline Skipper 25 

8    Polites peckius Peck's Skipper 263 

9 
   

Polites themistocles 

Tawny-edged 

Skipper 57 

0    Polygonia comma Eastern Comma 201 

1 
   Polygonia 

interrogationis Question Mark 255 

2    Pompeius verna Little Glassywing 73 

3 

   

Pyrgus communis 

Common 

Checkered-

skipper 51 

4    Satyrium calanus Banded Hairstreak 16 

5 
   

Satyrodes appalachia 

Appalachian 

Brown 28 

6    Satyrodes eurydice Eyed Brown 11 

7 
   

Speyeria cybele 

Great Spangled 

Fritillary 357 

8    Strymon melinus Gray Hairstreak 101 

9    Thymelicus lineola European Skipper 64 

0    Vanessa atalanta Red Admiral 358 

1    Vanessa cardui Painted Lady 56 

2    Vanessa virginiensis American Lady 51 

3 
   

Wallengrenia egeremet 

Northern Broken 

Dash 55 
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Fig. 1 – Estimated correlation in spatiotemporal densities among species, )*''((+, (�) for species i and j, in the first case study 

(“among-year dynamics of Bering Sea demersal community”) where species are labelled by number (see Table 1 for names), red is a 

positive correlation (with a correlation of 1.0 on the diagonal) and blue is a negative correlation. 
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Fig. 2 – Summary of results for the dominant three dynamic factors in the first case study (“among-year dynamics of Bering Sea 

demersal community”), including a depiction of average spatial effect (the median across years of the value of the factor at a given 

site, left-column, where blue is a low value, grey is an intermediate value, and red is a high value), the average temporal effect (middle 

column, where each grey line corresponds to a site, and the solid black line is the median value across sites for a given year), and 

estimated loadings for each species on each factor, where the proportion of total explained variance that is explained by each factor is 

listed in the upper-left corner of each panel.  We display the first three factors, which collectively explain ≈80% of the variance 

explained by all 6 estimated factors.  When plotting spatial estimates, we extrapolate from knots to all locations within the sampling 

domain of the survey. 
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Fig. 3 – Summary of results for the dominant three dynamic factors in the first case study (“within-year dynamics of Ohio butterflies 

in 2010”), see Fig. 2 caption for details.  We display the first two factors, which collectively explain ≈65% of the variance explained 

by all 6 estimated factors.  When plotting spatial estimates, we only plot estimates at knots because data do not arise from a designed 

survey. 
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Fig. 4 – Summary of simulation experiment testing the small-sample properties of the dynamic 

spatial factor analysis model, where each panel shows the true simulated value (dashed vertical 

line) and distribution of estimates for each simulation replicate (histogram).  Panels show the 

ratio of temporal and spatial variance (λ), the temporal autocorrelation (ρ), the average spatial 

range (defined as the distance at which correlations drop to 10% as calculated from κω), and the 

spatial range of spatiotemporal variance (calculated from κξ).  In the top-right portion each panel, 

we list an estimates that exceed the x-axis boundary of that panel.  
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Fig. 5 – A scatterplot showing the estimated correlation in density among species, )*''((+ , (�) 

for species i and j, and the true correlation, where each is calculated from the estimated and true 

loadings matrices Lp,j, respectively.  The proportion of variance explained when regressing the 

true correlation on the estimated correlation is shown at the top. 
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Appendix S1 – Linear parameterization for each dynamic factor 

Each factor is assumed to exhibit simple density-dependent (Gompertz) dynamics over time 

(Thorson et al., 2015b).  This amounts to a first-order autoregressive process at each site over 

time.  Because dynamics are linear, they can be solved explicitly for any site and time: 

( )
( , ) ( , )

1

jt

j j j j

j

n
n t n t

ω
ψ φ ρ ε

ρ
= + +

−
 

where εj(n,t) now represents variation in the dynamics of factor ψj at site n between times t and 

t+1: 

(1)
~ MVN( , )

j ARξ ⊗Σε 0 Σ  

where  

( ) 2Var ( , ), ( , ) (| |, , )t

j j js t s h t t f h ξ ξε ε ρ κ τ∆+ + ∆ =  

such that ΣAR(1) is defined as the covariance for first-order autoregressive process, where the 

magnitude of autoregression ρj is identical to the strength of density dependence. 
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Appendix S2 – Identifiability conditions 

Parameters for the generic spatial dynamic factor analysis model are not uniquely identifiable for 

two reasons.  First, predicted log-densities ��(�, �) remain unchanged whenever the columns of 

the matrix of dynamic factors � = (
�, … ,
) and rows of the loadings matrix L are relabeled.  

Elsewhere, this phenomenon is termed “label switching”, and we note that the ordering of factors 

is arbitrary and can be changed.  Second, predicted densities are unchanged when the loadings 

matrix and L and dynamic factors are rotated by a rotation matrix (i.e., non-singular linear 

transformation H with determinant det(H)=1): 

*

, 2 2

2

* 1

, , 2 2,

2

( , ) ( , )

( )

j j j j

j

p j p j j j

j

n t H n t

L L

ψ ψ

−

=

=

∑

∑ H
  

We therefore ensure that estimated parameters are uniquely identifiable (except for label 

switching) by specifying that the upper-right corner of the loadings matrix L is fixed at zero.  

This constraint is analogous to a similar constraint in dynamic factor analysis (Harvey, 1990; 

Zuur et al., 2003).  Third, predicted densities remain unchanged whenever factors and loadings 

are transformed by any “scaling” matrix H (i.e., a diagonal and intertible matrix H, diag(H)=h, 

where all ℎ ≠ 0).  In this case, the model will generally seek a solution in which Var��� → 0 

and Var�L�,� → ∞.  We therefore specify  that Var��� = 1 for each dynamic factor j (Eq. 1), 

following an analogous constraint for spatial factor analysis (Thorson et al., 2015a-a) and 

dynamic factor analysis (Harvey, 1990; Zuur et al., 2003).  The variance for each dynamic factor 

can be calculated as follows: 

( ) ( ) ( )Var Var Var Var +Var
1 1

j jt t

j k j j k j j

j j

φ ρ φ ρ
ρ ρ

   
= + + = +      − −   

ω ω
ψ ε ε    
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where this reduces to: 

2 2

, , 2 2 2 2 2 2

, ,

1 1
Var[ ]

4 (1 ) 4 (1 )
j time j space j

j j j j j jε ω

σ σ
πτ κ ρ πτ κ ρ

= + = +
− −

ψ  

We additionally define a parameter � ≡
��� !,"
#

�$%&'!,"
# , such that: 

( )

1/2

, 2 2

1/2
2

, ,

1

4 (1 )

(1 ) (1 )

j

j

j

j j j j j

ω

ε ε

χ
τ

πκ ρ

τ τ ρ χ ρ
−

 +
=   − 

= − −

  

In summary, we calculate a parameter χj for each dynamic factor j, which represents the relative 

magnitude of spatiotemporal and spatial variance, and other parameters are uniquely defined 

given the constraint that the marginal variance of each dynamic factor is one (up to the effect of 

label switching). 
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Appendix S3 -- Transformation of loadings matrix and factors to aid 

interpretation 

Given the identifiability conditions listed in Appendix S2, estimates of the dynamic factors Ψ 

and the loadings matrix L are uniquely identifiable.  However, we use a post-hoc transformation 

of the factors and loadings matrix to aid interpretation.  We calculate a linear transformation 

matrix H, and then interpret L’=LH and Ψ’= ΨH
-1

.  Any transformation matrix H is permissible.  

However, we additionally specify that H is an orthogonal transformation, such that HH
T
=I.  This 

property implies that: 

T T T TCov( ') ( ) Cov( )= = = =Θ LH LH LHH L LL Θ   

such that transformation leaves the explicit computation of covariance between species densities 

unchanged.  We seek a transformation that results in factor 1 explaining the greatest possible 

proportion of Cov(Θ), factor 2 explaining the greatest possible proportion of Cov(Θ) after 

controlling for factor 1, etc.  These two criteria are achieved by defining:  

 
0.5 0.5

1 1' ( ,..., )n ne e= =L LH v v   

where L’ is the loadings matrix after transformation, H is the transformation matrix, e1 and v1 are 

the first eigenvalue and eigenvector of Cov(Θ), and n is the number of estimated factors.  Linear 

predictions of log-density Θ are unchanged after transformation of the factors: 

0.5 0.5 1

1 1'( , ) ( ,..., ) ( , )n nn t e e n t−=ψ v v Lψ  

where ((�).+,�, … , (-).+,-).� is the Moore-Penrose pseudoinverse of ((�).+,�, … , (-).+,-).  A 

quick check confirms that this transformation is orthogonal and results in identical predictions of 

log-density Θ as well as covariance Cov(Θ).  Therefore, we refer to the loadings matrix and 

dynamic factors after transformation unless otherwise noted.   
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Appendix S4 – Estimated correlation among species in Case Study #2 

 
Estimated correlation in spatiotemporal densities among species, /011(23, 2) for species i and 

j, in the second case study (“Ohio butterflies”) where species are labelled by number (see Table 1 

for names), red is a positive correlation (with a correlation of 1.0 on the diagonal) and blue is a 

negative correlation. 
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Appendix S5 – Validation of estimated flight curves by comparison with 

independent reports 
 

Supplementary Figure S1 – A comparison of estimated and previously reported flight curves for 

each butterfly species (see Table 1 for list of species).  For each species, we show estimated 

density for each site (thin black lines) and overall (average among sites: red line).  We also 

display independent reports of emergence times (thin blue lines) along with times of peak 

emergence (thick blue lines) for each species.  These emergence times are based on reported 

phenograms, obtained from an independent data set of surveys throughout Indiana as published 

in Belth (2012).  Indiana is adjacent to Ohio and in an ecologically similar zone, spans a similar 

latitudinal gradient, and has a similar butterfly community (where all 63 of the most common 

species seen in Ohio are also found in Indiana).   
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