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1 | INTRODUCTION

Abstract

Forecasting distribution shifts under novel environmental conditions is a major task
for ecologists and conservationists. Researchers forecast distribution shifts using
several tools including: predicting from an empirical relationship between a summary
of distribution (population centroid) and annual time series (“annual regression,” AR);
or fitting a habitat-envelope model to historical distribution and forecasting given
predictions of future environmental conditions (“habitat envelope,” HE). However,
surprisingly little research has estimated forecast skill by fitting to historical data,
forecasting distribution shifts and comparing forecasts with subsequent observa-
tions of distribution shifts. | demonstrate the important role of retrospective skill
testing by forecasting poleward movement over 1-, 2- or 3-year periods for 20 fish
and crab species in the Eastern Bering Sea and comparing forecasts with observed
shifts. | specifically introduce an alternative vector-autoregressive spatio-temporal
(VAST) forecasting model, which can include species temperature responses, and
compare skill for AR, HE and VAST forecasts. Results show that the HE forecast has
30%-43% greater variance than predicting that future distribution is identical to the
estimated distribution in the final year (a “persistence” forecast). Meanwhile, the AR
explains 2%-6% and VAST explains 8%-25% of variance in poleward movement, and
both have better performance than a persistence forecast. HE and AR both generate
forecast intervals that are too narrow, while VAST models with or without tempera-
ture have appropriate width for forecast intervals. Retrospective skill testing for
more regions and taxa should be used as a test bed to guide future improvements in

methods for forecasting distribution shifts.
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model

distribution is an integrated measure of changing demographic
rates (Merow et al., 2014). Rapid distribution shifts have been

Many ecosystems worldwide are showing rapid responses to
changing environmental conditions. Distribution shifts often in-
dicate the intensity of environmental impacts, both because dis-
tribution shifts can directly cause changes in community stability
(Theobald, Breckheimer, & HilleRisLambers, 2017) and because

documented for birds (Hitch & Leberg, 2007), plants (Kelly &
Goulden, 2008) and fishes (Pinsky, Worm, Fogarty, Sarmiento, &
Levin, 2013).

Distribution shifts due to environmental change can be particu-
larly rapid in marine ecosystems. For example, the Gulf of Maine has
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shown rapid increases in water temperature during the past decade,
and these increases have changed the spatial distribution and phe-
nology of lobster fisheries thereby causing economic hardships in
2012 (Mills et al., 2013). Similarly, the Northwest Atlantic as a whole
has shown rapid warming, and this has driven a rapid northward shift
in abundance for yellowtail and summer flounder, in turn causing a
lagged shift in fishing effort for these species (Pinsky & Fogarty,
2012). Rapid changes such as these are less frequent in ecological
systems where slow changes in habitat or long-lived life-history
strategies can underlie a lagged effect of climate on local population
densities (Schurr et al., 2012).

Forecasting future shifts in distribution is a unifying challenge for
ecologists and conservationists across many taxa. Forecasting future
distribution shift is important to predict likely changes in competitive
and facultative interactions among species (Schliep etal., 2018) or
the invasion success of newly introduced species (Ramirez-Albores,
Bustamante, & Badano, 2016). In marine species, forecasting distribu-
tion shifts is particularly important when renegotiating fishery access
rights (Pinsky & Fogarty, 2012), or when forecasting potential impacts
of changing climate on fishery economic potential (Cheung et al., 2010).

Recent research has recommended forecasting distribution
shifts using mechanistic models that represent the impact of en-
vironmental changes and biotic interactions on individual demo-
graphic rates (Mellin et al., 2016; Swab, Regan, Matthies, Becker, &
Bruun, 2015; Trainor, Schmitz, lvan, & Shenk, 2014; Zurell, 2017).
However, many taxa (e.g., marine fishes, insects and fungi com-
munities, among others) often do not have sufficient individual-
specific demographic information to parameterize stage-based
models of environmental and biological mechanisms (e.g., exam-
ples in Parmesan, 2006). In marine fishes, for example, research-
ers have instead forecasted distribution shifts using two types
of models: (a) annual regressions (AR) of distribution shift, or (b)
habitat-envelope (HE) models. Annual regressions of distribu-
tion generally involve calculating an annual summary statistic for
species distribution, for example, the centroid of a population in
each year. This centroid is then regressed against multiple annual
covariates, for example, total abundance, average bottom tem-
perature or fishing mortality rates (Adams et al., 2018; Mueter &
Litzow, 2008; Nye, Link, Hare, & Overholtz, 2009; Spencer, 2008),
and this empirical relationship is used to forecast distribution
shift under alternative future values of these covariates (Hare,
Alexander, Fogarty, Williams, & Scott, 2010). By contrast, habitat-
envelope models involve estimating or pre-specifying the habitat
suitability function for a given species based on temperature, de-
mersal habitat or other local habitat conditions (Cheung, Lam, &
Pauly, 2008; Kaschner, Watson, Trites, & Pauly, 2006). Changes in
habitat suitability can then be forecasted given projected changes
in environmental conditions, and changed habitat suitability can
be used to forecast changes in the centroid of a population’s dis-
tribution (Cheung et al., 2009). Recent research has also devel-
oped spatio-temporal models to estimate distribution shifts and
attribute shifts to different causal mechanisms, and these models
can include both annual covariates (e.g., average environmental
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conditions) and local covariates affecting habitat suitability
(Thorson, lanelli, & Kotwicki, 2017; Tredennick et al., 2016).

Despite this increased interest in forecasting species distribution,
there has been relatively little research comparing predictive skill
for alternative potential models used to forecast distribution shifts.
Skill testing is a common approach to compare models and bench-
mark progress in many other types of environmental forecasting
and has been widely used, for example, to validate strategic fore-
casts of abundance and productivity using an ecosystem model for
the Northwest Atlantic (Olsen et al., 2016), explore improvements in
hurricane forecasts over time (Vitart, 2014), assess skill for decadal
forecasts of butterfly distribution in Finland (Eskildsen et al., 2013), or
identify when regression models are useful to forecast fish distribu-
tion for the Northwest Atlantic (Kleisner et al., 2017). Skill testing has
seen increasing use for seasonal forecasts of fish distribution shift,
for example, 2-month forecasts for the spatial distribution of tunas
in the Great Australian Bight (Eveson, Hobday, Hartog, Spillman, &
Rough, 2015), or 4- to 8-month forecasts of sardine distribution in the
US California Current (Kaplan, Williams, Bond, Hermann, & Siedlecki,
2016). However, skill testing has not been widely applied to compare
performance for multiple models to forecast shifts in species distribu-
tion occurring over time-scales between seasonal and climate fore-
casts (1-5 years, termed “short-term” in the following).

Inthis paper, l use retrospective skill testing to compare the perfor-
mance of “annual regression” (AR) and “habitat-envelope” (HE) fore-

casts of distribution shift with an alternative vector-autoregressive
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spatio-temporal (VAST) model. Following common practice in fish-
eries, | measure distribution as the centroid of population biomass
rather than measuring changes in occupied habitat. This VAST and
HE models involve fitting a delta-generalized linear mixed model
(delta-GLMM) to local samples of population biomass while account-
ing for both spatial, temporal and spatio-temporal correlations in bio-
mass density. AR, HE and VAST forecasts are generated by fitting to
biomass-sampling data at 370 stations for each of 20 marine species
in the Eastern Bering Sea from 1982 to 2015. For each species, | fit
data for a subset of years, predict shifts in centre of gravity (COG)
occurring after the last fitted year and compare the prediction with
observed shifts over those subsequent years. Finally, | summarize
predictive skill by calculating the variance explained by each model’s
forecast relative to forecasting that the population does not move in
the future (termed a “persistence forecast”). | also determine whether
the predicted uncertainty for each model (termed the “forecast inter-
val”) is too narrow, too wide or has appropriate width. These two met-
rics of predictive skill measure whether forecasts are accurate and
generate useful estimates of forecast uncertainty. | use this example
to illustrate the importance of retrospective skill testing for measur-
ing model performance when planning future model developments or

choosing among alternative forecast models.

2 | METHODS

| seek to evaluate predictive skill for three potential models for fore-
casting distribution shifts without invoking detailed demographic
mechanism: annual-regression models (AR), habitat-envelope mod-
els (HE) and a vector-autoregressive spatio-temporal (VAST) model
with or without temperature as a habitat covariate. These models
forecast distribution based on changes in temperature, and | here
assume that models have perfect information about future tempera-
ture; results therefore represent an “optimistic” picture of forecast
skill relative to cases when future temperature must itself be fore-
casted. | first discuss each of these in detail (see Table 1 for sum-
mary). | then describe two measures of forecast skill: reduction in

mean squared error (MSE) relative to a null “persistence” forecast,
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and predictive interval coverage. Finally, | describe the data set used

in this skill testing experiment.

2.1 | Annual-regression forecasts

Several authors have previously analysed environmental impacts
on distribution shifts by regressing a measure of population loca-
tion against annual covariates, without proposing any explicit model
for how the environment impacts local population densities (Hare
et al., 2010; Nye et al., 2009; Pinsky et al., 2013). This approach will
presumably perform better than the habitat-envelope or spatio-
temporal models whenever the impact of habitat covariates on local
densities is difficult to specify correctly a priori.

To implement this approach, | first develop a statistic Y(t) rep-
resenting the centroid of the population north of the equator, cal-
culated as the “abundance-and-area weighted average” (AAWA) of
sampled locations (see Supporting Information Appendix S1). | then
regress Y(t) against average bottom temperature C(t) in year t:

Y(t) ~ Normal (a+8C(t),02) (1)

where a and § represent the intercept and slope for a linear regres-
sion of Y(t) on average temperature C(t). Finally, | use estimated
parameters from this linear regression to forecast future values of

Y( ) given CY(t;, ecast) @s Well as its standard errors.

tforecast

2.2 | Habitat-envelope (HE) forecasts

Habitat-envelope (a.k.a. species distribution/density) models typi-
cally use available data or expert opinion to define habitat suitability
as a function of habitat variables, where future distribution can then
be forecasted given alternative values for habitat variables (Cheung
et al., 2009; Eskildsen et al., 2013; Eveson et al., 2015).

| use a delta-generalized linear model (Lo, Jacobson, & Squire,
1992) to separately predict occupied habitat via changes in encoun-
ter probability p as well as biomass density within occupied habitat
via positive catch rates r. This delta model involves specifying a prob-
ability distribution for sampled biomass b; for each sample i given

predicted encounter probability p; and positive catch rates r;:

TABLE 1 A description of forecasting models used in this study including what data they fit, which covariates they use, whether they
account for residual spatial patterns in biomass density, and what information they use to inform future forecasts of movement

Accounts for residual  Type of information regarding future

Model name

Habitat-envelope model

Vector-autoregressive

spatio-temporal model (VAST)
VAST model with temperature

Annual regression

Data used
Field samples of
population biomass

Field samples of
population biomass

Field samples of
population biomass

Abundance-and-area
weighted average

Covariates used
Spatially explicit
bottom temperature

None.

Spatially explicit
bottom temperature

Average bottom
temperature in each
year

spatial patterns?

distribution

No Temperature landscape in each year

Yes Persistence of spatio-temporal
hotspots

Yes Temperature landscape in each year,
and persistence of spatio-temporal
hotspots

No Annual increase/decrease in average

temperature across landscape
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1-p, ifB=0

Pr(b; = B) = { .
p; X Lognormal (B; log (r;),aﬁ) ifB>0

Specifically, | use a Poisson-link delta model (Thorson, 2018) that
accomplishes this by modelling both the density of individuals n(s, t)
and the average biomass per individual w(s, t) at each location s and
year t. Encounter probability p; is defined in the Poisson-link delta
model given the assumption that individuals are randomly distrib-
uted in the vicinity of sampling, such that the probability of encoun-

tering at least one individual follows:

p; = 1—exp (—aq; x n(s;,t;)) 3)

including an offset for the area a, sampled for sample i (in this

case, the area swept by each operation of bottom trawl sampling).

Positive catch rate r; is defined from the definition of biomass den-
sity, d(s, t) = r(s, t)p(s, t) = n(s, t)w(s, t):

r= @ x nlst) X w(s;,t;) 4

Finally, | define numbers density and average weight as quadratic

functions of bottom temperature using a log-link for each:

log (n(s,t)) = fi(t) + 71 Cls,t) + 1 Cls,)2
log W(s,t) = By (t) + 7,1 Cls,t) + 7,2C(s,t)?

where C(s, t) is temperature (in degrees Celcius) at each location s

(5)

andyear t,and y,,, 7, 7,1 and y,,, represent the estimated log-linear
and log-quadratic impact of temperature on numbers density and
average weight. | model annual intercepts g, (t) and 8, (t) as a random-

walk process:

Ba(t+1) ~ Normal (6,(t), 2)
B, (t+1) ~ Normal (8,,(t), 62) (©)

where the variance of this random-walk process, af and a‘f,, is esti-
mated. This Poisson-link delta model implies that temperature has a

quadratic effect on predicted log-density:

log (d(s,t)) o (71 + 7w1)C(s,t) + (12 + 72)Cls,t)? (7)
where using the Poisson-link delta model ensures that the effect
of changing temperature is additive between both components
of the delta model (Thorson, 2018). Fixed effects (7, 7,1: 72
Vw2 0f 02 and 62) are estimated by minimizing the negative log-
likelihood function, while intercepts (/in, /iw) are treated as random
effects.

This model is fitted to data for all years tgieq € {tinitials - » tinal b
and then estimated parameters are used to predict density d(s, t)
for all locations during forecast years t;ecast € {tfinair1-tinaieo-tiinalra}
given known bottom temperature C(s, t, . ..;) during forecast years.
Finally, density predictions are used to calculate the centroid of the

population’s distribution, Z(t):

X, (Z)x als) x d(s;t))
>, (als) x d(st) (8)

Z(t) =

where a(s) is the area associated with each modelled location s, and
z(s) is a measure of location. In the following, | predict poleward
movement and define z(s) as the distance of location s from the

equator (in kilometres).

2.3 | Vector-autoregressive spatio-temporal
(VAST) forecasts

This habitat-envelope model attributes all variation in spatial distri-
bution to a quadratic effect of bottom temperature on log-density
and neglects any residual spatial correlation. However, extensive
previous research suggests that predictive performance and statisti-
cal interpretation are degraded when spatial models neglect spatial
autocorrelation in residuals (Bahn & McGill, 2007; Dormann et al.,
2007; Thorson, lanelli, et al., 2017). | therefore apply an alternative
spatio-temporal model that can incorporate quadratic temperature
effects as well as residual spatial patterns (spatial patterns that are
constant among all years) and spatio-temporal patterns (spatial
patterns that vary among years). This “semiparametric” model has
a habitat-envelope model as its deterministic skeleton, but is also
able to identify areas with higher or lower density than expected,
and to estimate how quickly these areas with higher/lower density
revert to their expected density when forecasting forward in time
(Kai, Thorson, Piner, & Maunder, 2017; Thorson, lanelli, et al., 2016).

Specifically, | apply a vector-autoregressive spatio-temporal
(VAST) model that has been used extensively elsewhere (Thorson,
2019; Thorson & Barnett, 2017), but which has not been used for
short-term forecasts of spatial distribution. This model again uses a
Poisson-link delta model (Equations 2-4) and a random-walk process
for annual intercepts (Equation 6). However, the spatio-temporal
model involves changing the linear predictor for log-numbers den-

sity n(s, t) and log-average weight w(s, t):

log (n(s,t)) = i (t) + @y (s) + €n(sit) + 71 C(st) + 12 Cls,t)

log (W(s,t)) = B, (t) + @,(s) + £,,(5,t) + 7,1 C(s,t) + 7,2C(s,t)?
where w,(s) and w,, (s) represent spatial variation, and g,,(s,t) and ¢, (s,t)
represent spatio-temporal variation in n and w. Spatial errors follow

a Gaussian random field and are treated as random effects:

@, ~MVN (0,62 R,
®, ~MVN (0,62,R,,) (10)

ow W
where spatial correlations R, and R, follow a Matérn correla-
tion function where | estimate geometric anisotropy and a sepa-
rate decorrelation rate for R, and R, (see Supporting Information
Appendix S2 for details). | use a “predictive process” approximation
to simplify computation for spatial and spatio-temporal variation at
100 “knots” in a stochastic partial different equation approximation
to the Matérn correlation function (Lindgren, Rue, & Lindstrém,
2011). Spatio-temporal variation is specified similarly, but also fol-

lows an autoregressive process across years:

£q(t+1) ~ MVN(p,£,(t), 62 R,)
£(t+1) ~ MVN(p, £, (), 6%,R,) .
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where p, and p , are estimated parameters that govern the rate at
which areas with higher/lower density than expected revert to the
average spatial distribution during the forecast period.

| specifically explore two versions of this VAST model. The first
version excludes temperature effects (i.e., y,; =7,, =71 = Vw2 = 0),
while the second estimates temperature effects; the two models
are otherwise identical. The former model explains differences in
biomass density d(s, t) purely via spatial and spatio-temporal resid-
ual terms, and | therefore refer to it as a “non-parametric” forecast
model. The latter includes both non-parametric components and a
parametric effect of temperature. | therefore follow previous stud-
ies in calling it a “semiparametric” forecast model (Shelton, Thorson,
Ward, & Feist, 2014; Sugeno & Munch, 2013; Thorson, Ono, &
Munch, 2014). | fit this model using package VAST (https://github.
com/James-Thorson/VAST) in the R statistical environment (R Core
Team 2016). VAST uses Template Model Builder to implement the
Laplace approximation to the marginal likelihood of fixed effects
(Kristensen, Nielsen, Berg, Skaug, & Bell, 2016), and a gradient-
based non-linear optimizer to identify the value of fixed effects that
maximizes this value. After the non-linear optimizer has converged,
| then use a Newton optimizer to ensure that the gradient of the ap-
proximated marginal log-likelihood with respect to every fixed effect
is <107°. This final step is implemented to ensure that the function
maximizer is very tightly converged. | then confirm that parameters
are estimable by confirming that the Hessian matrix is positive defi-
nite at the maximum-likelihood estimates. Parameter estimation
using VAST takes approximately 10-20 min for each species and
retrospective run, so the analysis was feasible without using of high-
performance computing tools.

2.4 | Retrospective database: Marine species in the
Eastern Bering Sea

| have defined four methods to forecast poleward movement of fish
populations given available sampling data: habitat-envelope models,
a spatio-temporal model with or without temperature, and an annual-
regression estimator. | compare performance of these four estimators
when fitting to data for the 20 most abundant (in terms of sampled
biomass) fish and crab (decapod) species in the bottom trawl survey
operated by the Alaska Fishery Science Center in the continental shelf
of the Eastern Bering Sea from 1982 to 2015. This annual survey has
used a fixed-station design with over 370 samples per year and consist-
ent gear over this period (Lauth & Conner, 2016), and | download data
from the AFSC website (http://www.afsc.noaa.gov/RACE/groundfish/
survey_data/data.htm) using R package FishData (https://github.com/
James-Thorson/FishData). Although this case-study involves a (nearly)
identical sampling design across years, future research could apply the
same method to data sets that have different sampling intensity or de-
sign among years (e.g., Thorson, lanelli, et al., 2016).

For each species, | then fit each forecast model 21 times, that
is, using data for all years 1982-2015, using data 1982-2014 and
predicting 2015, using data 1982-2013 and predicting 2014-2015,
..., and using data for 1982-1995 and predicting 1996-2015. This

i,
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involves fitting four estimators in 21 retrospective models using data
for 20 species (1,680 model fits total). For each model fit, | then re-
cord forecasts of the population centroid 1, 2 or 3 years ahead of
the last fitted year. | also record the predicted standard error for this
forecast, where asymptotic standard errors are calculated using a
generalization of the delta method for empirical Bayes models (Kass
& Steffey, 1989).

2.5 | Metrics of forecast skill

| follow Tommasi et al. (2017) in arguing that a well-performing es-
timator will have two characteristics: (a) It will outperform a “per-
sistence” forecast; and (b) it will estimate uncertainty in a useful

manner.

2.5.1 | Performance relative to persistence forecast

| evaluate each forecast model by comparing performance when
predicting future changes in COG against the observed change in
COG calculated using the abundance-and-area weighted average
(AAWA) estimator. | evaluate skill when forecasting future changes
in distribution because distribution shifts are likely to be disruptive
to place-based management measures and fishing activities. | do
not know the true centroid of the population in any year, but the
AAWA estimator is independent of each forecast model and there-
fore represents a fair and unbiased metric against which to com-
pare each forecast model. | specifically calculate changes in AAWA,

AYpwan (Atlteo ), when forecasting 1, 2 or 3 years forward from year
Lrinal’

AY v (Atlthna) = Y (tina + At) =Y (thina) (12)
where At ¢ {1, 2, 3}. | also calculate change in centroid AY (At|tg.)

over At forecast years for each estimator when fitting to data

through year t For example, given the forecasted centroid

final®
Yee (trorecast | tinal )inY€Qrte. oo usingdatathrought,, . andthe habitat-

envelope model:

AYce (Atltgg) = Yee (tpa + Atltea) = Yee (thaltna) (13)

(t

final

+At)=Y

persistence

Thepersistence forecastwill predict that YPersisten e

(tg.o) and therefore that AY,

persistence

(At) = 0. | therefore calculate the predic-

tive error for each estimator relative to the persistence forecast as:

E (Atltpy) = AY pawn (Atltgn ) =AY (Atltsg)
fr AY pamn (Atltgg)

where this formula is appropriate given preliminary analysis

(14)

showing that the AAWA always shows some movement among
years (i.e., the denominator AYyus (Atltg., ) is never zero). | then
calculate the mean squared error relative to the persistence
forecast:

2015-At

1 2
V(AL) = Y E(Atltgn,)
21-At trina = 1995 " (15)
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and | define the variance explained as R%(At) = 1-V(At). A model
performing as well as the persistence forecast will have V(At) = 1 and
R?(At) = 0, while a model with R?(At) > 0 outperforms the persistence
forecast while a model with R%(At) < O has degraded performance
relative to a persistence forecast. Hypothetically, a model with, for
example, R%(At) = 0.2 has explained 20% of the variance in future

changes in the observed abundance-and-area weighted centroid.

2.5.2 | Usefulness of uncertainty estimates

| also evaluate model performance by asking which model can accu-
rately estimate the uncertainty of their forecasts. | therefore calcu-
late the quantile Q (At|t,, ) of the observed change AY yaa (Atltgna)
given the predictive distribution, AY (At|t;,, ) and SE (Y(tg,, + At)):

Q (Atltfa) = @ (AYpapalAtitaoa); AY(Atltg,), SE (AY(Atltg.))) (16)

where ®(x; u,0) is the cumulative distribution function for a normal
distribution with mean p and standard deviation ¢ evaluated at lo-
cation x, and where the forecast standard error SE (AY (At|tg,)) is

calculated using the delta method. For a well-performing model, this

Gadus Limanda Hyas
chalcogrammus aspera coarctatus

quantile Q(Atltﬁnal) will be approximately uniform, while a model
that underestimates its own uncertainty will have excess Q (At|tg.)
near O or 1, and a model that overestimates its own uncertainty will
have excess Q (At|tg,, ) near 0.5.

3 | RESULTS

3.1 | Descriptive results across species

Results show that the majority of species show an optimal temper-
ature within the range observed in the Eastern Bering Sea, such
that changes in temperature could drive changes in spatial prefer-
ences. Specifically, the habitat-envelope model and VAST model
with temperature both involve a quadratic effect of temperature
on log-biomass density. Comparing across species, both models
for the majority of species show decreasing biomass density as
temperature goes to either the highest or lowest values observed
in the Eastern Bering Sea (Figure 1). Specifically, there are 40 es-
timated “temperature responses” (affecting numbers density and

average biomass for each of 20 species) for each model estimating

Hyas
lyratus

2.0

o ‘. S — o
~ . t.
e .
Gadus Pleuronectes Myoxocephalus Clupea
macrocephalus quadrituberculatus polyacanthocephalus pallasi
0 ©°
= 3]
2
E o X e P A
o W .. c. . N N ., "
IS o e . .
3 o . .
—_ o
o 8 .
£ Hippoglossoides Chionoecetes Lycodes Pandalus
‘g‘_ elassodon bairdi palearis eous
e 3
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% 5 A : 3 A
5 Chionoecetes Podothecus Myoxocephalus Paralithodes
g opilio accipenserinus Jjaok camtschaticus
Q o
8 h FIGURE 1 Temperature responses for
u% . ‘\ / ’ \ L \ /\\ each species (panels) estimated using the
o ~ habitat-envelope model (dotted lines) or
o the VAST model with temperature (solid
o . . .
— . - lines). Each panel shows the predicted
Hippoglossus Atheresthes Mallotus Lycodes density (y-axis) for a given temperature (x-
stenolepis stomias villosus brevipes K 3 .
. axis) relative to the optimal temperature
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N

0.5

0.2
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temperature (black lines) or the predicted
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a quadratic effect of temperature, and a negative curvature is ob-
served in 28 temperature effects for the habitat-envelope model
and 26 effects for the VAST model with temperature (see
Figure 1). The VAST model often estimates a more broad tempera-
ture tolerance than the habitat-envelope model, for example, for
arrowtooth flounder (Atherestes stomias, Pleuronectidae) where
the temperature response has nearly twice the width for the VAST
model than the habitat-envelope model for both numbers density
and average-weight components of the delta model.

The VAST model with temperature also shows positive auto-
correlation among years for spatio-temporal residuals for all spe-
cies (median across species: p, = 0.86 and p,, = 0.65, Table 2). This
indicates that areas with higher/lower density than expected are
likely to exhibit higher/lower density for several years sequen-
tially. As a consequence, any year with a centre of gravity that
is more skewed towards the pole/equator than its average value
will often be followed by another year with a distribution similarly
skewed towards the pole/equator.

3.2 | lllustration of forecast models using an
example, Gadus chalcogrammus

Comparing forecasts of distribution for Alaska pollock (Gadus
chalcogrammus, Gadidae) using all four estimators shows that the

TABLE 2 Estimated parameters from
the spatio-temporal forecast model using
temperature fitted to all available data
(1982-2015), showing the first-order
autoregressive coefficient for spatio-
temporal variation (p, and p, ), the
standard deviation of spatial variation (%n
and o,,) and spatio-temporal variation (s,
and o,,.), and the standard deviation for
random-walk variation in annual
intercepts (o, and o) for both group
density (n) and average biomass for each
encountered group (w)

Species

G. macrocephalus

Chionoecetes opilio
H. stenolepis
Limanda aspera

Pleuronectes
quadrituberculatus

C. bairdi

Gadus chalcogrammus

Hippoglossoides elassodon

! —_
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habitat-envelope and annual-regression estimators capture neither
the northward shift in the abundance-and-area weighted average
(AAWA) estimator nor the large interannual variation in this estima-
tor (Figure 2). For example, neither HE nor AR estimators capture the
nearly 200 km poleward movement from 1995 to 1998. By contrast,
the spatio-temporal estimators with or without temperature show
similar performance, and both capture the observed northward shift
for this species when fitted to data for 1982-2015. Both also gener-
ate forecast intervals that are much wider than the habitat-envelope
and annual-regression estimators, and these wide forecast intervals
appear to be necessary to contain estimates of centre of gravity
arising when fitting to subsequent data. For example, the spatio-
temporal estimator with temperature using data for 1982-1995 pre-
dicts a rapid increase in confidence interval width when predicting
COG for 1996-1998. This rapid increase in confidence interval width
is appropriate, given that 1998 has the most northward distribution
during the entire period 1982-2015 and is still somewhat outside
the estimated forecast interval for this year.

The spatio-temporal model without temperature forecasts an
exponential decay towards the average COG during the forecast
period (i.e., after the last year of fitted data). The average COG for
G. chalcogrammus has shifted northward over 100 km from 1982 to
2015, so the later forecasts decay towards an average level that is
more poleward than fits to earlier years (e.g., the purple forecast

Numbers density n(s, t) Average weight w(s, t)

Pn Con Cen %n Pw Cow Cew Ow

0.91 0.61 0.24 020 0.51 1.06 1.00 0.08
0.55 0.64 045 0.00 036 049 0.70 0.13
0.98 136 027 000 091 0.46 034 0.00
0.85 1.59 0.41 0.07 071 1.07 0.64 0.05
058 066 039 009 049 031 033 0.03
100 229 033 000 077 093 036 0.00
0.98 1.55 0.30 000 019 0.75 0.00 0.09

0.88 1.28 045 000 0.81 069 043 0.12

Podothecus accipenserinus ~ 0.57 1.40 0.49 0.12 0.73 0.86 0.40 0.11

Atheresthes stomias
Hyas coarctatus

Myoxocephalus

polyacanthocephalus

Lycodes palearis
M. jaok
Mallotus villosus
H. lyratus
Clupea pallasi
Pandalus eous

Paralithodes
camtschaticus

L. brevipes

0.81 1.96 0.45 0.07 0468 081 047 0.23
0.90 1.20 042 0.00 0.79 111 0.34 021
0.97 0.83 041 0.02 093 000 0.25 0.10

0.98 233 035 000 067 056 030 012
0.51 1.69 0.66 0.00 0.51 0.47 037 0.10
0.22 1.26 1.08 011 0.29 038 044 0483
0.86 134 039 012 089 045 025 0.25
0.44 088 0.99 0.00 034 0.51 0.75 0.00
0.60 1.67 054 0.18 0.80 086 044 0.27
0.93 228 038 000 0.75 0.84 024 0.05

0.73 2,3 055 000 097 093 035 0.00



166

THORSON

PO
FISH and FISHERIES =on;

Habitat envelope

VAST with temperature

Annual regression

FIGURE 2 Forecasts of northward

m 2011

Centroid (km north of equator)

Fitted to data through year...

W 2015 m 2007 mm 1999
W 2003 m 1995

centre of gravity for Gadus chalcogrammus
(solid line: forecasted value; shaded area:
+ 1 SE) using a habitat envelope (top-left
panel), VAST model without temperature
(top-right panel), VAST model with
temperature (bottom-left panel) or
annual-regression estimator (bottom-right
panel), fitted to data through 1995, 1999,
2003, 2007, 2011, 2015 (see bottom-
right panel for colour key), and compared
with a abundance-and-area weighted
average (AAWA) estimator of the centroid

2015 1985 1995

Year

1985 1995 2005

lines in 2015 are more northward than the blue forecast lines;
Figure 2). By contrast, the spatio-temporal model with temperature
generates forecasts that combine elements of both the VAST model
without temperature and the habitat-envelope model. Specifically,
the VAST model with temperature generates forecasts that follow
an exponential decay towards the average COG of the historical pe-
riod, but also evidence of interannual variability predicted by tem-
perature patterns in each year (e.g., the purple forecast lines for the
VAST model is less variable than the purple lines for the VAST model
with temperature). For example, when fitting to data from 1982 to
1995, the COG forecast in 1997-1998 is higher than the forecast
for 1999-2000, and this pattern is also seen in the habitat-envelope
model. However, differences in forecast between VAST with and
without temperature are small relative to the difference between
VAST and the habitat-envelope model.

I next evaluate predictive skill when forecasting poleward move-
ment 1, 2 or 3 years after the last year of fitted data for Alaska
pollock. | first compare forecasted poleward movement using each
estimator against the observed poleward movement using the
abundance-and-area weighted estimator (Figure 3). This comparison
shows that all models predict a poleward movement 1, 2 and 3 years
forward using data 1982-1995, and this prediction is consistent with
subsequent observations. However, the forecast interval is much too
narrow for both the habitat-envelope and annual-regression estima-
tors, and is more appropriate for the VAST forecasts with or without

temperature. The VAST forecast also appears to be more accurate

based on data for all years (dashed black
line) [Colour figure can be viewed at
wileyonlinelibrary.com]

2005 2015

than either habitat-envelope or annual-regression forecasts. For ex-
ample, habitat envelope and annual regression predict a poleward
shift when forecasting 1 year forward and fitting to data through
1999, whereas both VAST models forecast a southward shift and the
southward shift is in fact observed (Figure 3). The improved forecast
accuracy is clearly shown when calculating the correlation between
forecasted and observed shifts, which is >0.5 for 1-, 2- or 3-year
forecasts using VAST with or without temperature, but is lower
for habitat-envelope (<0.28) or annual-regression (<0.39) forecasts
(Figure 4).

3.3 | Comparison of forecast skill across all
20 species

The correlation between forecasted and observed poleward move-
ment is much greater for VAST models (either with or without
temperature) than either habitat-envelope or annual-regression es-
timates across all 20 species, whether using 1-, 2- or 3-year forecasts
(Figure 5). The variance explained by the habitat-envelope estima-
tor for the median species is actually negative (Table 3), indicating
that this forecast method has lower skill than a persistence forecast.
Variance explained by the HE model is highly negative for species
where it estimates a strong temperature response (e.g., see Figure 1:
yellowfin sole (Limanda aspera, Pleuronectidae), shortfin eelpout
(Lycodes brevipes, Zoarcidae) and wattled eelpout (Lycodes palearis,

Zoarcidae)), but where the forecasted variance in distribution has
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FIGURE 3 Predicted vs. observed poleward movement (y-axis) when forecasting based on data through a given year (x-axis) for Gadus
chalcogrammus using habitat envelope (top row), VAST model without temperature (2nd row), VAST model with temperature (3rd row), or
annual-regression (4th row) forecast models and forecast 1 year (left column), 2 years (middle column), or 3 years (right column) ahead from
the last year with available data. Each panel shows predicted poleward movement (circles), + 1 SE (vertical lines centred at each circle) and
observed poleward movement (black lines) using the abundance-and-area weighted estimator

little correlation with observed distribution shifts (Supporting
Information Figures S1 and S2). The median variance explained is
low but positive for the annual-regression estimator (0.02-0.06) and
higher for both VAST models (0.08-0.25), and for these models the
variance explained is higher for 3-year forecasts (0.20-0.25) rela-
tive to 2-year (0.14-0.16) or 1-year forecasts (0.08). Forecast models
generally explain a larger portion of variance for 3-year forecasts
because the error of the persistence forecast increases faster than
the error of VAST forecasts (Supporting Information Appendix S3:
Figure S3). The median variance explained is generally <25%, al-
though individual species have higher variance explained (e.g., 69%
for 3-year forecasts of Pacific cod (Gadus marcocephalus, Gadidae)),
and VAST and annual-regression forecasts have greater skill than
the persistence forecast. VAST has very similar performance with
or without temperature, likely because the inclusion of a quadratic
temperature response reduces the standard deviation of residual
spatio-temporal variation by only 4%-6% on average (Supporting
Information Appendix S3: Table S1), and predictions of change
in COG are very similar between these two models (Supporting
Information Figure S1). The habitat-envelope and annual-regression

estimators perform poorly in terms of forecast interval coverage

(Figure 6), where the observed poleward shift falls outside the 90%
forecast interval for the majority of 1-, 2-, or 3-year forecasts. By
contrast, the VAST models generate forecast intervals that contain
the true value an appropriate proportion of the time, indicating that
forecast intervals for this model are a useful measure of predictive

uncertainty.

4 | DISCUSSION

Retrospective skill testing involves fitting ecological models to his-
torical data, forecasting future changes and comparing forecasts
with subsequent observations. | have demonstrated the potential
role of retrospective skill testing for models forecasting distribution
shifts by comparing two conventional estimators (habitat envelope,
HE, and annual regression, AR) with a recently developed vector-
autoregressive spatio-temporal (VAST) estimator. Using real-world
data from 20 marine species in the Eastern Bering Sea and compar-
ing performance with 400 retrospective analyses (20 forecast years
for each species), | have showed that the conventional HE estima-

tor has lower forecast skill then a simple “persistence” estimator. By
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TABLE 3 Variance explained relative to a persistence forecast, Rz(At), for the median species (top row) or each individual species, for
each forecast model (hybrid indicates the VAST model with temperature) for 1-, 2- or 3-year forecast intervals. A persistence forecast will
have R?(At) = 0.00, while a perfect forecast will have R%(At) = 1.00 (see Equation 15 Section 4 for details)

1-year forecast

2-year forecast

3-year forecast

HE VAST  Hybrid AR HE

Median -0.30 0.08 0.08 0.02 -0.42
Gadus chalcogrammus -0.29 0.25 0.23 0.00 0.02
G. macrocephalus -0.07 0.33 0.22 0.07 -0.13
Hippoglossoides elassodon  -0.44 0.02 -0.01 0.07 -0.15
Chionoecetes opilio -0.51 0.05 0.07 -0.04 -04
H. stenolepis -0.70 0.30 0.19 0.17  -0.47
Limanda aspera -5.17 -0.03 -0.08 -0.31 -2.14
Pleuronectes -0.10 0.02 0.01 0.02 0.05

quadrituberculatus
C. bairdi -0.72 0.07 0.09 -0.26 -0.62
Podothecus accipenserinus ~ -0.12 0.10 0.09 -0.14 -0.44
Atheresthes stomias -0.17 0.16 0.5 0.53 -0.48
Hyas coarctatus 0.16 0.09 0.09 0.18 0.02
Myoxocephalus -0.15 0.04 -0.04 -0.36 -0.8

polyacanthocephalus
Lycodes palearis -1.09 0.10 0.04 0.00 -1.4
M. jaok -0.82 0.21 0.11 0.09 -0.63
Mallotus villosus -0.06 -0.02 -0.01 012 -0.01
H. lyratus -0.34 -0.02 -0.06 0.00 -0.33
Clupea pallasi 0.01 0.21 0.21 0.01 0.02
Pandalus eous -0.31 0.01 0.09 0.20 -0.96
Paralithodes 0.20 0.01 -0.06 0.45 0.21

camtschaticus
L. brevipes -3.54 0.13 0.04 -0.35 -2.76

contrast, the annual-regression estimator generally explains a small
(2%-6%) portion of variance in poleward movement, and the spatio-
temporal estimators explain several times more variance (8%-25%).
The spatio-temporal estimator is also the only method to estimate
forecast intervals with appropriate width. | therefore conclude that
the spatio-temporal estimator has suitable forecast skill, both in
terms of accuracy and estimated uncertainty.

The VAST model performs better than the HE model for two
main reasons. First, it accounts for temporally autocorrelated resid-
uals in species distribution via the estimated autocorrelation param-
eters (pn and pw). The importance of accounting for autocorrelated
residuals when fitting species distribution models (Bahn & McGill,
2007; Dormann et al., 2007) or when forecasting population dynam-
ics (lves, Dennis, Cottingham, & Carpenter, 2003; Johnson et al.,
2016) has been demonstrated previously, but has not been widely
used when forecasting species distribution models. Secondly, the
spatio-temporal model estimates the temporal variance of local
changes in species density during the modelled period and uses this
estimated variance to generate reasonable forecast intervals for

future changes. As the explanatory power of covariates increases,

VAST  Hybrid AR HE VAST  Hybrid AR
016 0.4 006 -043 025 020 0.06
043 047 015 -015 053 047 0.05
062 051 016 -0.29 069 0.3 0.07
005 005 008 -0.64 007 -002 -0.09
013  0.16 008 -0.38 025 028 0.06
033 029 014 -048 031 036 0.21
006 008 -020 -295 001 015  -0.19
003 009 002 -014 002 002 0.05
015 016 -006 -0.55 022 023 0.01
029 000 -006 -0.53 032 016 0.05
032 074 073 -0.32 043 077 0.73
015 013 006 01 025 021 0.13
003 006 -002 -065 011 016  -0.15
017 006 006 -110 029 019 0.10
011  0.00 013 -0.65 027  0.20 0.13
046 048 -009 005 019 028 0.31

-001  -0.05 013 -035 016 0.1 0.10
025 025 002 006 031 032 0.02
023 024 -007 -125 008 019 0.03
004 -0.02 041 024 004 002 0.40
019 015 -019 -315 025 018  -0.29

the variance of residual spatial and spatio-temporal variation will
decrease and the performance of the HE and VAST models will con-
verge. However, the variance of residual spatial and spatio-temporal
variation remains large for all 20 species after accounting for a
quadratic effect of bottom temperature (Supporting Information
Appendix S3: Table S1). | therefore recommend using a spatio-
temporal model as a testing ground for determining the relative ex-
planatory power of covariates and residual environmental drivers,
and recommend future research exploring additional covariates that
could better explain historical variation in density.

Regarding the Eastern Bering Sea case-study presented here,
results are consistent with prior analyses of this system in several
important ways. First off, results show substantial variability in
northward trends in COG for demersal species in the Eastern Bering
Sea (see Supporting Information Figure S1), including instances
where species are moving southward, or where a northward shift
in distribution either is or is not predicted by a positive response
to increasing regional temperatures (Mueter & Litzow, 2008) or
decreasing cold pool area (Kotwicki & Lauth, 2013). Unlike previ-
ous analyses, however, the VAST model explored here estimates
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autocorrelated variability in spatio-temporal patterns in population
density (p, and p,, in Table 2). This underlies autocorrelated variabil-
ity in COG, and the latter can complicate interpretation of the cor-
relation between COG and environmental covariates either when
restricting analysis to a small subset of years (e.g., 2004-2009 in
Hollowed et al. 2012) or when testing significance in a linear regres-
sion (e.g., Mueter & Litzow, 2008). Finally, this study did not explore
several mechanisms that have invoked to explain distribution shifts
in this region, for example, density-dependent habitat selection
(Spencer, 2008; Thorson, Rindorf, Gao, Hanselman, & Winker, 2016)
or age-specific temperature responses (Barbeaux & Hollowed, 2018;
Thorson, lanelli, et al., 2017). | therefore recommend future work ex-
ploring whether density dependence or age-structure can improve
forecast skill in this or other regions.

Environmental management typically requires predictions over
seasonal (<1 year), short-term (1-5 year), medium-term (5-50 year)
and long-term (>50 year) planning horizons, and models may be more
or less skilful at forecasts for each time-scale. Seasonal forecasts
of spatial distribution for fished species can be useful for fishers to
modify fleet behaviour, timing, and fishing techniques, and have been
useful for prawn aquaculture in northeast Queensland, tuna fishing
the Great Australia Bight, and lobster fishing the Gulf of Maine (see
Tommasi et al. 2017 for a review). Predictive skill for seasonal fore-
casts has been extensively tested, for example, showing improved
predictions of sardine distribution in the California Current relative

to a persistence forecast (Kaplan et al., 2016). Although there are

too small will have a quantile distribution
concentrated near Q (At|tg,) = 0.0 or
Q (At|tg) = 1.0

S)

04 06 08

sufficient data to conduct retrospective skill testing over seasonal
or short-term forecasts, there is surprisingly little research using skill
testing to compare performance among alternative models. | there-
fore recommend skill testing to either identify which models to use
for different planning horizons, or how to weight predictions from
multiple models when using an ensemble model for forecasting (e.g.,
Anderson et al., 2017).

Finally, this study highlights the need for increased skill testing
for models used for short- and long-term forecasting of distribu-
tion shifts. For example, the decreased performance of a habitat-
envelope model relative to a persistence forecast will likely surprise
many readers. However, the poor performance of a habitat-envelope
model is in-line with recent research showing that historical distribu-
tion shifts are poorly explained by local or regional temperature for
Alaska pollock (Thorson, lanelli, et al., 2017) and other groundfish
in the Eastern Bering Sea (Kotwicki & Lauth, 2013). | recommend
using retrospective analyses as a testing ground to improve proba-
bilistic methods for forecasting short-term distribution shifts, and in
particular exploring multispecies models for spatio-temporal dynam-
ics (Latimer, Banerjee, Sang, Mosher, & Silander, 2009; Thorson &
Barnett, 2017; Thorson, Rindorf, et al. 2016; Warton et al., 2015). In
cases with strong species interactions or similar responses to shared
environmental drivers, the information available in multispecies data
sets may improve predictability for future dynamics (Ovaskainen
et al.,, 2017; Schliep et al., 2018; Thorson, Munch, & Swain, 2017;
Trainor etal., 2014). | therefore hypothesize that multispecies
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spatio-temporal models will improve short-term forecasts of the
northward distribution shift for commercial fishes in this region rel-
ative to the single-species forecast models explored here. Finally,
| recommend further research using forecasting models to predict
distribution based on future emission scenarios, for example, for use
in future climate forecasts (Hollowed et al., 2009), but suggests that

these methods should be skill-tested prior to use for this task.
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