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Abstract
Research	has	estimated	associations	between	water	temperature	and	the	spatial	dis-
tribution	of	marine	fishes	based	upon	correlations	between	temperature	and	the	cen-
troid	of	fish	distribution	(centre	of	gravity,	COG).	Analysts	have	then	projected	future	
water	 temperatures	 to	 forecast	 shifts	 in	COG,	but	often	neglected	 to	demonstrate	
that	 temperature	 explains	 a	 substantial	 portion	 of	 historical	 distribution	 shifts.	We	
argue	that	estimating	the	proportion	of	observed	distributional	shifts	that	can	be	at-
tributed	to	 temperature	vs.	other	 factors	 is	a	critical	 first	step	 in	 forecasting	 future	
changes.	We	illustrate	this	approach	using	Gadus chalcogrammus	(Walleye	pollock)	in	
the	Eastern	Bering	Sea,	and	use	a	vector-	autoregressive	spatiotemporal	model	to	at-
tribute	variation	in	COG	from	1982	to	2015	to	three	factors:	local	or	regional	changes	
in	 surface	 and	 bottom	 temperature	 (“temperature	 effects”),	 fluctuations	 in	 size-	
structure	 that	 cause	 COG	 to	 be	 skewed	 towards	 juvenile	 or	 adult	 habitats	 (“size-	
structured	effects”)	or	otherwise	unexplained	spatiotemporal	variation	in	distribution	
(“unexplained	effects”).	We	find	that	the	majority	of	variation	in	COG	(including	the	
north-	west	trend	since	1982)	is	largely	unexplained	by	temperature	or	size-	structured	
effects.	Temperature	alone	generates	a	small	portion	of	primarily	north–south	varia-
tion	in	COG,	while	size-	structured	effects	generate	a	small	portion	of	east–west	vari-
ation.	 We	 therefore	 conclude	 that	 projections	 of	 future	 distribution	 based	 on	
temperature	alone	are	likely	to	miss	a	substantial	portion	of	both	the	interannual	vari-
ation	and	interdecadal	trends	in	COG	for	this	species.	More	generally,	we	suggest	that	
decomposing	variation	in	COG	into	multiple	causal	factors	is	a	vital	first	step	for	pro-
jecting	likely	impacts	of	temperature	change.
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1  | INTRODUCTION

The	Walleye	 pollock	 (Gadus chalcogrammus,	 Gadidae;	 hereafter	 re-
ferred	 to	 as	 pollock)	 stock	 in	 the	 Bering	 Sea	 supports	 an	 industry	
worth	 over	 $1	 billion	 annually	 (in	 first	 sale	wholesale	 prices;	 Fissel	
et	al.,	2015)	and	is	the	focus	of	extensive	data	collection	and	research.	
Previous	 authors	 (Kotwicki,	 Buckley,	Honkalehto,	 &	Walters,	 2005;	

Wyllie-	Echeverria	&	Wooster,	1998)	have	shown	that	the	spatial	dis-
tribution	 of	 pollock	 varies	 between	 “warm”	 and	 “cool”	 years	 in	 the	
Eastern	Bering	Sea,	where	warm	years	commence	with	winter	sea-	ice	
having	a	maximum	extent	that	is	skewed	north	relative	to	long-	term	
averages	 and	 cool	 years	 have	 a	 southward-	skewed	 distribution	 for	
winter	 sea-	ice.	Maximum	 sea-	ice	 extent	 is	 strongly	 associated	with	
the	proportion	of	the	Bering	Sea	with	low	bottom	temperatures	(the	
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area	of	the	“cold	pool”;	Stabeno,	Bond,	Kachel,	Salo,	and	Schumacher,	
2001),	and	the	cold	pool	has	been	shown	to	affect	the	distribution	of	
demersal	 fishes	 such	 as	 pollock	 (Kotwicki	&	 Lauth,	 2013).	 Previous	
analyses	 have	 generally	 studied	 the	 impact	 of	 temperature	 or	 cold	
pool	area	in	isolation,	without	attempting	to	estimate	what	proportion	
of	variance	in	pollock	distribution	is	explained	by	temperature	relative	
to	other	factors.

Ecological	studies	often	seek	to	estimate	a	link	between	tempera-
ture	and	distribution,	and	then	use	this	linkage	to	forecast	shifts	in	dis-
tribution	given	changing	global	temperatures	due	to	long-	term	climate	
shifts.	Examples	include	Perry,	Low,	Ellis,	and	Reynolds	(2005),	which	
regressed	a	sample-	based	calculation	for	centre	of	gravity	(COG)	for	
North	 Sea	 fishes	 against	 a	moving	 average	 of	 bottom	 temperature,	
and	concluded	that	bottom	temperature	and	northward	COG	were	re-
lated.	Similarly,	Cheung	et	al.	(2009)	fitted	a	climate	envelope	model	
using	temperature	as	an	explanatory	variable	to	distribution	for	many	
marine	species,	and	then	projected	likely	changes	in	climate	envelopes	
given	 different	 scenarios	 for	 future	 temperature.	 However,	 neither	
study	quantifies	the	proportion	of	variation	in	distribution	that	is	ex-
plained	by	temperature.	By	contrast,	we	argue	that	studies	of	spatial	
distribution	 and	dynamics	 should	 include	 two	 features:	 (i)	 an	 analy-
sis	demonstrating	a	link	between	a	causal	variable	(e.g.,	temperature)	
and	a	population	variable	 (centre	of	distribution);	and	 (ii)	an	attempt	
to	quantify	predictive	uncertainty	for	the	forecast.	In	particular,	when	
a	 variable	 explains	 a	 small	 portion	 of	 total	 variance	 in	 distribution,	
forecasts	will	 likely	explain	a	correspondingly	small	portion	of	future	
variability.

In	 addition	 to	 temperature,	 the	 spatial	 distribution	 of	 fish	 pop-
ulations	 may	 be	 affected	 by	 ontogenetic	 shifts	 as	 individuals	 age	
and	 grow	 (e.g.,	 Gratwicke,	 Petrovic,	 &	 Speight,	 2006;	 Hicks,	 Taylor,	
Grandin,	 Taylor,	 &	 Cox,	 2014).	 Diet	 data	 from	 pollock	 have	 shown	
cannibalism	which	has	led	to	hypotheses	on	possible	evolutionary	in-
centives	for	juveniles	to	minimize	cannibalism	by	occupying	different	
habitat	than	adults	(Bailey,	1989).	Given	that	juveniles	and	adults	tend	
to	have	different	spatial	distributions,	recruitment	variation	alone	can	
affect	 the	 spatial	 distribution	of	pollock	 (e.g.,	where	years	 following	
strong	 recruitment	will	 be	 skewed	 towards	 the	 juvenile	habitats).	 In	
the	following,	we	term	this	mechanism	a	“size-	structured	effect”.	This	
affects	distribution	shifts	whenever	(i)	juveniles	and	adults	have	strong	
spatial	differences	in	distribution;	(ii)	recruitment	variation	is	high;	and	
(iii)	generation	time	is	low,	due	to	high	natural	and/or	fishing	mortality	
rates.	Conditions	(ii)	and	(iii)	both	contribute	to	high	variation	in	size-	
structure	over	time.

The	spatial	distribution	of	fishes	may	change	following	many	other	
density-	dependent	 and	 density-	independent	 processes	 in	 addition	
temperature	and	size-	structured	effects.	Previous	studies	report	vari-
ability	among	years	in	timing	of	spawning	and	feeding	migrations	(e.g.,	
Ernst,	 Orensanz,	 &	Armstrong,	 2005;	 Kotwicki	 et	al.,	 2005;	 Nichol,	
1998),	 in	 situ	 light	 conditions	 driving	 changes	 in	 distribution	within	
feeding	habitats	(Kotwicki,	De	Robertis,	von	Szalay,	&	Towler,	2009),	
primary	 production	 patterns	 and	 fishing	 pressure	 (Garrison	 et	al.,	
2010).	 Distribution	may	 also	 change	 due	 to	 density-	dependent	 ex-
pansion	of	the	population’s	range	(Kotwicki	&	Lauth,	2013;	Spencer,	

2008),	changes	in	food	availability	(e.g.,	Dorn,	1995;	Nøttestad,	Giske,	
Holst,	 &	Huse,	 1999)	 and	 interactions	with	 other	 species	 including	
competition	 and	 predation	 (Ciannelli,	 Fauchald,	 Chan,	 Agostini,	 &	
Dingsør,	2008).

In	 this	 study,	we	develop	a	method	 to	quantify	 the	contribution	
of	 temperature,	 size-	structure	 and	 other	 factors	 that	 contribute	 to	
shifts	in	the	spatial	distribution	of	marine	fishes.	This	method	specifi-
cally	decomposes	variation	in	catch	rates	into	components	caused	by	
changes	in	distribution	(encounter/non-	encounter)	and	density	(catch	
rates	 given	 that	 the	 species	 is	 encountered)	 to	distinguish	between	
these	two	mechanisms	for	changing	distribution.	We	demonstrate	this	
method	using	pollock	as	a	case-	study	example,	and	seek	to	answer:	
(i)	Can	changes	in	temperature	or	size-	structure	generate	substantial	
variation	in	COG	over	time	for	this	species;	and	(ii)	do	the	shifts	caused	
by	temperature	or	size-	structure	explain	observed	patterns	in	COG	for	
pollock?

2  | METHODS

2.1 | Overview

We	 seek	 to	model	 changes	 over	 time	 in	 the	 spatial	 distribution	 of	
different	size-	categories	for	marine	fishes.	We	chose	to	use	a	delta-	
model,	which	separately	estimates	the	probability	p	that	a	given	sam-
ple	will	 encounter	 the	 species,	 and	 the	expected	 catch	 rate	 r	 given	
that	the	species	is	encountered	(Maunder	&	Punt,	2004).	Specifically,	
sampled	biomass	bi	(in	kg)	for	each	sample	i is modelled as: 

where	ri	is	the	catch	rate	(in	kg/km
2)	for	sample	i,	Gamma(B|θ−2

c
, airiθ

2) 
is	the	gamma	probability	density	function	evaluated	at	B	given	shape	
θ−2 and scale riθ2c,	 and	 θc	 is	 the	 coefficient	 of	 variation	 for	 positive	
catches	for	size-	class	c.	We	use	this	delta-	gamma	function	so	that	we	
can	 separately	 interpret	 predictors	 of	 spatial	 variation	 in	 encounter	
probability	 and	 positive	 catch	 rates.	 Given	 estimates	 of	 encounter	
probability	 and	 positive	 catch	 rate,	we	 can	 then	 predict	 population	
density	(in	kg/km2)	at	each	sampled	location	as	di = pi × ri.

We	use	a	vector-	autoregressive	spatiotemporal	 (VAST)	model	 to	
decompose	sampling	variation	into	different	biologically	interpretable	
sources	(Thorson	&	Barnett,	2017).	We	include	three	distinct	sources	
of	variation	in	both	encounter	probability	and	expected	catch	rates:

1. Intercepts—We	incorporate	annual	variation	in	average	encounter	
probability,	p,	 and	 positive	 catch	 rates,	 r,	 across	 locations	within	
the	spatial	domain	of	the	model.	This	annual	variation	represents	
changes	among	years	 in	 the	proportion	of	population	abundance	
belonging	 to	 different	 size-classes.

2. Covariates—We	incorporate	measured	habitat	variables	as	predic-
tors	of	p and r,	which	allows	us	to	estimate	the	impact	of	measure-
able	 covariates	 on	 local	 density.	 Specifically,	 we	 incorporate	
responses	to	both	local	and	regional	variation	in	temperature.

Pr (bi=B)=

{
1−pi ifB=0

pi×Gamma(B|θ−2
c
, airiθ

2
c
) ifB>0

,
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3. Residual spatial and spatiotemporal variation—We	account	 for	 two	
sources	of	residual	variation	in	p and r	for	each	size-class.	The	first	
source	 involves	estimating	 spatial	 autocorrelation	 terms	 for	each	
size-class.	These	estimates	are	constant	over	time,	and	thus	can	be	
considered	as	 representing	unmeasured	habitat	variables	 that	do	
not	change	over	 the	modelled	period	 (e.g.,	depth,	sediment	size).	
The	second	set	of	terms	is	to	account	for	autocorrelation	in	p and r 
that	changes	among	years	and	spatial	 locations.	This	 latter	spati-
otemporal	variation	represents	the	influence	of	unmeasured	habi-
tat	variables	 that	change	among	years,	and	accounts	 for	shifts	 in	
distribution	for	each	size-class	beyond	the	shifts	predicted	by	co-
variates	(e.g.,	temperature).

We	interpret	this	as	a	“semi-	parametric”	model	because	it	includes	
annually	varying	intercepts,	measured	covariates	and	residual	spatial	and	
spatiotemporal	 variation	 (Shelton,	Thorson,	Ward,	 &	 Feist,	 2014).	We	
use	mixed-	effects	methods	for	parameter	estimation,	and	this	approach	
identifies	parameters	that	minimize	residual	spatial	and	spatiotemporal	
variation	by	maximizing	the	variation	attributed	to	intercepts	and	covari-
ates	(items	1	and	2	above).	We	note	that	the	model	has	some	similarities	
to	classical	universal	Kriging	(Petitgas,	2001),	but	allows	additional	flex-
ibility	regarding	the	distribution	of	measurement	errors	and	the	covari-
ance	among	size-	classes.

2.2 | Vector- autoregressive spatiotemporal model

Encounter	probability	pi	and	expected	catch	rates	ri	for	each	sample	
i	are	affected	by	the	predicted	density	of	individuals	or	groups	λi	(in	
numbers/km2)	at	the	time	ti,	 location	si,	and	 length-	bin	ci	associated	
with	that	sample:	

where	γλ(ti,	ci)	 is	 an	 intercept	 that	 governs	 the	expectation	 across	
space	 of	 numbers-	density	 for	 a	 given	 time	 and	 length-	bin,	 αk,c 
is	 a	 coefficient	 that	 governs	 the	 effect	 of	 a	 covariate	 xk(si,	 ci,	 ti)	
on	numbers-	density	 associated	 with	 a	 given	 location,	 bin	 and	
time,	ωλ(si,	ci)	represent	spatial	variation	in	numbers-	density	λi,	and	
ε
λ
(si,ci,ti)	 represents	 spatiotemporal	 variation.	We	use	a	 log-	link	 to	

ensure	that	predicted	numbers-	density	λi	is	positive.
The	 probability	 of	 encounter	 pi	 for	 sample	 i is derived from a 

Poisson	process,	given	a	random	distribution	of	λi	groups	of	individuals	
in	the	vicinity	of	a	given	location	and	time:	

where	ai	is	the	area	sampled	(in	units	of	square	kilometres)	by	the	i-	th	
sample	(i.e.,	a	complementary	log-	log-	link	for	pi).	The	expected	catch	
rate	ri	given	that	a	sample	encounters	a	given	species	then	depends	
upon	expected	numbers-	density	and	average	weight	wi	for	each	group	
of individuals: 

where	parameters	are	defined	identically	to	those	for	numbers-	density	
except	that	we	use	subscripts	λ and w	to	distinguish	between	param-
eters	for	the	two	components.	Specifically,	expected	catch	rate	given	
an	encounter	is	calculated	as:	

where	 the	 model	 is	 parameterized	 such	 that	 predicted	 biomass	
density	d = λ × w = p × r.	This	model	 for	numbers-	densities	λi and 
average	weight	wi	 has	 a	 similar	 number	 of	 parameters	 to	 a	 con-
ventional	delta-	generalized	 linear	mixed	model,	although	 it	offers	
the	benefit	of	specifying	covariates	via	a	log-	link	for	both	compo-
nents	(rather	than	a	logit-	link	for	encounter	probability	in	a	conven-
tional	delta-	model)	and	covariate	effects	are	therefore	more	easily	
interpretable.

Residual	 spatial	 variation	 is	 treated	 as	 a	 three-	dimensional	
Gaussian	process	(termed	a	“Gaussian	random	field”),	with	correlations	
over	two	spatial	dimensions	(e.g.,	eastings	and	northings)	and	among	
length-	bins:	

where	Ωλ	 is	 a	matrix	 composed	 of	ωλ(si,	 ci)	 at	 every	 location	 s and 
length-	bin	c,	Rλ	is	the	correlation	among	locations,	and	Vωλ	is	the	co-
variance	among	length-	bins	for	spatial	variation	in	population	density	
(where	Ωw	 is	defined	 identically	but	with	Rw and Vωw	 in	place	of	Rw 
and Vωw).	Spatial	correlation	Rλ	 for	encounter	probabilities	 follows	a	
Matérn	process:	

where	ν	 is	 smoothness	 (fixed	at	1.0),	κλ	 governs	 the	distance	over	
which	locations	are	uncorrelated	(and	where	Rr	is	defined	identically	
but	with	κr	 in	place	of	κλ),	Kν	 is	a	Bessel	 function,	and	H	 is	a	 two-	
dimensional	linear	transformation	representing	geometric	anisotropy	
(i.e.,	the	tendency	for	correlations	to	decrease	more	slowly	with	dis-
tance	along	one	axis	than	another,	see	Bez	(2002:	fig.	3)	or	Thorson,	
Shelton,	Ward,	and	Skaug	(2015)).	Covariance	Vωλ	among	length-	bins	
for Ωλ	(the	random	effect	representing	spatial	variation	in	encounter	
probabilities)	is	approximated	using	a	factor	decomposition:	

where	Lωλ is a nc by nf	matrix	where	0	≤	nf	≤	nc	is	the	rank	of	Vωλ	such	
that	Vωλ	 is	 a	 reduced-	rank	 approximation	 to	 covariance	among	bins	
(Thorson,	Scheuerell,	et	al.,	2015;	Warton	et	al.,	2015),	and	Vωr is de-
fined	identically	but	with	Lωr	in	place	of	Lωλ.	Similarly,	spatiotemporal	
variation	in	each	year	is	treated	as	a	three-	dimensional	Gaussian	pro-
cess,	following	a	Matérn	process	over	space	and	a	first-	order	autore-
gressive	process	over	length-	bins:	

where	Er(t)	is	defined	identically	but	with	Rr and V
εr	in	place	of	Rλ and 

V
ελ
.	We	specify	a	different	covariance	among	 length-	bins	 for	spatial	

(Vωλ)	and	spatiotemporal	(Vελ
)	variation.

log (λi)=γ
λ
(ti, ci)+ω

λ
(si, ci)+ε

λ
(si, ci, ti)+

nk∑

k=1

αk,ci
xk(si, ci, ti),

pi=1−exp (−ai×λi),

log (wi)=γw(ti, ci)+ωw(si, ci)+εw(si, ci, ti)+

nk∑

k=1

βk,ci
xk(si, ci, ti),

ri=
λi

pi
×wi,

vec(�
λ
)∼GRF(0,R

λ
⊗V

ωλ
),

R
λ
(s, s∗)=

1

2ν−1Γ(ν)
(κ

λ
H|s−s

∗|)νK
ν
(κ

λ
H|s−s

∗|),

V
ωλ
=L

ωλ
L
T

ωλ
,

vec(E
λ
(t))∼GRF(0,R

λ
⊗V

ελ
),
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Previous	 analyses	 of	 distribution	 shifts	 have	 emphasized	 tem-
perature	as	an	important	driver	(Pinsky,	Worm,	Fogarty,	Sarmiento,	
&	Levin,	2013),	so	we	include	both	the	effect	of	temperature	at	the	
location	and	time	of	the	survey	(“local	temperature”)	and	the	effect	
of	 changes	 in	 average	 temperature	 throughout	 the	Eastern	Bering	
Sea	in	a	given	year	(“regional	temperature”).	We	model	a	local	tem-
perature	effect	by	 including	a	quadratic	relationship	between	 local	
temperature	and	both	encounter	probability	and	positive	catch	rates	
(Fig.	S1).	We	also	include	the	regional	temperature	effect	by	includ-
ing	the	interaction	of	eastings	(or	northings)	with	the	area	of	the	cold	
pool	(Figure	1).	Hypothetically,	if	a	large	cold	pool	is	associated	with	
a	southward	shift	in	distribution,	then	this	would	result	in	a	signifi-
cant	estimate	of	the	coefficient	linking	the	northings-	cold	pool	vari-
able	to	either	λ or w.	In	summary,	we	include	four	covariates:	

where	T(s,	t)	is	the	bottom	temperature	associated	with	location	s and 
year t,	T2(s,	t)	is	bottom	temperature-	squared	(i.e.,	we	include	a	qua-
dratic	effect	of	bottom	temperature),	N(s)	and	E(s)	are	northings	and	
eastings	 for	 location	s,	 and	A(t)	 is	an	annual	 index	of	cold	pool	area	
(defined	as	 the	area	 in	kilometres-	squared	 for	bottom	 temperatures	
of	0°C	or	colder)	for	year	t.	Inspection	of	bottom	temperatures	shows	
that	the	cold	pool	was	relatively	 large	 in	1999,	and	2003–2004	and	
2006,	and	essentially	absent	in	1987,	1996,	1998	and	2003	(Figure	1	
and	Fig.	S1).

We	estimate	parameters	for	this	VAST	model	by	maximizing	the	
marginal	 likelihood	of	parameters	given	available	data	 (see	Table	1	
for	a	list	of	fixed	and	random	effects).	Fixed	effects	include	intercepts	
for	 each	 year	 and	 size-	category	 for	 numbers-	density	 and	 average	
weight	 (γ

λ
(c, t) and γw(c,	t)),	 the	spatial	scale	 for	spatial	correlations	

(κλ and κw)	 and	 geometric	 anisotropy	 (H),	 the	 covariance	 among	
length-	bins	for	spatial	(Lωλ and Lωw)	and	spatiotemporal	(Lελ and L

εw)	
variation,	measurement	parameters	(θc	for	each	size-	class	c)	and	the	
effect	of	measured	covariates	(αk,c and βk,c).	Mixed-	effect	estimation	
will	generally	favour	a	solution	that	minimizes	residual	variation	(i.e.,	
a	simultaneously	low	value	for	variance	θc,	Lωλ,	Lωw,	Lελ and L

εw),	and	it	
does	so	by	first	attributing	variation	to	fixed	effects	(intercepts	and	
covariates)	and	only	then	attributing	model	residuals	to	spatial	and	

spatiotemporal	variation.	We	treat	spatial	variation	(Ωλ and Ωr)	and	
spatiotemporal	variation	(Eλ and Er)	as	random	effects,	and	approxi-
mate	the	marginal	likelihood	across	these	random	effects	using	the	
Laplace	approximation	(Skaug	&	Fournier,	2006).	Parameter	estima-
tion	is	conducted	using	Template	Model	Builder	(Kristensen,	Nielsen,	

x(s, c, t)= (T(s, t), T2(s, t),N(s)A(t), E(s)A(t))T,

F IGURE  1 Cold	pool	size	(in	units	of	square	kilometres)	during	
the	modelled	period,	where	the	interaction	of	cold	pool	size	and	
both	eastings	and	northings	is	included	as	a	“regional”	temperature	
variable in our model

TABLE  1 A	list	of	parameters	and	symbols	defined	in	the	main	
text

Name Symbol

Notation	for	explaining	theory

Predicted	population	density d

Expected	numbers-	density λ

Expected	average	weight w

Expected	encounter	probability p

Expected	positive	catch	rates r

Indices

Observation i

Covariate k

Year t

Length-	bin c

Location j

Overdispersion	factor f

Dimensionality

Number	of	observations ni

Number	of	covariates nk

Number	of	years nt

Number	of	length-	bins nc

Number	of	locations nj

Number	of	factors	for	overdispersion nf

Data

Catch	rate	for	observation	i bi

Location	for	observation	i si

Length-	bin	for	observation	i ci

Year	for	observation	i ti

Measured	covariates	for	observation	i x(si,	ci,	ti)

Parameters	(fixed	effects)

Intercept	for	λi γλ(t,	c)

Covariate	effects	for	λi αk,c

Covariate	effects	for	wi βk,c

Pointwise	variance	in	spatial	variation	in	λi σ
2
λ,ω

Decorrelation	distance	for	spatial	and	spatiotemporal	
variation	in	λi

κλ

Covariation	among	bins	in	spatial	and	spatiotemporal	
variation	in	λi

Lλ

Rotation	matrix	representing	geometric	anisotropy H

Pointwise	variance	in	spatiotemporal	variation	in	λi σ
2
λ,ξ

Random	effects

Spatial	variation	in	λi ωλ(s,	c)

Spatiotemporal	variation	in	λi ε
λ
(s, c, t)
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Berg,	Skaug,	&	Bell,	2016)	 in	the	R	statistical	environment	 (R	Core	
Team,	2015).	We	use	the	stochastic	partial	differential	equation	ap-
proximation	to	the	probability	of	 random	effects	 (Lindgren,	Rue,	&	
Lindström,	2011),	and	also	use	a	“predictive	process”	approximation	
wherein	 spatial	 and	 spatiotemporal	 components	 are	 approximated	
as	being	piecewise	constant	at	100	 locations	 (termed	“knots”)	 that	
are	 selected	 using	 a	 k-	means	 algorithm	 applied	 to	 the	 location	 of	
sampling	 data.	 R	 package	 VAST	 for	 implementing	 this	 model	 for	
other	data	sets	is	publicly	available	on	the	first	author’s	GitHub	site	
(https://github.com/James-Thorson/VAST).

2.3 | Case- study: Alaska pollock

As	 case-	study,	 we	 analyse	 catch	 rate	 data	 for	 pollock	 from	 the	
Eastern	Bering	Sea	(EBS).	Specifically,	we	use	data	collected	during	
standardized	 EBS	 bottom	 trawl	 surveys	 conducted	 by	 the	 Alaska	
Fisheries	Science	Center	since	1982	(Stauffer,	2004).	Annual	surveys	
were	conducted	in	June	and	July	over	the	fixed	set	of	approximately	
376	 stations	 and	 used	 the	 same	 standard	 trawl	 (83–112	 eastern	
otter	 trawl)	 during	 all	 years.	 Surveys	 started	 in	 the	 south-	eastern	
corner	of	 the	 survey	area	and	proceeded	westward.	Tow	duration	
was	 approximately	 30	min	 at	 1.54	m/s	 (3	 knots).	 A	 subsample	 of	
150–200	 individuals	from	each	tow	were	measured	to	the	nearest	
centimetre	using	fork	length,	and	this	subsample	was	then	expanded	
to	represent	the	entire	tow	catch	(using	the	ratio	of	sampled	weight	
and	tow	weight	for	that	species).	The	catch	rate	in	number	per	hec-
tare	was	estimated	using	the	area-	swept	method	(e.g.,	Alverson	and	
Pereyra,	1969)	by	multiplying	distance	 fished,	as	 indicated	by	bot-
tom	contact	 sensor	 (Somerton	&	Weinberg,	2001),	by	 the	average	
distance	 between	 wing	 tips	 measured	 using	 acoustic	 spread	 sen-
sors	 (see	Weinberg	 and	Kotwicki	 (2008)	 for	 details).	We	 analysed	
catch	rate	data	for	five	size-	categories:	0–20	cm	(mostly	age-	1	indi-
viduals),	21–30	cm	(mostly	age-	2	individuals),	31–40	cm,	41–50	cm	
and	50+	cm	 individuals.	Given	 the	 relatively	 small	 number	of	 size-	
categories,	we	used	full	rank	for	all	covariance	matrices	(i.e.,	nf	=	5,	
such	 that	Vωλ,	Vελ

,	Vωr and V
εr	 each	 involve	 estimating	 15	 unique	

parameters).
Prior	 to	 analysis,	we	 converted	 catch	 rate	 for	 each	 length	 cate-

gory	from	numbers	to	weight	(kilograms),	using	a	year-	specific	length–
weight	 relationship	obtained	 for	years	when	 length–weight	 samples	
were	 collected	 (i.e.,	 1991,	 and	 1999–2016).	 For	 remaining	 years,	
the	 average	 length–weight	 relationship	was	 obtained	 by	 pooling	 all	
available	 data.	We	 also	 corrected	 catch	 rate	 estimates	 for	 density-	
dependent	sampling	efficiency	of	the	survey	bottom	trawl	(Kotwicki,	
Ianelli,	&	Punt,	2014).	We	analyse	data	from	1982	to	2015,	where	this	
period	includes	a	marked	decrease	and	recovery	of	pollock	abundance	
in	the	EBS	between	2008	and	2015	(Ianelli,	Honkalehto,	Barbeaux,	&	
Kotwicki,	2015).

2.4 | Calculating centre of gravity

We	 summarize	 shifts	 in	 distribution	 by	 calculating	 the	 centroid	 of	
the	distribution	for	a	given	size-	category	and	year	(termed	centre	of	

gravity,	COG).	To	do	so,	we	first	calculate	the	biomass	density	d(s,	c,	t)	
for	size-	class	c	associated	with	every	location	and	year:	

where	a(s)	 is	the	area	associated	with	modelled	 location	s.	We	then	
calculate	a	model-	based	estimate	of	the	COG	from	predicted	density	
throughout	the	population	domain:	

where	 x(s)	 is	 a	 suitable	 description	 of	 location	 for	 site	 s.	 This	 for-
mula	for	COG	standardizes	by	total	abundance	(in	the	denominator),	
so	 our	 analysis	 focuses	 on	 changes	 in	 distribution	 after	 controlling	
for	 changes	 in	 total	 abundance.	 Future	 research	 could	 alternatively	
explore	 temperature	 impacts	 on	 total	 abundance	 and/or	 density-	
dependent	impacts	on	COG.	In	the	following,	we	use	either	eastings/
northings	 in	 kilometres	 (when	 calculating	 summaries	 of	 distance,	
where	eastings	and	northings	are	calculated	using	a	projection	 that	
has	minimal	distortion	of	distance),	or	 latitude/longitude	 in	degrees	
(when	 plotting	 results	 on	 a	 map).	 Previous	 research	 suggests	 that	
model-	based	estimates	of	COG	are	 in	some	cases	more	statistically	
efficient	than	conventional	sample-	based	estimators	(Thorson,	Pinsky,	
&	Ward,	2016).

2.5 | Counterfactual model exploration

We	distinguish	the	following	three	hypotheses	for	explaining	changes	
in	distribution	over	 time:	 (i)	 temperature;	 (ii)	 size-	structure;	 and	 (iii)	
residual	 variation.	 These	hypotheses	 are	not	mutually	 exclusive,	 so	
we	seek	to	estimate	what	proportion	of	variance	in	COG	is	explained	
by	each	of	these	factors.	To	do	so,	we	take	estimated	values	of	fixed	
and	random	effects	for	the	fitted	model,	and	fix	some	subset	to	zero	
to	exclude	 individual	processes	from	the	model.	For	each	“counter-
factual	 run,”	we	 then	 recalculate	 the	 time	 series	 of	 northward	 and	
eastward	 COG	 that	 would	 result	 from	 that	 subset	 of	 parameters.	
Specifically:

1. Temperature—To	 isolate	 the	 effect	 of	 temperature,	 we	 eliminate	
any	 variation	 in	 size-structure	 (i.e.,	 fix	 intercepts	 for	 average	
numbers-density	 and	 average	 weight	 for	 a	 given	 size-class	 and	
year	 at	 its	 average	 over	 all	 years)	 and	 eliminate	 residual	 spa-
tiotemporal	 variation,	 but	 leave	 temperature	 effects	 at	 their	
estimated	 value.	 We	 then	 use	 these	 values	 to	 predict	 biomass	
density	 d = λ × r	 for	 all	 sites,	 and	 calculate	 COG	 using	 these	
values.

2. Size-structure—To	 isolate	 the	 effect	 of	 variation	 in	 size-structure,	
we	eliminate	temperature	effects	and	residual	spatiotemporal	vari-
ation.	 We	 leave	 interannual	 variation	 in	 the	 proportion	 of	 total	

d(s, c, t)=a(s)×λ(s, c, t)×w(s, c, t)

=a(s)×exp

(
γ
λ
(t, c)+ω

λ
(s, c)+ε

λ
(s, c, t)+

nk∑

k=1

αk,ci
xk(s, c, t)

)

×exp

(
γw(t, c)+ωw(s, c)+εw(s, c, t)+

nk∑

k=1

βk,ci
xk(s, c, t)

)
,

x̄(c, t)=

∑ns

s=1
d(s, c, t)x(s)

∑ns

s=1
d(s, c, t)

,

https://github.com/James-Thorson/VAST
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abundance	belonging	to	different	size-classes	and	again	calculate	
COG	using	these	values.

3. Unexplained variation—To	isolate	the	portion	of	variation	that	is	not	
explained	by	size-structure	or	temperature,	we	eliminate	variation	
in	size-structure	and	fix	temperature	effects	at	zero,	and	again	cal-
culate	COG	using	these	values.

Further	 details	 about	 how	 we	 implement	 these	 counterfactual	
models	are	provided	in	Table	2.	In	an	exploratory	run,	we	also	confirm	
that	eliminating	variation	in	cohort	strength,	and	fixing	both	tempera-
ture	and	unexplained	variation	at	zero	results	in	no	variance	in	COG.	
This	confirms	that	all	estimated	variation	in	COG	is	attributable	to	one	
of	these	three	processes.

3  | RESULTS

We	first	visualize	northward	and	eastward	COG	for	each	of	five	size-	
categories	 (Figure	2).	This	 shows	 that	 individuals	with	 size	 21–30	
and	31–40	cm	have	a	COG	to	the	northwest,	and	 individuals	with	
size	50+	have	a	COG	to	the	south-	east	of	the	average	COG	for	the	
entire	population.	The	proportion	of	 total	biomass	 represented	by	
individuals	 of	 size	 0–40	cm	 has	 decreased	 over	 time	 (particularly	

during	 the	 early	 1980s),	while	 the	 proportion	with	 size	 50	cm	 or	
greater	has	increased	(particularly	prior	to	1995).	We	therefore	con-
clude	that	variation	 in	size-	structure	has	caused	a	southward	shift	
in	distribution	over	time	towards	the	COG	for	large	individuals,	with	
the	greatest	shift	caused	by	size-	structure	occurring	from	1982	to	
1990.

Next,	we	 show	 density	maps	 for	 total	 biomass,	 as	well	 as	 the	
three	 counterfactual	 scenarios	 generated	 by	 excluding	 all	 mecha-
nisms	for	variation	 in	COG	except	temperature,	 recruitment	varia-
tion	or	otherwise	unexplained	variation	(Figure	3).	Relative	to	other	
years,	density	is	high	near	the	Alaskan	peninsula	in	1995,	and	is	rela-
tively	high	in	the	north-	western	portion	in	2008	and	2015	(Figure	3,	
1st	 column).	 The	 counterfactual	 scenario	 restricting	 variation	 to	
temperature	effects	(Figure	3,	2nd	column)	shows	that	temperature	
in	isolation	explains	relatively	little	variation	in	density	among	years,	
although	 it	 contributes	 to	 the	 elevated	 density	 in	 the	 southern	
boundary	in	1995	and	2008.	By	contrast,	changes	in	size-	structure	
in	isolation	(Figure	3,	3rd	column)	can	generate	the	relatively	high-	
density	 inshore	 in	2008	 relative	 to	1982	and	1989.	Nevertheless,	
general	patterns	in	spatiotemporal	variation	are	mainly	unexplained	
(Figure	3,	4th	column);	for	example,	the	relative	increase	in	densities	
in	the	northern	portion	of	the	populations	range	in	2008	and	2015	
is	attributed	primarily	to	unexplained	variation.

TABLE  2 Hypothesized	drivers	of	distribution	shift,	a	verbal	description	of	how	these	potentially	impact	distribution	for	Alaska	pollock,	how	
these	mechanisms	are	represented	in	the	vector-	autoregressive	spatiotemporal	model,	and	how	the	relative	importance	of	these	hypothesized	
drivers	is	assessed	using	the	parameters	estimated	for	Alaska	pollock

Hypothesized 
driver Description of mechanism

Description of test for relative 
importance of mechanism Quantitative test for hypothesis

Temperature Variation	in	temperature	drives	changes	
in	distribution	among	years,	either	via:	
1.	 Localized	response	of	density	to	local	
temperature;	or

2.	Change	in	spatial	distribution	of	
population	due	to	regional	
temperature

Eliminate	alternative	mechanisms	
for	distribution	shift,	that	is:
1.	Changes	in	the	proportion	of	
the	population	belonging	to	
different	size-classes;	and

2.	Residual	spatiotemporal	
variation	in	density	after	
controlling	for	temperature	and	
size-structured	variation.

Eliminate	variation	caused	by	alternative	
mechanisms,	that	is:
1.	Fixing	intercepts	(representing	variation	
among	years	in	the	proportion	of	the	
population	belonging	to	different	
size-classes)	at	their	average	values	
across	years,	γ

λ
(c, t)=n−1

t

∑nt

t=1
γ
λ
(c, t) 

and γw(c, t)=n−1
t

∑nt

t=1
γw(c, t); and

2.	Fixing	residual	spatiotemporal	variation	at	
zero,	ε

λ
(s, c, t)=0 and εw(s, c, t)=0

Size-	structure Variation	in	cohort	strength,	when	
combined	with	differences	in	the	spatial	
distribution	for	different	size-	classes,	
results	in	a	population	distribution	
skewed	towards	the	distribution	for	the	
dominant	size-	class	in	a	given	year.

Eliminate	alternative	mechanisms,	
that	is:	
1.	 Local	or	regional	impacts	of	
temperature	on	density;	and

2.	Residual	spatiotemporal	
variation	in	density	after	
controlling	for	temperature	and	
size-structured	variation.

Eliminate	variation	caused	by	alternative	
mechanisms,	that	is:	
1.	Fixing	the	impact	of	covariates	at	zero,	

α(s,	c)	=	0	and	β(s, c)=0; and
2.	Fixing	residual	spatiotemporal	variation	at	
zero,	ε

λ
(s, c, t)=0 and εw(s, c, t)=0

Unexplained	
variation

Otherwise	unmodelled	processes	(e.g.,	
shifts	in	the	spatial	distribution	of	
predators	or	resources,	interannual	
variation	in	where	cohorts	settle	and	
mature)	drive	changes	in	distribution	
among	years.

Eliminate	alternative	mechanisms,	
that	is:
1.	Changes	in	the	proportion	of	
the	population	belonging	to	
different	size-classes;	and

2.	 Local	or	regional	impacts	of	
temperature	on	density

Eliminate	variation	caused	by	alternative	
mechanisms,	by:	
1.	Fixing	intercepts	(representing	variation	
among	years	in	the	proportion	of	the	
population	belonging	to	different	
size-classes)	at	their	average	values	
across	years,	γ

λ
(c, t)=n−1

t

∑nt

t=1
γ
λ
(c, t) 

and γw(c, t)=n−1
t

∑nt

t=1
γw(c, t); and

2.	Fixing	the	impact	of	covariates	at	zero,	
α(s,	c)	=	0	and	β(s,	c)	=	0
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Next,	we	compute	the	standard	deviation	of	COG	for	each	counter-
factual	scenario	 (Table	3).	This	shows	the	strong	agreement	between	
our	model-	based	estimates	of	COG	and	a	simple	abundance-	weighted	
average	estimator,	where	both	show	a	standard	deviation	of	approxi-
mately	70–75	km	east–west	and	45–50	km	north–south.	Temperature	
in	isolation	accounts	for	more	northward	(21	km)	than	eastward	(13	km)	
variation,	while	variation	in	size-	structure	accounts	for	greater	variation	
east–west	(23	km)	than	north–south	(7	km).	The	greatest	standard	de-
viation	by	far	is	attributed	to	“unexplained	variation”	in	density.

Finally,	inspection	of	COG	estimates	for	each	counterfactual	sce-
nario	clearly	confirms	that	observed	variation	in	COG	is	primarily	attrib-
utable	to	unexplained	variation	(Figure	4).	As	expected,	size-	structure	
causes	a	southward	and	eastward	trend	in	COG	from	1982	to	nearly	
2010,	 and	causes	greater	variation	east–west	 than	north–south.	By	

contrast,	temperature	generates	strong	interannual	variation	along	the	
north–south	axis.	However,	the	estimated	COG	moved	nearly	100	km	
north	and	west	from	1982	to	2015,	and	neither	temperature	nor	size-	
structure	 captures	 this	 trend.	 Similarly,	 observed	COG	exhibits	high	
interannual	variation	(e.g.,	a	large	shift	northward	from	1994	to	1997	
and	westward	from	2003	to	2006),	and	neither	temperature	nor	size-	
structure	explains	this	interannual	variation.

4  | DISCUSSION

In	 this	 study,	we	have	developed	a	 statistical	 approach	 for	decom-
posing	 variation	 in	 species	 distribution	 into	 components	 attribut-
able	 to	 local	 and	 regional	 temperature,	 variation	 in	 size-	structure	

F IGURE  2 Estimated	log-	density	for	
pollock	(colour	legend	is	provided	in	the	
bottom	row	and	has	units	ln(kg/km2))	on	
average	across	years	of	five	different	sizes	
classes	(1st	column,	where	centre	of	gravity	
for	each	size-	class	is	shown	as	a	black	
point),	and	proportion	of	biomass	for	that	
size-	class	in	each	year	(2nd	column,	where	
the	y-	axis	range	varies	for	each	size-	class)
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and	 otherwise	 unexplained	 variation	 in	 density.	We	 demonstrated	
this	 approach	 using	 the	 extensive	 and	 consistent	 data	 collections	
for	 pollock,	 one	 of	 the	most	 valuable	 fisheries	 in	 the	USA.	 Results	
showed	that	temperature	and	size-	structure	by	themselves	generate	
a	smaller	variance	in	COG	than	is	observed	and	that	shifts	 in	distri-
bution	predicted	by	 temperature	and	 size-	structure	do	not	 capture	

long-	term	shifts	to	the	north-	west	for	this	species.	This	result	is	sur-
prising,	given	the	many	studies	that	have	previously	attributed	range	
shifts	 for	 this	 species	 to	 temperature	 affects	 (e.g.,	 Kotwicki	 et	al.,	
2005;	Wyllie-	Echeverria	&	Wooster,	1998).	However,	this	difference	
likely	arises	because	previous	studies	have	generally	not	attempted	
to	quantify	what	portion	of	variation	in	distribution	is	attributable	to	

F IGURE  3 Estimated	log-	density	for	pollock	(1st	column)	compared	with	counterfactual	scenarios	that	eliminate	all	causes	for	variation	in	
distribution	except	temperature	(2nd	column),	recruitment	variation	(3rd	column)	or	unexplained	variation	(4th	column),	for	six	evenly	spaced	
years	(rows)	(colour	scale	differs	among	columns;	colour	legend	is	provided	in	the	bottom	row	and	has	units	ln(kg/km2))
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temperature,	and	have	therefore	failed	to	recognize	that	previously	
identified	effects	of	temperature	explain	a	small	portion	of	 interan-
nual	or	decadal	variation.	However,	we	note	that	Kotwicki	and	Lauth	
(2013)	had	similarly	concluded	that	the	trend	towards	the	north-	west	
in	pollock	is	not	directly	related	to	changes	in	temperatures,	and	had	
hypothesized	that	fishing	in	the	southern	portion	might	be	an	alterna-
tive	 hypothesis.	We	 therefore	 recommend	 future	 research	 to	 inte-
grate	spatial	information	regarding	fishing	effort	into	a	VAST	model	
(perhaps	 by	 using	 lagged	 fishing	 effort	 as	 a	 covariate)	 to	 explore	
whether	the	“unexplained	variation”	from	this	study	can	be	attributed	
to	human	harvest.

More	generally,	we	argue	that	any	study	regarding	the	 likely	 im-
pacts	of	future	environmental	changes	(e.g.,	changes	in	sea-	ice	cover	
or	bottom	temperatures)	should	first	quantify	 the	proportion	of	his-
torical	variation	that	can	be	explained	by	the	variables	that	are	avail-
able	for	forecasting.	Given	that	the	trend	towards	the	north-	west	for	
pollock	 is	 not	 explained	by	historical	 temperature	 effects,	 the	 likely	
impact	of	future	temperature	changes	may	also	be	swamped	by	oth-
erwise	 unexplained	 factors	 affecting	 distribution	 for	 this	 species.	
Accurately	quantifying	uncertainty	 is	 increasingly	recognized	as	vital	
to	 the	use	 and	 credibility	of	 any	 scientific	model	 (Silver,	 2015),	 and	
we	similarly	believe	that	 it	 is	vital	 for	making	credible	predictions	of	
climate	impacts	on	marine	fishes.

We	acknowledge	that	it	is	unsettling	that	two	dominant	hypothe-
ses	(temperature	and	size-	structure)	explain	a	relatively	small	portion	
of	variation	in	COG	for	pollock,	and	we	advocate	for	future	research	
to	decompose	“unexplained	variation”	into	different	biological	mech-
anisms.	One	avenue	for	research	involves	identifying	patterns	in	dis-
tribution	 shifts	 for	multiple	 species	 simultaneously,	 and	 cataloguing	
the	physical	or	ecological	variables	that	could	simultaneously	explain	
distributions	 shifts	 for	 multiple	 species.	 Spatiotemporal	 variation	 in	
density	for	pollock	is	strongly	correlated	with	Pacific	cod	(Gadus mac-
rocephalus,	Gadidae;	Thorson,	Ianelli,	et	al.	 (2016)),	and	this	suggests	
that	 there	 are	 shared	environmental	 factors	 driving	productivity	 for	
these	phylogenetically	related	species.	Productivity	for	pollock	is	likely	
impacted	by	species	interactions	(Spencer	et	al.,	2016),	so	we	recom-
mend	 ongoing	 research	 regarding	 species	 interactions	 (competition	

and	 predation)	 in	 spatiotemporal	 statistical	 models.	 For	 example,	
interactions	 with	 the	 expanding	 spatial	 distribution	 of	 arrowtooth	
flounder	could	potential	explain	distribution	shifts	for	juvenile	pollock,	
either	due	to	behavioural	avoidance	or	direct	predation	(Spencer	et	al.,	
2016),	and	these	competitive	or	predator/prey	impacts	could	be	inte-
grated	if	species	 interactions	were	explicitly	modelled	(e.g.,	Thorson,	
Munch,	&	Swain,	2017).

Another	potential	mechanism	that	 is	missing	 in	our	model	 is	 the	
settlement	of	individual	cohorts	within	particular	spatial	areas,	which	
could	cause	COG	to	vary	as	it	tracks	spatial	patterns	in	settlement	of	
dominant	cohorts	over	time.	This	process	could	presumably	be	mod-
elled	by	explicitly	modelling	the	settlement	and	growth	of	 individual	
cohorts	 (Kristensen,	 Thygesen,	 Andersen,	 &	 Beyer,	 2014;	 Thorson,	
Ianelli,	 Munch,	 Ono,	 &	 Spencer,	 2015).	 However,	 integrating	 this	
hypothesis	with	 habitat	 partitioning	 by	 different	 size-	classes	would	
presumably	 require	 an	 explicit	 spatiotemporal	 model	 for	 individual	
movement	 rates	 by	 size-	class.	 Although	 spatiotemporal	 analysis	 of	
individual	 movement	 is	 feasible	 using	 advective-	diffusive	modelling	
techniques	(Sibert,	Hampton,	Fournier,	&	Bills,	1999;	Thorson,	Jannot,	
&	Somers,	2017),	its	integration	within	a	size-	structured	spatiotempo-
ral	model	remains	a	topic	for	future	research.	These	three	unmodelled	
mechanisms	(additional	environmental	variables,	species	 interactions	
and	cohort-	specific	distribution)	will	all	be	at	least	as	difficult	to	fore-
cast	as	global	water	temperature.	Therefore,	 identifying	mechanisms	
for	historical	variation	in	COG	may	not	translate	to	improved	forecasts	
of	future	variation.	However,	we	still	argue	that	disentangling	the	mul-
tiple	drivers	of	historical	COG	is	a	necessary	first	step	to	forecasting	
future	distribution	shifts.

We	also	acknowledge	several	important	caveats	regarding	our	ap-
proach	to	identify	temperature	impacts	on	pollock	distribution	shifts	
in	 the	 EBS.	Most	 importantly,	we	 have	 not	 included	 lagged	 effects	
of	 local	or	regional	temperatures	(either	within	or	among	years),	and	
recent	 research	 has	 highlighted	 the	 potentially	 important	 effect	 of	
lagged	environmental	conditions	on	explaining	local	density	(Blonder	
et	al.,	 2017).	 If	 bottom	 temperature	 varies	 among	 months	 within	
a	 given	year,	 for	 example,	 then	different	months	within	 a	year	may	
have	weaker	 or	 stronger	 correlation	with	 a	 given	biological	variable	
(e.g.,	Black,	2009).	Best	practices	 for	 including	 lagged	effects	 is	also	
an	 ongoing	 research	 topic	 when	 estimating	 environmental	 impacts	
on	 recruitment	 for	marine	 fishes	 (Szuwalski,	Vert-	Pre,	Punt,	Branch,	
&	Hilborn,	2015),	and	future	studies	of	pollock	distribution	shift	could	
use	exploratory	methods	 to	 identify	 important	 lags	 for	environmen-
tal	variables.	We	also	acknowledge	that	the	impact	of	temperature	on	
local	density	may	be	highly	nonlinear.	We	have	 included	a	quadratic	
impact	 of	 local	 bottom	 temperature	 and	 a	 linear	 impact	 of	 regional	
cold	 pool	 size,	 and	 approximating	 temperature	 impacts	 in	 this	way	
may	have	decreased	 the	variance	explained	by	 temperature	 relative	
to	using	a	highly	nonlinear	model	for	temperature	impacts.	Finally,	we	
note	that	including	additional	missing	variables	may	increase	the	ex-
planatory	power	of	temperature.	For	a	hypothetical	example,	tempera-
ture	impacts	may	have	varied	before	and	after	the	1998	regime	shift	
(Rodionov	&	Overland,	 2005),	 so	 including	 the	 interactions	 of	 tem-
perature	and	a	dummy	variable	(representing	before/after	the	regime	

TABLE  3 Standard	deviation	of	variation	in	centre	of	gravity	
(COG)	among	years	in	eastings	and	northings	(in	units	of	kilometres).	
We	show	the	variation	observed	in	the	pollock	bottom	trawl	data	
(using	a	model-	free	“abundance-	weighted	average”	estimator),	
compared	with	the	variation	associated	with	hypothesized	drivers	of	
distribution	shift	(temperature,	cohort	effects	or	residual	variation)

Northings COG 
(km) Eastings COG (km)

Abundance-	weighted	
average	estimator

44.6 70.4

Full model 50.7 72.2

Only	temperature 19.7 11.3

Only	size-	structure 12.1 35.5

Only	unexplained 60.4 89.1
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shift)	could	increase	the	estimated	importance	of	temperature.	Future	
research	could	also	use	simulation	testing	to	explore	our	ability	to	de-
tect	temperature	signals	of	varying	magnitude.	We	therefore	interpret	

out	results	as	a	starting	point	for	ongoing	statistical	and	exploratory	
research	 seeking	 to	 attribute	population-	wide	distribution	 shifts	 for	
pollock	to	factors	affecting	local	density.

F IGURE  4 Time-	series	predictions	of	centre	of	gravity	(COG,	northward:	left	column;	eastward:	right	column)	given	the	fitted	model	(1st	
row),	only	temperature	effects	(2nd	row),	only	recruitment	variation	effects	(3rd	row)	or	only	unexplained	variation	(4th	row),	where	the	COG	for	
total	biomass	(black)	is	compared	with	COG	for	each	individual	size-	category	(orange:	1-	year-	olds;	red:	2-	year-	olds;	purple:	intermediate	sizes;	
blue:	adults;	green:	largest	individuals)
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Finally,	 we	 provide	 software	 to	 implement	 the	 vector-	
autoregressive	spatiotemporal	model	as	an	R	package	called	“VAST”.	
This	software	can	also	be	used	to	estimate	size-	specific	 indices	of	
biomass,	 for	use	as	an	 input	 into	size-	structured	stock	assessment	
models	 (Punt,	 Huang,	 &	 Maunder,	 2013),	 or	 to	 jointly	 model	 the	
spatial	distribution	for	multiple	species	simultaneously	(Ovaskainen,	
Roy,	Fox,	&	Anderson,	2016;	Thorson,	Scheuerell,	et	al.,	2015).	We	
encourage	 broader	 use	 of	 size-	structured	 spatiotemporal	 models	
to	answer	whether	 temperature	generally	explains	a	 small	or	 large	
portion	of	historical	distribution	shifts	for	a	wide	variety	of	marine	
fishes.
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