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17 Abstract 

18 Theoretical considerations and applied examples suggest that stock assessments are highly 

19 sensitive to the weighting of different data sources whenever data sources conflict regarding 

20 parameter estimates. Previous iterative reweighting approaches to weighting compositional data 

21 are generally ad hoc, do not propagate uncertainty about data-weighting when calculating 

22 uncertainty intervals, and often are not re-adjusted when conducting sensitivity or retrospective 

23 analyses. We therefore incorporate the Dirichlet-multinomial distribution into Stock Synthesis, 

24 and propose it as a model-based method for estimating effective sample size. This distribution 

25 incorporates one additional parameter per fleet (with the option of mirroring its value among 

26 fleets), and we show that this parameter governs the ratio of nominal (“input”) and effective 

27 (“output”) sample size. We demonstrate this approach using data for Pacific hake, where the 

28 Dirichlet-multinomial distribution and an iterative reweighting approach previously developed 

29 by McAllister and Ianelli (1997) give similar results. We also use simulation testing to explore 

30 the estimation properties of this new estimator, and show that it provides approximately unbiased 

31 estimates of variance inflation when compositional samples capture clusters of individuals with 

32 similar ages/lengths. We conclude by recommending further research to develop 

33 computationally efficient estimators of effective sample size that are based on alternative, a 

34 priori consideration of sampling theory and population biology. 

35 

36 Keywords: data weighting; Dirichlet-multinomial; integrated stock assessment model; 

37 multinomial; statistical catch-at-age; overdispersion; length composition; age composition; 

38 



    

                 

             

            

              

                

            

             

            

            

             

             

           

                

             

                

               

                 

                 

            

                

                

                   

39 1. Introduction 

40 Stock assessment models are quantitative tools that are used to provide a scientific basis for the 

41 management of marine fishes (Walters and Martell, 2004). Assessment models increasingly 

42 incorporate biological assumptions regarding the population dynamics of fished species, and 

43 population dynamics parameters are estimated by fitting the assessment model to available data 

44 (Maunder and Punt, 2013). Fitting population models to available data is typically done using 

45 likelihood-based statistics, and the proper estimation of confidence and forecast intervals 

46 therefore generally requires accounting for heteroskedastic and correlated residuals as caused by 

47 unmodeled biological or measurement process (Thorson and Minto, 2015). Theoretical 

48 considerations and applied examples suggest that integrated statistical stock assessments are 

49 sensitive to the weighting of different data sources whenever sources conflict regarding 

50 parameter estimates. Consequently, estimates of stock status and productivity are often highly 

51 dependent upon the weighting of different data sources (Francis, 2011). 

52 Stock assessment models frequently are fitted to sampling data that are informative about the 

53 proportion of the vulnerable population belonging to different observable categories. Common 

54 categories include the proportion of survey or fishery catch that is associated with different ages, 

55 lengths, and/or sexes. Most often, compositional sampling is assumed to follow a multinomial 

56 distribution, e.g., drawing 10 marbles with replacement from an urn that contains 15 red, 45 blue, 

57 and 40 green marbles. The multinomial distribution is derived from the assumption that a given 

58 compositional sample represents independent sampling with replacement from a fixed and 

59 known number of individuals (i.e., 10 marbles), where each individual is from one of several 

60 possible categories, and where there is a true “fixed” probability pc associated with each category 

61 c (i.e., pc=0.15, 0.45, and 0.40 for red, blue, and green marbles). Each sample will not perfectly 



                    

                  

                  

              

            	 	   

                    

                

                

              

               

               

               

             

            

                

              

                 

                

             

                 

                

             

              

62 represent the true distribution, e.g., a single sample of 10 marbles might yield 1 red, 4 blue, and 5 

63 green (i.e., where the observed proportion is 0.1, 0.4, and 0.5), and another sample might yield 2 

64 red, 3 blue, and 5 green (an observed proportion of 0.2, 0.3, and 0.5). The multinomial 

65 distribution implies that the sampling variance (i.e., variation if the sampling process was 

66 replicated) is a function of both the true probability and sample size, �������� = ��1 − � /�, 

67 where n is the number sampled and p is the true probability for each category. Thus, as n 

68 increases, the coefficient of variation for the proportion in each category decreases by 1/√�. 

69 In practice, compositional data for fish populations arises from a process of sampling fish 

70 (e.g., non-extractive visual samples or by capturing and measuring fishes), and this sampling 

71 process is more complicated than the process implied by a multinomial distribution. In 

72 particular, compositional data are likely to have greater variance than predicted by a multinomial 

73 distribution based on the number of individual fish that are sampled (termed “overdispersion”). 

74 In general, overdispersion arises whenever individuals within a sample are not statistically 

75 independent. This assumption of statistical independence (i.e., underlying the multinomial 

76 distribution) is often violated, e.g., when fish schooling behavior leads to a single age being 

77 over-represented in each individual sample (McAllister and Ianelli, 1997), or when juvenile or 

78 adult fish have an affinity for a particular depth range leading to proportions that vary spatially 

79 (Kristensen et al., 2014) and between sampling tows (Crone and Sampson, 1997). In practice, 

80 compositional data are processed to transform raw compositional sampling data into an 

81 aggregated estimate of the proportion in each category in a given year for the entire modeled 

82 population. The resulting estimates of the proportion in each category for each year is 

83 sometimes termed “expanded compositional data” when the process uses a simple design-based 

84 estimator, whereas we prefer the term “standardized compositional data” in recognition that the 



             

              

                  

                   

                

            

          

                

              

              

              

              

                   

                

                

              

                 

                

               

                  

              

               

               

85 process sometimes involves complicated statistical methods to estimate input sample sizes or 

86 account for missing data (Shelton et al., 2012; Thorson, 2014). Compositional standardization 

87 results in an estimate of “input” sample size for the compositional data in a given year, where 

88 estimates of input sample size are frequently a function of both (i) the number of tows and (ii) 

89 the total number of sampled fish (Crone and Sampson, 1997; Stewart and Hamel, 2014). 

90 Compositional standardization can also estimate the covariance among categories (e.g., Miller 

91 and Skalski, 2006), although this is not always done. 

92 The multinomial distribution is often used in the likelihood function that is maximized to 

93 estimate parameters in an integrated assessment model. In this usage, the multinomial 

94 distribution is used to approximate the probability that the standardized proportions in each 

95 category arose from the fish population given proposed values for estimated parameters. We 

96 define the “input sample size” as the sample size calculated during compositional standardization 

97 (or assumed at a fixed value a priori), and this input sample size is often used when evaluating 

98 the multinomial likelihood of estimated parameters. In this usage, input sample size controls the 

99 weighting of compositional data relative to other data sources included in the likelihood function. 

100 However, model misspecification may cause this input sample size to be an inappropriate 

101 measure of data weighting. As a thought experiment, imagine that all participants in a fishery 

102 falsify fish sizes in their catch. These data would have no information about the size-

103 composition of the population, and a stock assessment model would have optimal performance if 

104 it assigned zero weight to these data. As a less extreme example, age-composition data are often 

105 obtained by laboratory examination of fish samples (otoliths or spines), and these laboratory 

106 methods sometimes mis-identify the age of a given fish. Ageing error will cause age-

107 composition data to be a blurred measure of the true age-composition such that age-composition 



                 

             

                  

        

               

              

                

             

             

                  

             

               

             

               

                  

                

               

             

               

              

                

                

            

108 data are less informative than if ageing error were absent (Coggins and Quinn, 1998). However, 

109 if the stock assessment model incorporates double-reading and ageing-error methods to correct 

110 for the ageing error (Methot and Wetzel, 2013; Punt et al., 2008), these data might be more 

111 informative about population age structure. 

112 The previous example highlights that the optimal weight of composition data depends upon 

113 the specification of the model, where model misspecification (e.g., neglecting the impact of 

114 ageing error) results in a lower optimal weight for available compositional data. This conclusion 

115 implies that compositional weighting can be informed by inspecting the goodness-of-fit between 

116 the compositional data and estimated proportions from the assessment model, and consequently 

117 decreasing the sample size for data that generally do not match. This process was suggested by 

118 McAllister and Ianelli (1997), who proposed iteratively estimating the “effective sample size” 

119 for compositional data from a given fleet via the match between predicted and observed 

120 compositional data. However, iterative reweighting approaches require the following steps: (1) 

121 fit the assessment model to available data; (2) extract estimates of compositional proportions; (3) 

122 calculate the effective sample size; (4) input the new effective sample size; (5) iterate steps 1-4 a 

123 fixed number of times, or until subsequent iterations cause little change in the estimate of 

124 effective sample size. Decreasing the effective sample size has an identical impact to 

125 multiplying the multinomial likelihood function by the same percent change (Francis, 2011), 

126 such that this process is essentially reweighting the compositional data during each iteration of 

127 the algorithm. This iterative-reweighting algorithm has several draw-backs, including that it is 

128 infeasible to repeat for every sensitivity run, it is difficult to explore when parameter estimation 

129 is slow (e.g., when using Bayesian estimation via Markov-chain Monte Carlo), it is difficult to 

130 incorporate into simulation designs, it is potentially influential when estimating likelihood 



              

         

                 

                  

              

              

               

                

            

            

                

               

                

              

             

             

             

           

                 

              

              

   

      

131 profiles for stock assessment parameters, and it does not propagate uncertainty about data 

132 weighting into estimates of parameter uncertainty. 

133 In the following, we seek to develop a method to estimate effective sample size during 

134 parameter estimation. If this were done by estimating a new parameter that governs the ratio of 

135 input and effective sample size, then uncertainty about the data-weighting parameter could be 

136 estimated using conventional methods (Magnusson et al., 2013), and its uncertainty could be 

137 propagated and evaluated during stock projections. We therefore specifically seek a method to 

138 estimate effective sample size as a model parameter. For this purpose, we implement the 

139 Dirichlet-multinomial distribution for compositional data in the likelihood function of an 

140 integrated assessment model. We show that using the Dirichlet-multinomial distribution 

141 involves estimating a new parameter, and can be parameterized such that it estimates a linear 

142 relationship between input and effective sample size. We incorporate this new distribution into 

143 the Stock Synthesis stock assessment software, which is widely used in the United States and 

144 internationally (Methot and Wetzel, 2013). The Dirichlet-multinomial is now available as a 

145 feature in Stock Synthesis when calculating the probability of age- or length-composition 

146 samples from the entire population (“marginal” age- or length-composition data), the probability 

147 of age-composition samples from a given length category (“conditional age-at-length data”), or 

148 the probability of length-composition samples from a given age-category (“conditional length-at-

149 age data”). We then use a case study and simulation experiment to show that the Dirichlet-

150 multinomial distribution provides estimates of effective sample size that are similar to iterative 

151 reweighting methods, but without requiring multiple iterations of running the assessment model. 

152 2. Methods 

153 2.1 Introducing the Dirichlet-multinomial distribution 



             

        

	 	  	  	    

                 

                

                  

                 

      	       

              

               

             

                 

                 

                 

   

	 	   

 	               

                 

               

	              

 	             

             

    

154 Many stock assessment models use the multinomial distribution for fitting compositional data 

155 while calculating the likelihood of model parameters: 

��� ! *%$& )*�#�$156 ���|��, � = Multinomial���|�, � = ∏$%$& ���#�$ ! ∏*+! (1) $'( 
157 where �� is the proportion at age in the available data such that ∑*%$& ) = 1 (we use vector-*+! -* 
158 matrix notation where vectors are bold, while elements of a vector are italicized with a 

.
159 subscript), � is the estimated proportion at age (such that ∑*+! )* = 1), n is the total number of 

160 samples in the available data (which is restricted to any non-negative real number), amax is the 

161 maximum age in available data, and Multinomial���|�, � is defined as the multinomial 

162 probability mass function (we present theory using notation for age-composition data, but note 

163 that the theory is applicable to length-composition data as well). However, using the 

164 multinomial distribution for compositional data involves the assumption that the true proportion 

165 at age � is constant for all age-composition samples, but schooling or spatial behaviors may in 

166 fact cause the “true” age-composition (i.e., its average if the sample was replicated at that place 

167 and time) to vary among samples. Variability in a proportion can be approximated using a 

168 Dirichlet distribution: 

169 ���/|� = Dirichlet��/|5 (2) 

170 where Dirichlet�5 is the probability density function for the Dirichlet distribution and 5 is a 

171 vector of amax parameters (restricted to be positive) that govern the mean and variance of this 

172 distribution. Now imagine that, for each age-composition sample, we take a random draw 

173 �∗~Dirichlet�5 from a Dirichlet distribution, and then take a draw from a multinomial 

174 distribution �~Multinomial��∗, � with mean proportion �∗ from the Dirichlet draw. In this 

175 case, the observed proportion �� follows a compound “Dirichlet-multinomial” distribution with a 

176 probability density function: 



	 	 	    

                

             

            

          

	   	  	 	 	  		    

                

                

                

             

   
 	  	              

   	         

  	            

            

              

                   

   

        

              	   

       	      

      	 	        

          

177 ����|5, � = 8 Multinomial���|�∗, � Dirichlet��∗|5 9�/ (3) 

178 where the marginal probability density function for data �� is computed via integrating across the 

179 “unobservable” average proportion �∗ for that sample (Thorson and Minto, 2015). 

180 Fortunately, the likelihood function for the Dirichlet-multinomial distribution can be 

181 computed using interpretable parameters without recourse to numerical integration: 

��� ! ��< *%$& ���#�$ <#$ 
182 ���, :|��, � = ∏$'( ���#�$ ! ��� < ∏ ��<#$ (4) $%$& *+! 
183 where : is a new parameter representing the overdispersion caused by the Dirichlet distribution. 

184 Here, we use the gamma function, rather than the conventional factorial function, so that the 

185 Dirichlet-multinomial is defined for all non-negative sample sizes n, such that it reduces to the 

186 conventional Dirichlet-multinomial distribution whenever input sample size is a whole number. 

��� ! 
187 The first term $%$& does not depend upon the parameters, but ensures that the value of ∏$'( ���#�$ ! 
188 the Dirichlet-multinomial function ���, :|��, � converges on the value of the conventional 

189 multinomial function ���|��, � as : → ∞, such that the multinomial distribution is a special 

190 case of the Dirichlet-multinomial distribution. Similar to the multinomial, the Dirichlet-

191 multinomial likelihood can be computed even for cases with zero observations (i.e., where )-* = 
192 0 for some a), and this is not true of other proposed methods to account for overdispersion (e.g., 

193 Francis, 2014). 

194 2.2 Computing the effective sample size: 

195 We define the effective sample size �@AA of a distribution B for compositional data C~B�� as 

196 the sample size of a multinomial distribution C∗~Multinomial��, �@AA that has the same 

197 variance on average across categories (i.e., ∑*%$& Var�E* = ∑*%$& Var�E*∗ ). The variance of a*+! *+! 
198 single element from a multinomial distribution is: 



	 	    

               

	 	
    

          

        	        

            

	 	 	 	 	 	     

             

              

   

	 	       

                  

    	 	         

              

  

      

                

             

          

                

              

              

199 Var�E*|�, � = �)*�1 − )* (5) 

200 where n is the sample size. Defining observed proportion )-* = E*/�, we see that: 

#$�!F#$ 
201 Var�)-*|�, � = (6) � 
202 i.e., variance decreases as the reciprocal of sample size. 

203 We next return to the Dirichlet distribution, ��~GH�HEℎJKL�:� , where M* = :)* and )* is 

204 the true proportion at age. The Dirichlet distribution has variance: 

N$�<FN$ <#$�<F<#$ #$�!F#$ 
205 Var�)-*|:, � = $%$& = (7) <O�∑$'( N$ ! = <O�< ! < ! 
206 such that : + 1 is the effective sample size of the Dirichlet distribution: 

207 Finally, the variance of the observed proportion at age for a Dirichlet-multinomial 

208 distribution is: 

#$�!F#$ 
209 Var�)-*|�, :, ) = � Q�! <<R (8) 

210 such that the variance (and also the covariance) is equal to the variance (and covariance) for the 

211 multinomial distribution multiplied by �� + : ⁄�1 + : (Eq. 15-16 in Mosimann, 1962). We 

212 therefore calculate the estimated effective sample size neff of a Dirichlet-multinomial distribution 

213 as: 

� �< 
214 (9) �@AA = � < 
215 where this formula is similar to an approximation obtained by summing the variance of the 

216 Dirichlet and multinomial distributions (i.e., the sum of multinomial sampling variance and 

217 Dirichlet-distributed overdispersion). This formula illustrates that the Dirichlet-multinomial 

218 distribution has equal overdispersion for all bins (e.g., sizes or ages). In some cases, 

219 overdispersion may vary substantially among bins (Miller and Skalski, 2006), presumably due to 

220 spatial variation in population densities associated with each bin (Kristensen et al., 2014; 



               

             

     

            

               

            

                  

             

                

     

        

            

                

             

	  	  	 	 	  		    

      

        

                  

	    	       	        

           	          

               

             

              

221 Thorson, 2014), and we suggest that future research explore the impact of varying overdispersion 

222 on the performance of assessment models using the Dirichlet-multinomial likelihood. 

223 2.3 Two potential parameterizations 

224 Given the Dirichlet-multinomial distribution and the closed-form computation of its effective 

225 sample size, we propose two alternative parameterizations that may be useful in practice for 

226 length- and age-composition samples in stock assessment models. These parameterizations 

227 differ in terms of the function relating input and effective sample size (Fig. 1), and correspond to 

228 different hypotheses regarding the mechanisms underlying overdispersion. Both use the input 

229 sample size to distinguish among years that have relatively more or less information about the 

230 true proportion. 

231 2.3.1 Parameterization #1 – Linear version 

232 As a default, we recommend a re-parameterization of the Dirichlet-multinomial distribution, 

233 wherein the variance-inflation parameter : is replaced by a linear function of input sample size 

234 n, i.e., : = T�. This results in the following probability distribution function: 

��� ! ��U� *%$& ���#�$ UV#$ 
235 ���, T|��, � = ∏$%$& ���#�$ ! ��� U� ∏*+! ��U�#$ (10) $'( 
236 which has effective sample size: 

! U� 
237 (11) �@AA = ! U = ! ! U ! U + � U 

238 where we see that effective sample size is a linear function of input sample size with intercept 

239 �1 + T F! and slope T�1 + T F! . If T becomes large (T ≫ � then �@AA → � such that there is 

240 no variance inflation in this case, and if T is small (T ≪ � while � is large (� ≫ 1) then T is 

241 approximately the ratio of effective and input sample size (T → �@AA/�). We recommend using 

242 the “linear effective sample size” parameterization, given that previous methods for weighting 

243 compositional data have generally multiplied the likelihood of compositional data by a fixed 



              

           

       

              

          

      

              

                

               

                  

    

            

              

               

             

           

           

              

               

              

              

                 

244 quantity λ<1 (Francis 2011), and this parameterization has similar behavior when sample sizes 

245 are high and samples are strongly overdispersed (� ≫ 1 and T ≪ �). 

246 2.3.2 Parameterization #2 – Saturating version 

247 As a potential alternative, analysts may instead use the original parameterization of the Dirichlet-

248 multinomial distribution (Eq. 4), which has effective sample size: 

� �< 
249 (12) �@AA = � < 
250 This parameterization can revert to the multinomial distribution with sufficiently large :, i.e., 

251 �@AA = � when : ≫ �. However, it provides an upper bound on effective sample size with 

252 lower values of :Y , i.e., �@AA → 1 + : when � ≫ :. Therefore, this parameterization could be 

253 useful when analysts seek to estimate an upper bound on the effective sample size for a given 

254 year. 

255 We have implemented both parameterizations of the Dirichlet-multinomial distribution in 

256 Stock Synthesis (version 3.30; public release planned for Aug 2016, and please contact 

257 Richard.Methot@noaa.gov for a beta version). In the following, we focus exclusively on the 

258 linear parameterization (version #1). However, we recommend future research comparing the 

259 performance of these two parameterizations using real-world data, and developing more-

260 complicated two-parameter forms for the Dirichlet-multinomial distribution that could combine 

261 the characteristics of both versions. In particular, the saturating parameterization resembles an 

262 “additive” influence of process errors while the linear parameterization is more similar to the 

263 “multiplicative” influence of process errors (Francis, this issue), and we hypothesize that a two-

264 parameter form could be used to distinguish between additive and multiplicative forms for 

265 process error. In the following, we also restrict ourselves to the case where the variance-inflation 

mailto:Richard.Methot@noaa.gov


                 

              

       

               

              

                

                

            

              

                  

              

             

              

              

                  

      

                 

             

                

                

             

                  

               

266 parameter is constant for all years, but note that future studies can estimate different levels of 

267 variance inflation for each year, or for different blocks of years. 

268 2.4 Case study: Pacific hake 

269 To demonstrate this new data-weighting method, we compare its performance with that of other 

270 data-weighting methods when applied to a recent stock assessment for Pacific hake, Merluccius 

271 productus (Taylor et al., 2015). Pacific hake is a semi-pelagic schooling species of commercial 

272 importance to fisheries off of the US West Coast and Western Canada. Recent management is 

273 conducted following procedures determined by an international agreement between the United 

274 States and Canada, and are informed by annual stock assessments implemented using Stock 

275 Synthesis. Data used in the 2015 stock assessment includes (1) catches from 1966 to 2014, (2) 

276 fishery age–composition samples from 1975-2014, (3) an index of abundance from ten acoustic 

277 surveys conducted between 1995 and 2013, (4) survey age-composition samples associated with 

278 each acoustic survey, (5) cohort-specific definitions of ageing error that specify improved ageing 

279 accuracy with larger cohorts, and (6) “empirical” weight-at-age data calculated from all fisheries 

280 and the acoustic survey for years 1975 to 2014, which are assumed to be known without error 

281 (Taylor et al., 2015). 

282 Four assessment models were fitted to data for Pacific hake, where each model used a 

283 different approach to data-weighting for the fishery age-composition data: (i) unweighted (i.e., 

284 treating input sample size as effective sample size), (ii) tuned using an iterative approach, (iii) 

285 estimated using the Dirichlet-multinomial distribution, and (iv) weight of zero. Option (ii) is the 

286 approach commonly used in West Coast assessments, including the Pacific hake assessment 

287 (Taylor et al., 2015), and involved fitting the model to available data, computing the ratio of the 

288 harmonic mean of yearly effective sample size (as computed by Stock Synthesis) to the 



              

              

                  

               

                 

                     

                  

                   

             

                

                 

              

               

             

               

                

               

               

                 

                 

             

                  

      

289 arithmetic mean of yearly input sample size for fishery age-composition data, multiplying this 

290 value by the “weighting factor” for the fishery age-composition data used during parameter 

291 estimation, and then inputing this value as the new weighting factor. We use the harmonic mean 

292 of effective sample sizes, rather than the arithmetic mean, following recent research (Punt, In 

293 press) and common practice for West Coast assessments (e.g., Taylor et al., 2015). This process 

294 was repeated two times and the third fit to data was used as the final estimate of parameters. The 

295 initial weighting factor was set to one and all additional weighting factors had an upper bound of 

296 one to ensure that effective sample size was never greater than the original input sample size. In 

297 the following, we refer to this as the McAllister-Ianelli iterative-reweighting method, although 

298 we note that this algorithm has evolved since its original version in McAllister and Ianelli 

299 (1997). Option (iv) specifies that the stock assessment was fitted only to abundance indices and 

300 survey age-composition data, and represents the extreme case of “zero” weight assigned to 

301 fishery compositional data. To achieve convergence in this option, we turned off parameters 

302 representing variation in fishery selectivity over time, and fixed parameters representing average 

303 fishery selectivity at their estimates from Option (ii). Fishery compositional data are the only 

304 source of information regarding age-structure prior to 1975, so we assume that this option will 

305 result in large differences in estimates during early years. Preliminary exploration showed that 

306 the input sample size is approximately equal to effective sample size for survey age-composition 

307 data (i.e., the iterative approach results in a ratio of 0.94, and the Dirichlet-multinomial results in 

308 a ratio approaching 1.00, i.e., θ increases indefinitely). We therefore chose to not re-weight the 

309 survey age-composition data (i.e., we did not estimate the Dirichlet-multinomial parameter for 

310 the survey age-composition data, nor did we tune them). We inspected model fit for the fishery 

311 age-composition samples using Pearson residuals: 



	   

                     

           	 	    

                

                   

                 

             

    

            

                  

              

              

                 

               

             

                  

                

                

                  

               

                

                 

�*,Z = #�$,[F#$,[ 
312 (13) 

\]$,[�(^]$,[ _`aa,[ 

313 where �*,Z is the Pearson residual for age a and year t, )-*,Z is the proportion in the observed data 

314 for that age and year, )*,Z is the expected proportion, and �@AA,Z = �1 + �ZT /�1 + T is the 

315 estimate of effective sample size using the linear parameterization where �Z is the input sample 

316 size for year t. We expect that a well-fitted model will have (1) no consistent patterns in 

317 residuals for consecutive ages in a given year, (2) no pattern in residuals for consecutive years 

318 for a given age, and (3) no pattern in residuals among fleets. 

319 2.5 Simulation testing 

320 The performance of the Dirichlet-multinomial distribution implemented in Stock Synthesis was 

321 explored using simulated data. To do so, we simplified the Pacific hake estimation model in five 

322 ways: (1) changed fishery selectivity to be stationary over time (i.e., removed time-varying 

323 selectivity parameters), (2) changed all fishery age-composition sample sizes to a single fixed 

324 value per year, (3) changed all survey age-composition sample sizes to 100 samples per year, (4) 

325 changed age-specific ageing error to be stationary over time and equal to the baseline ageing-

326 error matrix, and (5) changed to using an “explicit-F” parameterization, wherein instantaneous, 

327 fully-selected fishing mortality in each year is estimated as a fixed effect. We made changes (1) 

328 and (4) because fishery selectivity and ageing error in the original assessment are related to 

329 realized cohort size, and our simulation is randomly generating new time series of relative cohort 

330 size. We made change (5) so that the simulated fishing intensity is plausible given the simulated 

331 vector of recruitment deviations for each simulation replicate, and changes (2) and (3) to 

332 simplify interpretation of results (e.g., so that time series estimates are not influenced by annual 

333 variation in sample sizes). We then ran the modified Pacific hake assessment model on available 



               

            

           

               

               

                 

            

                 

             

              

             

              

              

              

                 

              

               

     	        

                 

                

            

                 

       

334 data, extracted estimated parameters, and used these estimates as the “true” values during the 

335 simulation experiment (while confirming that estimated stock status and productivity was 

336 generally similar to that in the case study). 

337 We then generated new, simulated data sets using the Stock Synthesis parametric bootstrap 

338 simulator. For each simulation replicate, we simulated a new vector of recruitment deviations 

339 with a standard deviation of recruitment deviations (bc) set at 0.9, and also simulate a new 

340 deterministic pattern for fishing mortality, where instantaneous fishing mortality d for fully-

341 selected ages increases linearly from d = 0.01 in the first year (1966) to d = 0.30 in the final 

342 year (2013). The bootstrap simulator then calculated the population abundance-at-age resulting 

343 from the input vector of recruitment deviations and fishing mortality, and simulates an 

344 abundance index and age-composition samples from their specified distributions (i.e., using a 

345 lognormal distribution with the input log-standard deviation for the abundance index and a 

346 multinomial distribution with the input sample size for the age-composition samples). 

347 The simulation experiment involves a factorial design with three simulation scenarios, five 

348 levels of an inflation factor, and three estimation models. For each combination, we ran 100 

349 simulation replicates, for a total of 3 × 5 × 3 × 100 = 4,500 total estimation model runs. We 

350 define three simulation scenarios, where we generate age-composition samples ct in each year t 

351 from a multinomial distribution i.e., Cj~Multinomial��, �Zkl@ , and where the “true” sample 

352 size varies among scenarios (ntrue = 25, 100, or 400). Given this age-composition sample, we 

353 then provide the estimation model with an input sample size of �/�mlZ = T�/n�Zkl@, such that the 

354 “observed” age-composition sample is inflated by inflation factor θsim, with value T�/ = n 
355 {1,2,5,25,100}. We then use estimation methods (i), (ii), and (iii) defined in the section titled 

356 Case study: Pacfic hake (see above). 



     

            

                 

               

            

                 

          

   

       

             

               

               

            

              

             

                

              

                

                 

              

                 

            

              

357 2.6 Simulation model evaluation 

358 Estimation procedures were evaluated by comparing estimated parameters and derived quantities 

359 of interest to management to their true values as defined in the operating model. Estimation error 

360 was quantified using relative error (rs = tuv − uw⁄u, where uv and u are estimated and true 

361 parameter values respectively). Results were recorded for converged models, where 

362 convergence was defined as obtaining a gradient less than 0.1, and we also record the proportion 

363 of non-convergence for each estimation model and simulation scenario. 

364 3. Results 

365 3.1 Case study application: Pacific hake 

366 Comparing four alternative methods for weighting compositional data in the Pacific hake 

367 assessment (Fig. 2) shows that estimates of relative spawning output and fishing intensity are 

368 generally bracketed by the two naïve approaches, i.e., either treating input sample size as 

369 effective sample size (“unweighted”) or removing fishery age-composition data entirely (“no 

370 fishery ages”). However, spawning output is higher for the tuned and Dirichlet-multinomial 

371 models than the unweighted model because the unweighted model estimates lower unfished 

372 recruitment. In particular, removing fishery age data results in a higher estimate of average 

373 unfished spawning output and lower spawning output estimates from the mid-1980s onward, as 

374 well as large differences in abundance trends prior to 1975. Meanwhile treating input sample 

375 size as the effective sample size results in estimates of strong year-class strength in 1980 and 

376 1999. By contrast, the default iterative and new Dirichlet-multinomial weighting methods result 

377 in similar estimates of spawning output, with the exception of early years (prior to 1980) when 

378 the Dirichlet-multinomial estimator results in somewhat elevated estimates of spawning output 

379 relative to the iterative method. Similarly, the iterative and Dirichlet-multinomial estimates of 



               

               

              

                 

                

               

             

            

    

             

                  

                    

                

                   

                

                    

      

            

            

           

               

               

                  

380 fishing intensity are more similar than the other weighting methods, particularly for early years 

381 (prior to 1970). Inspection of Pearson residuals when using the Dirichlet-multinomial likelihood 

382 to estimate overdispersion (Fig. 3) shows little evidence for correlated residuals among ages 

383 within a year, among years within an age, or among fleets (except perhaps for the negative 

384 residual for individuals in the oldest age category). However, cohorts born during 1977, 1980, 

385 and 1984 generally have small, positive residuals. This pattern arises because the recruitment 

386 penalty (i.e., penalizing recruitment deviations towards zero) encourages less variation in cohort 

387 strength than the age-composition data suggest for these years. 

388 3.2 Simulation experiment 

389 Estimates of the Dirichlet-multinomial parameter are different among the different scenarios and 

390 levels of the inflation factor (Fig. 4, panel a). However, estimates of effective sample size are 

391 generally similar for all levels of the inflation factor for a given scenario (Fig. 4, panel b). In 

392 general, the estimated effective sample size closely matches the true sample size for all scenarios 

393 and levels of the inflation factor. However, we detect a small positive bias in the estimates of 

394 effective sample size when the true sample size is 400 (i.e., median effective sample size 

395 estimate is close to 450), and a negative bias when true sample size is 25 and variance inflation is 

396 high (θsim>25). 

397 Comparison of parameter estimates from the unweighted multinomial, iterative reweighting 

398 algorithm, and the linear parameterization of the Dirichlet-multinomial distribution shows that 

399 the iterative reweighting and Dirichlet-multinomial approaches have similar precision and 

400 accuracy when estimating natural mortality and average unfished recruitment for all levels of the 

401 inflation factor (Fig. 5). By contrast, the unweighted model has substantially degraded estimates 

402 of natural mortality and unfished recruitment for any inflation factor other than 1. We note that 



                

                 

            

      

   

             

                 

              

            

              

       

             

               

               

               

             

                 

     

               

             

          

              

403 the Dirichlet-multinomial algorithm has a small fraction (2 of 100) of replicates that do not 

404 converge for some levels of the variance inflation (θsim=100, see Fig. 5). We therefore conclude 

405 that the Dirichlet-multinomial method has similar estimation performance to the previous 

406 iterative reweighting approach. 

407 4. Discussion 

408 In this study, we implemented two parameterizations of the Dirichlet-multinomial distribution in 

409 the Stock Synthesis software that is widely used to conduct stock assessments in the US and 

410 internationally. We then compared the Dirichlet-multinomial distribution with a version of the 

411 McAllister-Ianelli iterative-reweighting approach that is commonly used for US West Coast 

412 groundfish stock assessments. We believe that the Dirichlet-multinomial approach is superior to 

413 this iterative-reweighting approach for several reasons. 

414 1. Slow or inconsistent exploration of alternative models: Iterative reweighting methods require 

415 fitting a stock assessment model to data to calculate effective sample sizes, and then re-

416 estimating the model with revised input sample sizes. This iterative tuning procedure either 

417 slows exploration of alternative models (due to the need for re-tuning after each model 

418 change) or causes inconsistent exploration of alternative models (where analysts neglect to 

419 re-tune for every sensitivity run, and therefore compare between runs that are not tuned in a 

420 consistent manner). 

421 2. Failure to account for uncertainty in data weighting: Iterative reweighting methods provide 

422 no obvious method for propagating uncertainty about data-weighting. By contrast, the 

423 Dirichlet-multinomial approach represents data-weighting via an estimated parameter, and 

424 the uncertainty in this parameter can be captured via standard statistical methods (e.g., 



           

   

             

                  

            

            

              

                

           

            

               

            

                

             

               

             

             

             

            

             

                   

              

                

425 likelihood profiles, asymptotic confidence intervals, or Bayesian posteriors, (Magnusson et 

426 al., 2013)). 

427 3. Clear standards for convergence: Iterative reweighting methods require subjective decisions 

428 regarding when to stop tuning the sample size, what order to tune multiple fleets, and how to 

429 combine data-weighting information from multiple fleets. These subjective decisions are 

430 rarely documented and different decisions by different analysts may cause substantial 

431 differences in ultimate estimates of stock status and productivity in assessments where data 

432 weighting is an important axis of uncertainty (e.g., US West Coast sablefish). By contrast, 

433 the Dirichlet-multinomial method allows for a single, unambiguous definition of 

434 convergence (i.e., via maximizing the model likelihood function), which can be 

435 independently replicated by different authors and does not require further documentation. If 

436 estimates of the parameter governing effective sample size using the Dirichlet-multinomial 

437 likelihood do not converge, we suggest that the analyst could perform one model run using 

438 the iterative reweighting approach (to get an initial value for the Dirichlet-multinomial 

439 parameter), and then proceed to fully estimate that parameter in a final model run. 

440 4. Interpretable estimates of effective sample size: Analysts have previously suggested 

441 alternative model-based methods for estimating effective sample size. For example, an 

442 analyst might use a Dirichlet distribution, which performed relatively well in previous 

443 simulation testing (Hulson et al., 2011; Maunder, 2011), rather than the Dirichlet-

444 multinomial distribution used here. However, the Dirichlet distribution can have effective 

445 sample size that ranges from 0 to infinity, i.e., it can exceed the input sample size (Hulson et 

446 al., 2011; Maunder, 2011; Schnute and Haigh, 2007). By contrast, the Dirichlet-multinomial 

447 distribution ensures that the effective sample size can never be greater than the input sample 



                   

              

              

               

             

                

            

              

            

           

            

      

            

                 

          

              

             

                 

                 

                 

                  

              

               

448 size. We believe that restricting the effective sample size to be less than or equal to input 

449 sample size is useful when analysts have properly estimated the variance of standardized 

450 compositional data (Stewart and Hamel, 2014; Thorson, 2014), as we and others have 

451 recommended in general. When analysts have not estimated the input sample sizes for 

452 standardized compositional data, the Dirichlet distribution might be a suitable approach for 

453 estimating an effective sample size greater than the input sample size. We hypothesize that 

454 the Dirichlet distribution will be less numerically stable that the Dirichlet-multinomial 

455 distribution (see e.g., Maunder, 2011), because the Dirichlet distribution may lead to model 

456 estimates with implausible high weight for compositional data. 

457 These benefits of the Dirichlet-multinomial distribution relative to iterative reweighting 

458 approaches should facilitate the development, exploration, testing, and review of stock 

459 assessment models in real-world applications. 

460 The Dirichlet-multinomial distribution assumes a fixed, negative correlation in residuals 

461 among categories in a given year and fleet. Residuals in real-world assessments might have a 

462 more complicated pattern of correlation for two general reasons: 

463 1. Covariation in sampling data – Many circumstances may cause individual samples of 

464 compositional data in natural populations to represent a disproportionately large number of 

465 juvenile or adult fishes. For example, when fishes aggregate in groups with similar age or 

466 size the age of each individual from that school will be highly correlated. This correlation 

467 also occurs when fishes partition available habitat by size or age, such that each sample will 

468 occur in a habitat preferred by a particular age or size category. Correlations among size or 

469 age measurements for each sample will cause the standardized estimate of proportions by 

470 category (inputted as data into assessment models) to also be correlated. This covariation 



              

        

            

             

             

                

             

              

               

            

               

                  

                

              

            

    

             

             

            

             

             

            

                 

471 can be estimated by proper analysis of raw compositional data (Hrafnkelsson and Stefánsson, 

472 2004; Miller and Skalski, 2006). 

473 2. Model mis-specification – Alternatively, model residuals (i.e., the difference between 

474 compositional data and model predictions of proportions for each category) may be 

475 correlated among categories when the population dynamics model is mis-specified (e.g., by 

476 assuming the wrong value for natural mortality rate, or not accounting for error in reading 

477 fish otoliths Maunder (2011)). Unmodeled processes (e.g., spatial variation in fishing 

478 intensity) will generally result in residuals for compositional data that are correlated among 

479 categories (e.g., between age-1 and age-2 samples in a given year), years (e.g., between 

480 adjacent years for age-2 individuals), sexes (between males, females, and unsexed 

481 individuals for a given age and year), and fleets (between survey and fishery compositional 

482 data for a given age and year). For example, positive correlations among years for a given 

483 age are likely to arise whenever unmodeled processes have a similar effect on individuals of 

484 that age. Potential causes of correlated residuals for compositional data include time-varying 

485 or non-parametric fishery selectivity, time-varying growth, and time-varying rates of natural 

486 mortality. 

487 We acknowledge that covariation arising from the process of sampling compositional data 

488 (mechanism #1 listed above) is not adequately captured by the Dirichlet-multinomial likelihood 

489 function, and that alternative functions have been developed to simultaneously model 

490 correlations and overdispersion in compositional data. One example is the logistic-normal 

491 function, which Francis (2014) proposed as a general replacement for the multinomial 

492 distribution. However, Francis (2014) only explored correlations among categories (inter-class 

493 correlation), and did not attempt to account for correlations in a given category among years or 



              

             

           

             

                

                

               

               

             

             

            

              

                

              

               

     

                 

              

               

               

              

                

           

494 fleets. We therefore encourage further research regarding likelihood functions that can use 

495 information regarding correlations caused by sampling while still estimating a reduction in 

496 effective sample size (to account for model mis-specification). 

497 We hypothesize that correlations arising from model mis-specification (mechanism #2 listed 

498 above) will generally include correlations among fleets, ages, years, and sexes, and are best dealt 

499 with by using adding random effects to account for important forms of model mis-specification. 

500 Mixed-effects estimation is useful to elicit the correlation among data that is induced by 

501 unobserved processes (Thorson and Minto, 2015); therefore, mixed effects are a natural tool for 

502 modeling correlations in compositional data that are caused by model mis-specification. Mixed-

503 effect methods have already been developed for time-varying selectivity, natural mortality, and 

504 individual growth, and are increasingly feasible for age-structured population models using 

505 maximum likelihood or Bayesian estimation methods (Kristensen et al., 2014; Mäntyniemi et al., 

506 2013; Nielsen and Berg, 2014; Thorson et al., 2015). We therefore recommend future research 

507 to explore whether accounting for these processes can adequately approximate the correlations in 

508 model residuals for compositional data, or whether it is also necessary to explicitly incorporate 

509 covariation caused by sampling. 

510 As with any new method, we also encourage simulation testing using a variety of operating 

511 models, forms of model mis-specification, and harvest control rules (Hulson et al., 2011; 

512 Maunder, 2011; Punt, In press). Different forms of spatial structure or cohort-specific selectivity 

513 will generally result in different forms of correlation among years, categories, fleets, and sexes, 

514 and therefore will likely result in better or worse performance of the Dirichlet-multinomial 

515 distribution (given its inability to account for correlated residuals). We hope that future studies 

516 comparing the performance of the Dirichlet-multinomial likelihood relative to generalized 



              

                 

                

             

         

   

                

              

                

             

              

              

                

            

            

             

        

  

                 

              

                

  

   

517 likelihood functions that account for among-bin correlation (e.g., Francis, 2011) will include a 

518 variety of forms of model misspecification. Until these studies are conducted, we do not believe 

519 there is sufficient evidence to have a strong opinion regarding the full trade-off between either 

520 (1) modeling correlations via time-varying biological and fishery parameters vs. (2) modeling 

521 correlations via a generalized likelihood function. 

522 5. Conclusions 

523 In this paper, we have shown that the Dirichlet-multinomial distribution can be used to generate 

524 model-based estimates of effective sample size for age- and length-compositional data in stock 

525 assessment models. Using a real-world stock assessment for Pacific hake, we showed that the 

526 Dirichlet-multinomial distribution provides similar estimates of effective sample size to the 

527 McAllister-Ianelli approach to iterative reweighting using the harmonic mean. We also provide 

528 a simulation experiment to verify that it provides approximately unbiased estimates of effective 

529 sample size given that the model is otherwise specified correctly. We conclude that the 

530 Dirichlet-multinomial distribution is a reasonable method to estimate the magnitude of 

531 overdispersion in compositional data, and recommend future research combining it with mixed-

532 effects estimates of time-varying selectivity and individual growth to account for correlated 

533 residuals among categories, years, and fleets. 
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607 Table 1. Parameters used to generate simulated data sets (the “operating model”) and during 

608 model fitting (the “estimation model”). A modified version of the 2015 Pacific hake assessment 

609 model with 134 estimated parameters is used as both the operating and estimation model (the 

610 model uses empirical weight-at-age techniques, and therefore does not estimate individual 

611 growth parameters). Survey and fishery selectivity values are not listed but follow the non-

612 parametric form used in Taylor et al. (2015), but without variation over time. 

Operating model Estimation model 

Name True value Estimated or Number of 
fixed? estimated 

parameters 
Natural mortality rate 0.217 Estimated 1 
Expected recruits at 14.470 Estimated 1 
unfished level (natural 
logarithm) 
Beverton-Holt steepness 0.850 Estimated 1 
log-standard deviation of 0.900 Fixed -
recruitment deviations 
Additional variance for 0.313 Estimated 1 
accoustic survey index 
Accoustic survey selectivity - Estimated 4 
at age 
Fishery selectivity at age - Estimated 5 
Recruitment deviations - Estimated 72 
Instantaneous fishing - Estimated 49 
mortality rates 
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615 Figure captions: 

616 

617 Fig. 1. Input sample size (x-axis) and effective sample size (x@AA; y-axis) for two 

618 paramaterizations of the Dirichlet-multinomial distribution across varying values for the 

619 Dirichlet-multinomial parameter specific to each parameterization. The dashed line represents 

620 the 1:1 line where input sample size is the same as x@AA. 

621 

622 Fig. 2. Comparison of spawning output relative to average unfished levels (left-left), spawning 

623 output (SPB; top-right), exploitation fraction (catch divided by estimated biomass for individuals 

624 aged 3 and older; bottom-left), and recruitment (age-0 abundance; bottom-right) for the Pacific 

625 hake assessment given four alternative methods of weighting the age-composition data: (i) 

626 weight of zero for the age-composition data (red); (ii) unweighted (green), (ii) iteratively tuned 

627 (black); or (iii) Dirichlet-multinomial distribution (blue), where for each model we show the 

628 maximum likelihood estimates (solid line) and +/- 1 standard error (shaded region). 

629 

630 Fig. 3. Pearson residuals for age-composition data from the fishery (top panel) and survey 

631 (bottom panel) using the Dirichlet-multinomial to estimate overdispersion (and hence data 

632 weighting) for the fishery simultaneously with other model parameters, where each panel shows 

633 a circle with area proportional to the Pearson residual (see Eq. 13 for calculation), and with sign 

634 indicated by shading (grey: positive residual; white: negative residual). 

635 

636 Fig. 4. Estimated Dirichlet-multinomial variance inflation parameter (top row) and effective 

637 sample size (x@AA, bottom row) from the “linear” parameterization (parameterization #1) of the 



            

                  

                  

      

  

                

             

            

            

               

              

                

                

                 

              

                  

       

  

   

638 Dirichlet-Multinomial distribution implemented in Stock Synthesis shown for three “true sample 

639 sizes” (1st column: 25; 2nd column: 100; 3rd column: 400 samples per year) and four levels of 

640 variance inflation (wherein the input sample size provided to Stock Synthesis is 2, 5, 25, or 100 

641 times the true sample size). 

642 

643 Fig. 5. Relative error in parameter estimates across estimation methods (rows; ” tuned”: using the 

644 ratio estimator of the harmonic mean to input sample size; “unweighted”: conventional 

645 multinomial treating input as effective sample size; “DM”: linear-parameterization of the 

646 Dirichlet-multinomial distribution) and levels of the inflation factor for the fishery age-

647 composition data in the operating model (columns). Each panel depicts the maximum likelihood 

648 estimates of natural mortality rate (M, y-axis) and average unfished recruitment (ln(R_0), x-axis), 

649 where colors are used to distinguish estimates. We only show results for estimation models 

650 where the maximum final gradient was <0.1 (the number of replicates across models is indicated 

651 in each panel, where 300 implies that all 100 replicates converged for each of three estimation 

652 models), and confirm that results are qualitatively similar if using a different convergence 

653 threshold. The lower left panel is not plotted because the DM estimation method was not used 

654 when the inflation factor was one. 
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