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Summary

1. Changing climate is already impacting the spatial distribution of many taxa, including bees, plants, birds, but-
terflies and fishes. A common goal is to detect range shifts in response to climate change, including changes in the
centre of the population’s distribution (the centre of gravity, COG), population boundaries and area occupied.
Conventional estimators, such as the abundance-weighted average (AWA) estimator for COG, confound range
shifts with changes in the spatial distribution of available survey data and may be biased when the distribution of
survey data shifts over time. AWA also does not estimate the standard error of COG in individual years and can-
not incorporate data from multiple survey designs.

2. To explicitly account for changes in the spatial distribution of survey effort, we propose an alternative species
distribution function (SDF) estimator. The SDF approach involves calculating distribution metrics, including
COG, population boundary and area occupied, directly from the predicted species distribution or density func-
tion. Weillustrate the SDF approach using a spatiotemporal model that is available as an r package. Using simu-
lated data, we confirm that the SDF substantially decreases bias in COG estimates relative to the AWA
estimator. We then illustrate the method by analysing data from two data sets spanning 1977-2013 for 18 marine
fishes along the U.S. West Coast.

3. In our case study, the SDF estimator shows significant northward shifts for six of 18 species (with southward
shifts for only 2), where two species (darkblotched and greenstriped rockfishes) have both a northward shift and
a decreased area occupied. Pelagic species (e.g. Pacific hake and spiny dogfish) have more variable distribution
than bottom-associated species. We also find substantial differences between AWA and SDF estimates of COG
that are likely caused by shifts in sampling distribution (which affect the AWA but not the SDF estimator).

4. We caution that common estimators for range shift can yield inappropriate inference whenever sampling
designs have shifted over time. We conclude by suggesting further improvements in model-based approaches to
analysing climate impacts, including methods addressing the impact of local and regional temperature changes
on species distribution.

Key-words: abundance-weighted average, California Current, centre of gravity, climate change,
range shifts, spatiotemporal model, species distribution model

. immediate relevance to local economies and international
Introduction . . .
diplomacy (Cheung et al. 2012), as well as species interactions

Climate change and variability have already impacted the
spatial distribution of many different taxa including butterflies
(Parmesan et al. 1999), plants (Kelly & Goulden 2008), bees
(Kerr et al. 2015), birds (Hitch & Leberg 2007) and marine
fishes (Pinsky et al. 2013). Climate impacts have often been
identified via changes in spatial distribution, due to the wide
availability of spatially referenced survey data for many taxa
as well as the relative ease of detecting changes in population
distribution over time. Changes in distribution can have
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and evolutionary trajectories (Garroway et al. 2010). Climate
change has also been documented to affect many biological
processes, including the allocation of energy between growth
and reproduction, community composition and phenology
(Parmesan 20006).

Estimating directional changes in a spatial distribution is
not unique to population biology — similar problems exist in
quantifying distributional changes in sea ice, temperature,
rainfall and patterns of disease in response to climate
change. In all of these problems, it can be difficult to distin-
guish between long-term (multidecadal) trends caused by
anthropogenic climate change, interdecadal variability and
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short-term fluctuations in spatial distribution. As a result,
identifying trends in spatial distribution due to climate change
generally requires analysing data from decadal or longer time-
scales (Hitch & Leberg 2007). Long time series regarding spe-
cies distribution are rare (Parmesan et a/. 2005), and much
could be learned if shorter time series could be stitched
together. However, combining data from multiple sampling
protocols poses serious difficulties, including quantifying the
relative performance of survey efficiency among different sur-
vey teams or sampling protocols (Sauer, Peterjohn & Link
1994), accounting for spatial differences in sampling intensity
and estimating the uncertainty in any resulting estimate of dis-
tribution. Even within a long-running survey, such as the
North American Breeding Bird Survey, volunteer skill and
training, sampling design, and sampling effort may vary
regionally and over time. For example, sampling sites may be
added or removed in any given year, sampling effort may go
up or down at particular sites, or the sample design itself may
include random site selection (e.g. a stratified random design).
Authors have tried to deal with these complications by trim-
ming survey data to only consistently surveyed sites and time
periods with consistent survey methods (Pinsky er al. 2013) or
by stratifying the survey area (Rindorf & Lewy 2006; Dulvy
et al. 2008; Engelhard, Righton & Pinnegar 2014). The former
is often unsatisfactory because it requires discarding data. The
latter estimator will eliminate the bias arising from changes in
survey sampling intensity given that each stratum is sufficiently
small, but will also lose precision in this case unless the average
within each stratum is calculated using a shrinkage estimator
(i.e. by borrowing information from nearby strata).

In this study, we compare conventional approaches to quan-
tifying changes in species distribution to a new model-based
estimator. We first show that the conventional ‘abundance-
weighted average (AWA)’ estimator for the centre of a species
distribution (termed the ‘centre of gravity’, COG) confounds
true changes in species distribution with changes in the distri-
bution of sampling effort. The conventional approach also
does not estimate a standard error for distribution metrics and
therefore cannot distinguish between sampling variation and
significant interannual variability. We then show how to esti-
mate COG, area occupied and population range using any
model that estimates a species distribution function (SDF).
SDFs are estimated by a wide class of models including, for
example occupancy models and presence-only models. The
SDF approach to estimating distribution shifts can account
for shifts in sampling effort over time (or concentrations of
effort in particular combinations of years and areas), separat-
ing the observation process from the true underlying spatial
distribution, and hence account for changes in survey methods
or locations when combining data from multiple sampling
programmes. The SDF approach also estimates standard
errors that can be used to distinguish whether interannual vari-
ation in distribution is biologically important or an artefact of
limited sampling data. In this study, we apply the SDF estima-
tor to data for 18 bottom-associated fishes off the U.S. West
Coast, integrating data across two survey programmes (1977—
2004 and 2003-2013). Using the SDF model, this case study
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illustrates that six species show a statistically significant, north-
ward shift in distribution from 1977 to 2013, while only two
show a significant southward shift. All code for replicating this
analysis (as well as example data for surveys of marine fishes in
the California Current, Gulf of Alaska, Eastern Bering Sea
and South Africa) is publicly available (https://github.com/
nwfsc-assess/geostatistical_delta-GLMM /wiki).

Materials and methods

A wide range of metrics have been used or proposed for understanding
shifts in species distributions, including the COG, location of popula-
tion boundaries, the area occupied, the mean temperature of occur-
rence or the thermal preferences of species in a local community (Perry
et al. 2005; Devictor et al. 2008). Below, we describe some of the
conventional estimators as well as a novel SDF approach from which a
wide range of metrics can be estimated.

CONVENTIONAL ESTIMATORS FORSHIFTS IN
DISTRIBUTION

Conventional estimators use available data on the location of species
occurrences (and often abundance as well), often processed so as to
attempt to ensure comparability through time. For example, the AWA
estimator has been widely used to track changes in the COG of a popu-
lation’s distribution (Perry ez al. 2005; Kelly & Goulden 2008; Pinsky
et al. 2013; Hiddink, Burrows & Garcia Molinos 2015). This estimator
calculates the COG as the average location of samples in a given year,
where each location is weighted by the abundance (measured either as
numbers or biomass) of the species encountered at that location. This
estimator can be applied in multiple dimensions (e.g. latitude and longi-
tude), but as one example the latitudinal COG, Latitude, is as follows:

> ¢ x Latitude;

Y '

Latitude = eqn 1

where 7 is the number of available samples, ¢; is the abundance of the
species in the ith sample, and Latitude; is the latitude of the ith sample.
This estimator confounds changes in the spatial distribution of
sampling with range shifts for sampled species (see Appendix SI,
Supporting information) and therefore is only suitable when the distri-
bution of sampling is constant over time. Conventional methods for
calculating standard errors (e.g. sample variance computations or non-
parametric bootstrapping) are not appropriate for this estimator
because residuals are likely autocorrelated. The inability to estimate
standard errors complicates efforts to distinguish between random vari-
ation in the estimator and either interannual or multiyear trends in
COG. Inferring multiyear trends from the AWA estimator is generally
done by estimating the COG in each time period, then fitting a linear
regression model to estimate temporal trends. Significant trends in
COG are identified using a Wald test given the null hypothesis that the
trend coefficient is equal to zero.

The same data can also be used to estimate other metrics for changes
in distribution. While population boundaries are difficult to observe
because species detectability can decline as a species become rarer, esti-
mators for population boundaries include the absolute highest and
lowest latitudes at which a species is observed or an average of the three
highest or lowest latitudes (Perry et al. 2005). Similarly, area occupied
can be computed as the minimum number of grid cells that contain
90% of species abundance in each year (Fisher & Frank 2004). Similar
to the AWA estimate of COG, these metrics lack a well-defined
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standard error. Trends over time are often detected with a linear regres-
sion model.

SPECIES DISTRIBUTION FUNCTION ESTIMATOR FOR
SHIFTSINDISTRIBUTION

As an alternative to the conventional sample-based methods, we pro-
pose a model-based estimator for analysing shifts in distribution. The
model-based approach begins by defining a SDF d, where the value of
this function d(s) at any given location s describes the expected density
of the population within a spatial domain s € D € R?. Model parame-
ters are estimated based on available data, and parameters and data are
then used to predict the SDF ﬁ(s) at all locations s within a given spatial
domain. We advocate estimating model parameters, predicting density
c;’(s) and calculating summary statistics (e.g. Latitude) within a single
model, so that the standard error of the summary statistic represents
estimation uncertainty for model parameters. Although our case study
example includes variation over time and incorporates data among dif-
ferent surveys, the SDF approach could also be used in simpler applica-
tions (e.g. species distribution or occupancy models without any
variation over time).

The predicted SDF c?(s) can be used to calculate many possible
statistics representing distribution shifts, for example the COG, popula-
tion boundaries and area occupied by a given species (Appendix S2).
For example, latitudinal COG can be estimated as:

S d(s;) x Latitude (s;)

i ‘;'(Si)
where 7, is the number of locations (e.g. grid cells) used to summarize a
spatial domain, a?(sl-) is predicted density at location s;, and Latitude (s;)
is latitude for this location. This calculation (eqn 2) resembles the
AWA approach (eqn 1), except replacing a weighted average of sample
locations with a weighted average of predictive locations. To calculate
population boundaries, we calculate the cumulative distribution for
abundance in northings and eastings, and then identify the Sth and
95th percentiles of this cumulative distribution. For area occupied, we
first estimate a population kernel that summarizes the distribution of
the species (Woillez, Rivoirard & Petitgas 2009) and then calculate the
volume of this kernel.

Latitude =

eqn 2

This model-based estimator provides several benefits relative to con-
ventional estimators like AWA:

1 It allows data from multiple sampling programmes to be used when
estimating shifts in distribution, while controlling for changes in sam-
pling efficiency and seasonal timing between surveys;

2 It estimates the standard error of COG estimates, which can be used
to determine whether interannual variability and multiyear trends
exceed the variability that is expected from random chance; and

3 It accounts for changes in the spatial distribution of sampling effort
from 1 year to the next (whereas the AWA and other conventional esti-
mators do not).

A model-based approach to estimating shifts in distribution has been
used in previous ecological studies (Elith, Kearney & Phillips 2010;
Matthews et al. 2011), although these have generally used habitat
envelope modelling (i.e. predicting density as a function of measured
habitat variables) rather than by estimating spatially correlated latent
variables (as we do in our case study example). Previous research sug-
gests that including spatial autocorrelation will improve predictions of
species density compared with using only measured habitat variables
(Bahn & McGill 2007; Shelton ez al. 2014), so we hypothesize that
incorporating spatial autocorrelation will also improve our estimates
of range shifts relative to habitat envelope approaches.

APPLYING THE SDF ESTIMATORINASPATIOTEMPORAL
MODEL

For our case study application, we estimate the species density function
d(s, 1) for multiple time intervals, 7 € {1,2, ..., T} where T'is the num-
ber of modelled intervals. We use a conventional ‘delta model’ [also
known as a ‘hurdle’ model (Martin ef al. 2005)] which decomposes
density d(s, 7) into two components: (i) the probability p(s, 7) of encoun-
tering the species at a given location and time and (ii) the expected
density r(s, t) of the species when encountered:

d(s, 1) = p(s, 0)r(s,1).

We specify that each of these processes follows a first-order random
walk process (Cressie & Wikle 2011), that is encounter probability
p(s, 1) and expected density when encountered r(s, 7) in year ¢ depend
only upon their value the year before (p(s, —1) and r(s, 7—1)) and the
spatial distribution of the population is otherwise independent among
years (see Thorson ez al. 2015b and Appendix S3 for further details).

We next specify a distribution for sampling data, that is the probabil-
ity that the ith survey sample is positive (i.e. that the species is encoun-
tered) is affected by encounter probability p(s;, ¢;) at the location s; and
year ¢; for sample 7, as well as additional ‘catchability’ variables z,(i).
Similarly, the survey sample given that the species was observed follows
a log-normal distribution, where the expectation is affected by expected
density r(s;, ;) as well as catchability variables z, (7). Catchability vari-
ables are defined as those measurable factors that influence expected
catch rates independently of changes in true density at the location of
the sample. Density d(s, 7) is calculated for a reference value of these
variables, z, (i) = z,(i) = 0. Therefore, any process that is included as a
catchability variable is ‘controlled for’ when predicting density or asso-
ciated metrics of range shift.

Parameters governing the stochastic process p(s, 7) and (s, ) are esti-
mated using survey data from multiple survey designs. In the following,
we assume that sampling in each year follows a probability sampling
design, that is that there exists some stochastic process P governing the
spatial allocation of samples, where P(s, 7) is the probability that loca-
tion s will be sampled in time 7. We further assume that this sampling
process is statistically independent of population density d(s, 7). This
assumption is appropriate given that the sampling follows a pre-deter-
mined protocol which was designed independently from dynamics for
any single species. However, the assumption would be invalid in other
instances, for example if we used data from a fishery targeting a particu-
lar species. Given these two assumptions, we can estimate fixed effects
by maximizing the marginal likelihood of the data without explicitly
estimating the sampling process P during parameter estimation
(Cressie et al. 2009). In the following, we treat as fixed the coefficients
for measured variables, the magnitude of spatiotemporal variation, the
spatial scale for encounter probability and positive densities, the catch-
ability coefficients and the residual variance of positive catch rates (see
Appendix S3 for further details regarding parameters). We treat the
spatiotemporal variation as random effects and approximate the prob-
ability of these random effects using a stochastic partial differential
equation approximation (Lindgren, Rue & Lindstrom 2011; Thorson
et al.2015c).

To estimate parameters, we maximize the marginal likelihood with
respect to fixed effects. We approximate the marginal likelihood of
fixed effects while integrating across random effects via the Laplace
approximation using the Template Model Builder (TMB) software
(Kristensen 2014; Kristensen ez al. in press). Estimating the SDF model
using TMB involves five steps: (i) we specify the joint likelihood of data
and random effects in a template file; (i) for a proposed set of fixed
effects, TMB identifies values of random effects that maximizes the
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joint likelihood; (iii) given these values for fixed and random effects,
TMB calculates the second derivatives of the joint likelihood with
respect to random effects and calculates the Laplace approximation to
the marginal likelihood; (iv) TMB calculates the gradient of the
Laplace approximation to the marginal likelihood with respect to fixed
effects; and (v) we use the marginal likelihood and its gradients via a
conventional nonlinear minimizer in the Rr statistical environment (R
Core Team 2014) to identify maximum-likelihood estimates of fixed
effects. Standard errors for parameters and derived quantities (e.g. the
COQG) are then calculated via the inverse Hessian matrix and delta
method.

CASE STUDY APPLICATION

As a case study, we analyse two different survey data sets spanning
1977-2013 in the west coast of the USA. These surveys are designed to
monitor changes in the biomass of fish populations that are targeted by
commercial and recreational fisheries of the U.S. West Coast. The first
survey (subsequently called the ‘triennial survey’) was operated by the
Alaska Fisheries Science Center every third year from 1977 to 2004 (for
a total of 10 survey years), with an average of 484 samples per year
(Weinberg ef al. 2002). The second survey (subsequently called the
‘annual survey’) was operated by the Northwest Fisheries Science
Center every year 20032013 (for a total of 11 survey years) and has on
average 629 samples per year (Bradburn, Keller & Horness 2011). Tri-
ennial and annual surveys also use different vessels and sampling gear,
and these differences are likely to cause differences in sampling effi-
ciency between surveys. Pinsky ez al. (2013) previously analysed range
shifts using the AWA estimator applied to data from the triennial
survey, but did not incorporate data from the annual survey due to
concerns about changes in survey methods. We here demonstrate the
implications of analysing data from both surveys using the conven-
tional or SDF estimators. This demonstration serves two purposes:

1 It illustrates the potential differences in inference arising from con-
ventional and SDF estimators when applied to data where the spatial
distribution of sampling changes over time; and

2 It updates the Pinsky ez al. (2013) analysis when incorporating data
from an additional 11 years of data (i.e. the 20032013 period in the
annual survey).

We restrict our analysis to tows that occur within the spatial domain
of both surveys, and this decreases sample sizes available for each sur-
vey (triennial: 434; annual: 412 samples per year on average). We use
this restriction for both SDF and AWA estimators (although it is not
necessary for the SDF estimator) to ensure that results are comparable
between methods. For the AWA analysis, we fit separate linear regres-
sions to the triennial and the annual survey data, reflecting their sub-
stantially different locations and methods.

The spatial sampling intensity function differs between the two sur-
vey designs even within the restricted area that is within the spatial
domain of both surveys, and spatial sampling intensity also varies
among years within a given sampling design. The two surveys also dif-
fer in seasonal timing and likely differ in terms of sampling efficiency
(a.k.a. catchability, i.e. the proportion of fish captured that are located
within the sampled area). In the SDF analysis, we therefore include the
following catchability variables:

1 Julian calendar date j; for each sample; and
2 an indicator function v; for survey (where v; = 1 if the sample is
from the triennial survey and zero otherwise)

such that catchability variable z,(i) = z,(i) = (i v)7 for sample i.
These two variables (j and v) represent linear offsets of encounter
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probabilities (in logit space) and positive catch rates (in log space). Both
variables have sufficient contrast to be estimated with a low standard
error, that is Julian calendar date has broad overlap among surveys
(Fig. 1) and both annual and triennial surveys were conducted in 2004.
Including these catchability covariates, while not including them when
predicting density for calculating COG, ‘filters out’ the variation that is
attributable to calendar date or survey design, and species distributions
and COG are then predicted for a standard date (July 31st) and the tri-
ennial survey. We do not include any variables a priori as predictors of
spatial variation in density (i.e. x(s) is not included in the model) and
therefore account for all spatiotemporal variation via the random walk
process (g,(s, 1) and &,(s, 7), see Appendix S3). While future studies
could explore oceanographic or habitat predictors of species distribu-
tion using the SDF model (Shelton ez al. 2014), we do not do so to
ensure that results are strictly comparable to the AWA estimator
(which does not typically incorporate predictor variables).

For computational reasons, we approximate spatiotemporal varia-
tion (g(s, 7)) as being piecewise constant at a fine spatial scale. We
do this by estimating functions at n, = 500 ‘knots’, which are selected
via a k-means clustering algorithm applied to location of sampling
data. Each location s within the survey domain then has function value
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Julian date (day)
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Fig. 1. Median (circle), mean (triangle), interquartile range (thick
black line) and total range (thin black line) for the spatial location (top
row: northings, middle row: eastings) and seasonal location (bottom
row: Julian calendar date starting Jan. 1) in every year of West Coast
sampling used in this study. The triennial survey (every third year
1977-2004) shows large differences in sampling distribution relative to
the annual survey (every year 2003-2013), particularly with respect to
northings and Julian date.
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&(sy, 1) where s, is the location of the knot x that is closest to location s.
We confirm that results are qualitatively similar when increasing the
number of knots (i.e. n, = 1000). We then compare estimates of the
change in distribution between AWA and SDF estimators to examine
whether these two methods generate different inference regarding
distribution shifts in this region.

VALIDATIONWITH SIMULATED DATA

We also conduct a simulation experiment to illustrate the magnitude
of bias that arises from using either the AWA or SDF estimators

given the timing and location of samples that are available. In this
experiment, we simulate population density d(s, 1) = p(s, )r(s, 1) in
each of 15979 grid cells (each is 2 x 2 nautical miles) that are
included in the domain of the surveys in our analysis. We simulate
density under four scenarios, representing (i) constant, (ii) highly
variable, (iii) northward shifts or (iv) southward shifts in population
COG (Appendix S4 for details). We then simulate sampling that
occurs in the same years and at the same locations as in the annual
and triennial surveys. We analyse the simulated data using the AWA
and SDF estimators and compare the estimate of northward COG
with its true value.
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Fig. 2. Results from the simulation experiment for four treatments involving different shifts in species distribution over time (columns, See Valida-
tion with Simulated Data section of Materials and methods for descriptions), showing the northward centre of gravity for simulated abundance (left
column; black line: median; shaded area: interval encompassing 80% of simulation replicates), the estimated centre of gravity for the species distribu-
tion function (SDF; red) and abundance-weighted average (AWA; blue) estimators (middle column) and the error (Est-True) for the SDF and
AWA estimators (Where a well-performing model will have error close to zero, as indicated by the dotted line).
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Results

CHANGES INTHEDISTRIBUTION OF SAMPLING EFFORT
FORWEST COAST FISHES

Examination of the average latitude and longitude of survey
samples in each year (Fig. 1) illustrates the magnitude of spa-
tial changes in sampling intensity over time. In particular, the
median latitude of samples was nearly 45°N in 1986, but was
close to 40°N from 2005 to 2012. The distribution of the trien-
nial survey varied greatly during the 1980s and did not sample
far south of the San Francisco Bay in 1980, 1983 and 1986
(Appendix S5). Therefore, even a population that was uni-
formly distributed throughout this survey domain would
appear to move south from the 1980s (during the early trien-
nial sampling period) to the 2000s (during the annual sampling
period).

SIMULATION EXPERIMENT

Results from our simulation confirm that the SDF estimator
greatly mitigates the bias seen in the AWA estimator (Fig. 2).
In particular, the AWA estimator is positively biased in all sce-
narios from 1977 to 2003 (i.e. during the triennial survey sam-
pling period). This positive bias is greatest in years when the
triennial survey had sampling distributed in more northerly
areas (i.e. 1980, 1983, 1986). The bias is negligible for both esti-
mators during the annual sampling period (2003-2013), and
the SDF estimator has a small positive bias during early years
for the ‘northward shift’ scenario and a small negative bias for
the ‘southward shift’” scenario. Exploratory analysis indicates
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that the SDF estimator smooths density estimates for the
unsampled, southward portion of the population domain for
carly years (1980, 1983 and 1986) towards the estimated distri-
bution in 1989. Decreased bias using the SDF estimator is par-
ticularly evident for years 1989-2002, when the AWA is
positively biased by nearly 50 km, while the SDF is approxi-
mately unbiased.

CASE STUDY

A plot of population density function d(s, ¢) for Pacific hake
(Fig. 3) is characteristic of the patterns estimated by the
SDF model for West Coast species. For Pacific hake, the
areas offshore of Point Conception and the San Francisco
Bay generally have high density, but density near the San
Francisco Bay is particularly high from 2001 to 2013, and
areas offshore of southern Oregon have particularly high
densities from 2003 to 2008. In aggregate, the population
has a northward distribution during 1989-2009 and rela-
tively southward distribution in 1977-1986 and 2010-2013
(Fig. 4). Changes among years often exceed the standard
error of the estimated COG (e.g. 2009-2010), indicating
changes that are statistically significant. A comparison of
the model-based estimate of COG and the AWA (Fig. 4)
again shows large differences between estimators in 1980—
1986 (when sampling had greater intensity northwards in
the California Current) and relatively small differences in
2003-2013 (when sampling intensity is close to uniform
north of Point Conception).

We next present estimates of the COG for each of 18 species
along the north-south axis (i.e. to detect northward or
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Fig. 3. Estimated species distribution func-
tion d(s, 7) for Pacific hake in every year 3 ! 3 {
rescaled for clarity of presentation to have a
mean of one (where the coloured area repre-
sents the spatial domain that is included in this
analysis).
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southward movement over time, Fig. 5) for both AWA and
model-based estimators (while analysing the triennial and
annual surveys separately with the AWA estimator). The two
estimators show different trends for many species during both
the triennial and annual periods, for example Dover sole which
has a northward trend during the triennial period (1977-2004)
in the SDF estimator but a southward trend in AWA estima-
tor. Inspecting results across species during the triennial period
(1977-2004), the AWA estimator shows a shift that is more
southerly than the SDF estimator for 16 of 18 species, where
this southern shift is in-line with the southern trend in the loca-
tion of sampling during triennial survey (Fig. 6). In particular,
the AWA estimator shows significant southward shifts for two
species and northward trends for one species from 1977 to
2004, while the SDF estimator shows significant northward
shifts for seven species and significant southward shifts for only
one species. Inspecting confidence intervals in the SDF estima-
tor (Fig. 5) also illustrates that pelagic species (Pacific hake
and spiny dogfish) generally have interannual variability that
is large relative to confidence interval width, whereas rock-
fishes generally have less evidence of interannual variability in
COG.

Inspecting results from the SDF estimator for each species
and all available years (1977-2013, Fig. 7) illustrates six of the
species have significant northward shifts, while only two (Paci-
fic hake and sablefish) have significant southward shifts. Both
hake and sablefish have had approximately steady area occu-
pied during this period, so shifts in distribution have been
caused by displacement of the population range, rather than
expansion or contraction. Similarly, four of the six species with

Abundance-weighted average

northward shifts have approximately steady area occupied.
However, two species (darkblotched and greenstriped rock-
fishes) show both significant northward shifts and substantial
decreases in area occupied (Fig. 8), indicating that the north-
ward shift is caused by decreased density in southern habitats.
This decreased density in southern habitats is also reflected in
SDF estimates of the southern population boundary, which
has moved northwards for both species (Appendix S6).

Discussion

Understanding the consequences of climate change on terres-
trial and aquatic species requires unbiased estimates of how
species’ ranges shift. In this study, we have demonstrated that
a SDF estimator for distribution shifts offers three benefits
over conventional estimators:

1 The conventional metrics will provide biased estimates of
distribution changes whenever sampling design has changed
over time. A similar bias has been previously discussed in
static habitat and climate envelope models (Kadmon, Far-
ber & Danin 2004; Loiselle et al. 2008; Feeley & Silman
2010), where spatial variation in sampling intensity can lead
to biased estimates of geographical distribution. However,
spatial-varying sampling intensity has not to our knowledge
been discussed as causing biased estimates of changes in spe-
cies distribution over time. By contrast, our SDF estimator
will generally be unbiased as long as changes in sampling
intensity are statistically independent of changes in popula-
tion abundance.

Model-based average
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Fig. 4. Centre of gravity for Pacific hake
shown in Universal Transverse Mercator pro-
jection using northings (top row) and eastings
(bottom  row), comparing abundance-
weighted average (circles in left column, where
light-blue indicates estimates from the trien-
nial survey and dark-blue indicates estimates
from the annual survey, and the correspond-
ing blue line is the average trend from a linear
regression model) and species distribution
function approaches (where the thick red line
is the maximum-likelihood estimate and the

1980 1990 2000 2010 1980 1990

2000 2010 red shaded area is +1 standard error).
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2 The SDF estimator can incorporate information from multi- 3 The SDF approach can estimate standard error estimates
ple surveys simultaneously, as long as there is information to for each year and therefore can be used to answer whether
intercalibrate these surveys [e.g. samples from different surveys interannual variability exceeds the level that is expected given
at nearby times and locations (Sauer, Peterjohn & Link 1994)]. estimation error. By contrast, this task is difficult using
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4600
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Fig. 5. A comparison abundance-weighted average and species distribution function estimators of northward distribution for all 18 West Coast
species analysed in this study (see Fig. 3 caption for details).

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 7, 990-1002



998 J. T. Thorson, M. L. Plinsy & E. J. Ward

Density (relative to maximum)

Pacific

Dover

Spiny

Sablefish

hake
+(P<0:01) +(P=042)

sole
+(P=025) ~(P=0-17)

dog|fish
+(P<0:01) -(P=0:63)

-(P= 0-84)5 + (P = 0-66)

Rex

Splithose
rockfish

Shortspine
thornyhead

Longnose
skate

sole
+(P=0-21) —(P=0-20)

~(P=092) —(P=0-21)

+(P=058) —(P<0-01)

+(P=0-97) -(P=012)

Shortbelly
rockfish

Stripetail
rockfish

English
sole

Sharpchin
rockfish

- (P=0.12) -(P=0-05)

~ (P=0-01) +(P=0:28)

+(P=001) -(P=0-82)

+(P=0-49) -(P=062)

Lingcod

Spotted
ratfish

Darkblotched
rockfish

Petrale
sole

+(P= o-o1§ - (P=0-40)

+(P=0-58) - (P=0-08)

+(P<001) +(P=0-10)

~ (P=0-17); - (P=10-03)

Greenstriped
rockfish

Slender
sole

+(P<0:01) +(P=0-04)

+(P< o-o1f) + (P =0-50)

=500 0 500

Movement northward 1977—2004 (km)

-500 0 500

-500 0 500

-500 0 500
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font indicates a trend that is statistically significant using a two-sided Wald test at 0-05 significance.
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conventional estimators, which are generally interpreted by fit-
ting a linear model to estimate a single trend over time such

Estimated changes in species distributions can then be
used to support hypotheses regarding causal environmental
that interannual residuals around this trend are often inter- drivers, project future change (both in habitat utilization

preted as statistical noise. and the ecological niche that organisms inhabit) and
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Fig. 8. Changes over time in the area occupied by each species, calculated as the volume the population kernel (an ellipse approximating the distribu-
tion that accounts for 50% of total population abundance, see Appendix S2) estimated from the population density function d,(s, ¢) for each species
p and year t.

identify management actions that may mitigate against lead to inference about range shifts in the opposite direction of
these changes.
Our case study application involving marine species on the

inference from the SDF estimator. In particular, the southerly
trend in the AWA estimator for some species reflects the south-

west coast of the USA shows that a conventional estimator can ward shift in sampling that occurred during the triennial
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survey. The SDF estimator illustrates that pelagic species
(Pacific hake and spiny dogfish) exhibit substantial variability
in northward COG and that this variability exceeds the esti-
mated standard error for each individual year. This result sup-
ports previous observations that Pacific hake distribution
varies substantially over short time periods (Agostini et al.
2006). Spiny dogfish has also been documented previously to
have demographics that vary over time (Taylor & Gallucci
2009), but spatial variation in distribution has received less
attention than for Pacific hake. By contrast, rockfishes and
thornyheads (Sebastes and Sebastalobus spp.) generally have
very little interannual variability in north—south distribution.
These species have widely varying life history, but generally
have at least some association with demersal habitats that are
thought to be relatively constant through time.

We have not linked our results explicitly to environmental
variables, although marine species have previously been
documented to shift in distribution with temperature changes
(Pinsky er al. 2013; Hiddink, Burrows & Garcia Molinos
2015). The SDF model that we use here could be linked to cli-
mate variables in at least three alternative ways. First, an envi-
ronmental variable that varies spatially (e.g. local temperature
at each location s and year ) could be included as a spatial
covariate in the encounter probability or positive density func-
tions (i.e. included in x(s, 7)) if its value is known everywhere
throughout the population domain (Shelton ez al. 2014). This
approach would permit the analyst to project changes in spe-
cies distribution arising from different temperature scenarios
that potentially vary spatially using output downscaled climate
projection models. Secondly, an annual time series (e.g. aver-
age regional or global temperature) could be included as a
covariate to predict changes in population-wide abundance,
COG or width of the population kernel. This latter approach
could be used to test, for example, whether changes in tempera-
ture lead to a more concentrated population distribution.
Thirdly, temperature information could be used to compute
local climate velocities (i.e. the ratio of temporal and spatial
gradients in temperature at each location), and the spatial aver-
age of this local climate velocity could be compared with popu-
lation-wide changes in COG to test whether the population is
keeping pace with local temperature shifts (Devictor er al.
2008; Loarie et al. 2009). Each approach is suitable for different
types of climate questions, and evaluating the relative merits of
each approach remains an important topic for future research.

We recommend further research regarding distributional
changes for rare or difficult-to-detect species. This can be
accomplished by simultaneously estimating the distribution of
rare and abundant species, such that estimates for rare species
‘borrow information’ from abundant species (Ovaskainen &
Soininen 2011; Thorson et al. 2015a). We also recommend fur-
ther research regarding age- and size-structured species distri-
bution models. Many species including Pacific hake (Hicks
et al. 2014), lingcod (Hamel, Sethi & Wadsworth 2009) and
summer flounder (Bell et al. 2015) are known to have different
spatial distribution for old and young individuals. Given the
large variability in recruitment seen for most marine species
(Thorson, Jensen & Zipkin 2014), fluctuations in recruitment
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can therefore drive large, interannual variation in the popula-
tions COG, where years following strong recruitment are
biased towards the distribution for recruits. Fluctuations in
distribution caused by variation in age structure might there-
fore be confused with climate-driven shifts in distribution,
especially for short-lived species with strong cohorts (e.g. Paci-
fic hake) or for long-lived species that rebuild their age struc-
ture following a reduction in fishing effort (e.g. summer
flounder). Age- or size-structured distribution models could be
estimated by either separately analysing the distribution for
each age or size bin or jointly analysing them via some
smoother across age or size (Kristensen et al. 2014). However,
this may be complicated, given that individuals of different age
or size often have different susceptibility to sampling gear.
Nevertheless, we hypothesize that analysing climatic drivers of
marine species distribution may be misleading unless care is
taken to control for age-based distributional effects.
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