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1  | INTRODUC TION

Fisheries managers worldwide seek to regulate fishing industries 
based on biological determination of maximum sustainable yield. 

Maximum sustainable yield is generally identified by fitting a pop-
ulation-dynamics model to data obtained from a given population. 
Population-dynamics models are a simplified representation of basic 
biological processes including natural mortality, individual growth, 
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Abstract
Fisheries scientists use biological models to determine sustainable fishing rates and 
forecast future dynamics. These models require both life-history parameters (mortal-
ity, maturity, growth) and stock-recruit parameters (juvenile production). However, 
there has been little research to simultaneously predict life-history and stock-recruit 
parameters. I develop the first data-integrated life-history model, which extends a 
simple model of evolutionary dynamics to field measurements of life-history pa-
rameters as well as historical records of spawning output and subsequent recruit-
ment. This evolutionary model predicts recruitment productivity (steepness) and 
variability (variance and autocorrelation in recruitment deviations) as well as mortal-
ity, maturity, growth, and size, and uses these to predict intrinsic growth rate (r) for 
all described fishes. The model confirms previous analysis showing little correlation 
between steepness and either natural mortality or asymptotic maximum size (W

∞
).  

However, it does reveal taxonomic patterns, where family Sebastidae has lower 
steepness (mean=0.72) and Salmonidae has elevated steepness (mean=0.79) rela-
tive to the prediction for bony fishes (class Actinopterygii, mean=0.74). Similarly, 
genus Sebastes has growth rate r (0.09) approaching that of several shark families 
(Lamniformes: 0.02; Carcharhiniformes: 0.02). A cross-validation experiment con-
firms that the model is accurate, explains a substantial portion of variance (32%–
67%), but generates standard errors that are somewhat too small. Predictive intervals 
are tighter for species than for higher-level organizations (e.g. families), and predic-
tions (including intervals) are available for all fishes worldwide in R package FishLife. 
I conclude by outlining how multivariate predictions of life-history and stock-recruit 
parameters could be useful for stock assessment, decision theory, ensemble model-
ling and strategic management.
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sexual maturation and production of juveniles (termed “recruit-
ment”). These processes are typically represented using a small set 
of population-dynamics parameters, and identifying plausible values 
for these parameters is a central task for theoretical and applied 
ecologists for the management of both poorly- and well-studied 
species.

Unfortunately, available data are often insufficient to deter-
mine the rate of important biological processes for a given stock. 
Parameters representing size and growth are often unknown for 
low-value species, where resources have not been dedicated to col-
lect the age and size of representative individuals. Similarly, sexual 
maturity requires field sampling of ovaries, and natural mortality 
rates are estimated from some combination of tag-capture data and 
by treating the history of a fishery as a depletion experiment. In the 
following, I refer to adult mortality, growth and sexual maturity rates 
as “life-history parameters” to distinguish them from “stock-recruit 
parameters” as defined below. There is an extensive literature re-
garding the expected relationship among life-history parameters 
in fishes (Beverton, 1992; Charnov & Berrigan, 1990; Roff, 1984; 
Winemiller, 1989). Recent research has sought to integrate life-his-
tory and evolutionary theory to predict life-history parameters for 
all fishes worldwide while distributing results in a public, reproduc-
ible and well-documented manner (e.g. Froese, Thorson, & Reyes, 
2014). For example, FishLife is an R package that distributes predic-
tions of adult life-history parameters for all fishes while combining 
information from taxonomic relatedness and fish records worldwide, 
and while estimating the degree of uncertainty from the quantity 
and quality of records for a given taxon and its relatives (Thorson, 
Munch, Cope, & Gao, 2017). Improved documentation and access 
to these meta-analytic results can presumably improve fisheries 
management for species that currently have little direct biological 
information.

Despite progress in predicting adult life-history parameters 
for fishes, these parameters are insufficient to predict population 
dynamics. In fact, fisheries scientists have recognized for nearly 
100 years that fish populations are often composed of a single or 
few small cohorts (Hjort, 1926) and that fluctuations in population 
size are largely driven by the production of juveniles. Recruitment 
is typically predicted as a function of spawning output, and parame-
ters governing the expected relationship between spawning output 
and recruitment are rarely included in classical life-history theory. 
Instead, stock-recruit parameters have historically been predicted 
using meta-analyses (e.g. Myers, 2001) applied to a database of 
spawning biomass and subsequent recruitment (termed “stock-re-
cruit data”) or via ecological theories of marine community struc-
ture (Andersen & Beyer, 2006) or demography (Mangel, Brodziak, & 
DiNardo, 2010). The stock-recruit relationship has received a great 
deal of research attention over the past thirty years both using the-
oretical arguments (Charnov, Berrigan, & Bevertron, 1991; Iles & 
Beverton, 1998; Mangel et al., 2010; Neill, Miller, Veer, & Winemiller, 
1994) and empirical methods (Britten, Dowd, & Worm, 2016; Foss-
Grant, Zipkin, Thorson, Jensen, & Fagan, 2016; Minto, Myers, & 
Blanchard, 2008; Rose, Cowan, Winemiller, Myers, & Hilborn, 2001; 

Thorson, Jensen, & Zipkin, 2014) to predict variation in stock-recruit 
parameters. These previous theoretical investigations have linked 
stock-recruit parameters to life-history categories (Rose et al., 2001) 
and predicted stock-recruit parameters based on ecological theory 
regarding community dynamics (Andersen & Beyer, 2015), popula-
tion persistence (He, Mangel, & MacCall, 2006) and demography 
(Mangel et al., 2010). However, there have been surprisingly few em-
pirical studies that simultaneously analyse variation in stock-recruit 
and adult life-history parameters.

Ecologists increasingly use models combining data from multiple 
collection protocols (termed “integrated models”) to estimate eco-
logical parameters. These integrated models are useful to estimate 
processes that are not identifiable using one data set in isolation and 
are common, for example, when estimating population dynamics 
for assessing stock status (Maunder & Punt, 2013), when estimat-
ing growth from tagging and length sampling data (Eveson, Laslett, 
& Polacheck, 2004) or when estimating population density using 
encounter and count data (Zipkin et al., 2017). However, data-inte-
grated modelling has not to my knowledge been used in life-history 
analysis (which typically analyses databases of field measurements 
of population rates) or stock-recruit analysis (which typically analy-
ses stock-recruit data while assuming that population-dynamics pa-
rameters are known and fixed exogenously). Combining these two 
analyses is sufficient to describe adult fish dynamics (e.g. spawning 
biomass per recruit without fishing) and recruit dynamics (e.g. re-
cruits per spawning biomass) and therefore is sufficient to describe 
the entire life cycle under alternative scenarios regarding fishing ef-
fort and selectivity (e.g. Thorson, Jensen, & Hilborn, 2015a).

In this study, I develop the first data-integrated model for life-his-
tory analysis and demonstrate this approach by combining data from 
life-history and stock-recruit databases. By combining life-history 
and stock-recruit information, I am able to generate predictions 
of life-cycle dynamics for all described fishes. I specifically modify 
the evolutionary model used by FishLife to fit both adult life-his-
tory parameters and stock-recruit measurements for over 150 fish 
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populations worldwide and use this integrated model for popula-
tion-dynamics parameters to estimate the strength of recruitment 
compensation for all fishes. I then use these predictions to generate 
a full life-cycle model and estimate the intrinsic growth rate r for 
all fishes. This parameter is widely used in theoretical and applied 
studies, for example, as one of two key parameters in the surplus 
production models that are taught in introductory fisheries science 
classes (Haddon, 2010). In the discussion, I compare resulting esti-
mates with previous studies to evaluate plausibility of model results. 
Finally, I distribute predictions of recruitment density dependence 
and intrinsic growth rate (and associated uncertainty) as an updated 
version of the fully documented, publicly available R package FishLife 
(https ://github.com/James-Thors on/FishLife), so that future users 
can generate multivariate predictions of life-history and stock-re-
cruit parameters for any described fish species.

2  | METHODS

I seek to predict stock-recruit parameters (the strength of recruit-
ment compensation and the variance and autocorrelation in recruit-
ment variation) and use results to describe life-cycle dynamics (i.e. 
intrinsic growth rate) for all fishes worldwide. To do so, I integrate 
two previous meta-analytic models:

1. An evolutionary model of life-history parameters (Thorson et 
al., 2017) fitted to field measurements of size, growth, mortality 
and maturity for thousands of species worldwide as compiled 
by FishBase (Froese, 1990);

2. A hierarchical model for stock-recruit parameters (Thorson et al., 
2014) fitted to stock and recruitment measurements from the 
original RAM database (Myers, Bridson, & Barrowman, 1995).

By fitting an evolutionary model to both data sets simultane-
ously, I am able to characterize uncertainty arising from estimates of 
individual life-history parameters as well as stock-recruit processes. 
I then distribute results using an R package FishLife, release 2.0.0 
(https ://github.com/James-Thors on/FishL ife/relea ses/tag/2.0.0).

For this analysis, I draw heavily upon previous advice regard-
ing good practices in fisheries meta-analysis (Thorson, Cope, et al., 
2015b). Specifically, I address both experimental variability, for ex-
ample, errors in field measurements of life-history parameters, and 
parametric variability, for example, differences in larval and adult 
survival rates, following definitions of experimental and parametric 
variability from Osenberg, Sarnelle, Cooper, and Holt (1999). To ac-
count for both types of variability, I apply a hierarchical model that 
explicitly estimates the magnitude of measurement versus process 
variability (Thorson & Minto, 2015). Hierarchical models automati-
cally implement “shrinkage,” that is, the tendency for parameter esti-
mates for each species to be shrunk towards both (a) the average of 
available data and (b) the prediction given other model components 
(Gelman & Hill, 2007). Shrinkage permits parameter estimates even 
for species with no field records. Shrinkage will also bias estimates 
for a given taxon towards estimates for related species, but theory 

suggests that it will minimize expected errors even in cases when 
some species are mis-categorized or otherwise greatly different 
from other taxa (Efron & Morris, 1977).

2.1 | Evolutionary model for life-history parameters

I first summarize FishLife (Thorson et al., 2017), an evolutionary 
model for size, growth, mortality and maturity parameters for all 
fishes worldwide. This model adapts the coalescent model for mo-
lecular evolution (Felsenstein, 1973) to predict a vector xg of life-
history values xg,j for taxon g and parameter j (of G and J modelled 
taxa and parameters). Parameters xg that are estimated in the model 
are described in detail below (see Table 1 for list).

According to this model, life-history parameters xg for taxon g 
evolve to deviate from the parameters xp(g) for their taxonomic parent 
p(g), where this deviation follows a multivariate normal distribution:

for example, if xp(g) is the average value of life-history parame-
ters for family Sebastidae, then xg is the average life-history values 
genus Sebastes. �l(g) is the evolutionary covariance among life-his-
tory parameters:

where L� is a lower-diagonal matrix that approximates covariance 
among parameters, D� is a diagonal matrix representing additional 
variance for the evolution of each trait (where each element of the 

(1)xg∼MVN
(
xp(g),�l(g)

)

(2)�l(g) =�l(g)

(
L�L

T

�
+D�

)

TA B L E  1   List of life-history and stock-recruit parameters 
(including their name, symbol, the database used to estimate them 
and the type of parameter) that are predicted (along with estimated 
covariance) for all fishes worldwide

Name Symbol Database Type

Mortality rate log
(
M
)

FishBase Mortality

Maximum age log
(
Amax

)
FishBase Mortality

Growth coefficient log
(
K
)

FishBase Size

Asymptotic length log
(
L
∞

)
FishBase Size

Asymptotic mass log
(
W

∞

)
FishBase Size

Age at maturity log
(
Amat

)
FishBase Maturity

Length at maturity log
(
Lmat

)
FishBase Maturity

Average temperature T FishBase Environmental 
conditions

Conditional standard 
deviation of recruit-
ment variability

log
(
�R
)

RAM Recruitment

Autocorrelation of re-
cruitment variability

�R RAM Recruitment

Maximum an-
nual spawners per 
spawner in excess of 
replacement

� RAM Recruitment

https://github.com/James-Thorson/FishLife
https://github.com/James-Thorson/FishLife/releases/tag/2.0.0
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diagonal is estimated separately), and l(g) represents the taxonomic 
level of taxon g (e.g. Class, Order, Family, Genus or Species) such that 
�l(g) represents the proportion of evolutionary covariance occurring 
at taxonomic level l(g). This specification is completed by specifying 
the mean traits for the top of the fish taxonomy (phylum Chordata) 
as fixed effects with expected value �x. The evolutionary covariance 
from phylum Chordata to any fish species can be calculated as 
�=

5∑
l=1

�l. This model approximates many different evolutionary 

mechanisms, for example, by assuming that evolution rates of life-
history and stock-recruit parameters are identical for all evolution-
ary lineages despite likely differences in evolutionary mechanisms 
and effective population size, and future research could expand the 
model by incorporating additional information regarding evolution-
ary rates and divergence times within the fish taxonomic tree.

The association of one trait (e.g. natural mortality M) and another 
trait (e.g. asymptotic mass W

∞
) can be interpreted using major axis 

regression (Warton, Wright, Falster, & Westoby, 2006). Major axis 
regression (MAR) involves calculating the eigen-decomposition of 
evolutionary covariance �, and the ratio of elements in a given ei-
genvector is interpreted as the regression “slope” between two vari-
ables. MAR is useful given that the slope does not require defining 
which variable is “dependent” or “independent”, and an estimated 
slope of β can be interpreted as “a 1% change in variable X1 is as-
sociated with a β% change in variable X2” whenever both variables 
have been log-transformed prior to analysis (see Thorson et al., 2017 
for an example). By contrast, conventional linear modelling (e.g., a 
regression of natural mortality M on growth coefficient K) requires 
specifying a dependent and independent variable, and estimates of 
the slope will depend upon that choice.

The evolutionary model in FishLife is completed by specifying a 
distribution for life-history measurements ỹi for study i :

where g(i) is the taxon for study i, such that xg(i) is the expected value 
for each field measurement for that study, and V represents covari-
ance among studies for a given taxon (resulting from a combination of 
field-measurement errors and biological variation among stocks for a 
given species, years for a given stock, etc). However, most studies do 
not measure all life-history parameters simultaneously, so I use a “miss-
ing-data” model under the assumption that data are missing at random:

where �i,j is assigned a uniform prior distribution, �i,j∼Uniform
(
LB,UB

)
 

(where the lower bound LB and upper bound UB are chosen such that 
further changes in their values have no effect on model results).

This model was previously fitted to seven life-history parameters 
and average environmental temperature (which I collectively call 
“life-history parameters”; Table 1), where all were log-transformed 

prior to analysis (except for average temperature Temp). Results 
from Thorson et al. (2017) showed:

1. Well-known life-history patterns, for example, a positive asso-
ciation between observed values for growth coefficient (K) and 
natural mortality rate (M) and the close-to-cubic relationship 
between asymptotic length (L

∞
) and asymptotic mass (W

∞
).

2. Major axes of evolution in life-history parameters, wherein the 
first axis is associated with temperature, the second with body 
size and the third represents a non-linear relationship between 
mortality rate and growth coefficient (M/K) and the timing of 
maturation (Lmat∕L∞).

3. Useful predictions of uncertainty for both well-studied species 
and poorly studied species, where predicted life-history param-
eters for individual species are more precise (smaller predictive 
intervals) than predictions for higher-level taxa.

However, that analysis could not predict population dynamics 
because it did not include parameters governing recruitment.

2.2 | Hierarchical model for stock-
recruit parameters

I next extend the existing FishLife model to predict stock-recruit 
parameters by fitting to records of spawning stock size Si,t and sub-
sequent recruitment Ri,t for stock-recruit study i in year t. Previous 
research has predicted stock-recruit parameters based on ecological 
mechanisms drawn from population (e.g. Mangel et al., 2010) and 
community theory (e.g. Andersen & Beyer, 2015), whereas I instead 
approach the problem by estimating correlations between stock-
recruit parameters either across related taxa or with life-history 
parameters. I use notation from Thorson et al. (2014), but modify 
this model by (a) embedding it within the evolutionary model for life-
history parameters and (b) defining a hyper-distribution for maxi-
mum recruits per spawning biomass for each stock. I note that the 
original RAM database records the age at recruitment for each stock 
i, and I align data such that R̂i,t is the record of recruitment arising 
from spawning that occurs given spawning biomass Si,t. I specifically 
associate each stock-recruit study i with a corresponding vector of 
life-history and stock-recruit measurements ỹi. Vector ỹi is defined 
such that all life-history measurements are missing for stock-recruit 
study i; these values are instead predicted based on life-history es-
timates xg(i) for species g(i) corresponding to study i (see Equation 
3). Similarly, stock-recruit parameters for study i are extracted from 
vector ỹi and are then used to calculate the likelihood of stock-re-
cruit records Si,t and Ri,t for all years t available in study i; the fit to 
this likelihood is then used to predict stock-recruit parameters in 
vector xg for all taxa g(i) corresponding to study i.

I specify one parameterization of the Beverton–Holt model for 
expected recruitment R̂i,t for study i in year t:

(3)ỹi∼MVN
(
xg(i),V

)

(4)ỹi=

⎧
⎪⎨⎪⎩

𝜀i,j if yi,j was not measured by study i

yi,j if yi,jwasmeasured by study i

(5)
R̂i,t=

𝛼iSi,t

1+Si,t∕𝛽i
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where �i is maximum recruits per spawning biomass for stock-recruit 
study i  (i.e. extracted from ỹi), and �i represents the density-depen-
dent decrease in recruits per spawning biomass with increasing Si,t. I 
then specify a distribution for process variability around this assumed 
relationship:

where �i is the first-order autocorrelation coefficient for study i , and 
residual errors are normally distributed, �i,t∼N

(
0,�2

i

)
, where �2

i
 is the 

conditional variance for recruitment deviations. This model involves 
estimating four parameters for every each study i: �i, �i, �2i  and �i.

I apply a hierarchical model that shrinks �g, �2g  and �g towards 
expected values for a given taxon. I assume that carrying capacity 
varies greatly among species (e.g. because spawning biomass and 
recruits are expressed in different units among different studies, or 
mechanisms differ among species), so I treat �g(i) as a fixed effect for 
every study i  such that it is not shrunk towards a common value (and 
it is not included for species g for which no study. By contrast, I spec-
ify a hierarchical model for maximum recruits per spawning biomass 
�i in the following way. First, I use the observation that maximum 
annual spawners per spawner is less variable than other measures 
of density dependence (Myers, Bowen, & Barrowman, 1999). I then 
convert this value to maximum lifetime spawners per spawner in ex-
cess of replacement pi for each study i:

where exp
(
−M∗

i

)
 is the annual survival fraction given adult natural 

mortality rate M∗

i
. The right-hand-side of Equation 7 ensures that pi>1 

for all values of log
(
�i
)
, which is a necessary condition for persistence 

of the population in the absence of fishing, such that �i is defined as 
maximum annual spawners per spawner in excess of replacement. Given 
that maximum annual recruits per spawning biomass (�i) times lifetime 
spawning biomass per recruit in the absence of fishing (SPRF=0) must 
equal maximum lifetime spawners per spawner (pi) (Myers & Mertz, 
1998), it then follows that �i=pi∕SPR

∗

F=0
. In summary, I specify a hier-

archical model for log
(
�i
)
, convert �i to pi (Equation 7) and then convert 

pi to �i, where �i and �i are used to predict recruitment R̂i,t for the levels 
of spawning biomass Si,t that have been observed for each population. 
In this analysis, I use values SPR∗

F=0
 and M∗

i
 compiled by Ram Myers in 

the original stock-recruit database.
Given this model, I then define the variables used in the evolu-

tionary model as the set of life-history parameters that are compa-
rable across different fish species worldwide (see Table 1 for list).

where the vector of life-history parameters xg includes �g such that 
maximum annual spawners per spawner in excess of replacement is 
shrunk towards a value that is correlated both taxonomically and with 
other life-history parameters.

Given predicted values for life-history parameters xg for each 
taxon g, I calculate derived quantities that are useful for other mod-
els or management purposes (see list in Table 2). I discuss several in 
detail here:

1. Intrinsic growth rate: Many theoretical and applied studies in ecology 
have used the intrinsic growth rate (r) as an integrated measure 
of population resilience (Levins, 1969), and the parameter arises 
in fisheries science in the Schaeffer production model (Schaefer, 
1954). I calculate r as the dominant eigenvalue for a Leslie matrix 
representing population growth in numbers and reproductive out-
put, and it represents the instantaneous rate of population growth 
at asymptotically low population sizes; it is identical if expressed as 
growth rate in numbers or biomass (McAllister, Pikitch, & Babcock, 
2001). The calculation requires the parameters predicted by FishLife 
(Table 1), as well as several that are not available including: the 
allometric scaling of asymptotic biomass and length (fixed at 3.04 
based on the average from Froese et al. (2014)), the extrapolated 
age at zero length in the von Bertalanffy growth curve (fixed 
at −0.1) and the slope of the maturity ogive at 50% maturity 
(fixed at 25% of age at maturity). I recommend future research 
to incorporate these parameters into FishLife, although sensitivity 
analysis suggested that results are relatively insensitive to small 
changes in these values.

2. Steepness: Many stock assessment models use the steepness pa-
rameterization of the Beverton–Holt stock-recruit model (Mace, 
1994), where steepness hg for taxon g is defined as the proportion 
of unfished recruitment expected to occur when spawning bio-
mass declines to 20% of its unfished average:

where this calculation is derived, for example, by Myers and Mertz 
(1998) and has been re-derived with small differences elsewhere 
(Mangel et al., 2010 Equation 26).

(6)

log
�
Ri,t

�
=

⎧
⎪⎨⎪⎩

log
�
R̂i,t

�
+𝜌i

�
log

�
Ri,t−1

�
− log

�
R̂i,t−1

��
+𝛿i,t if t>1

log
�
R̂i,t

�
+𝛿i,t if t=1

(7)pi=1+
�i

1−exp
(
−M∗

i

)

xg≡{log (Mg), log
(
Amax ,g

)
, log

(
Kg

)
, log

(
L
∞,g

)
, log

(
W

∞,g

)
,

(8)log
(
Amat,g

)
, log

(
Lmat,g

)
,Ti, log

(
�g
)
, log

(
�R,g

)
, log

(
�g
)
}

(9)hg=
pg

4+pg

TA B L E  2   List of population-dynamics parameters that are 
predicted as a function of one or more life-history and stock-recruit 
parameters (listed in Table 1) for each fish species

Name Symbol Database

Steepness h FishBase + RAM

Marginal standard deviation of 
recruitment variability

�R FishBase + RAM

Intrinsic growth rate r FishBase + RAM

Generation time G FishBase + RAM

Fishing mortality ratio at MSY FMSY∕M FishBase + RAM
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3. Standard deviation for recruitment: the marginal (pointwise) 
standard deviation of recruitment is calculated as

where this standard deviation (and its standard error) can be used, for 
example, when fitting an age-structured surplus production model in 
data-poor assessments (Thorson, Rudd, & Winker, 2018).

I calculate these derived quantities for each taxon g, append them 
to the vector of estimated parameters, x̃g=

(
xg,hg,𝜎

2
g
,rg,Gg

)
, and calcu-

late the expectation and covariance of x̃g using Monte Carlo sampling 
based on the predictive covariance of both life-history (adult) and 
stock-recruit (early life) parameters.

2.3 | Parameter estimation

I estimate parameters for this evolutionary model of life-history 
and stock-recruit parameters given life-history measurements yi,j in 
FishBase (Froese, 1990) as downloaded using rfishbase (Boettiger, 
Chamberlain, Lang, & Wainwright, 2015) on 25 August 2016 and 
stock-recruit data Ri,j and Si,j from the Myers stock-recruit database 
(Myers & Mertz, 1998). Parameters are estimated using maximum 
marginal likelihood as implemented using Template Model Builder 
(Kristensen, Nielsen, Berg, Skaug, & Bell, 2016), while using the 
Laplace approximation (Skaug & Fournier, 2006) to integrate the 
joint likelihood of data and random effects with respect to random 
effects xg for all taxa. Further details are available in Appendix S1: 
Computational details.

I run this model with different degrees of complexity for evolu-
tionary covariance �, and use the Akaike information criterion (AIC) 
to select the rank of L�. I then present results for the AIC-selected 
model, and distribute reproducible software, input data, and re-
sulting estimates as a publicly available R package FishLife version 
2.0.0 (https ://github.com/James-Thors on/FishLife). I specifically 
provide predicted values x̂g for every described fish species, as well 
as the predictive covariance �Cov

(
x̂g
)
 derived using a combination 

of Monte Carlo sampling and a generalization of the delta method 
(Kass & Steffey, 1989). By publicly providing access to the code, 
I hope to facilitate future studies using simulation experiments to 
test model performance, for example, when identifying the true 
rank of L�.

2.4 | Assessment of model performance

Finally, I seek to evaluate model performance by addressing three 
questions:

1. Does the model accurately predict stock-recruit parameters 
(i.e. are predictions unbiased)?

2. Does the model precisely predict stock-recruit parameters (i.e. 
do predictions explain a substantial portion of among-stock 
variability)?

3. Does the model accurately measure its own uncertainty (i.e. are 
standard errors well calibrated, such that confidence intervals are 
likely to include the true value at a desired rate)?

To address these three questions, I conduct a 5-fold cross-valida-
tion experiment. This experiment involves dividing the set of stocks 
with stock-recruit data into five equally sized partitions. I then fit the 
model five times: the first to stocks in partition 2–5; the second to 
stocks in partition 1 and 3–5, etc. For each fit, I record the predicted 
stock-recruit parameters (and associated standard errors), and com-
pare these “out-of-sample” predictions with “in-sample” estimates 
that arise from fitting all stocks simultaneously. I then measure ac-
curacy (question #1) by comparing out-of-sample predictions with 
in-sample estimates; I measure precision by calculating the variance 
explained by out-of-sample predictions; and I measure standard 
error calibration by calculating the quantile of in-sample estimates 
within the out-of-sample predictive distribution. This cross-valida-
tion experiment mimics the scenario of adding additional stock-re-
cruit data from the same “data-generating process” as was used to 
generate the original data; if the original stock-recruit data are bi-
ased or otherwise not representative of unmeasured stocks, then 
this cross-validation experiment will not uncover bias arising from 
this issue. I therefore recommend additional model evaluation using 
new and/or updated stock-recruit records (e.g. extending Patrick, 
Cope, & Thorson, 2014), but leave this as a topic for future research.

3  | RESULTS

I first illustrate the predictive intervals for life-history and recruit-
ment parameters for three commercially important species, canary 
rockfish (Sebastes pinniger, Sebastidae), yellowfin tuna (Thunnus al-
bacares, Scombridae), and brown trout (Salmo trutta, Salmonidae) 
and the taxonomic family for each species (Figure 1). AIC selects a 
model that has a rank of six (i.e. L� has six columns), although the first 
three explain almost 99% of the covariance (Table 3). As expected, 
predictions for each individual species are much more precise (have 
smaller confidence interval width) than predictions for a given fam-
ily, and predictions for species generally fall within the 95% confi-
dence interval for a given family.

I next present the relationship between parameters using major 
axis regression (Table 3). This shows that the model fitted to life-his-
tory and stock-recruit records preserves the life-history relation-
ships documented by Thorson et al. (2017). For example, the 
association with the 3rd axis of variation differs between log

(
M
)
 and 

log
(
K
)
, and also between log

(
Linf

)
 and log

(
Lmat

)
 (see Table 3 caption 

for details). This then results in a negative and non-linear association 
between the ratio of mortality and growth rates (M/K) and the tim-
ing of maturation (Lmat∕Linf) as predicted originally by Holt (1958). 
However, FishLife also now fits stock-recruit records, and there is no 

(10)�g=

√
�2
g
∕

(
1−�2

g

)

https://github.com/James-Thorson/FishLife
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evidence that the model fits these data poorly (Appendix 2: Fig. S1). 
By fitting to both data sets simultaneously, FishLife is able to esti-
mate the relationship between stock-recruit and life-history param-
eters. The 1st axis (temperature) indicates that a 1°C increase in 
temperature is associated with a 0.004 increase in steepness on av-
erage and a 1% decrease in the standard deviation of recruitment. 
Similarly, the 2nd axis (body size) indicates that a 10% increase in 
asymptotic body size (W

∞
) is associated with a 0.6% (0.057

0.828
=0.06) in-

crease in recruitment autocorrelation (�R), but has an essentially neg-
ligible effect on steepness. Finally, the 3rd axis (timing of maturation) 
shows that a 10% increase in the ratio of mortality and growth (and 
resulting decrease in Lmat

L
∞

) is associated with a 3% increase in recruit-

ment variation 
(

0.052

0.476−0.310
=0.31

)
. In summary, steepness has a 

weak-to-non-existent relationship with body size and timing of ma-
turity, and recruitment autocorrelation (�R) has a positive association 
with age at maturity (Amat) via axes representing increased body size 
and the timing of maturation.

I next visualize the predictive relationships between steepness (h) 
or intrinsic growth rate (r) and both natural mortality and asymptotic 
mass (Figure 2). This shows that steepness has a weakly positive re-
lationship with natural mortality (Figures 2,1st column), and a weakly 
negative relationship with asymptotic mass (Figures 2 2nd column), 
resulting from the net effect of temperature, body size and timing of 
maturation patterns. Although steepness does not have a strong as-
sociation with either mortality or body size, there does appear to be 

some taxonomic clustering in both natural mortality and steepness 
values. For example, Sebastidae generally has lower values for nat-
ural mortality and steepness while Scombridae has elevated values 
of natural mortality and steepness. By contrast, intrinsic growth rate 
has a strong positive relationship with natural mortality (Figures 2, 
3rd column) and a strong negative relationship with asymptotic body 
size (Figures 2, 4th column). Again, there is strong taxonomic clus-
tering along this axis of variation, where Sebastidae has relatively 
low natural mortality and intrinsic growth rate, and is somewhat 
of an outlier in having a asymptotic body size in the middle range 
of predicted values. Finally, there is also some taxonomic signal in 
recruitment variance and autocorrelation (Appendix 2: Figure S2), 
where Sebastidae has somewhat higher recruitment variation than 
other taxa.

Exploring these taxonomic patterns for steepness in detail 
(Figure 3, left column), I find that the mode of the predictive dis-
tribution for Salmonidae is higher (0.79) than Sebastidae (0.72), 
Lutjanidae (0.73) or Scombridae (0.69). By contrast, intrinsic growth 
rate for Sebastidae is on the low-end (0.15) and genus Sebastes is 
particularly low (0.09); these values are still above those for selected 
Chondrythian families (Carcharhiniformes: 0.02; Lamniformes: 
0.02). Meanwhile, Scombridae (0.45) and Salmonidae (0.44) have rel-
atively high intrinsic growth rates among the fish families explored 
here, and Lutjanidae (0.33) is intermediate.

Finally, the 5-fold cross-validation experiment suggests that the 
out-of-sample predictions are an unbiased and precise measurement 

F I G U R E  1   Predictive distribution 
for selected life-history and stock-
recruit parameters (see Table 1) for 
three commercially important families 
(Sebastidae, Scombridae and Salmonidae) 
and a selected species from each family 
(Sebastes pinniger, Thunnus albacares and 
Salmo trutta)
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of in-sample estimates (Figure 4). In particular, the model explains 
32%–57% of among-stock variance in log-marginal variance of re-
cruitment, autocorrelation and log-maximum annual spawners per 
spawner. This then translates to 59%–67% reduction in variance in 
logit-steepness, log-Fmsy and log-intrinsic growth rate. However, es-
timated standard errors generally are too small, resulting in a quan-
tile distribution that has excess mass near zero and one (Figure 5). 
This is particularly true for autocorrelation, which presumably has a 
highly skewed predictive distribution, and standard errors are best for 
logit-transformed steepness and log-maximum annual spawners per 
spawner.

4  | DISCUSSION

In this study, I have developed the first integrated life-history model 
for population-dynamics parameters in fishes, which simultaneously 
fits to public life-history and stock-recruit databases. The analysis 
specifically builds upon a simple model for evolution along phyloge-
netic lineages to reconcile both data sets, and results can be used to 
predict parameters for species that otherwise have no known infor-
mation (Thorson et al., 2017). Importantly, this model estimates the 
uncertainty for each parameter (including the correlation between 
parameters) in a logical way that has three useful characteristics: (a) 
species with many life-history records are more precise than those 
with few or no records; (b) species are shrunk towards related spe-
cies that are well-studied; and (c) uncertainty is greater for poorly 
studied species that have few well-studied relatives than those with 
many well-studied relatives.

This analysis shows that the strength of recruitment compensa-
tion (“steepness”) is not strongly correlated with the major axes of 
life-history variation in fishes (temperature, body size or timing of 
maturation), but does cluster taxonomically (e.g. with lower steep-
ness for family Sebastidae and higher for Scombridae). By contrast, 
intrinsic growth rate has strong correlations with body size, as ex-
pected given the dependence of intrinsic growth rate upon natural 
mortality rates. By using a simple evolutionary model, I am able to 
predict a unique value for life-history parameters for every spe-
cies in either data set, as well as all higher-level taxonomic groups 
of those species. This contrasts with previous attempts to estimate 
steepness and intrinsic growth rate, which have typically estimated a 
single, average value for these quantities for all species (e.g. Jensen, 
Branch, & Hilborn, 2012) or within a given taxonomic grouping 
(Shertzer & Conn, 2012).

I evaluate results by comparing predictions of steepness for high-
er-level taxa (e.g. for a given genus, family or order) with those from 
previous studies to look for differences with previously published 
studies (see Table 4). For example, the mode of the predictive dis-
tribution of steepness for bony fishes (Actinopterygii) is 0.74 in this 
study, compared with the predictive mean of 0.75 for all data sets 
analysed by Shertzer and Conn (2012). The current analysis did not 
observe the strong, positive association between steepness and as-
ymptotic size that is predicted from size-structured community the-
ory (Andersen & Beyer, 2015). Instead, results were consistent with 
Shertzer and Conn (2012), who found no strong life-history predic-
tor for steepness. Exploring this in more detail, FishLife predictions 
of the slope-at-the-origin of the stock-recruit relationship (�) shows 
a strong negative correlation with asymptotic biomass (Appendix S2: 
Figure S3) as previously shown by Hall et al. (2006 Figure 1). However, 
this negative relationship is counter-balanced by a strong positive 
correlation with unfished spawning biomass per recruit (SPR∗

F=0
), as 

previously shown by Goodwin, Grant, Perry, Dulvy, and Reynolds 
(2006), such that FishLife identifies little correlation of body size 
with either maximum lifetime spawners per spawner (p=�×SPR

∗

F=0

) or steepness (h= p

4+p
). Furthermore, residual variability in any re-

lationship between steepness and any single life-history parameter 

TA B L E  3   Summary of the dominant axes of covariation for 
evolutionary covariance Σ. Each value indicates the association 
between an axis of variation (columns) and a given parameter 
(rows), while the ratio of two elements of a given eigenvector 
is interpreted as the “slope” between these two variables (see 
text below Equation 2 in main text for details). For example, an 
increase in the 3rd eigenvector results in a smaller increase in 
log

(
Lmat

)
 than log

(
L
∞

)
, suggested that movement along this axis 

results in a decreasing ratio of Lmat∕L∞. Similarly, movement along 
this 3rd axis results in a larger increase in log

(
M
)
 than log

(
K
)

, thus resulting in a increasing ratio of M∕K. Therefore, this axis 
represents a negative linear association between log

(
Lmat∕L∞

)
 

and log
(
M∕K

)
, and a negative and non-linear relationship between 

Lmat∕L∞ and M∕K. Finally, a slope of X between two variables that 
are both calculated in log-space (i.e. all variables except T, �R and h
) indicates that a 1% increase in one variable is associated with an 
approximately X% increase in the other variable. The proportion 
of variance explained by a given eigenvector (row “Proportion”) 
measures what proportion of total variance is explained by a given 
eigenvector

 

Eigenvectors

1 2 3

Variance decomposition

Eigenvalues 72.58 15.238 1.457

Proportion 0.802 0.168 0.016

Cumulative proportion 0.802 0.970 0.986

Loadings

log
(
M
)

0.054 −0.212 0.476

log
(
Amax

)
−0.043 0.202 −0.483

log
(
K
)

0.046 −0.214 0.310

log
(
L
∞

)
−0.019 0.263 0.124

log
(
W

∞

)
−0.044 0.828 0.397

log
(
Amat

)
−0.041 0.210 −0.492

log
(
Lmat

)
−0.026 0.235 0.090

T 0.994 0.086 −0.058

log
(
�R

)
−0.013 −0.053 0.052

�R 0.006 0.057 −0.116

h 0.004 −0.011 0.030
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(e.g. body size) is predictable given that steepness is a function of 
both slope-at-the-origin � and unfished spawning biomass per re-
cruit (SPR∗

F=0
). This is because SPR∗

F=0
 is a non-linear function of many 

life-history parameters including growth rate, asymptotic weight, 
age at maturity and natural mortality, and there are three biologically 
interpretable axes of variation among these life-history parameters 
(Thorson et al., 2017), such that projecting SPR∗

F=0
 or steepness onto 

any single parameter will not control for variation in those remaining 
axes of life-history variation (see also Mangel et al., 2013). I recom-
mend further comparison of results from this integrated life-history 

model with mechanistic predictions of steepness (Andersen & Beyer, 
2015; Mangel et al., 2010), in particular to compare predictions of 
the relationship between steepness and life-history parameters 
under different mechanistic assumptions.

The predictive mode for steepness of genus Sebastes (Pacific 
rockfishes) is 0.61 in this study, compared with 0.58–0.78 obtained 
from six biannual iterations of a regional meta-analysis for these 
species on the US West Coast (Thorson, Dorn, & Hamel, 2019). 
Steepness predictions from that biannual regional meta-analysis 
rose sharply between 2007 and 2011, likely reflecting improved 

F I G U R E  2   Visualization of the natural mortality rate (M, 1st and 3rd columns and plotted on x-axis on log-scale) or asymptotic mass 
(W

∞
, 2nd and 4th columns and plotted on x-axis on log-scale) and steepness (h, 1st and 2nd columns and plotted on y-axis using logit scale 

from 0.2 to 1.0) or intrinsic growth rate (r, 3nd and 4rd columns and plotted on y-axis on log-scale) for every Class, Order, Family, Genus 
and Species in the database, while highlighting the predictive distribution for commercially important families (Sebastidae, Salmonidae, 
Scombridae and Lutjanidae). For Class, Order and Family I show the 95% predictive distribution (an ellipse, given that the model uses a 
multivariate normal distribution), while for Genus and Species I show the for each modelled stock in that taxon
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environmental conditions for West Coast rockfishes in the mid-
2000s. Predictions in this paper, by contrast, are based on data from 
the Myers and Mertz (1998) database, prior to these years of good 
recruitment. Different steepness predictions from these two me-
ta-analyses emphasize that meta-analytic results are reflective of 
stock-recruitment parameters during an historical period that might 
differ from current environmental conditions. Finally, the current 
analysis shows that family Sebastidae has higher recruitment vari-
ance and autocorrelation that Salmonidae (Supporting Information 
S1), and this is consistent with results from Thorson et al. (2014) for 
orders Scorpaeniformes and Salmoniformes. The low value for steep-
ness for genus Sebastes, combined with unusually low mortality for 
their body size, causes Sebastes species to have an intrinsic growth 
rate (0.09) that is closer to several shark families (Lamniformes: 0.02; 
Carcharhiniformes: 0.02) than other bony fishes. Large differences 
in productivity among different fish genera suggest the importance 
of predicting life-history parameters using taxonomic information in 
addition to life-history theory.

I note that any meta-analysis is confronted with a trade-off be-
tween using aggregated data (e.g. output from an assessment model) 
for many stocks, or using lower-level data (e.g. output from an index 
standardization model) for a small number of stocks (Thorson, Cope, 
et al., 2015b). In this study, I have fitted to the largest data sets avail-
able for both life-history parameters (FishBase) and stock-recruit 
estimates (the RAM database), and results are therefore sensitive 
to the biases that arise from using model output as “data” (Brooks 

& Deroba, 2015; Dickey-Collas, Payne, Trenkel, & Nash, 2014). 
Although it is possible to conduct a meta-analysis for steepness 
using lower-level data, this has been done previously for only a small 
number of species (Thorson et al., 2019). I therefore recommend 
ongoing research to use lower-level data (e.g. individual records of 
size and age to estimate growth parameters) within future data-inte-
grated life-history models to eliminate the potential bias arising from 
analysing model output as data in a meta-analysis.

I believe that multivariate predictions for multiple population-dy-
namics parameters will be useful for stock assessment, decision the-
ory, ensemble modelling, and strategic decision-making, and discuss 
each of these briefly:

1. Stock assessment: These multivariate predictions can be used 
to define a joint prior distribution (or penalty) for parameters 
used in a Bayesian (or maximum likelihood) stock assessment 
model. For example, a recent data-poor assessment model using 
length-composition data to estimate stock status requires val-
ues for maturity, mortality, size, steepness and recruitment 
variability (Rudd & Thorson, 2017), and a joint prior for all of 
these parameters can be generated using the results. Using a 
joint prior distribution prevents assessments from estimating a 
combination of life-history parameters that are highly unlikely 
(Brandon, Breiwick, Punt, & Wade, 2007; Kindsvater et al., 2018), 
for example, by estimating high mortality M in combination with 
large maximum body size W

∞
. The concern with biologically 

F I G U R E  3   Predictive probability 
(y-axis) for steepness h (left column) or 
intrinsic growth rate r (right column) for 
every described class, order, family, genus 
and species in FishBase (panels, ordered 
top to bottom), with families Sebastidae, 
Salmonidae, Scombridae and Lutjanidae 
highlighted to emphasize these particular, 
commercially important species
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implausible life-history values has motivated development of 
data-poor assessment models that employ life-history invari-
ants to restrict parameter inputs to plausible values (Hordyk, 
Ono, Sainsbury, Loneragan, & Prince, 2015; Kokkalis, Eikeset, 
Thygesen, Steingrund, & Andersen, 2017). Similarly, using mul-
tivariate predictions as a joint prior distribution would restrict 
parameter estimates to plausible life-history strategies for any 
assessment model that can use multivariate prior distributions. 
However, I note that using a prior distribution for life-history 
information creates a trade-off between bias (if using informa-
tion from other stocks) and imprecision (if ignoring information 
from other stocks). I therefore recommend further simulation 

testing to explore this bias-variance trade-off for steepness 
and other life-history parameters.

2. Operating model development: Similarly, a multivariate distribution 
for life-history parameters can guide the design of simulation ex-
periments that are widely used to evaluate likely performance 
for ecological models or management procedures (Sainsbury, 
Punt, & Smith, 2000). In particular, analysts could use predic-
tions to generate plausible population-dynamics parameters for 
different life-history types, for example, by using the predictive 
distribution for all parameters for genus Sebastes to evaluate har-
vest strategies given simulated dynamics for Pacific rockfishes 
(Punt, 2008). This would allow researchers to link management 

F I G U R E  4   Model performance for 
estimating stock-recruit parameters, 
assessed using a 5-fold cross-validation 
experiment for three estimated 
parameters (log-marginal variance, 
autocorrelation and log-maximum annual 
spawners per spawner) and three derived 
quantities (steepness, log-fishing mortality 
rate at maximum sustainable yield and 
log-intrinsic growth rate), showing the 
out-of-sample prediction when excluding 
each of the stocks with available stock-
recruit data (y-axis) versus estimates 
when fitting to all stocks with available 
stock-recruit data (x-axis); each panel also 
lists the percentage of variance explained 
(one minus the variance of the difference 
between x-axis and y-axis values divided 
by the variance of y-axis values)
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decision theory to the likely population dynamics for all species 
worldwide.

3. Ensemble modelling: Stock assessment will generally be more ro-
bust if management advice is based on an ensemble of alterna-
tive life-history assumptions (Stewart & Martell, 2015). Results 
from a model ensemble can be presented using a decision table 
(Hilborn, Pikitch, & Francis, 1993) or via ensemble weighting of 
model results (Anderson et al., 2017), but either presentation re-
quires some objective method for determining the weight of dif-
ferent unknown “states of nature.” I therefore recommend that 
stock assessments increasingly present results using an ensemble 
of life-history values, where model weights can be obtained from 
the multivariate distribution for these parameters.

4. Strategic decisions: Finally, strategic decision-making in ecosystem-
based management is increasingly informed by models that include 
dynamics for multiple species and physical drivers (Fulton et al., 

2011). For example, ecosystem models have been used to forecast 
likely impacts of ocean acidification, temperature changes or in-
vasive species on fisheries potential (Cheung, Lam, & Pauly, 2008; 
Marshall et al., 2017; Morello et al., 2014). However, these models 
often require values for population-dynamics parameters for sev-
eral to hundreds of species simultaneously, and there is increased 
interest in characterizing uncertainty in ecosystem model predic-
tions given uncertainty about population-dynamics parameters 
(Collie et al., 2016; Link et al., 2012). One source of uncertainty is 
fixing biological parameters (and their associated standard errors), 
and this uncertainty could be dealt with uniformly across different 
species or taxonomic groups using results from this analysis.

For these reasons and more, I encourage continued research 
regarding data-integrated life-history modelling. These models lie 
at the intersection of evolutionary, life-history and stock-recruit 

F I G U R E  5   Model performance for 
estimating the standard error of stock-
recruit parameters, assessed using a 
5-fold cross-validation experiment (see 
Figure 4 caption), showing the quantile of 
estimates when fitting to all stocks with 
available stock-recruit data, compared 
against the predictive distribution when 
excluding each of the stocks. A well-
performing predictive distribution will be 
approximately uniform (dashed horizontal 
line), while a model with too small of 
standard errors will have excess mass 
near 0 and 1, while a model with too large 
of standard errors will have excess mass 
near 0.5
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theory and can translate insights from these theories into tools for 
applied ecologists and fisheries managers. For this purpose, I dis-
tribute the predictions of life-history and stock-recruit parameters 
(and associated confidence intervals) within R package FishLife ver-
sion 2.0.0 and interested users can read the vignette to learn more.
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Genus
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(0.15–0.20)
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(Actinopyterygii) and common taxonomic 
orders and families (with predictive 
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parentheses). Also shown is the range of 
predictive mean steepness (and range 
of predictive standard deviations) for 
West Coast rockfishes from six biannual 
meta-analyses compiled by Thorson et 
al. (2019), the sample mean (and sample 
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all compiled data sets from Shertzer and 
Conn (2012)
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