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Summary

1. Changing climate is already impacting the spatial distribution of many taxa, including bees, plants, birds, but-

terflies and fishes. A common goal is to detect range shifts in response to climate change, including changes in the

centre of the population’s distribution (the centre of gravity, COG), population boundaries and area occupied.

Conventional estimators, such as the abundance-weighted average (AWA) estimator for COG, confound range

shifts with changes in the spatial distribution of available survey data andmay be biased when the distribution of

survey data shifts over time. AWAalso does not estimate the standard error of COG in individual years and can-

not incorporate data frommultiple survey designs.

2. To explicitly account for changes in the spatial distribution of survey effort, we propose an alternative species

distribution function (SDF) estimator. The SDF approach involves calculating distribution metrics, including

COG, population boundary and area occupied, directly from the predicted species distribution or density func-

tion.We illustrate the SDFapproach using a spatiotemporalmodel that is available as an R package.Using simu-

lated data, we confirm that the SDF substantially decreases bias in COG estimates relative to the AWA

estimator.We then illustrate themethod by analysing data from two data sets spanning 1977–2013 for 18marine

fishes along theU.S.West Coast.

3. In our case study, the SDF estimator shows significant northward shifts for six of 18 species (with southward

shifts for only 2), where two species (darkblotched and greenstriped rockfishes) have both a northward shift and

a decreased area occupied. Pelagic species (e.g. Pacific hake and spiny dogfish) have more variable distribution

than bottom-associated species. We also find substantial differences between AWA and SDF estimates of COG

that are likely caused by shifts in sampling distribution (which affect theAWAbut not the SDF estimator).

4. We caution that common estimators for range shift can yield inappropriate inference whenever sampling

designs have shifted over time. We conclude by suggesting further improvements in model-based approaches to

analysing climate impacts, including methods addressing the impact of local and regional temperature changes

on species distribution.

Key-words: abundance-weighted average, California Current, centre of gravity, climate change,

range shifts, spatiotemporal model, species distributionmodel

Introduction

Climate change and variability have already impacted the

spatial distribution of many different taxa including butterflies

(Parmesan et al. 1999), plants (Kelly & Goulden 2008), bees

(Kerr et al. 2015), birds (Hitch & Leberg 2007) and marine

fishes (Pinsky et al. 2013). Climate impacts have often been

identified via changes in spatial distribution, due to the wide

availability of spatially referenced survey data for many taxa

as well as the relative ease of detecting changes in population

distribution over time. Changes in distribution can have

immediate relevance to local economies and international

diplomacy (Cheung et al. 2012), as well as species interactions

and evolutionary trajectories (Garroway et al. 2010). Climate

change has also been documented to affect many biological

processes, including the allocation of energy between growth

and reproduction, community composition and phenology

(Parmesan 2006).

Estimating directional changes in a spatial distribution is

not unique to population biology – similar problems exist in

quantifying distributional changes in sea ice, temperature,

rainfall and patterns of disease in response to climate

change. In all of these problems, it can be difficult to distin-

guish between long-term (multidecadal) trends caused by

anthropogenic climate change, interdecadal variability and
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short-term fluctuations in spatial distribution. As a result,

identifying trends in spatial distribution due to climate change

generally requires analysing data from decadal or longer time-

scales (Hitch & Leberg 2007). Long time series regarding spe-

cies distribution are rare (Parmesan et al. 2005), and much

could be learned if shorter time series could be stitched

together. However, combining data from multiple sampling

protocols poses serious difficulties, including quantifying the

relative performance of survey efficiency among different sur-

vey teams or sampling protocols (Sauer, Peterjohn & Link

1994), accounting for spatial differences in sampling intensity

and estimating the uncertainty in any resulting estimate of dis-

tribution. Even within a long-running survey, such as the

North American Breeding Bird Survey, volunteer skill and

training, sampling design, and sampling effort may vary

regionally and over time. For example, sampling sites may be

added or removed in any given year, sampling effort may go

up or down at particular sites, or the sample design itself may

include random site selection (e.g. a stratified random design).

Authors have tried to deal with these complications by trim-

ming survey data to only consistently surveyed sites and time

periods with consistent survey methods (Pinsky et al. 2013) or

by stratifying the survey area (Rindorf & Lewy 2006; Dulvy

et al. 2008; Engelhard, Righton & Pinnegar 2014). The former

is often unsatisfactory because it requires discarding data. The

latter estimator will eliminate the bias arising from changes in

survey sampling intensity given that each stratum is sufficiently

small, but will also lose precision in this case unless the average

within each stratum is calculated using a shrinkage estimator

(i.e. by borrowing information from nearby strata).

In this study, we compare conventional approaches to quan-

tifying changes in species distribution to a new model-based

estimator. We first show that the conventional ‘abundance-

weighted average (AWA)’ estimator for the centre of a species

distribution (termed the ‘centre of gravity’, COG) confounds

true changes in species distribution with changes in the distri-

bution of sampling effort. The conventional approach also

does not estimate a standard error for distribution metrics and

therefore cannot distinguish between sampling variation and

significant interannual variability. We then show how to esti-

mate COG, area occupied and population range using any

model that estimates a species distribution function (SDF).

SDFs are estimated by a wide class of models including, for

example occupancy models and presence-only models. The

SDF approach to estimating distribution shifts can account

for shifts in sampling effort over time (or concentrations of

effort in particular combinations of years and areas), separat-

ing the observation process from the true underlying spatial

distribution, and hence account for changes in survey methods

or locations when combining data from multiple sampling

programmes. The SDF approach also estimates standard

errors that can be used to distinguish whether interannual vari-

ation in distribution is biologically important or an artefact of

limited sampling data. In this study, we apply the SDF estima-

tor to data for 18 bottom-associated fishes off the U.S. West

Coast, integrating data across two survey programmes (1977–
2004 and 2003–2013). Using the SDF model, this case study

illustrates that six species show a statistically significant, north-

ward shift in distribution from 1977 to 2013, while only two

show a significant southward shift. All code for replicating this

analysis (as well as example data for surveys of marine fishes in

the California Current, Gulf of Alaska, Eastern Bering Sea

and South Africa) is publicly available (https://github.com/

nwfsc-assess/geostatistical_delta-GLMM/wiki).

Materials andmethods

Awide range of metrics have been used or proposed for understanding

shifts in species distributions, including the COG, location of popula-

tion boundaries, the area occupied, the mean temperature of occur-

rence or the thermal preferences of species in a local community (Perry

et al. 2005; Devictor et al. 2008). Below, we describe some of the

conventional estimators as well as a novel SDF approach fromwhich a

wide range ofmetrics can be estimated.

CONVENTIONAL ESTIMATORS FOR SHIFTS IN

DISTRIBUTION

Conventional estimators use available data on the location of species

occurrences (and often abundance as well), often processed so as to

attempt to ensure comparability through time. For example, the AWA

estimator has been widely used to track changes in the COGof a popu-

lation’s distribution (Perry et al. 2005; Kelly & Goulden 2008; Pinsky

et al. 2013; Hiddink, Burrows &Garc�ıaMolinos 2015). This estimator

calculates the COG as the average location of samples in a given year,

where each location is weighted by the abundance (measured either as

numbers or biomass) of the species encountered at that location. This

estimator can be applied inmultiple dimensions (e.g. latitude and longi-

tude), but as one example the latitudinal COG,Latitude, is as follows:

Latitude ¼
Pn

i¼1 ci � LatitudeiPn
i¼1 ci

; eqn 1

where n is the number of available samples, ci is the abundance of the

species in the ith sample, and Latitudei is the latitude of the ith sample.

This estimator confounds changes in the spatial distribution of

sampling with range shifts for sampled species (see Appendix S1,

Supporting information) and therefore is only suitable when the distri-

bution of sampling is constant over time. Conventional methods for

calculating standard errors (e.g. sample variance computations or non-

parametric bootstrapping) are not appropriate for this estimator

because residuals are likely autocorrelated. The inability to estimate

standard errors complicates efforts to distinguish between randomvari-

ation in the estimator and either interannual or multiyear trends in

COG. Inferring multiyear trends from the AWA estimator is generally

done by estimating the COG in each time period, then fitting a linear

regression model to estimate temporal trends. Significant trends in

COG are identified using aWald test given the null hypothesis that the

trend coefficient is equal to zero.

The same data can also be used to estimate other metrics for changes

in distribution. While population boundaries are difficult to observe

because species detectability can decline as a species become rarer, esti-

mators for population boundaries include the absolute highest and

lowest latitudes at which a species is observed or an average of the three

highest or lowest latitudes (Perry et al. 2005). Similarly, area occupied

can be computed as the minimum number of grid cells that contain

90% of species abundance in each year (Fisher & Frank 2004). Similar

to the AWA estimate of COG, these metrics lack a well-defined
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standard error. Trends over time are often detected with a linear regres-

sionmodel.

SPECIES DISTRIBUTION FUNCTION ESTIMATOR FOR

SHIFTS IN DISTRIBUTION

As an alternative to the conventional sample-based methods, we pro-

pose a model-based estimator for analysing shifts in distribution. The

model-based approach begins by defining a SDF d, where the value of

this function d(s) at any given location s describes the expected density

of the population within a spatial domain s 2 D 2 R2. Model parame-

ters are estimated based on available data, and parameters and data are

then used to predict the SDF d̂ðsÞ at all locations swithin a given spatial
domain. We advocate estimating model parameters, predicting density

d̂ðsÞ and calculating summary statistics (e.g. Latitude) within a single

model, so that the standard error of the summary statistic represents

estimation uncertainty for model parameters. Although our case study

example includes variation over time and incorporates data among dif-

ferent surveys, the SDFapproach could also be used in simpler applica-

tions (e.g. species distribution or occupancy models without any

variation over time).

The predicted SDF d̂ðsÞ can be used to calculate many possible

statistics representing distribution shifts, for example theCOG, popula-

tion boundaries and area occupied by a given species (Appendix S2).

For example, latitudinal COGcan be estimated as:

Latitude ¼
Pns

i¼1 d̂ðsiÞ � Latitude ðsiÞ
Pns

i¼1 d̂ðsiÞ
eqn 2

where ns is the number of locations (e.g. grid cells) used to summarize a

spatial domain, d̂ðsiÞ is predicted density at location si, and Latitude (si)
is latitude for this location. This calculation (eqn 2) resembles the

AWAapproach (eqn 1), except replacing a weighted average of sample

locations with a weighted average of predictive locations. To calculate

population boundaries, we calculate the cumulative distribution for

abundance in northings and eastings, and then identify the 5th and

95th percentiles of this cumulative distribution. For area occupied, we

first estimate a population kernel that summarizes the distribution of

the species (Woillez, Rivoirard & Petitgas 2009) and then calculate the

volume of this kernel.

This model-based estimator provides several benefits relative to con-

ventional estimators likeAWA:

1 It allows data from multiple sampling programmes to be used when

estimating shifts in distribution, while controlling for changes in sam-

pling efficiency and seasonal timing between surveys;

2 It estimates the standard error of COG estimates, which can be used

to determine whether interannual variability and multiyear trends

exceed the variability that is expected from random chance; and

3 It accounts for changes in the spatial distribution of sampling effort

from 1 year to the next (whereas theAWAand other conventional esti-

mators do not).

Amodel-based approach to estimating shifts in distribution has been

used in previous ecological studies (Elith, Kearney & Phillips 2010;

Matthews et al. 2011), although these have generally used habitat

envelope modelling (i.e. predicting density as a function of measured

habitat variables) rather than by estimating spatially correlated latent

variables (as we do in our case study example). Previous research sug-

gests that including spatial autocorrelation will improve predictions of

species density compared with using only measured habitat variables

(Bahn & McGill 2007; Shelton et al. 2014), so we hypothesize that

incorporating spatial autocorrelation will also improve our estimates

of range shifts relative to habitat envelope approaches.

APPLYING THE SDF ESTIMATOR IN A SPATIOTEMPORAL

MODEL

For our case study application, we estimate the species density function

d(s, t) for multiple time intervals, t 2 f1; 2; . . .;Tg where T is the num-

ber of modelled intervals. We use a conventional ‘delta model’ [also

known as a ‘hurdle’ model (Martin et al. 2005)] which decomposes

density d(s, t) into two components: (i) the probability p(s, t) of encoun-

tering the species at a given location and time and (ii) the expected

density r(s, t) of the species when encountered:

dðs; tÞ ¼ pðs; tÞrðs; tÞ:
We specify that each of these processes follows a first-order random

walk process (Cressie & Wikle 2011), that is encounter probability

p(s, t) and expected density when encountered r(s, t) in year t depend

only upon their value the year before (p(s, t�1) and r(s, t�1)) and the

spatial distribution of the population is otherwise independent among

years (see Thorson et al. 2015b andAppendix S3 for further details).

We next specify a distribution for sampling data, that is the probabil-

ity that the ith survey sample is positive (i.e. that the species is encoun-

tered) is affected by encounter probability p(si, ti) at the location si and

year ti for sample i, as well as additional ‘catchability’ variables zpðiÞ.
Similarly, the survey sample given that the species was observed follows

a log-normal distribution, where the expectation is affected by expected

density r(si, ti) as well as catchability variables zrðiÞ. Catchability vari-

ables are defined as those measurable factors that influence expected

catch rates independently of changes in true density at the location of

the sample. Density d(s, t) is calculated for a reference value of these

variables, zpðiÞ ¼ zrðiÞ ¼ 0. Therefore, any process that is included as a

catchability variable is ‘controlled for’ when predicting density or asso-

ciatedmetrics of range shift.

Parameters governing the stochastic process p(s, t) and r(s, t) are esti-

mated using survey data frommultiple survey designs. In the following,

we assume that sampling in each year follows a probability sampling

design, that is that there exists some stochastic processP governing the

spatial allocation of samples, where P(s, t) is the probability that loca-
tion s will be sampled in time t. We further assume that this sampling

process is statistically independent of population density d(s, t). This

assumption is appropriate given that the sampling follows a pre-deter-

mined protocol which was designed independently from dynamics for

any single species. However, the assumption would be invalid in other

instances, for example if we used data fromafishery targeting a particu-

lar species. Given these two assumptions, we can estimate fixed effects

by maximizing the marginal likelihood of the data without explicitly

estimating the sampling process P during parameter estimation

(Cressie et al. 2009). In the following, we treat as fixed the coefficients

for measured variables, the magnitude of spatiotemporal variation, the

spatial scale for encounter probability and positive densities, the catch-

ability coefficients and the residual variance of positive catch rates (see

Appendix S3 for further details regarding parameters). We treat the

spatiotemporal variation as random effects and approximate the prob-

ability of these random effects using a stochastic partial differential

equation approximation (Lindgren, Rue & Lindstr€om 2011; Thorson

et al. 2015c).

To estimate parameters, we maximize the marginal likelihood with

respect to fixed effects. We approximate the marginal likelihood of

fixed effects while integrating across random effects via the Laplace

approximation using the Template Model Builder (TMB) software

(Kristensen 2014;Kristensen et al. in press). Estimating the SDFmodel

using TMB involves five steps: (i) we specify the joint likelihood of data

and random effects in a template file; (ii) for a proposed set of fixed

effects, TMB identifies values of random effects that maximizes the
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joint likelihood; (iii) given these values for fixed and random effects,

TMB calculates the second derivatives of the joint likelihood with

respect to random effects and calculates the Laplace approximation to

the marginal likelihood; (iv) TMB calculates the gradient of the

Laplace approximation to the marginal likelihood with respect to fixed

effects; and (v) we use the marginal likelihood and its gradients via a

conventional nonlinear minimizer in the R statistical environment (R

Core Team 2014) to identify maximum-likelihood estimates of fixed

effects. Standard errors for parameters and derived quantities (e.g. the

COG) are then calculated via the inverse Hessian matrix and delta

method.

CASE STUDY APPLICATION

As a case study, we analyse two different survey data sets spanning

1977–2013 in the west coast of the USA. These surveys are designed to

monitor changes in the biomass of fish populations that are targeted by

commercial and recreational fisheries of the U.S. West Coast. The first

survey (subsequently called the ‘triennial survey’) was operated by the

Alaska Fisheries Science Center every third year from 1977 to 2004 (for

a total of 10 survey years), with an average of 484 samples per year

(Weinberg et al. 2002). The second survey (subsequently called the

‘annual survey’) was operated by the Northwest Fisheries Science

Center every year 2003–2013 (for a total of 11 survey years) and has on

average 629 samples per year (Bradburn, Keller & Horness 2011). Tri-

ennial and annual surveys also use different vessels and sampling gear,

and these differences are likely to cause differences in sampling effi-

ciency between surveys. Pinsky et al. (2013) previously analysed range

shifts using the AWA estimator applied to data from the triennial

survey, but did not incorporate data from the annual survey due to

concerns about changes in survey methods. We here demonstrate the

implications of analysing data from both surveys using the conven-

tional or SDF estimators. This demonstration serves two purposes:

1 It illustrates the potential differences in inference arising from con-

ventional and SDF estimators when applied to data where the spatial

distribution of sampling changes over time; and

2 It updates the Pinsky et al. (2013) analysis when incorporating data

from an additional 11 years of data (i.e. the 2003–2013 period in the

annual survey).

We restrict our analysis to tows that occur within the spatial domain

of both surveys, and this decreases sample sizes available for each sur-

vey (triennial: 434; annual: 412 samples per year on average). We use

this restriction for both SDF and AWA estimators (although it is not

necessary for the SDF estimator) to ensure that results are comparable

between methods. For the AWA analysis, we fit separate linear regres-

sions to the triennial and the annual survey data, reflecting their sub-

stantially different locations andmethods.

The spatial sampling intensity function differs between the two sur-

vey designs even within the restricted area that is within the spatial

domain of both surveys, and spatial sampling intensity also varies

among years within a given sampling design. The two surveys also dif-

fer in seasonal timing and likely differ in terms of sampling efficiency

(a.k.a. catchability, i.e. the proportion of fish captured that are located

within the sampled area). In the SDF analysis, we therefore include the

following catchability variables:

1 Julian calendar date ji for each sample; and

2 an indicator function vi for survey (where vi = 1 if the sample is

from the triennial survey and zero otherwise)

such that catchability variable zp(i) = zr(i) = (ji, vi)
T for sample i.

These two variables (j and v) represent linear offsets of encounter

probabilities (in logit space) and positive catch rates (in log space). Both

variables have sufficient contrast to be estimated with a low standard

error, that is Julian calendar date has broad overlap among surveys

(Fig. 1) and both annual and triennial surveys were conducted in 2004.

Including these catchability covariates, while not including them when

predicting density for calculating COG, ‘filters out’ the variation that is

attributable to calendar date or survey design, and species distributions

and COG are then predicted for a standard date (July 31st) and the tri-

ennial survey. We do not include any variables a priori as predictors of

spatial variation in density (i.e. x(s) is not included in the model) and

therefore account for all spatiotemporal variation via the randomwalk

process (ep(s, t) and er(s, t), see Appendix S3). While future studies

could explore oceanographic or habitat predictors of species distribu-

tion using the SDF model (Shelton et al. 2014), we do not do so to

ensure that results are strictly comparable to the AWA estimator

(which does not typically incorporate predictor variables).

For computational reasons, we approximate spatiotemporal varia-

tion (e(s, t)) as being piecewise constant at a fine spatial scale. We

do this by estimating functions at nx = 500 ‘knots’, which are selected

via a k-means clustering algorithm applied to location of sampling

data. Each location swithin the survey domain then has function value

Fig. 1. Median (circle), mean (triangle), interquartile range (thick

black line) and total range (thin black line) for the spatial location (top

row: northings, middle row: eastings) and seasonal location (bottom

row: Julian calendar date starting Jan. 1) in every year of West Coast

sampling used in this study. The triennial survey (every third year

1977–2004) shows large differences in sampling distribution relative to

the annual survey (every year 2003–2013), particularly with respect to

northings and Julian date.
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e(sx, t) where sx is the location of the knot x that is closest to location s.

We confirm that results are qualitatively similar when increasing the

number of knots (i.e. nx = 1000). We then compare estimates of the

change in distribution between AWA and SDF estimators to examine

whether these two methods generate different inference regarding

distribution shifts in this region.

VALIDATION WITH SIMULATED DATA

We also conduct a simulation experiment to illustrate the magnitude

of bias that arises from using either the AWA or SDF estimators

given the timing and location of samples that are available. In this

experiment, we simulate population density d(s, t) = p(s, t)r(s, t) in

each of 15 979 grid cells (each is 2 9 2 nautical miles) that are

included in the domain of the surveys in our analysis. We simulate

density under four scenarios, representing (i) constant, (ii) highly

variable, (iii) northward shifts or (iv) southward shifts in population

COG (Appendix S4 for details). We then simulate sampling that

occurs in the same years and at the same locations as in the annual

and triennial surveys. We analyse the simulated data using the AWA

and SDF estimators and compare the estimate of northward COG

with its true value.

Fig. 2. Results from the simulation experiment for four treatments involving different shifts in species distribution over time (columns, See Valida-

tion with SimulatedData section ofMaterials andmethods for descriptions), showing the northward centre of gravity for simulated abundance (left

column; black line:median; shaded area: interval encompassing 80%of simulation replicates), the estimated centre of gravity for the species distribu-

tion function (SDF; red) and abundance-weighted average (AWA; blue) estimators (middle column) and the error (Est-True) for the SDF and

AWAestimators (where awell-performingmodel will have error close to zero, as indicated by the dotted line).
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Results

CHANGES IN THE DISTRIBUTION OF SAMPLING EFFORT

FOR WEST COAST FISHES

Examination of the average latitude and longitude of survey

samples in each year (Fig. 1) illustrates the magnitude of spa-

tial changes in sampling intensity over time. In particular, the

median latitude of samples was nearly 45°N in 1986, but was

close to 40°N from 2005 to 2012. The distribution of the trien-

nial survey varied greatly during the 1980s and did not sample

far south of the San Francisco Bay in 1980, 1983 and 1986

(Appendix S5). Therefore, even a population that was uni-

formly distributed throughout this survey domain would

appear to move south from the 1980s (during the early trien-

nial sampling period) to the 2000s (during the annual sampling

period).

SIMULATION EXPERIMENT

Results from our simulation confirm that the SDF estimator

greatly mitigates the bias seen in the AWA estimator (Fig. 2).

In particular, the AWA estimator is positively biased in all sce-

narios from 1977 to 2003 (i.e. during the triennial survey sam-

pling period). This positive bias is greatest in years when the

triennial survey had sampling distributed in more northerly

areas (i.e. 1980, 1983, 1986). The bias is negligible for both esti-

mators during the annual sampling period (2003–2013), and
the SDF estimator has a small positive bias during early years

for the ‘northward shift’ scenario and a small negative bias for

the ‘southward shift’ scenario. Exploratory analysis indicates

that the SDF estimator smooths density estimates for the

unsampled, southward portion of the population domain for

early years (1980, 1983 and 1986) towards the estimated distri-

bution in 1989. Decreased bias using the SDF estimator is par-

ticularly evident for years 1989–2002, when the AWA is

positively biased by nearly 50 km, while the SDF is approxi-

mately unbiased.

CASE STUDY

A plot of population density function d(s, t) for Pacific hake

(Fig. 3) is characteristic of the patterns estimated by the

SDF model for West Coast species. For Pacific hake, the

areas offshore of Point Conception and the San Francisco

Bay generally have high density, but density near the San

Francisco Bay is particularly high from 2001 to 2013, and

areas offshore of southern Oregon have particularly high

densities from 2003 to 2008. In aggregate, the population

has a northward distribution during 1989–2009 and rela-

tively southward distribution in 1977–1986 and 2010–2013
(Fig. 4). Changes among years often exceed the standard

error of the estimated COG (e.g. 2009–2010), indicating

changes that are statistically significant. A comparison of

the model-based estimate of COG and the AWA (Fig. 4)

again shows large differences between estimators in 1980–
1986 (when sampling had greater intensity northwards in

the California Current) and relatively small differences in

2003–2013 (when sampling intensity is close to uniform

north of Point Conception).

We next present estimates of the COG for each of 18 species

along the north–south axis (i.e. to detect northward or

Fig. 3. Estimated species distribution func-

tion d(s, t) for Pacific hake in every year

rescaled for clarity of presentation to have a

mean of one (where the coloured area repre-

sents the spatial domain that is included in this

analysis).
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southward movement over time, Fig. 5) for both AWA and

model-based estimators (while analysing the triennial and

annual surveys separately with the AWA estimator). The two

estimators show different trends for many species during both

the triennial and annual periods, for exampleDover sole which

has a northward trend during the triennial period (1977–2004)
in the SDF estimator but a southward trend in AWA estima-

tor. Inspecting results across species during the triennial period

(1977–2004), the AWA estimator shows a shift that is more

southerly than the SDF estimator for 16 of 18 species, where

this southern shift is in-line with the southern trend in the loca-

tion of sampling during triennial survey (Fig. 6). In particular,

the AWA estimator shows significant southward shifts for two

species and northward trends for one species from 1977 to

2004, while the SDF estimator shows significant northward

shifts for seven species and significant southward shifts for only

one species. Inspecting confidence intervals in the SDF estima-

tor (Fig. 5) also illustrates that pelagic species (Pacific hake

and spiny dogfish) generally have interannual variability that

is large relative to confidence interval width, whereas rock-

fishes generally have less evidence of interannual variability in

COG.

Inspecting results from the SDF estimator for each species

and all available years (1977–2013, Fig. 7) illustrates six of the
species have significant northward shifts, while only two (Paci-

fic hake and sablefish) have significant southward shifts. Both

hake and sablefish have had approximately steady area occu-

pied during this period, so shifts in distribution have been

caused by displacement of the population range, rather than

expansion or contraction. Similarly, four of the six species with

northward shifts have approximately steady area occupied.

However, two species (darkblotched and greenstriped rock-

fishes) show both significant northward shifts and substantial

decreases in area occupied (Fig. 8), indicating that the north-

ward shift is caused by decreased density in southern habitats.

This decreased density in southern habitats is also reflected in

SDF estimates of the southern population boundary, which

hasmoved northwards for both species (Appendix S6).

Discussion

Understanding the consequences of climate change on terres-

trial and aquatic species requires unbiased estimates of how

species’ ranges shift. In this study, we have demonstrated that

a SDF estimator for distribution shifts offers three benefits

over conventional estimators:

1 The conventional metrics will provide biased estimates of

distribution changes whenever sampling design has changed

over time. A similar bias has been previously discussed in

static habitat and climate envelope models (Kadmon, Far-

ber & Danin 2004; Loiselle et al. 2008; Feeley & Silman

2010), where spatial variation in sampling intensity can lead

to biased estimates of geographical distribution. However,

spatial-varying sampling intensity has not to our knowledge

been discussed as causing biased estimates of changes in spe-

cies distribution over time. By contrast, our SDF estimator

will generally be unbiased as long as changes in sampling

intensity are statistically independent of changes in popula-

tion abundance.

Fig. 4. Centre of gravity for Pacific hake

shown in Universal Transverse Mercator pro-

jection using northings (top row) and eastings

(bottom row), comparing abundance-

weighted average (circles in left column, where

light-blue indicates estimates from the trien-

nial survey and dark-blue indicates estimates

from the annual survey, and the correspond-

ing blue line is the average trend from a linear

regression model) and species distribution

function approaches (where the thick red line

is the maximum-likelihood estimate and the

red shaded area is�1 standard error).
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2 The SDF estimator can incorporate information frommulti-

ple surveys simultaneously, as long as there is information to

intercalibrate these surveys [e.g. samples from different surveys

at nearby times and locations (Sauer, Peterjohn&Link 1994)].

3 The SDF approach can estimate standard error estimates

for each year and therefore can be used to answer whether

interannual variability exceeds the level that is expected given

estimation error. By contrast, this task is difficult using

Fig. 5. A comparison abundance-weighted average and species distribution function estimators of northward distribution for all 18 West Coast

species analysed in this study (see Fig. 3 caption for details).
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Fig. 6. Estimated change in northward centre of gravity using data from the triennial survey (1977–2004) and either the abundance-weighted aver-

age (blue) or new species distribution function (red) approaches, where we show a predictive distribution (centred on the maximum-likelihood esti-

mates, with dispersion equal to the standard error) for each estimator, and where the sign (+: positive;�: negative) and P-value (from aWald test)

are shown for each estimator (red upper left: species distribution function; blue upper right: abundance-weighted average), and any P-value in bold

font indicates a trend that is statistically significant using a two-sidedWald test at 0�05 significance.
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conventional estimators, which are generally interpreted by fit-

ting a linear model to estimate a single trend over time such

that interannual residuals around this trend are often inter-

preted as statistical noise.

Estimated changes in species distributions can then be

used to support hypotheses regarding causal environmental

drivers, project future change (both in habitat utilization

and the ecological niche that organisms inhabit) and

Fig. 7. Estimated change in northward centre of gravity using data fromboth triennial and annual surveys (1977–2013) and the new species distribu-

tion function (red) approaches, where we show a predictive distribution (centred on the maximum-likelihood estimates, with dispersion equal to the

standard error) and where the sign (+: positive;�: negative) andP-value (from aWald test) are shown in the upper left, and anyP-value in bold font

indicates a trend that is statistically significant using a two-sidedWald test at 0�05 significance.
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identify management actions that may mitigate against

these changes.

Our case study application involving marine species on the

west coast of theUSA shows that a conventional estimator can

lead to inference about range shifts in the opposite direction of

inference from the SDF estimator. In particular, the southerly

trend in theAWAestimator for some species reflects the south-

ward shift in sampling that occurred during the triennial

Fig. 8. Changes over time in the area occupied by each species, calculated as the volume the population kernel (an ellipse approximating the distribu-

tion that accounts for 50% of total population abundance, see Appendix S2) estimated from the population density function dp(s, t) for each species

p and year t.
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survey. The SDF estimator illustrates that pelagic species

(Pacific hake and spiny dogfish) exhibit substantial variability

in northward COG and that this variability exceeds the esti-

mated standard error for each individual year. This result sup-

ports previous observations that Pacific hake distribution

varies substantially over short time periods (Agostini et al.

2006). Spiny dogfish has also been documented previously to

have demographics that vary over time (Taylor & Gallucci

2009), but spatial variation in distribution has received less

attention than for Pacific hake. By contrast, rockfishes and

thornyheads (Sebastes and Sebastalobus spp.) generally have

very little interannual variability in north–south distribution.

These species have widely varying life history, but generally

have at least some association with demersal habitats that are

thought to be relatively constant through time.

We have not linked our results explicitly to environmental

variables, although marine species have previously been

documented to shift in distribution with temperature changes

(Pinsky et al. 2013; Hiddink, Burrows & Garc�ıa Molinos

2015). The SDF model that we use here could be linked to cli-

mate variables in at least three alternative ways. First, an envi-

ronmental variable that varies spatially (e.g. local temperature

at each location s and year t) could be included as a spatial

covariate in the encounter probability or positive density func-

tions (i.e. included in x(s, t)) if its value is known everywhere

throughout the population domain (Shelton et al. 2014). This

approach would permit the analyst to project changes in spe-

cies distribution arising from different temperature scenarios

that potentially vary spatially using output downscaled climate

projection models. Secondly, an annual time series (e.g. aver-

age regional or global temperature) could be included as a

covariate to predict changes in population-wide abundance,

COG or width of the population kernel. This latter approach

could be used to test, for example, whether changes in tempera-

ture lead to a more concentrated population distribution.

Thirdly, temperature information could be used to compute

local climate velocities (i.e. the ratio of temporal and spatial

gradients in temperature at each location), and the spatial aver-

age of this local climate velocity could be compared with popu-

lation-wide changes in COG to test whether the population is

keeping pace with local temperature shifts (Devictor et al.

2008; Loarie et al. 2009). Each approach is suitable for different

types of climate questions, and evaluating the relative merits of

each approach remains an important topic for future research.

We recommend further research regarding distributional

changes for rare or difficult-to-detect species. This can be

accomplished by simultaneously estimating the distribution of

rare and abundant species, such that estimates for rare species

‘borrow information’ from abundant species (Ovaskainen &

Soininen 2011; Thorson et al. 2015a).We also recommend fur-

ther research regarding age- and size-structured species distri-

bution models. Many species including Pacific hake (Hicks

et al. 2014), lingcod (Hamel, Sethi & Wadsworth 2009) and

summer flounder (Bell et al. 2015) are known to have different

spatial distribution for old and young individuals. Given the

large variability in recruitment seen for most marine species

(Thorson, Jensen & Zipkin 2014), fluctuations in recruitment

can therefore drive large, interannual variation in the popula-

tions COG, where years following strong recruitment are

biased towards the distribution for recruits. Fluctuations in

distribution caused by variation in age structure might there-

fore be confused with climate-driven shifts in distribution,

especially for short-lived species with strong cohorts (e.g. Paci-

fic hake) or for long-lived species that rebuild their age struc-

ture following a reduction in fishing effort (e.g. summer

flounder). Age- or size-structured distribution models could be

estimated by either separately analysing the distribution for

each age or size bin or jointly analysing them via some

smoother across age or size (Kristensen et al. 2014). However,

this may be complicated, given that individuals of different age

or size often have different susceptibility to sampling gear.

Nevertheless, we hypothesize that analysing climatic drivers of

marine species distribution may be misleading unless care is

taken to control for age-based distributional effects.
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