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1  | INTRODUC TION

Many ecosystems worldwide are showing rapid responses to 
changing environmental conditions. Distribution shifts often in-
dicate the intensity of environmental impacts, both because dis-
tribution shifts can directly cause changes in community stability 
(Theobald, Breckheimer, & HilleRisLambers, 2017) and because 

distribution is an integrated measure of changing demographic 
rates (Merow et al., 2014). Rapid distribution shifts have been 
documented for birds (Hitch & Leberg, 2007), plants (Kelly & 
Goulden, 2008) and fishes (Pinsky, Worm, Fogarty, Sarmiento, & 
Levin, 2013).

Distribution shifts due to environmental change can be particu-
larly rapid in marine ecosystems. For example, the Gulf of Maine has 
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Abstract
Forecasting distribution shifts under novel environmental conditions is a major task 
for ecologists and conservationists. Researchers forecast distribution shifts using 
several tools including: predicting from an empirical relationship between a summary 
of distribution (population centroid) and annual time series (“annual regression,” AR); 
or fitting a habitat-envelope model to historical distribution and forecasting given 
predictions of future environmental conditions (“habitat envelope,” HE). However, 
surprisingly little research has estimated forecast skill by fitting to historical data, 
forecasting distribution shifts and comparing forecasts with subsequent observa-
tions of distribution shifts. I demonstrate the important role of retrospective skill 
testing by forecasting poleward movement over 1-, 2- or 3-year periods for 20 fish 
and crab species in the Eastern Bering Sea and comparing forecasts with observed 
shifts. I specifically introduce an alternative vector-autoregressive spatio-temporal 
(VAST) forecasting model, which can include species temperature responses, and 
compare skill for AR, HE and VAST forecasts. Results show that the HE forecast has 
30%–43% greater variance than predicting that future distribution is identical to the 
estimated distribution in the final year (a “persistence” forecast). Meanwhile, the AR 
explains 2%–6% and VAST explains 8%–25% of variance in poleward movement, and 
both have better performance than a persistence forecast. HE and AR both generate 
forecast intervals that are too narrow, while VAST models with or without tempera-
ture have appropriate width for forecast intervals. Retrospective skill testing for 
more regions and taxa should be used as a test bed to guide future improvements in 
methods for forecasting distribution shifts.
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shown rapid increases in water temperature during the past decade, 
and these increases have changed the spatial distribution and phe-
nology of lobster fisheries thereby causing economic hardships in 
2012 (Mills et al., 2013). Similarly, the Northwest Atlantic as a whole 
has shown rapid warming, and this has driven a rapid northward shift 
in abundance for yellowtail and summer flounder, in turn causing a 
lagged shift in fishing effort for these species (Pinsky & Fogarty, 
2012). Rapid changes such as these are less frequent in ecological 
systems where slow changes in habitat or long-lived life-history 
strategies can underlie a lagged effect of climate on local population 
densities (Schurr et al., 2012).

Forecasting future shifts in distribution is a unifying challenge for 
ecologists and conservationists across many taxa. Forecasting future 
distribution shift is important to predict likely changes in competitive 
and facultative interactions among species (Schliep et al., 2018) or 
the invasion success of newly introduced species (Ramírez-Albores, 
Bustamante, & Badano, 2016). In marine species, forecasting distribu-
tion shifts is particularly important when renegotiating fishery access 
rights (Pinsky & Fogarty, 2012), or when forecasting potential impacts 
of changing climate on fishery economic potential (Cheung et al., 2010).

Recent research has recommended forecasting distribution 
shifts using mechanistic models that represent the impact of en-
vironmental changes and biotic interactions on individual demo-
graphic rates (Mellin et al., 2016; Swab, Regan, Matthies, Becker, & 
Bruun, 2015; Trainor, Schmitz, Ivan, & Shenk, 2014; Zurell, 2017). 
However, many taxa (e.g., marine fishes, insects and fungi com-
munities, among others) often do not have sufficient individual-
specific demographic information to parameterize stage-based 
models of environmental and biological mechanisms (e.g., exam-
ples in Parmesan, 2006). In marine fishes, for example, research-
ers have instead forecasted distribution shifts using two types 
of models: (a) annual regressions (AR) of distribution shift, or (b) 
habitat-envelope (HE) models. Annual regressions of distribu-
tion generally involve calculating an annual summary statistic for 
species distribution, for example, the centroid of a population in 
each year. This centroid is then regressed against multiple annual 
covariates, for example, total abundance, average bottom tem-
perature or fishing mortality rates (Adams et al., 2018; Mueter & 
Litzow, 2008; Nye, Link, Hare, & Overholtz, 2009; Spencer, 2008), 
and this empirical relationship is used to forecast distribution 
shift under alternative future values of these covariates (Hare, 
Alexander, Fogarty, Williams, & Scott, 2010). By contrast, habitat- 
envelope models involve estimating or pre-specifying the habitat 
suitability function for a given species based on temperature, de-
mersal habitat or other local habitat conditions (Cheung, Lam, & 
Pauly, 2008; Kaschner, Watson, Trites, & Pauly, 2006). Changes in 
habitat suitability can then be forecasted given projected changes 
in environmental conditions, and changed habitat suitability can 
be used to forecast changes in the centroid of a population’s dis-
tribution (Cheung et al., 2009). Recent research has also devel-
oped spatio-temporal models to estimate distribution shifts and 
attribute shifts to different causal mechanisms, and these models 
can include both annual covariates (e.g., average environmental 

conditions) and local covariates affecting habitat suitability 
(Thorson, Ianelli, & Kotwicki, 2017; Tredennick et al., 2016).

Despite this increased interest in forecasting species distribution, 
there has been relatively little research comparing predictive skill 
for alternative potential models used to forecast distribution shifts. 
Skill testing is a common approach to compare models and bench-
mark progress in many other types of environmental forecasting 
and has been widely used, for example, to validate strategic fore-
casts of abundance and productivity using an ecosystem model for 
the Northwest Atlantic (Olsen et al., 2016), explore improvements in 
hurricane forecasts over time (Vitart, 2014), assess skill for decadal 
forecasts of butterfly distribution in Finland (Eskildsen et al., 2013), or 
identify when regression models are useful to forecast fish distribu-
tion for the Northwest Atlantic (Kleisner et al., 2017). Skill testing has 
seen increasing use for seasonal forecasts of fish distribution shift, 
for example, 2-month forecasts for the spatial distribution of tunas 
in the Great Australian Bight (Eveson, Hobday, Hartog, Spillman, & 
Rough, 2015), or 4- to 8-month forecasts of sardine distribution in the 
US California Current (Kaplan, Williams, Bond, Hermann, & Siedlecki, 
2016). However, skill testing has not been widely applied to compare 
performance for multiple models to forecast shifts in species distribu-
tion occurring over time-scales between seasonal and climate fore-
casts (1–5 years, termed “short-term” in the following).

In this paper, I use retrospective skill testing to compare the perfor-
mance of “annual regression” (AR) and “habitat-envelope” (HE) fore-
casts of distribution shift with an alternative vector-autoregressive 
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spatio-temporal (VAST) model. Following common practice in fish-
eries, I measure distribution as the centroid of population biomass 
rather than measuring changes in occupied habitat. This VAST and 
HE models involve fitting a delta-generalized linear mixed model 
(delta-GLMM) to local samples of population biomass while account-
ing for both spatial, temporal and spatio-temporal correlations in bio-
mass density. AR, HE and VAST forecasts are generated by fitting to 
biomass-sampling data at 370 stations for each of 20 marine species 
in the Eastern Bering Sea from 1982 to 2015. For each species, I fit 
data for a subset of years, predict shifts in centre of gravity (COG) 
occurring after the last fitted year and compare the prediction with 
observed shifts over those subsequent years. Finally, I summarize 
predictive skill by calculating the variance explained by each model’s 
forecast relative to forecasting that the population does not move in 
the future (termed a “persistence forecast”). I also determine whether 
the predicted uncertainty for each model (termed the “forecast inter-
val”) is too narrow, too wide or has appropriate width. These two met-
rics of predictive skill measure whether forecasts are accurate and 
generate useful estimates of forecast uncertainty. I use this example 
to illustrate the importance of retrospective skill testing for measur-
ing model performance when planning future model developments or 
choosing among alternative forecast models.

2  | METHODS

I seek to evaluate predictive skill for three potential models for fore-
casting distribution shifts without invoking detailed demographic 
mechanism: annual-regression models (AR), habitat-envelope mod-
els (HE) and a vector-autoregressive spatio-temporal (VAST) model 
with or without temperature as a habitat covariate. These models 
forecast distribution based on changes in temperature, and I here 
assume that models have perfect information about future tempera-
ture; results therefore represent an “optimistic” picture of forecast 
skill relative to cases when future temperature must itself be fore-
casted. I first discuss each of these in detail (see Table 1 for sum-
mary). I then describe two measures of forecast skill: reduction in 
mean squared error (MSE) relative to a null “persistence” forecast, 

and predictive interval coverage. Finally, I describe the data set used 
in this skill testing experiment.

2.1 | Annual-regression forecasts

Several authors have previously analysed environmental impacts 
on distribution shifts by regressing a measure of population loca-
tion against annual covariates, without proposing any explicit model 
for how the environment impacts local population densities (Hare 
et al., 2010; Nye et al., 2009; Pinsky et al., 2013). This approach will 
presumably perform better than the habitat-envelope or spatio-
temporal models whenever the impact of habitat covariates on local 
densities is difficult to specify correctly a priori.

To implement this approach, I first develop a statistic Y(t) rep-
resenting the centroid of the population north of the equator, cal-
culated as the “abundance-and-area weighted average” (AAWA) of 
sampled locations (see Supporting Information Appendix S1). I then 
regress Y(t) against average bottom temperature C̄(t) in year t:

where α and δ represent the intercept and slope for a linear regres-
sion of Y(t) on average temperature C̄(t). Finally, I use estimated 
parameters from this linear regression to forecast future values of 
Y(tforecast) given C̄Y(tforecast) as well as its standard errors.

2.2 | Habitat-envelope (HE) forecasts

Habitat-envelope (a.k.a. species distribution/density) models typi-
cally use available data or expert opinion to define habitat suitability 
as a function of habitat variables, where future distribution can then 
be forecasted given alternative values for habitat variables (Cheung 
et al., 2009; Eskildsen et al., 2013; Eveson et al., 2015).

I use a delta-generalized linear model (Lo, Jacobson, & Squire, 
1992) to separately predict occupied habitat via changes in encoun-
ter probability p as well as biomass density within occupied habitat 
via positive catch rates r. This delta model involves specifying a prob-
ability distribution for sampled biomass bi for each sample i given 
predicted encounter probability pi and positive catch rates ri: 

(1)Y(t) ∼ Normal (𝛼+𝛿C̄(t),𝜎2
Y
)

TABLE  1 A description of forecasting models used in this study including what data they fit, which covariates they use, whether they 
account for residual spatial patterns in biomass density, and what information they use to inform future forecasts of movement

Model name Data used Covariates used
Accounts for residual 
spatial patterns?

Type of information regarding future 
distribution

Habitat-envelope model Field samples of 
population biomass

Spatially explicit 
bottom temperature

No Temperature landscape in each year

Vector-autoregressive 
spatio-temporal model (VAST)

Field samples of 
population biomass

None. Yes Persistence of spatio-temporal 
hotspots

VAST model with temperature Field samples of 
population biomass

Spatially explicit 
bottom temperature

Yes Temperature landscape in each year, 
and persistence of spatio-temporal 
hotspots

Annual regression Abundance-and-area 
weighted average

Average bottom 
temperature in each 
year

No Annual increase/decrease in average 
temperature across landscape
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Specifically, I use a Poisson-link delta model (Thorson, 2018) that 
accomplishes this by modelling both the density of individuals n(s, t) 
and the average biomass per individual w(s, t) at each location s and 
year t. Encounter probability pi is defined in the Poisson-link delta 
model given the assumption that individuals are randomly distrib-
uted in the vicinity of sampling, such that the probability of encoun-
tering at least one individual follows: 

 including an offset for the area ai sampled for sample i (in this 
case, the area swept by each operation of bottom trawl sampling). 
Positive catch rate ri is defined from the definition of biomass den-
sity, d(s, t) = r(s, t)p(s, t) = n(s, t)w(s, t): 

Finally, I define numbers density and average weight as quadratic 
functions of bottom temperature using a log-link for each: 

where C(s, t) is temperature (in degrees Celcius) at each location s 
and year t, and γn1, γn2, γw1 and γw1 represent the estimated log-linear 
and log-quadratic impact of temperature on numbers density and 
average weight. I model annual intercepts βn(t) and βw(t) as a random-
walk process: 

where the variance of this random-walk process, �2
n
 and �2

w
, is esti-

mated. This Poisson-link delta model implies that temperature has a 
quadratic effect on predicted log-density: 

 where using the Poisson-link delta model ensures that the effect 
of changing temperature is additive between both components 
of the delta model (Thorson, 2018). Fixed effects (γn1, γw1, γn2, 
γw2, �2

b
, �2

n
 and �2

w
) are estimated by minimizing the negative log-

likelihood function, while intercepts (βn, βw) are treated as random 
effects.

This model is fitted to data for all years tfitted ∈ {tinitial, … , tfinal},  
and then estimated parameters are used to predict density d(s, t) 
for all locations during forecast years tforecast ∈ {tfinal+1,tfinal+2,tfinal+3} 
given known bottom temperature C(s, tforecast) during forecast years. 
Finally, density predictions are used to calculate the centroid of the 
population’s distribution, Z(t): 

where a(s) is the area associated with each modelled location s, and 
z(s) is a measure of location. In the following, I predict poleward 
movement and define z(s) as the distance of location s from the 
equator (in kilometres).

2.3 | Vector-autoregressive spatio-temporal 
(VAST) forecasts

This habitat-envelope model attributes all variation in spatial distri-
bution to a quadratic effect of bottom temperature on log-density 
and neglects any residual spatial correlation. However, extensive 
previous research suggests that predictive performance and statisti-
cal interpretation are degraded when spatial models neglect spatial 
autocorrelation in residuals (Bahn & McGill, 2007; Dormann et al., 
2007; Thorson, Ianelli, et al., 2017). I therefore apply an alternative 
spatio-temporal model that can incorporate quadratic temperature 
effects as well as residual spatial patterns (spatial patterns that are 
constant among all years) and spatio-temporal patterns (spatial 
patterns that vary among years). This “semiparametric” model has 
a habitat-envelope model as its deterministic skeleton, but is also 
able to identify areas with higher or lower density than expected, 
and to estimate how quickly these areas with higher/lower density 
revert to their expected density when forecasting forward in time 
(Kai, Thorson, Piner, & Maunder, 2017; Thorson, Ianelli, et al., 2016).

Specifically, I apply a vector-autoregressive spatio-temporal 
(VAST) model that has been used extensively elsewhere (Thorson, 
2019; Thorson & Barnett, 2017), but which has not been used for 
short-term forecasts of spatial distribution. This model again uses a 
Poisson-link delta model (Equations 2–4) and a random-walk process 
for annual intercepts (Equation 6). However, the spatio-temporal 
model involves changing the linear predictor for log-numbers den-
sity n(s, t) and log-average weight w(s, t): 

where �n(s) and �w(s) represent spatial variation, and �n(s,t) and �w(s,t) 
represent spatio-temporal variation in n and w. Spatial errors follow 
a Gaussian random field and are treated as random effects: 

where spatial correlations Rn and Rw follow a Matérn correla-
tion function where I estimate geometric anisotropy and a sepa-
rate decorrelation rate for Rn and Rw (see Supporting Information 
Appendix S2 for details). I use a “predictive process” approximation 
to simplify computation for spatial and spatio-temporal variation at 
100 “knots” in a stochastic partial different equation approximation 
to the Matérn correlation function (Lindgren, Rue, & Lindström, 
2011). Spatio-temporal variation is specified similarly, but also fol-
lows an autoregressive process across years: 

(2)Pr (bi = B) =

{
1−pi

pi × Lognormal (B; log (ri),𝜎
2
b
)

ifB = 0

ifB > 0

(3)pi = 1−exp (−�i × n(si,ti))

(4)ri =
ai × n(si,ti)

pi
× w(si,ti)

(5)
log (n(s,t)) = �n(t) + �n1C(s,t) + �n2C(s,t)

2

log (w(s,t)) = �w(t) + �w1C(s,t) + �w2C(s,t)
2

(6)
�n(t+1) ∼ Normal (�n(t), �

2
n
)

�w(t+1) ∼ Normal (�w(t), �
2
w
)

(7)log (d(s,t))∝ (�n1 + �w1)C(s,t) + (�n2 + �w2)C(s,t)
2

(8)Z(t) =

∑ns

s=1

�
Z(s)× a(s) × d(s,t)

�

∑ns

s=1
(a(s) × d(s,t))

(9)
log (n(s,t)) = �n(t) + �n(s) + �n(s,t) + �n1C(s,t) + �n2C(s,t)

2

log (w(s,t)) = �w(t) + �w(s) + �w(s,t) + �w1C(s,t) + �w2C(s,t)
2

(10)
�n ∼MVN

(
0, �2

�n
Rn

)

�w ∼MVN
(
0, �2

�w
Rw

)

(11)
�n(t+1) ∼ MVN(�n�n(t), �

2
�n
Rn)

�w(t+1) ∼ MVN(�w�w(t), �
2
�w
Rw)
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where ρn and ρw are estimated parameters that govern the rate at 
which areas with higher/lower density than expected revert to the 
average spatial distribution during the forecast period.

I specifically explore two versions of this VAST model. The first 
version excludes temperature effects (i.e., γn1 = γn2 = γw1 = γw2 = 0), 
while the second estimates temperature effects; the two models 
are otherwise identical. The former model explains differences in 
biomass density d(s, t) purely via spatial and spatio-temporal resid-
ual terms, and I therefore refer to it as a “non-parametric” forecast 
model. The latter includes both non-parametric components and a 
parametric effect of temperature. I therefore follow previous stud-
ies in calling it a “semiparametric” forecast model (Shelton, Thorson, 
Ward, & Feist, 2014; Sugeno & Munch, 2013; Thorson, Ono, & 
Munch, 2014). I fit this model using package VAST (https://github.
com/James-Thorson/VAST) in the R statistical environment (R Core 
Team 2016). VAST uses Template Model Builder to implement the 
Laplace approximation to the marginal likelihood of fixed effects 
(Kristensen, Nielsen, Berg, Skaug, & Bell, 2016), and a gradient-
based non-linear optimizer to identify the value of fixed effects that 
maximizes this value. After the non-linear optimizer has converged, 
I then use a Newton optimizer to ensure that the gradient of the ap-
proximated marginal log-likelihood with respect to every fixed effect 
is <10−6. This final step is implemented to ensure that the function 
maximizer is very tightly converged. I then confirm that parameters 
are estimable by confirming that the Hessian matrix is positive defi-
nite at the maximum-likelihood estimates. Parameter estimation 
using VAST takes approximately 10–20 min for each species and 
retrospective run, so the analysis was feasible without using of high-
performance computing tools.

2.4 | Retrospective database: Marine species in the 
Eastern Bering Sea

I have defined four methods to forecast poleward movement of fish 
populations given available sampling data: habitat-envelope models, 
a spatio-temporal model with or without temperature, and an annual-
regression estimator. I compare performance of these four estimators 
when fitting to data for the 20 most abundant (in terms of sampled 
biomass) fish and crab (decapod) species in the bottom trawl survey 
operated by the Alaska Fishery Science Center in the continental shelf 
of the Eastern Bering Sea from 1982 to 2015. This annual survey has 
used a fixed-station design with over 370 samples per year and consist-
ent gear over this period (Lauth & Conner, 2016), and I download data 
from the AFSC website (http://www.afsc.noaa.gov/RACE/groundfish/
survey_data/data.htm) using R package FishData (https://github.com/
James-Thorson/FishData). Although this case-study involves a (nearly) 
identical sampling design across years, future research could apply the 
same method to data sets that have different sampling intensity or de-
sign among years (e.g., Thorson, Ianelli, et al., 2016).

For each species, I then fit each forecast model 21 times, that 
is, using data for all years 1982–2015, using data 1982–2014 and 
predicting 2015, using data 1982–2013 and predicting 2014–2015, 
…, and using data for 1982–1995 and predicting 1996–2015. This 

involves fitting four estimators in 21 retrospective models using data 
for 20 species (1,680 model fits total). For each model fit, I then re-
cord forecasts of the population centroid 1, 2 or 3 years ahead of 
the last fitted year. I also record the predicted standard error for this 
forecast, where asymptotic standard errors are calculated using a 
generalization of the delta method for empirical Bayes models (Kass 
& Steffey, 1989).

2.5 | Metrics of forecast skill

I follow Tommasi et al. (2017) in arguing that a well-performing es-
timator will have two characteristics: (a) It will outperform a “per-
sistence” forecast; and (b) it will estimate uncertainty in a useful 
manner.

2.5.1 | Performance relative to persistence forecast

I evaluate each forecast model by comparing performance when 
predicting future changes in COG against the observed change in 
COG calculated using the abundance-and-area weighted average 
(AAWA) estimator. I evaluate skill when forecasting future changes 
in distribution because distribution shifts are likely to be disruptive 
to place-based management measures and fishing activities. I do 
not know the true centroid of the population in any year, but the 
AAWA estimator is independent of each forecast model and there-
fore represents a fair and unbiased metric against which to com-
pare each forecast model. I specifically calculate changes in AAWA, 
ΔYAWAA

(
Δt|tfinal

)
, when forecasting 1, 2 or 3 years forward from year 

tfinal:

where Δt ∊ {1, 2, 3}. I also calculate change in centroid ΔY
(
Δt|tfinal

)
 

over Δt forecast years for each estimator when fitting to data 
through year tfinal. For example, given the forecasted centroid 
YCE

(
tforecast|tfinal

)
 in year tforecast using data through tfinal and the habitat- 

envelope model: 

The persistence forecast will predict that Ypersistence (tfinal + Δt) = Ypersistence 
(tfinal) and therefore that ΔYpersistence (Δt) = 0. I therefore calculate the predic-
tive error for each estimator relative to the persistence forecast as: 

where this formula is appropriate given preliminary analysis 
showing that the AAWA always shows some movement among 
years (i.e., the denominator ΔYAWAA

(
Δt|tfinal

)
 is never zero). I then 

calculate the mean squared error relative to the persistence 
forecast: 

(12)ΔYAWAA

(
Δt|tfinal

)
= Y

(
tfinal + Δt

)
−Y

(
tfinal

)

(13)ΔYCE
(
Δt|tfinal

)
= YCE

(
tfinal + Δt|tfinal

)
−YCE

(
tfinal|tfinal

)

(14)E
(
Δt|tfinal

)
=

ΔYAAWA

(
Δt|tfianl

)
−ΔY

(
Δt|tfinal

)

ΔYAAWA

(
Δt|tfinal

)

(15)V(Δt) =
1

21−Δt

2015−Δt∑

tfinal =1995

E
(
Δt|tfinal

)2

https://github.com/James-Thorson/VAST
https://github.com/James-Thorson/VAST
http://www.afsc.noaa.gov/RACE/groundfish/survey_data/data.htm
http://www.afsc.noaa.gov/RACE/groundfish/survey_data/data.htm
https://github.com/James-Thorson/FishData
https://github.com/James-Thorson/FishData


164  |     THORSON

 and I define the variance explained as R2(Δt) = 1–V(Δt). A model 
performing as well as the persistence forecast will have V(Δt) = 1 and 
R2(Δt) = 0, while a model with R2(Δt) > 0 outperforms the persistence 
forecast while a model with R2(Δt) < 0 has degraded performance 
relative to a persistence forecast. Hypothetically, a model with, for 
example, R2(Δt) = 0.2 has explained 20% of the variance in future 
changes in the observed abundance-and-area weighted centroid.

2.5.2 | Usefulness of uncertainty estimates

I also evaluate model performance by asking which model can accu-
rately estimate the uncertainty of their forecasts. I therefore calcu-
late the quantile Q

(
Δt|tfinal

)
 of the observed change ΔYAWAA

(
Δt|tfinal

)
 

given the predictive distribution, ΔY
(
Δt|tfinal

)
 and SE

(
Y(tfinal+Δt)

)
:

where Φ(x; μ,σ) is the cumulative distribution function for a normal 
distribution with mean μ and standard deviation σ evaluated at lo-
cation x, and where the forecast standard error SE

(
ΔY

(
Δt|tfinal

))
 is 

calculated using the delta method. For a well-performing model, this 

quantile Q
(
Δt|tfinal

)
 will be approximately uniform, while a model 

that underestimates its own uncertainty will have excess Q
(
Δt|tfinal

)
 

near 0 or 1, and a model that overestimates its own uncertainty will 
have excess Q

(
Δt|tfinal

)
 near 0.5.

3  | RESULTS

3.1 | Descriptive results across species

Results show that the majority of species show an optimal temper-
ature within the range observed in the Eastern Bering Sea, such 
that changes in temperature could drive changes in spatial prefer-
ences. Specifically, the habitat-envelope model and VAST model 
with temperature both involve a quadratic effect of temperature 
on log-biomass density. Comparing across species, both models 
for the majority of species show decreasing biomass density as 
temperature goes to either the highest or lowest values observed 
in the Eastern Bering Sea (Figure 1). Specifically, there are 40 es-
timated “temperature responses” (affecting numbers density and 
average biomass for each of 20 species) for each model estimating 

(16)Q
(
Δt|tfinal

)
= Φ

(
ΔYAAWA(Δt|tfinal);ΔY(Δt|tfinal), SE

(
ΔY(Δt|tfinal)

))

F IGURE  1 Temperature responses for 
each species (panels) estimated using the 
habitat-envelope model (dotted lines) or 
the VAST model with temperature (solid 
lines). Each panel shows the predicted 
density (y-axis) for a given temperature (x-
axis) relative to the optimal temperature 
for a given species among the range 
of temperatures observed within the 
Eastern Bering Sea, showing either the 
predicted response of group density n to 
temperature (black lines) or the predicted 
response of biomass per group w to 
temperature (grey lines)
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a quadratic effect of temperature, and a negative curvature is ob-
served in 28 temperature effects for the habitat-envelope model 
and 26 effects for the VAST model with temperature (see 
Figure 1). The VAST model often estimates a more broad tempera-
ture tolerance than the habitat-envelope model, for example, for 
arrowtooth flounder (Atherestes stomias, Pleuronectidae) where 
the temperature response has nearly twice the width for the VAST 
model than the habitat-envelope model for both numbers density 
and average-weight components of the delta model.

The VAST model with temperature also shows positive auto-
correlation among years for spatio-temporal residuals for all spe-
cies (median across species: ρn = 0.86 and ρw = 0.65, Table 2). This 
indicates that areas with higher/lower density than expected are 
likely to exhibit higher/lower density for several years sequen-
tially. As a consequence, any year with a centre of gravity that 
is more skewed towards the pole/equator than its average value 
will often be followed by another year with a distribution similarly 
skewed towards the pole/equator.

3.2 | Illustration of forecast models using an 
example, Gadus chalcogrammus

Comparing forecasts of distribution for Alaska pollock (Gadus 
chalcogrammus, Gadidae) using all four estimators shows that the 

habitat-envelope and annual-regression estimators capture neither 
the northward shift in the abundance-and-area weighted average 
(AAWA) estimator nor the large interannual variation in this estima-
tor (Figure 2). For example, neither HE nor AR estimators capture the 
nearly 200 km poleward movement from 1995 to 1998. By contrast, 
the spatio-temporal estimators with or without temperature show 
similar performance, and both capture the observed northward shift 
for this species when fitted to data for 1982–2015. Both also gener-
ate forecast intervals that are much wider than the habitat-envelope 
and annual-regression estimators, and these wide forecast intervals 
appear to be necessary to contain estimates of centre of gravity 
arising when fitting to subsequent data. For example, the spatio-
temporal estimator with temperature using data for 1982–1995 pre-
dicts a rapid increase in confidence interval width when predicting 
COG for 1996–1998. This rapid increase in confidence interval width 
is appropriate, given that 1998 has the most northward distribution 
during the entire period 1982–2015 and is still somewhat outside 
the estimated forecast interval for this year.

The spatio-temporal model without temperature forecasts an 
exponential decay towards the average COG during the forecast 
period (i.e., after the last year of fitted data). The average COG for 
G. chalcogrammus has shifted northward over 100 km from 1982 to 
2015, so the later forecasts decay towards an average level that is 
more poleward than fits to earlier years (e.g., the purple forecast 

Species

Numbers density n(s, t) Average weight w(s, t)

ρn σωn σεn σn ρw σωw σεw σw

Gadus chalcogrammus 0.91 0.61 0.24 0.20 0.51 1.06 1.00 0.08

G. macrocephalus 0.55 0.64 0.45 0.00 0.36 0.49 0.70 0.13

Hippoglossoides elassodon 0.98 1.36 0.27 0.00 0.91 0.46 0.34 0.00

Chionoecetes opilio 0.85 1.59 0.41 0.07 0.71 1.07 0.64 0.05

H. stenolepis 0.58 0.66 0.39 0.09 0.49 0.31 0.33 0.03

Limanda aspera 1.00 2.29 0.33 0.00 0.77 0.93 0.36 0.00

Pleuronectes 
quadrituberculatus

0.98 1.55 0.30 0.00 0.19 0.75 0.00 0.09

C. bairdi 0.88 1.28 0.45 0.00 0.81 0.69 0.43 0.12

Podothecus accipenserinus 0.57 1.40 0.49 0.12 0.73 0.86 0.40 0.11

Atheresthes stomias 0.81 1.96 0.45 0.07 0.68 0.81 0.47 0.23

Hyas coarctatus 0.90 1.20 0.42 0.00 0.79 1.11 0.34 0.21

Myoxocephalus 
polyacanthocephalus

0.97 0.83 0.41 0.02 0.93 0.00 0.25 0.10

Lycodes palearis 0.98 2.33 0.35 0.00 0.67 0.56 0.30 0.12

M. jaok 0.51 1.69 0.66 0.00 0.51 0.47 0.37 0.10

Mallotus villosus 0.22 1.26 1.08 0.11 0.29 0.38 0.44 0.13

H. lyratus 0.86 1.34 0.39 0.12 0.89 0.45 0.25 0.25

Clupea pallasi 0.44 0.88 0.99 0.00 0.34 0.51 0.75 0.00

Pandalus eous 0.60 1.67 0.54 0.18 0.80 0.86 0.44 0.27

Paralithodes 
camtschaticus

0.93 2.28 0.38 0.00 0.75 0.84 0.24 0.05

L. brevipes 0.73 2.51 0.55 0.00 0.97 0.93 0.35 0.00

TABLE  2 Estimated parameters from 
the spatio-temporal forecast model using 
temperature fitted to all available data 
(1982–2015), showing the first-order 
autoregressive coefficient for spatio-
temporal variation (ρn and ρw), the 
standard deviation of spatial variation (σωn 
and σωw) and spatio-temporal variation (σεn 
and σεw), and the standard deviation for 
random-walk variation in annual 
intercepts (σn and σw) for both group 
density (n) and average biomass for each 
encountered group (w)
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lines in 2015 are more northward than the blue forecast lines; 
Figure 2). By contrast, the spatio-temporal model with temperature 
generates forecasts that combine elements of both the VAST model 
without temperature and the habitat-envelope model. Specifically, 
the VAST model with temperature generates forecasts that follow 
an exponential decay towards the average COG of the historical pe-
riod, but also evidence of interannual variability predicted by tem-
perature patterns in each year (e.g., the purple forecast lines for the 
VAST model is less variable than the purple lines for the VAST model 
with temperature). For example, when fitting to data from 1982 to 
1995, the COG forecast in 1997–1998 is higher than the forecast 
for 1999–2000, and this pattern is also seen in the habitat-envelope 
model. However, differences in forecast between VAST with and 
without temperature are small relative to the difference between 
VAST and the habitat-envelope model.

I next evaluate predictive skill when forecasting poleward move-
ment 1, 2 or 3 years after the last year of fitted data for Alaska 
pollock. I first compare forecasted poleward movement using each 
estimator against the observed poleward movement using the 
abundance-and-area weighted estimator (Figure 3). This comparison 
shows that all models predict a poleward movement 1, 2 and 3 years 
forward using data 1982–1995, and this prediction is consistent with 
subsequent observations. However, the forecast interval is much too 
narrow for both the habitat-envelope and annual-regression estima-
tors, and is more appropriate for the VAST forecasts with or without 
temperature. The VAST forecast also appears to be more accurate 

than either habitat-envelope or annual-regression forecasts. For ex-
ample, habitat envelope and annual regression predict a poleward 
shift when forecasting 1 year forward and fitting to data through 
1999, whereas both VAST models forecast a southward shift and the 
southward shift is in fact observed (Figure 3). The improved forecast 
accuracy is clearly shown when calculating the correlation between 
forecasted and observed shifts, which is >0.5 for 1-, 2- or 3-year 
forecasts using VAST with or without temperature, but is lower 
for habitat-envelope (<0.28) or annual-regression (<0.39) forecasts 
(Figure 4).

3.3 | Comparison of forecast skill across all 
20 species

The correlation between forecasted and observed poleward move-
ment is much greater for VAST models (either with or without 
temperature) than either habitat-envelope or annual-regression es-
timates across all 20 species, whether using 1-, 2- or 3-year forecasts 
(Figure 5). The variance explained by the habitat-envelope estima-
tor for the median species is actually negative (Table 3), indicating 
that this forecast method has lower skill than a persistence forecast. 
Variance explained by the HE model is highly negative for species 
where it estimates a strong temperature response (e.g., see Figure 1: 
yellowfin sole (Limanda aspera, Pleuronectidae), shortfin eelpout 
(Lycodes brevipes, Zoarcidae) and wattled eelpout (Lycodes palearis, 
Zoarcidae)), but where the forecasted variance in distribution has 

F IGURE  2 Forecasts of northward 
centre of gravity for Gadus chalcogrammus 
(solid line: forecasted value; shaded area: 
± 1 SE) using a habitat envelope (top-left 
panel), VAST model without temperature 
(top-right panel), VAST model with 
temperature (bottom-left panel) or 
annual-regression estimator (bottom-right 
panel), fitted to data through 1995, 1999, 
2003, 2007, 2011, 2015 (see bottom-
right panel for colour key), and compared 
with a abundance-and-area weighted 
average (AAWA) estimator of the centroid 
based on data for all years (dashed black 
line) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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little correlation with observed distribution shifts (Supporting 
Information Figures S1 and S2). The median variance explained is 
low but positive for the annual-regression estimator (0.02–0.06) and 
higher for both VAST models (0.08–0.25), and for these models the 
variance explained is higher for 3-year forecasts (0.20–0.25) rela-
tive to 2-year (0.14–0.16) or 1-year forecasts (0.08). Forecast models 
generally explain a larger portion of variance for 3-year forecasts 
because the error of the persistence forecast increases faster than 
the error of VAST forecasts (Supporting Information Appendix S3: 
Figure S3). The median variance explained is generally <25%, al-
though individual species have higher variance explained (e.g., 69% 
for 3-year forecasts of Pacific cod (Gadus marcocephalus, Gadidae)), 
and VAST and annual-regression forecasts have greater skill than 
the persistence forecast. VAST has very similar performance with 
or without temperature, likely because the inclusion of a quadratic 
temperature response reduces the standard deviation of residual 
spatio-temporal variation by only 4%–6% on average (Supporting 
Information Appendix S3: Table S1), and predictions of change 
in COG are very similar between these two models (Supporting 
Information Figure S1). The habitat-envelope and annual-regression 
estimators perform poorly in terms of forecast interval coverage 

(Figure 6), where the observed poleward shift falls outside the 90% 
forecast interval for the majority of 1-, 2-, or 3-year forecasts. By 
contrast, the VAST models generate forecast intervals that contain 
the true value an appropriate proportion of the time, indicating that 
forecast intervals for this model are a useful measure of predictive 
uncertainty.

4  | DISCUSSION

Retrospective skill testing involves fitting ecological models to his-
torical data, forecasting future changes and comparing forecasts 
with subsequent observations. I have demonstrated the potential 
role of retrospective skill testing for models forecasting distribution 
shifts by comparing two conventional estimators (habitat envelope, 
HE, and annual regression, AR) with a recently developed vector-
autoregressive spatio-temporal (VAST) estimator. Using real-world 
data from 20 marine species in the Eastern Bering Sea and compar-
ing performance with 400 retrospective analyses (20 forecast years 
for each species), I have showed that the conventional HE estima-
tor has lower forecast skill then a simple “persistence” estimator. By 

F IGURE  3 Predicted vs. observed poleward movement (y-axis) when forecasting based on data through a given year (x-axis) for Gadus 
chalcogrammus using habitat envelope (top row), VAST model without temperature (2nd row), VAST model with temperature (3rd row), or 
annual-regression (4th row) forecast models and forecast 1 year (left column), 2 years (middle column), or 3 years (right column) ahead from 
the last year with available data. Each panel shows predicted poleward movement (circles), ± 1 SE (vertical lines centred at each circle) and 
observed poleward movement (black lines) using the abundance-and-area weighted estimator
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F IGURE  4 Predicted (y-axis) vs. 
observed (x-axis) poleward movement for 
each comparison for Gadus chalcogrammus 
shown in Figure 3 (see Figure 3 caption 
for details). Each panel also shows the 
correlation between the predicted 
poleward movement and the observed 
poleward movement in the top-left corner 
and the one-to-one line (solid back). A 
perfect forecast model would have all 
pairs of predicted and observed shifts on 
the one-to-one line
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observed (y-axis) poleward movement 
for all retrospectives analyses for each 
of 20 species in the Eastern Bering Sea 
(see Figure 3 caption for details). Each 
panel also shows the correlation between 
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contrast, the annual-regression estimator generally explains a small 
(2%–6%) portion of variance in poleward movement, and the spatio-
temporal estimators explain several times more variance (8%–25%). 
The spatio-temporal estimator is also the only method to estimate 
forecast intervals with appropriate width. I therefore conclude that 
the spatio-temporal estimator has suitable forecast skill, both in 
terms of accuracy and estimated uncertainty.

The VAST model performs better than the HE model for two 
main reasons. First, it accounts for temporally autocorrelated resid-
uals in species distribution via the estimated autocorrelation param-
eters (ρn and ρw). The importance of accounting for autocorrelated 
residuals when fitting species distribution models (Bahn & McGill, 
2007; Dormann et al., 2007) or when forecasting population dynam-
ics (Ives, Dennis, Cottingham, & Carpenter, 2003; Johnson et al., 
2016) has been demonstrated previously, but has not been widely 
used when forecasting species distribution models. Secondly, the 
spatio-temporal model estimates the temporal variance of local 
changes in species density during the modelled period and uses this 
estimated variance to generate reasonable forecast intervals for 
future changes. As the explanatory power of covariates increases, 

the variance of residual spatial and spatio-temporal variation will 
decrease and the performance of the HE and VAST models will con-
verge. However, the variance of residual spatial and spatio-temporal 
variation remains large for all 20 species after accounting for a 
quadratic effect of bottom temperature (Supporting Information 
Appendix S3: Table S1). I therefore recommend using a spatio-
temporal model as a testing ground for determining the relative ex-
planatory power of covariates and residual environmental drivers, 
and recommend future research exploring additional covariates that 
could better explain historical variation in density.

Regarding the Eastern Bering Sea case-study presented here, 
results are consistent with prior analyses of this system in several 
important ways. First off, results show substantial variability in 
northward trends in COG for demersal species in the Eastern Bering 
Sea (see Supporting Information Figure S1), including instances 
where species are moving southward, or where a northward shift 
in distribution either is or is not predicted by a positive response 
to increasing regional temperatures (Mueter & Litzow, 2008) or 
decreasing cold pool area (Kotwicki & Lauth, 2013). Unlike previ-
ous analyses, however, the VAST model explored here estimates 

TABLE  3 Variance explained relative to a persistence forecast, R2(Δt), for the median species (top row) or each individual species, for 
each forecast model (hybrid indicates the VAST model with temperature) for 1-, 2- or 3-year forecast intervals. A persistence forecast will 
have R2(Δt) = 0.00, while a perfect forecast will have R2(Δt) = 1.00 (see Equation 15 Section 4 for details)

1-year forecast 2-year forecast 3-year forecast

HE VAST Hybrid AR HE VAST Hybrid AR HE VAST Hybrid AR

Median −0.30 0.08 0.08 0.02 −0.42 0.16 0.14 0.06 −0.43 0.25 0.20 0.06

Gadus chalcogrammus −0.29 0.25 0.23 0.00 0.02 0.43 0.47 0.15 −0.15 0.53 0.47 0.05

G. macrocephalus −0.07 0.33 0.22 0.07 −0.13 0.62 0.51 0.16 −0.29 0.69 0.63 0.07

Hippoglossoides elassodon −0.44 0.02 −0.01 0.07 −0.15 0.05 0.05 0.08 −0.64 0.07 −0.02 −0.09

Chionoecetes opilio −0.51 0.05 0.07 −0.04 −0.4 0.13 0.16 0.08 −0.38 0.25 0.28 0.06

H. stenolepis −0.70 0.30 0.19 0.17 −0.47 0.33 0.29 0.14 −0.48 0.31 0.36 0.21

Limanda aspera −5.17 −0.03 −0.08 −0.31 −2.14 0.06 0.08 −0.20 −2.95 0.01 0.15 −0.19

Pleuronectes 
quadrituberculatus

−0.10 0.02 0.01 0.02 0.05 0.03 0.09 0.02 −0.14 0.02 0.02 0.05

C. bairdi −0.72 0.07 0.09 −0.26 −0.62 0.15 0.16 −0.06 −0.55 0.22 0.23 0.01

Podothecus accipenserinus −0.12 0.10 0.09 −0.14 −0.44 0.29 0.00 −0.06 −0.53 0.32 0.16 0.05

Atheresthes stomias −0.17 0.16 0.5 0.53 −0.48 0.32 0.74 0.73 −0.32 0.43 0.77 0.73

Hyas coarctatus 0.16 0.09 0.09 0.18 0.02 0.15 0.13 0.06 0.1 0.25 0.21 0.13

Myoxocephalus 
polyacanthocephalus

−0.15 0.04 −0.04 −0.36 −0.8 0.03 0.06 −0.02 −0.65 0.11 0.16 −0.15

Lycodes palearis −1.09 0.10 0.04 0.00 −1.4 0.17 0.06 0.06 −1.10 0.29 0.19 0.10

M. jaok −0.82 0.21 0.11 0.09 −0.63 0.11 0.00 0.13 −0.65 0.27 0.20 0.13

Mallotus villosus −0.06 −0.02 −0.01 0.12 −0.01 0.46 0.48 −0.09 0.05 0.19 0.28 0.31

H. lyratus −0.34 −0.02 −0.06 0.00 −0.33 −0.01 −0.05 0.13 −0.35 0.16 0.11 0.10

Clupea pallasi 0.01 0.21 0.21 0.01 0.02 0.25 0.25 0.02 0.06 0.31 0.32 0.02

Pandalus eous −0.31 0.01 0.09 0.20 −0.96 0.23 0.24 −0.07 −1.25 0.08 0.19 0.03

Paralithodes 
camtschaticus

0.20 0.01 −0.06 0.45 0.21 0.04 −0.02 0.41 0.24 0.04 0.02 0.40

L. brevipes −3.54 0.13 0.04 −0.35 −2.76 0.19 0.15 −0.19 −3.15 0.25 0.18 −0.29
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autocorrelated variability in spatio-temporal patterns in population 
density (ρn and ρw in Table 2). This underlies autocorrelated variabil-
ity in COG, and the latter can complicate interpretation of the cor-
relation between COG and environmental covariates either when 
restricting analysis to a small subset of years (e.g., 2004–2009 in 
Hollowed et al. 2012) or when testing significance in a linear regres-
sion (e.g., Mueter & Litzow, 2008). Finally, this study did not explore 
several mechanisms that have invoked to explain distribution shifts 
in this region, for example, density-dependent habitat selection 
(Spencer, 2008; Thorson, Rindorf, Gao, Hanselman, & Winker, 2016) 
or age-specific temperature responses (Barbeaux & Hollowed, 2018; 
Thorson, Ianelli, et al., 2017). I therefore recommend future work ex-
ploring whether density dependence or age-structure can improve 
forecast skill in this or other regions.

Environmental management typically requires predictions over 
seasonal (<1 year), short-term (1–5 year), medium-term (5–50 year) 
and long-term (>50 year) planning horizons, and models may be more 
or less skilful at forecasts for each time-scale. Seasonal forecasts 
of spatial distribution for fished species can be useful for fishers to 
modify fleet behaviour, timing, and fishing techniques, and have been 
useful for prawn aquaculture in northeast Queensland, tuna fishing 
the Great Australia Bight, and lobster fishing the Gulf of Maine (see 
Tommasi et al. 2017 for a review). Predictive skill for seasonal fore-
casts has been extensively tested, for example, showing improved 
predictions of sardine distribution in the California Current relative 
to a persistence forecast (Kaplan et al., 2016). Although there are 

sufficient data to conduct retrospective skill testing over seasonal 
or short-term forecasts, there is surprisingly little research using skill 
testing to compare performance among alternative models. I there-
fore recommend skill testing to either identify which models to use 
for different planning horizons, or how to weight predictions from 
multiple models when using an ensemble model for forecasting (e.g., 
Anderson et al., 2017).

Finally, this study highlights the need for increased skill testing 
for models used for short- and long-term forecasting of distribu-
tion shifts. For example, the decreased performance of a habitat-
envelope model relative to a persistence forecast will likely surprise 
many readers. However, the poor performance of a habitat-envelope 
model is in-line with recent research showing that historical distribu-
tion shifts are poorly explained by local or regional temperature for 
Alaska pollock (Thorson, Ianelli, et al., 2017) and other groundfish 
in the Eastern Bering Sea (Kotwicki & Lauth, 2013). I recommend 
using retrospective analyses as a testing ground to improve proba-
bilistic methods for forecasting short-term distribution shifts, and in 
particular exploring multispecies models for spatio-temporal dynam-
ics (Latimer, Banerjee, Sang, Mosher, & Silander, 2009; Thorson & 
Barnett, 2017; Thorson, Rindorf, et al. 2016; Warton et al., 2015). In 
cases with strong species interactions or similar responses to shared 
environmental drivers, the information available in multispecies data 
sets may improve predictability for future dynamics (Ovaskainen 
et al., 2017; Schliep et al., 2018; Thorson, Munch, & Swain, 2017; 
Trainor et al., 2014). I therefore hypothesize that multispecies 

F IGURE  6 Quantile (see Equation 16 
and its description for details) for the 
observed poleward movement (calculated 
using the abundance-and-area weighted 
estimator) relative to the predictive 
interval using habitat envelope, VAST 
models without or with temperature, 
and annual-regression estimators when 
forecasting either 1 (left column), 2 
(middle column) or 3 (right column) years 
forward from the last year of fitted 
data, aggregated across results for all 20 
species analysed in the Eastern Bering 
Sea. A model with appropriate forecast 
interval width will have a quantile 
distribution that is uniform (indicated 
by the dotted line in each panel), for 
example, such that a 50% forecast interval 
contains the observed poleward shift 
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spatio-temporal models will improve short-term forecasts of the 
northward distribution shift for commercial fishes in this region rel-
ative to the single-species forecast models explored here. Finally, 
I recommend further research using forecasting models to predict 
distribution based on future emission scenarios, for example, for use 
in future climate forecasts (Hollowed et al., 2009), but suggests that 
these methods should be skill-tested prior to use for this task.
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