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Abstract
Research has estimated associations between water temperature and the spatial dis-
tribution of marine fishes based upon correlations between temperature and the cen-
troid of fish distribution (centre of gravity, COG). Analysts have then projected future 
water temperatures to forecast shifts in COG, but often neglected to demonstrate 
that temperature explains a substantial portion of historical distribution shifts. We 
argue that estimating the proportion of observed distributional shifts that can be at-
tributed to temperature vs. other factors is a critical first step in forecasting future 
changes. We illustrate this approach using Gadus chalcogrammus (Walleye pollock) in 
the Eastern Bering Sea, and use a vector-autoregressive spatiotemporal model to at-
tribute variation in COG from 1982 to 2015 to three factors: local or regional changes 
in surface and bottom temperature (“temperature effects”), fluctuations in size-
structure that cause COG to be skewed towards juvenile or adult habitats (“size-
structured effects”) or otherwise unexplained spatiotemporal variation in distribution 
(“unexplained effects”). We find that the majority of variation in COG (including the 
north-west trend since 1982) is largely unexplained by temperature or size-structured 
effects. Temperature alone generates a small portion of primarily north–south varia-
tion in COG, while size-structured effects generate a small portion of east–west vari-
ation. We therefore conclude that projections of future distribution based on 
temperature alone are likely to miss a substantial portion of both the interannual vari-
ation and interdecadal trends in COG for this species. More generally, we suggest that 
decomposing variation in COG into multiple causal factors is a vital first step for pro-
jecting likely impacts of temperature change.
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1  | INTRODUCTION

The Walleye pollock (Gadus chalcogrammus, Gadidae; hereafter re-
ferred to as pollock) stock in the Bering Sea supports an industry 
worth over $1 billion annually (in first sale wholesale prices; Fissel 
et al., 2015) and is the focus of extensive data collection and research. 
Previous authors (Kotwicki, Buckley, Honkalehto, & Walters, 2005; 

Wyllie-Echeverria & Wooster, 1998) have shown that the spatial dis-
tribution of pollock varies between “warm” and “cool” years in the 
Eastern Bering Sea, where warm years commence with winter sea-ice 
having a maximum extent that is skewed north relative to long-term 
averages and cool years have a southward-skewed distribution for 
winter sea-ice. Maximum sea-ice extent is strongly associated with 
the proportion of the Bering Sea with low bottom temperatures (the 
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area of the “cold pool”; Stabeno, Bond, Kachel, Salo, and Schumacher, 
2001), and the cold pool has been shown to affect the distribution of 
demersal fishes such as pollock (Kotwicki & Lauth, 2013). Previous 
analyses have generally studied the impact of temperature or cold 
pool area in isolation, without attempting to estimate what proportion 
of variance in pollock distribution is explained by temperature relative 
to other factors.

Ecological studies often seek to estimate a link between tempera-
ture and distribution, and then use this linkage to forecast shifts in dis-
tribution given changing global temperatures due to long-term climate 
shifts. Examples include Perry, Low, Ellis, and Reynolds (2005), which 
regressed a sample-based calculation for centre of gravity (COG) for 
North Sea fishes against a moving average of bottom temperature, 
and concluded that bottom temperature and northward COG were re-
lated. Similarly, Cheung et al. (2009) fitted a climate envelope model 
using temperature as an explanatory variable to distribution for many 
marine species, and then projected likely changes in climate envelopes 
given different scenarios for future temperature. However, neither 
study quantifies the proportion of variation in distribution that is ex-
plained by temperature. By contrast, we argue that studies of spatial 
distribution and dynamics should include two features: (i) an analy-
sis demonstrating a link between a causal variable (e.g., temperature) 
and a population variable (centre of distribution); and (ii) an attempt 
to quantify predictive uncertainty for the forecast. In particular, when 
a variable explains a small portion of total variance in distribution, 
forecasts will likely explain a correspondingly small portion of future 
variability.

In addition to temperature, the spatial distribution of fish pop-
ulations may be affected by ontogenetic shifts as individuals age 
and grow (e.g., Gratwicke, Petrovic, & Speight, 2006; Hicks, Taylor, 
Grandin, Taylor, & Cox, 2014). Diet data from pollock have shown 
cannibalism which has led to hypotheses on possible evolutionary in-
centives for juveniles to minimize cannibalism by occupying different 
habitat than adults (Bailey, 1989). Given that juveniles and adults tend 
to have different spatial distributions, recruitment variation alone can 
affect the spatial distribution of pollock (e.g., where years following 
strong recruitment will be skewed towards the juvenile habitats). In 
the following, we term this mechanism a “size-structured effect”. This 
affects distribution shifts whenever (i) juveniles and adults have strong 
spatial differences in distribution; (ii) recruitment variation is high; and 
(iii) generation time is low, due to high natural and/or fishing mortality 
rates. Conditions (ii) and (iii) both contribute to high variation in size-
structure over time.

The spatial distribution of fishes may change following many other 
density-dependent and density-independent processes in addition 
temperature and size-structured effects. Previous studies report vari-
ability among years in timing of spawning and feeding migrations (e.g., 
Ernst, Orensanz, & Armstrong, 2005; Kotwicki et al., 2005; Nichol, 
1998), in situ light conditions driving changes in distribution within 
feeding habitats (Kotwicki, De Robertis, von Szalay, & Towler, 2009), 
primary production patterns and fishing pressure (Garrison et al., 
2010). Distribution may also change due to density-dependent ex-
pansion of the population’s range (Kotwicki & Lauth, 2013; Spencer, 

2008), changes in food availability (e.g., Dorn, 1995; Nøttestad, Giske, 
Holst, & Huse, 1999) and interactions with other species including 
competition and predation (Ciannelli, Fauchald, Chan, Agostini, & 
Dingsør, 2008).

In this study, we develop a method to quantify the contribution 
of temperature, size-structure and other factors that contribute to 
shifts in the spatial distribution of marine fishes. This method specifi-
cally decomposes variation in catch rates into components caused by 
changes in distribution (encounter/non-encounter) and density (catch 
rates given that the species is encountered) to distinguish between 
these two mechanisms for changing distribution. We demonstrate this 
method using pollock as a case-study example, and seek to answer: 
(i) Can changes in temperature or size-structure generate substantial 
variation in COG over time for this species; and (ii) do the shifts caused 
by temperature or size-structure explain observed patterns in COG for 
pollock?

2  | METHODS

2.1 | Overview

We seek to model changes over time in the spatial distribution of 
different size-categories for marine fishes. We chose to use a delta-
model, which separately estimates the probability p that a given sam-
ple will encounter the species, and the expected catch rate r given 
that the species is encountered (Maunder & Punt, 2004). Specifically, 
sampled biomass bi (in kg) for each sample i is modelled as: 

where ri is the catch rate (in kg/km
2) for sample i, Gamma(B|θ−2

c
, airiθ

2) 
is the gamma probability density function evaluated at B given shape 
θ−2 and scale riθ2c, and θc is the coefficient of variation for positive 
catches for size-class c. We use this delta-gamma function so that we 
can separately interpret predictors of spatial variation in encounter 
probability and positive catch rates. Given estimates of encounter 
probability and positive catch rate, we can then predict population 
density (in kg/km2) at each sampled location as di = pi × ri.

We use a vector-autoregressive spatiotemporal (VAST) model to 
decompose sampling variation into different biologically interpretable 
sources (Thorson & Barnett, 2017). We include three distinct sources 
of variation in both encounter probability and expected catch rates:

1.	 Intercepts—We incorporate annual variation in average encounter 
probability, p, and positive catch rates, r, across locations within 
the spatial domain of the model. This annual variation represents 
changes among years in the proportion of population abundance 
belonging to different size-classes.

2.	 Covariates—We incorporate measured habitat variables as predic-
tors of p and r, which allows us to estimate the impact of measure-
able covariates on local density. Specifically, we incorporate 
responses to both local and regional variation in temperature.

Pr (bi=B)=

{
1−pi ifB=0

pi×Gamma(B|θ−2
c
, airiθ

2
c
) ifB>0

,
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3.	 Residual spatial and spatiotemporal variation—We account for two 
sources of residual variation in p and r for each size-class. The first 
source involves estimating spatial autocorrelation terms for each 
size-class. These estimates are constant over time, and thus can be 
considered as representing unmeasured habitat variables that do 
not change over the modelled period (e.g., depth, sediment size). 
The second set of terms is to account for autocorrelation in p and r 
that changes among years and spatial locations. This latter spati-
otemporal variation represents the influence of unmeasured habi-
tat variables that change among years, and accounts for shifts in 
distribution for each size-class beyond the shifts predicted by co-
variates (e.g., temperature).

We interpret this as a “semi-parametric” model because it includes 
annually varying intercepts, measured covariates and residual spatial and 
spatiotemporal variation (Shelton, Thorson, Ward, & Feist, 2014). We 
use mixed-effects methods for parameter estimation, and this approach 
identifies parameters that minimize residual spatial and spatiotemporal 
variation by maximizing the variation attributed to intercepts and covari-
ates (items 1 and 2 above). We note that the model has some similarities 
to classical universal Kriging (Petitgas, 2001), but allows additional flex-
ibility regarding the distribution of measurement errors and the covari-
ance among size-classes.

2.2 | Vector-autoregressive spatiotemporal model

Encounter probability pi and expected catch rates ri for each sample 
i are affected by the predicted density of individuals or groups λi (in 
numbers/km2) at the time ti, location si, and length-bin ci associated 
with that sample: 

where γλ(ti, ci) is an intercept that governs the expectation across 
space of numbers-density for a given time and length-bin, αk,c 
is a coefficient that governs the effect of a covariate xk(si, ci, ti) 
on numbers-density associated with a given location, bin and 
time, ωλ(si, ci) represent spatial variation in numbers-density λi, and 
ε
λ
(si,ci,ti) represents spatiotemporal variation. We use a log-link to 

ensure that predicted numbers-density λi is positive.
The probability of encounter pi for sample i is derived from a 

Poisson process, given a random distribution of λi groups of individuals 
in the vicinity of a given location and time: 

where ai is the area sampled (in units of square kilometres) by the i-th 
sample (i.e., a complementary log-log-link for pi). The expected catch 
rate ri given that a sample encounters a given species then depends 
upon expected numbers-density and average weight wi for each group 
of individuals: 

where parameters are defined identically to those for numbers-density 
except that we use subscripts λ and w to distinguish between param-
eters for the two components. Specifically, expected catch rate given 
an encounter is calculated as: 

where the model is parameterized such that predicted biomass 
density d = λ × w = p × r. This model for numbers-densities λi and 
average weight wi has a similar number of parameters to a con-
ventional delta-generalized linear mixed model, although it offers 
the benefit of specifying covariates via a log-link for both compo-
nents (rather than a logit-link for encounter probability in a conven-
tional delta-model) and covariate effects are therefore more easily 
interpretable.

Residual spatial variation is treated as a three-dimensional 
Gaussian process (termed a “Gaussian random field”), with correlations 
over two spatial dimensions (e.g., eastings and northings) and among 
length-bins: 

where Ωλ is a matrix composed of ωλ(si, ci) at every location s and 
length-bin c, Rλ is the correlation among locations, and Vωλ is the co-
variance among length-bins for spatial variation in population density 
(where Ωw is defined identically but with Rw and Vωw in place of Rw 
and Vωw). Spatial correlation Rλ for encounter probabilities follows a 
Matérn process: 

where ν is smoothness (fixed at 1.0), κλ governs the distance over 
which locations are uncorrelated (and where Rr is defined identically 
but with κr in place of κλ), Kν is a Bessel function, and H is a two-
dimensional linear transformation representing geometric anisotropy 
(i.e., the tendency for correlations to decrease more slowly with dis-
tance along one axis than another, see Bez (2002: fig. 3) or Thorson, 
Shelton, Ward, and Skaug (2015)). Covariance Vωλ among length-bins 
for Ωλ (the random effect representing spatial variation in encounter 
probabilities) is approximated using a factor decomposition: 

where Lωλ is a nc by nf matrix where 0 ≤ nf ≤ nc is the rank of Vωλ such 
that Vωλ is a reduced-rank approximation to covariance among bins 
(Thorson, Scheuerell, et al., 2015; Warton et al., 2015), and Vωr is de-
fined identically but with Lωr in place of Lωλ. Similarly, spatiotemporal 
variation in each year is treated as a three-dimensional Gaussian pro-
cess, following a Matérn process over space and a first-order autore-
gressive process over length-bins: 

where Er(t) is defined identically but with Rr and V
εr in place of Rλ and 

V
ελ
. We specify a different covariance among length-bins for spatial 

(Vωλ) and spatiotemporal (Vελ
) variation.

log (λi)=γ
λ
(ti, ci)+ω

λ
(si, ci)+ε

λ
(si, ci, ti)+

nk∑

k=1

αk,ci
xk(si, ci, ti),

pi=1−exp (−ai×λi),

log (wi)=γw(ti, ci)+ωw(si, ci)+εw(si, ci, ti)+

nk∑

k=1

βk,ci
xk(si, ci, ti),

ri=
λi

pi
×wi,

vec(�
λ
)∼GRF(0,R

λ
⊗V

ωλ
),

R
λ
(s, s∗)=

1

2ν−1Γ(ν)
(κ

λ
H|s−s

∗|)νK
ν
(κ

λ
H|s−s

∗|),

V
ωλ
=L

ωλ
L
T

ωλ
,
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λ
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λ
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ελ
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Previous analyses of distribution shifts have emphasized tem-
perature as an important driver (Pinsky, Worm, Fogarty, Sarmiento, 
& Levin, 2013), so we include both the effect of temperature at the 
location and time of the survey (“local temperature”) and the effect 
of changes in average temperature throughout the Eastern Bering 
Sea in a given year (“regional temperature”). We model a local tem-
perature effect by including a quadratic relationship between local 
temperature and both encounter probability and positive catch rates 
(Fig. S1). We also include the regional temperature effect by includ-
ing the interaction of eastings (or northings) with the area of the cold 
pool (Figure 1). Hypothetically, if a large cold pool is associated with 
a southward shift in distribution, then this would result in a signifi-
cant estimate of the coefficient linking the northings-cold pool vari-
able to either λ or w. In summary, we include four covariates: 

where T(s, t) is the bottom temperature associated with location s and 
year t, T2(s, t) is bottom temperature-squared (i.e., we include a qua-
dratic effect of bottom temperature), N(s) and E(s) are northings and 
eastings for location s, and A(t) is an annual index of cold pool area 
(defined as the area in kilometres-squared for bottom temperatures 
of 0°C or colder) for year t. Inspection of bottom temperatures shows 
that the cold pool was relatively large in 1999, and 2003–2004 and 
2006, and essentially absent in 1987, 1996, 1998 and 2003 (Figure 1 
and Fig. S1).

We estimate parameters for this VAST model by maximizing the 
marginal likelihood of parameters given available data (see Table 1 
for a list of fixed and random effects). Fixed effects include intercepts 
for each year and size-category for numbers-density and average 
weight (γ

λ
(c, t) and γw(c, t)), the spatial scale for spatial correlations 

(κλ and κw) and geometric anisotropy (H), the covariance among 
length-bins for spatial (Lωλ and Lωw) and spatiotemporal (Lελ and L

εw) 
variation, measurement parameters (θc for each size-class c) and the 
effect of measured covariates (αk,c and βk,c). Mixed-effect estimation 
will generally favour a solution that minimizes residual variation (i.e., 
a simultaneously low value for variance θc, Lωλ, Lωw, Lελ and L

εw), and it 
does so by first attributing variation to fixed effects (intercepts and 
covariates) and only then attributing model residuals to spatial and 

spatiotemporal variation. We treat spatial variation (Ωλ and Ωr) and 
spatiotemporal variation (Eλ and Er) as random effects, and approxi-
mate the marginal likelihood across these random effects using the 
Laplace approximation (Skaug & Fournier, 2006). Parameter estima-
tion is conducted using Template Model Builder (Kristensen, Nielsen, 

x(s, c, t)= (T(s, t), T2(s, t),N(s)A(t), E(s)A(t))T,

F IGURE  1 Cold pool size (in units of square kilometres) during 
the modelled period, where the interaction of cold pool size and 
both eastings and northings is included as a “regional” temperature 
variable in our model

TABLE  1 A list of parameters and symbols defined in the main 
text

Name Symbol

Notation for explaining theory

Predicted population density d

Expected numbers-density λ

Expected average weight w

Expected encounter probability p

Expected positive catch rates r

Indices

Observation i

Covariate k

Year t

Length-bin c

Location j

Overdispersion factor f

Dimensionality

Number of observations ni

Number of covariates nk

Number of years nt

Number of length-bins nc

Number of locations nj

Number of factors for overdispersion nf

Data

Catch rate for observation i bi

Location for observation i si

Length-bin for observation i ci

Year for observation i ti

Measured covariates for observation i x(si, ci, ti)

Parameters (fixed effects)

Intercept for λi γλ(t, c)

Covariate effects for λi αk,c

Covariate effects for wi βk,c

Pointwise variance in spatial variation in λi σ
2
λ,ω

Decorrelation distance for spatial and spatiotemporal 
variation in λi

κλ

Covariation among bins in spatial and spatiotemporal 
variation in λi

Lλ

Rotation matrix representing geometric anisotropy H

Pointwise variance in spatiotemporal variation in λi σ
2
λ,ξ

Random effects

Spatial variation in λi ωλ(s, c)

Spatiotemporal variation in λi ε
λ
(s, c, t)
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Berg, Skaug, & Bell, 2016) in the R statistical environment (R Core 
Team, 2015). We use the stochastic partial differential equation ap-
proximation to the probability of random effects (Lindgren, Rue, & 
Lindström, 2011), and also use a “predictive process” approximation 
wherein spatial and spatiotemporal components are approximated 
as being piecewise constant at 100 locations (termed “knots”) that 
are selected using a k-means algorithm applied to the location of 
sampling data. R package VAST for implementing this model for 
other data sets is publicly available on the first author’s GitHub site 
(https://github.com/James-Thorson/VAST).

2.3 | Case-study: Alaska pollock

As case-study, we analyse catch rate data for pollock from the 
Eastern Bering Sea (EBS). Specifically, we use data collected during 
standardized EBS bottom trawl surveys conducted by the Alaska 
Fisheries Science Center since 1982 (Stauffer, 2004). Annual surveys 
were conducted in June and July over the fixed set of approximately 
376 stations and used the same standard trawl (83–112 eastern 
otter trawl) during all years. Surveys started in the south-eastern 
corner of the survey area and proceeded westward. Tow duration 
was approximately 30 min at 1.54 m/s (3 knots). A subsample of 
150–200 individuals from each tow were measured to the nearest 
centimetre using fork length, and this subsample was then expanded 
to represent the entire tow catch (using the ratio of sampled weight 
and tow weight for that species). The catch rate in number per hec-
tare was estimated using the area-swept method (e.g., Alverson and 
Pereyra, 1969) by multiplying distance fished, as indicated by bot-
tom contact sensor (Somerton & Weinberg, 2001), by the average 
distance between wing tips measured using acoustic spread sen-
sors (see Weinberg and Kotwicki (2008) for details). We analysed 
catch rate data for five size-categories: 0–20 cm (mostly age-1 indi-
viduals), 21–30 cm (mostly age-2 individuals), 31–40 cm, 41–50 cm 
and 50+ cm individuals. Given the relatively small number of size-
categories, we used full rank for all covariance matrices (i.e., nf = 5, 
such that Vωλ, Vελ

, Vωr and V
εr each involve estimating 15 unique 

parameters).
Prior to analysis, we converted catch rate for each length cate-

gory from numbers to weight (kilograms), using a year-specific length–
weight relationship obtained for years when length–weight samples 
were collected (i.e., 1991, and 1999–2016). For remaining years, 
the average length–weight relationship was obtained by pooling all 
available data. We also corrected catch rate estimates for density-
dependent sampling efficiency of the survey bottom trawl (Kotwicki, 
Ianelli, & Punt, 2014). We analyse data from 1982 to 2015, where this 
period includes a marked decrease and recovery of pollock abundance 
in the EBS between 2008 and 2015 (Ianelli, Honkalehto, Barbeaux, & 
Kotwicki, 2015).

2.4 | Calculating centre of gravity

We summarize shifts in distribution by calculating the centroid of 
the distribution for a given size-category and year (termed centre of 

gravity, COG). To do so, we first calculate the biomass density d(s, c, t) 
for size-class c associated with every location and year: 

where a(s) is the area associated with modelled location s. We then 
calculate a model-based estimate of the COG from predicted density 
throughout the population domain: 

where x(s) is a suitable description of location for site s. This for-
mula for COG standardizes by total abundance (in the denominator), 
so our analysis focuses on changes in distribution after controlling 
for changes in total abundance. Future research could alternatively 
explore temperature impacts on total abundance and/or density-
dependent impacts on COG. In the following, we use either eastings/
northings in kilometres (when calculating summaries of distance, 
where eastings and northings are calculated using a projection that 
has minimal distortion of distance), or latitude/longitude in degrees 
(when plotting results on a map). Previous research suggests that 
model-based estimates of COG are in some cases more statistically 
efficient than conventional sample-based estimators (Thorson, Pinsky, 
& Ward, 2016).

2.5 | Counterfactual model exploration

We distinguish the following three hypotheses for explaining changes 
in distribution over time: (i) temperature; (ii) size-structure; and (iii) 
residual variation. These hypotheses are not mutually exclusive, so 
we seek to estimate what proportion of variance in COG is explained 
by each of these factors. To do so, we take estimated values of fixed 
and random effects for the fitted model, and fix some subset to zero 
to exclude individual processes from the model. For each “counter-
factual run,” we then recalculate the time series of northward and 
eastward COG that would result from that subset of parameters. 
Specifically:

1.	 Temperature—To isolate the effect of temperature, we eliminate 
any variation in size-structure (i.e., fix intercepts for average 
numbers-density and average weight for a given size-class and 
year at its average over all years) and eliminate residual spa-
tiotemporal variation, but leave temperature effects at their 
estimated value. We then use these values to predict biomass 
density d = λ × r for all sites, and calculate COG using these 
values.

2.	 Size-structure—To isolate the effect of variation in size-structure, 
we eliminate temperature effects and residual spatiotemporal vari-
ation. We leave interannual variation in the proportion of total 

d(s, c, t)=a(s)×λ(s, c, t)×w(s, c, t)

=a(s)×exp

(
γ
λ
(t, c)+ω

λ
(s, c)+ε

λ
(s, c, t)+

nk∑

k=1

αk,ci
xk(s, c, t)

)

×exp

(
γw(t, c)+ωw(s, c)+εw(s, c, t)+

nk∑

k=1

βk,ci
xk(s, c, t)

)
,

x̄(c, t)=

∑ns

s=1
d(s, c, t)x(s)

∑ns

s=1
d(s, c, t)

,

https://github.com/James-Thorson/VAST
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abundance belonging to different size-classes and again calculate 
COG using these values.

3.	 Unexplained variation—To isolate the portion of variation that is not 
explained by size-structure or temperature, we eliminate variation 
in size-structure and fix temperature effects at zero, and again cal-
culate COG using these values.

Further details about how we implement these counterfactual 
models are provided in Table 2. In an exploratory run, we also confirm 
that eliminating variation in cohort strength, and fixing both tempera-
ture and unexplained variation at zero results in no variance in COG. 
This confirms that all estimated variation in COG is attributable to one 
of these three processes.

3  | RESULTS

We first visualize northward and eastward COG for each of five size-
categories (Figure 2). This shows that individuals with size 21–30 
and 31–40 cm have a COG to the northwest, and individuals with 
size 50+ have a COG to the south-east of the average COG for the 
entire population. The proportion of total biomass represented by 
individuals of size 0–40 cm has decreased over time (particularly 

during the early 1980s), while the proportion with size 50 cm or 
greater has increased (particularly prior to 1995). We therefore con-
clude that variation in size-structure has caused a southward shift 
in distribution over time towards the COG for large individuals, with 
the greatest shift caused by size-structure occurring from 1982 to 
1990.

Next, we show density maps for total biomass, as well as the 
three counterfactual scenarios generated by excluding all mecha-
nisms for variation in COG except temperature, recruitment varia-
tion or otherwise unexplained variation (Figure 3). Relative to other 
years, density is high near the Alaskan peninsula in 1995, and is rela-
tively high in the north-western portion in 2008 and 2015 (Figure 3, 
1st column). The counterfactual scenario restricting variation to 
temperature effects (Figure 3, 2nd column) shows that temperature 
in isolation explains relatively little variation in density among years, 
although it contributes to the elevated density in the southern 
boundary in 1995 and 2008. By contrast, changes in size-structure 
in isolation (Figure 3, 3rd column) can generate the relatively high-
density inshore in 2008 relative to 1982 and 1989. Nevertheless, 
general patterns in spatiotemporal variation are mainly unexplained 
(Figure 3, 4th column); for example, the relative increase in densities 
in the northern portion of the populations range in 2008 and 2015 
is attributed primarily to unexplained variation.

TABLE  2 Hypothesized drivers of distribution shift, a verbal description of how these potentially impact distribution for Alaska pollock, how 
these mechanisms are represented in the vector-autoregressive spatiotemporal model, and how the relative importance of these hypothesized 
drivers is assessed using the parameters estimated for Alaska pollock

Hypothesized 
driver Description of mechanism

Description of test for relative 
importance of mechanism Quantitative test for hypothesis

Temperature Variation in temperature drives changes 
in distribution among years, either via: 
1.	 Localized response of density to local 
temperature; or

2.	Change in spatial distribution of 
population due to regional 
temperature

Eliminate alternative mechanisms 
for distribution shift, that is:
1.	Changes in the proportion of 
the population belonging to 
different size-classes; and

2.	Residual spatiotemporal 
variation in density after 
controlling for temperature and 
size-structured variation.

Eliminate variation caused by alternative 
mechanisms, that is:
1.	Fixing intercepts (representing variation 
among years in the proportion of the 
population belonging to different 
size-classes) at their average values 
across years, γ

λ
(c, t)=n−1

t

∑nt

t=1
γ
λ
(c, t) 

and γw(c, t)=n−1
t

∑nt

t=1
γw(c, t); and

2.	Fixing residual spatiotemporal variation at 
zero, ε

λ
(s, c, t)=0 and εw(s, c, t)=0

Size-structure Variation in cohort strength, when 
combined with differences in the spatial 
distribution for different size-classes, 
results in a population distribution 
skewed towards the distribution for the 
dominant size-class in a given year.

Eliminate alternative mechanisms, 
that is: 
1.	 Local or regional impacts of 
temperature on density; and

2.	Residual spatiotemporal 
variation in density after 
controlling for temperature and 
size-structured variation.

Eliminate variation caused by alternative 
mechanisms, that is: 
1.	Fixing the impact of covariates at zero, 

α(s, c) = 0 and β(s, c)=0; and
2.	Fixing residual spatiotemporal variation at 
zero, ε

λ
(s, c, t)=0 and εw(s, c, t)=0

Unexplained 
variation

Otherwise unmodelled processes (e.g., 
shifts in the spatial distribution of 
predators or resources, interannual 
variation in where cohorts settle and 
mature) drive changes in distribution 
among years.

Eliminate alternative mechanisms, 
that is:
1.	Changes in the proportion of 
the population belonging to 
different size-classes; and

2.	 Local or regional impacts of 
temperature on density

Eliminate variation caused by alternative 
mechanisms, by: 
1.	Fixing intercepts (representing variation 
among years in the proportion of the 
population belonging to different 
size-classes) at their average values 
across years, γ

λ
(c, t)=n−1

t

∑nt

t=1
γ
λ
(c, t) 

and γw(c, t)=n−1
t

∑nt

t=1
γw(c, t); and

2.	Fixing the impact of covariates at zero, 
α(s, c) = 0 and β(s, c) = 0
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Next, we compute the standard deviation of COG for each counter-
factual scenario (Table 3). This shows the strong agreement between 
our model-based estimates of COG and a simple abundance-weighted 
average estimator, where both show a standard deviation of approxi-
mately 70–75 km east–west and 45–50 km north–south. Temperature 
in isolation accounts for more northward (21 km) than eastward (13 km) 
variation, while variation in size-structure accounts for greater variation 
east–west (23 km) than north–south (7 km). The greatest standard de-
viation by far is attributed to “unexplained variation” in density.

Finally, inspection of COG estimates for each counterfactual sce-
nario clearly confirms that observed variation in COG is primarily attrib-
utable to unexplained variation (Figure 4). As expected, size-structure 
causes a southward and eastward trend in COG from 1982 to nearly 
2010, and causes greater variation east–west than north–south. By 

contrast, temperature generates strong interannual variation along the 
north–south axis. However, the estimated COG moved nearly 100 km 
north and west from 1982 to 2015, and neither temperature nor size-
structure captures this trend. Similarly, observed COG exhibits high 
interannual variation (e.g., a large shift northward from 1994 to 1997 
and westward from 2003 to 2006), and neither temperature nor size-
structure explains this interannual variation.

4  | DISCUSSION

In this study, we have developed a statistical approach for decom-
posing variation in species distribution into components attribut-
able to local and regional temperature, variation in size-structure 

F IGURE  2 Estimated log-density for 
pollock (colour legend is provided in the 
bottom row and has units ln(kg/km2)) on 
average across years of five different sizes 
classes (1st column, where centre of gravity 
for each size-class is shown as a black 
point), and proportion of biomass for that 
size-class in each year (2nd column, where 
the y-axis range varies for each size-class)
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and otherwise unexplained variation in density. We demonstrated 
this approach using the extensive and consistent data collections 
for pollock, one of the most valuable fisheries in the USA. Results 
showed that temperature and size-structure by themselves generate 
a smaller variance in COG than is observed and that shifts in distri-
bution predicted by temperature and size-structure do not capture 

long-term shifts to the north-west for this species. This result is sur-
prising, given the many studies that have previously attributed range 
shifts for this species to temperature affects (e.g., Kotwicki et al., 
2005; Wyllie-Echeverria & Wooster, 1998). However, this difference 
likely arises because previous studies have generally not attempted 
to quantify what portion of variation in distribution is attributable to 

F IGURE  3 Estimated log-density for pollock (1st column) compared with counterfactual scenarios that eliminate all causes for variation in 
distribution except temperature (2nd column), recruitment variation (3rd column) or unexplained variation (4th column), for six evenly spaced 
years (rows) (colour scale differs among columns; colour legend is provided in the bottom row and has units ln(kg/km2))
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temperature, and have therefore failed to recognize that previously 
identified effects of temperature explain a small portion of interan-
nual or decadal variation. However, we note that Kotwicki and Lauth 
(2013) had similarly concluded that the trend towards the north-west 
in pollock is not directly related to changes in temperatures, and had 
hypothesized that fishing in the southern portion might be an alterna-
tive hypothesis. We therefore recommend future research to inte-
grate spatial information regarding fishing effort into a VAST model 
(perhaps by using lagged fishing effort as a covariate) to explore 
whether the “unexplained variation” from this study can be attributed 
to human harvest.

More generally, we argue that any study regarding the likely im-
pacts of future environmental changes (e.g., changes in sea-ice cover 
or bottom temperatures) should first quantify the proportion of his-
torical variation that can be explained by the variables that are avail-
able for forecasting. Given that the trend towards the north-west for 
pollock is not explained by historical temperature effects, the likely 
impact of future temperature changes may also be swamped by oth-
erwise unexplained factors affecting distribution for this species. 
Accurately quantifying uncertainty is increasingly recognized as vital 
to the use and credibility of any scientific model (Silver, 2015), and 
we similarly believe that it is vital for making credible predictions of 
climate impacts on marine fishes.

We acknowledge that it is unsettling that two dominant hypothe-
ses (temperature and size-structure) explain a relatively small portion 
of variation in COG for pollock, and we advocate for future research 
to decompose “unexplained variation” into different biological mech-
anisms. One avenue for research involves identifying patterns in dis-
tribution shifts for multiple species simultaneously, and cataloguing 
the physical or ecological variables that could simultaneously explain 
distributions shifts for multiple species. Spatiotemporal variation in 
density for pollock is strongly correlated with Pacific cod (Gadus mac-
rocephalus, Gadidae; Thorson, Ianelli, et al. (2016)), and this suggests 
that there are shared environmental factors driving productivity for 
these phylogenetically related species. Productivity for pollock is likely 
impacted by species interactions (Spencer et al., 2016), so we recom-
mend ongoing research regarding species interactions (competition 

and predation) in spatiotemporal statistical models. For example, 
interactions with the expanding spatial distribution of arrowtooth 
flounder could potential explain distribution shifts for juvenile pollock, 
either due to behavioural avoidance or direct predation (Spencer et al., 
2016), and these competitive or predator/prey impacts could be inte-
grated if species interactions were explicitly modelled (e.g., Thorson, 
Munch, & Swain, 2017).

Another potential mechanism that is missing in our model is the 
settlement of individual cohorts within particular spatial areas, which 
could cause COG to vary as it tracks spatial patterns in settlement of 
dominant cohorts over time. This process could presumably be mod-
elled by explicitly modelling the settlement and growth of individual 
cohorts (Kristensen, Thygesen, Andersen, & Beyer, 2014; Thorson, 
Ianelli, Munch, Ono, & Spencer, 2015). However, integrating this 
hypothesis with habitat partitioning by different size-classes would 
presumably require an explicit spatiotemporal model for individual 
movement rates by size-class. Although spatiotemporal analysis of 
individual movement is feasible using advective-diffusive modelling 
techniques (Sibert, Hampton, Fournier, & Bills, 1999; Thorson, Jannot, 
& Somers, 2017), its integration within a size-structured spatiotempo-
ral model remains a topic for future research. These three unmodelled 
mechanisms (additional environmental variables, species interactions 
and cohort-specific distribution) will all be at least as difficult to fore-
cast as global water temperature. Therefore, identifying mechanisms 
for historical variation in COG may not translate to improved forecasts 
of future variation. However, we still argue that disentangling the mul-
tiple drivers of historical COG is a necessary first step to forecasting 
future distribution shifts.

We also acknowledge several important caveats regarding our ap-
proach to identify temperature impacts on pollock distribution shifts 
in the EBS. Most importantly, we have not included lagged effects 
of local or regional temperatures (either within or among years), and 
recent research has highlighted the potentially important effect of 
lagged environmental conditions on explaining local density (Blonder 
et al., 2017). If bottom temperature varies among months within 
a given year, for example, then different months within a year may 
have weaker or stronger correlation with a given biological variable 
(e.g., Black, 2009). Best practices for including lagged effects is also 
an ongoing research topic when estimating environmental impacts 
on recruitment for marine fishes (Szuwalski, Vert-Pre, Punt, Branch, 
& Hilborn, 2015), and future studies of pollock distribution shift could 
use exploratory methods to identify important lags for environmen-
tal variables. We also acknowledge that the impact of temperature on 
local density may be highly nonlinear. We have included a quadratic 
impact of local bottom temperature and a linear impact of regional 
cold pool size, and approximating temperature impacts in this way 
may have decreased the variance explained by temperature relative 
to using a highly nonlinear model for temperature impacts. Finally, we 
note that including additional missing variables may increase the ex-
planatory power of temperature. For a hypothetical example, tempera-
ture impacts may have varied before and after the 1998 regime shift 
(Rodionov & Overland, 2005), so including the interactions of tem-
perature and a dummy variable (representing before/after the regime 

TABLE  3 Standard deviation of variation in centre of gravity 
(COG) among years in eastings and northings (in units of kilometres). 
We show the variation observed in the pollock bottom trawl data 
(using a model-free “abundance-weighted average” estimator), 
compared with the variation associated with hypothesized drivers of 
distribution shift (temperature, cohort effects or residual variation)

Northings COG 
(km) Eastings COG (km)

Abundance-weighted 
average estimator

44.6 70.4

Full model 50.7 72.2

Only temperature 19.7 11.3

Only size-structure 12.1 35.5

Only unexplained 60.4 89.1
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shift) could increase the estimated importance of temperature. Future 
research could also use simulation testing to explore our ability to de-
tect temperature signals of varying magnitude. We therefore interpret 

out results as a starting point for ongoing statistical and exploratory 
research seeking to attribute population-wide distribution shifts for 
pollock to factors affecting local density.

F IGURE  4 Time-series predictions of centre of gravity (COG, northward: left column; eastward: right column) given the fitted model (1st 
row), only temperature effects (2nd row), only recruitment variation effects (3rd row) or only unexplained variation (4th row), where the COG for 
total biomass (black) is compared with COG for each individual size-category (orange: 1-year-olds; red: 2-year-olds; purple: intermediate sizes; 
blue: adults; green: largest individuals)
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Finally, we provide software to implement the vector-
autoregressive spatiotemporal model as an R package called “VAST”. 
This software can also be used to estimate size-specific indices of 
biomass, for use as an input into size-structured stock assessment 
models (Punt, Huang, & Maunder, 2013), or to jointly model the 
spatial distribution for multiple species simultaneously (Ovaskainen, 
Roy, Fox, & Anderson, 2016; Thorson, Scheuerell, et al., 2015). We 
encourage broader use of size-structured spatiotemporal models 
to answer whether temperature generally explains a small or large 
portion of historical distribution shifts for a wide variety of marine 
fishes.
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