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Abstract
Oceanographers have spent decades developing annual indices that summarize physical conditions in

marine ecosystems. Examples include the Pacific Decadal Oscillation, summarizing annual variation in the loca-
tion of warm waters in the North Pacific, and cold-pool extent (CPE), summarizing the area with cold near-
bottom waters in the eastern Bering Sea. However, these indices are rarely included in the species distribution
models that are used to identify and forecast distribution shifts under future climate scenarios. I therefore review
three interpretations of spatially varying coefficient models, explain how they can be used to estimate spatial
patterns of population density associated with oceanographic indices, and add this option to the multivariate
spatiotemporal model VAST. I then use a case study involving bottom trawl data for 17 fish and decapod species
in the eastern Bering Sea 1982–2017 to answer: does a spatially varying coefficient model for CPE explain varia-
tion in spatial distribution for species in this region? And (2) does a spatially varying effect of CPE remain sub-
stantial even when local temperature is also included as a covariate? Results show that CPE and local bottom
temperature are both identified as parsimonious by Akaike Information Criterion for 13 of 17 species, jointly
explain nearly 9%–14% of spatiotemporal variation on average, and CPE does explain variation in excess of
local temperature alone. I therefore conclude that spatially varying coefficient models are a useful way to assimi-
late oceanographic indices within species distribution models, and hypothesize that these will be useful to
account for decadal-scale variability within multidecadal forecasts of distribution shift.

Ecosystem-based management (EBM) involves regulating
multiple ocean impacts including harvest, tourism, and
energy development while accounting for species interactions,
ecosystem drivers, and socioeconomic linkages. EBM has
evolved in tandem with new tools for understanding the mul-
tiple human impacts and outcomes resulting from ocean man-
agement. Examples of new tools include techniques to
include annual oceanographic conditions in the stock-
assessment models that are used to define annual catch limits
(Schirripa et al. 2009), ecosystem models that include mecha-
nistic detail regarding terrestrial and physical drivers (Fulton
et al. 2011), and spatial models that are used to estimate and
validate maps of fish habitats (Rooper et al. 2016). Continued
improvement in these tools is likely to support ongoing devel-
opments in ocean management and governance, for example,
the Bering Sea Fisheries Ecosystem Plan, which now includes

explicit use of climate-linked ecosystem models (North Pacific
Fishery Management Council 2019).

One topic of growing importance in ocean governance is
climate-driven shifts in species distribution (Pinsky et al.
2018; Karp et al. 2019). Distribution shifts are increasingly
identified from multiple data sets using species dis-
tribution/density models (SDMs) fitted to occurrence, count,
or biomass-sampling data (e.g., Dolder et al. 2018). SDMs have
been used extensively in ecology, oceanography, and fisheries
science to describe the spatial distribution and ecological
niche of marine and terrestrial species worldwide. Interest in
SDMs has increased as researchers have sought to train them
using historical and contemporary data and then forecast
changes in spatial distribution under alternative climate sce-
narios (Araújo and New 2007). SDMs have been built to pre-
dict local density using local environmental conditions and/or
via the interaction of annual covariates and spatial coordi-
nates, and size- or age-structured SDMs have also been used to
account for size-based processes affecting distribution shifts
(Kristensen et al. 2014; Thorson et al. 2015; Kai et al. 2017).
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However, studies examining forecasted distribution shifts
that are compared with subsequent observations have shown
that forecast skill is sometimes poor using the current genera-
tion of SDMs that are fitted to localized effects of environmen-
tal conditions (Thorson 2019a). For example, ontogenetic
habitat preferences combined with changes in size/age-
structure have been hypothesized to drive observed distribu-
tion shifts (Barbeaux and Hollowed 2018), but this has not
been successful at explaining a large portion of historical dis-
tribution shifts for Gadus chalcogrammus (Thorson et al. 2017)
or Paralichthys dentatus (Perretti and Thorson 2019). This poor
skill would arise if species distributions are affected by more
than local environmental conditions, for example, due to
impacts of local predator densities, lagged environmental
effects, or geographically distant environmental conditions
that affect the preference of mobile species for local habitats.
There is therefore an ongoing need to identify improved tech-
niques to forecast distribution shifts.

In particular, multidecadal shifts in distribution are typi-
cally forecasted by fitting to local environmental conditions
(Pinsky et al. 2018), some assumed relationship with local
conditions (Cheung et al. 2008), or theoretical predictions of
metabolic constraints (Teal et al. 2018). Although these local
environmental conditions may capture long-term changes in
the fundamental niche, it is likely that decadal-scale oscilla-
tions in oceanographic conditions will also contribute to
interannual variation around long-term trends. Physical
oceanographers have spent decades developing oceanographic
indices that are an integrated and high-level summary of
interannual variation in ocean conditions (Grimmer 1963;
Kidson 1975), and fisheries scientists have shown that these
oceanographic indices can be informative about patterns in
fish productivity (O’Leary et al. 2018). For example, the Pacific
Decadal Oscillation (PDO) is an annual index of the location
of elevated ocean temperatures in the North Pacific relative to
their climatological average, and the PDO was originally iden-
tified to correlate with oscillating productivity of salmon
stocks between the US West Coast and Alaska (Mantua and
Hare 2002).

Despite the well-documented role of oceanographic indices
in driving changes in fish productivity and distribution, there
is surprisingly little research regarding their potential role in
SDMs used to forecast marine distribution shifts. As I will
show, this may arise due to the way in which oceanographic
indices would typically be included in regression models such
as SDM, wherein an annual index can only impact spatial dis-
tribution through its interaction with a spatially referenced
variable. I therefore describe a novel approach to including
oceanographic indices via a “spatially varying coefficient”
(SVC) model. Instead of estimating a single slope parameter
representing the effect of an oceanographic index on density,
it estimates a separate slope parameter for every modeled loca-
tion, and thereby estimates that some locations have
increased density given a positive index phase (positive slope)

and other locations have decreased density (negative slope).
These spatially varying slopes can then be plotted to visualize
the expected shifts in distribution associated with positive
values of the annual index.

I first discuss several potential interpretations of this SVC
model and modify an existing R package VAST for multivari-
ate spatiotemporal models (Thorson and Barnett 2017) to
include SVC models. I then explore SVC models using a case
study involving 17 fish and decapod species in the eastern
Bering Sea, where spatial dynamics are widely hypothesized to
be linked to the spatial extent of cold waters resulting from ice
melt in previous years. I specifically use this case study to
answer two questions: (1) does an SVC model for cold-pool
extent explain a substantial portion of variation in spatial dis-
tribution for species in this region? And (2) does a spatially
varying impact of the cold pool remain useful and significant
even when also including local temperature as a covariate? I
end by discussing the conditions under which an SVC model
is expected to explain distribution shifts better than local
environmental conditions in isolation.

Methods
I seek to determine whether spatially varying responses to

annual oceanographic indices can improve model parsimony,
reduce unexplained variation, and decrease forecast errors rela-
tive to a model without covariates (whether oceanographic
indices or local environmental conditions) and whether SVCs
are still estimable and parsimonious even when including
local environmental conditions in addition to annual oceano-
graphic indices. To do so, I first introduce SVC models, their
interpretation, and their estimation. I then describe a case
study involving 17 fish and decapod species in the eastern
Bering Sea.

SVC models
One alternative to using local covariate effects is the SVC

models. These models have been discussed extensively in sta-
tistical applications (Gelfand et al. 2004; Finley 2011) and
have seen some limited use in fisheries (Bacheler et al. 2009;
Bartolino et al. 2011), for example, to identify seasonal shifts
in pollock distribution in the eastern Bering Sea (Bacheler
et al. 2012). As a simple example, SVC models typically predict
some response variable Y as a linear function of a predictor X
where the parameter γ(s), representing the linear response of Y
to changes in X, varies as a function of space:

Y sð Þ= β + γ sð ÞX sð Þ+ ε sð Þ ð1Þ

where β is a global intercept, γ(s) is the slope at spatial location
s, and ε(s) represents residual errors. Although γ(s) can be
approximated as a parametric function (i.e., as a function of
some other covariate), a general treatment allows slope γ(s) to
vary randomly across space, γ(s) = γ0 + γX(s), where γ0 is the
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average slope across space and γX is a zero-mean function rep-
resenting spatial variation in γ(s). In the following, I specify
that γX(s) follows a zero-mean Gaussian Markov random field,
γX~MVN(0, Σ), where γX is the vector of γX(s) at some set of
locations and Σ is a spatial correlation function. This specifica-
tion then allows for easy integration into existing Vector
Autoregressive SpatioTemporal modeling software, available as
the R package VAST (Thorson 2019b). Although I focus on
implementing this approach using VAST, the following could
also be done in any other software package that can estimate
the linear interaction of a continuous variable and a spatial
random field or penalized spline (e.g., package mgcv; Wood
2006).1

Interpretation of SVCs in spatiotemporal models
In the following, I will use SVCs to explain spatiotemporal

variation as resulting from an annual time series. Annual time
series are widely used to summarize oceanographic conditions
in a given marine ecosystem, for example, where the location
of the North Atlantic Oscillation is correlated with the Gulf
Stream and therefore affects ocean productivity in the North-
west Atlantic shelf (O’Leary et al. 2018). I therefore describe a
spatiotemporal model for a response Y(s,t):

Y s, tð Þ= β tð Þ+ω sð Þ+ ε s, tð Þ ð2AÞ

where β(t) is an intercept that varies for every modeled time
period t (e.g., among years), ω(s) is persistent spatial variation,
and ε(s,t) is spatial variation that changes over time (termed
“spatiotemporal” variation). Spatial shifts in Y(s,t) are
explained by ε(s,t), such that the spatial distribution of Y(s,t)
could be forecasted exactly given that ε(s,t) could be predicted
as a known function of available covariates. In the following, I
provide three alternative interpretations of SVCs.

Regression of spatiotemporal variation on an annual index
Analysts include covariates X for many different reasons,

although I focus in the following on efforts to explain spatio-
temporal variation ε(s,t). When covariate X(t) represents an
annual oceanographic index, it will have the same value for
all locations in a given year, such that the product γX(t) will
explain variation in intercepts β(t) but have no impact on spa-
tial distribution. I therefore introduce a SVC for annual time
series X(t):

Y s, tð Þ= β tð Þ+ω sð Þ+ ε s, tð Þ+ γ0 + γX sð Þð ÞX tð Þ ð2BÞ

In many instances, intercepts β(t) are estimated as fixed
effects and in this instance, β(t) is confounded with γ0X(t)

such that I specify γ0 = 0 to allow intercepts to be identified.
In other instances when β(t) has some hierarchical structure
across time (e.g., follows an autoregressive process), then β(t)
and γ0 can be separately estimated.

Inspecting Eq. 2B, it is apparent that the product of the
SVC γ0 + γX(s) and the annual covariate X(t) generates varia-
tion (γ0 + γX(s))X(t) for all locations and times. Response vari-
able Y(s,t) has some true variance, which the model in Eq. 2B
partitions via some combination of terms of the right side.
Therefore, estimating a spatially varying impact of covariate
X(t) will explain some variance that would otherwise be attrib-
uted to ε(s,t). In this sense, then, (γ0 + γX(s))X(t) defines a lin-
ear model for explaining part of the spatiotemporal residual
variation in ε(s,t), and including a spatially varying effect of
X(t) will reduce the variance of residual spatiotemporal varia-
tion ε(s,t).

Random slope models
Alternatively, one can interpret SVCs as a “random slope”

model. Gelman and Hill (2007) define “random intercept”
models as linear models that include random variation in the
intercept, that is, by interpreting β + ε(s) in Eq. 1 as a spatially
varying intercept. In contrast, “random slope” models include
variation in the slope coefficient, that is, by treating γ(s) as a
spatially varying slope. Therefore, defining SVCs allows an
analyst to estimate both a random-intercept and random-
slope within SDMs.

Generalized analysis of nonlocal environmental impacts
This SVC model could be generalized by an approach that

takes as input a spatial variable X(s,t) in each year and pro-
vides as output the impact of this variable on population den-
sity at all locations. In this generalized approach, the impact
for a given location s1 depends upon the value of X(s,t) every-
where, including interactions with its value at geographically
distant locations, and not simply upon X(s1, t) at that single
location. However, this generalized approach potentially
explains complicated spatial dependencies, for example, due
to the geographically distant production of phytoplankton
that is then advection to a given location, and therefore
requires a sufficiently flexible modeling framework. One sim-
plification of this generalized approach is to estimate a “com-
pression function” that maps spatial variable X(s,t) to a
reduced number of spatial features, and then a “projection
function” that predicts the impact of X(s,t) based on that
reduced set of features. In this simplification, the spatially
varying coefficient model can be interpreted as the projection
function, while the compression function could be estimated
by using an empirical orthogonal function analysis (Grimmer
1963) or other rank reduction techniques (see Appendix A in
Supporting Information for more details and notation regard-
ing this interpretation).

1 Spatially varying coefficients can be implemented in package mgcv using
their “formula” notation, that is, including term “s(Lat_i, Lon_i,
by=Index_i),” where “Lat_i” and “Lon_i” are the latitude and longitude
associated with each sample i, and “Index_i” is the continuous-valued var-
iable representing the oceanographic index for each sample.
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Including SVCs in VAST
In the following, I will analyze biomass-sampling data bi

using a delta model in the R package VAST (https://github.
com/James-Thorson/VAST). This delta-model involves specify-
ing the probability p(i) that sample i encounters a given spe-
cies, and simultaneously specifying a probability density for
observed biomass given that the species is encountered:

Pr bi =Bð Þ= 1−p ið Þ if B=0

p ið Þ× g Bjr ið Þ,σ2m
� �

if B>0

(
ð3Þ

where r(i) is predicted biomass given an encounter, g() is a
probability density function for positive catches, and σ2m is the
residual (“measurement”) variance for samples.

I specifically use a Poisson-link delta model (Thorson 2018)
that simultaneously estimates two variables, numbers density
N (with units numbers per unit area) and average biomass W
(with units biomass per number), where the product of these
two variables represents biomass density (with units biomass
per unit area). The two linear predictors in the delta-model
(Eq. 3) are calculated from these variables given that the
assumption that individuals are randomly distributed in the
vicinity of sampling:

p ið Þ=1−exp −ai ×N ið Þð Þ ð4AÞ

r ið Þ= ai ×N ið Þ
p ið Þ ×W ið Þ ð4BÞ

where N(i) is predicted number density, ai is the area sampled
for observation i, and W(i) is predicted biomass-per-individual.
N(i) and W(i) are each specified via log-linked linear predic-
tors:

where a similar log-linked linear predictor is defined for
log(W(i)). For completeness in describing the new SVC feature,
I introduce notation for multivariate spatiotemporal models
for each of nc categories where VAST is capable of estimating a
rank-reduced covariance among categories via loadings matri-
ces Lωn(ci, f ) and Lεn(ci, f ) for multiple “factors” f, and where
ω*
n s, fð Þ and ε*n s, f , tð Þ are Gaussian Markov random fields rep-

resenting spatial and spatiotemporal variation in log(N) at the
location si and time ti for each sample i. In univariate models,
Lωn(ci, f ) and Lεn(ci, f ) then become scalars representing
the standard deviation of spatial or spatiotemporal variation.

I configure VAST to use a predictive-process formulation where
the value of each Gaussian Markov random field (ξ*n s,c,pð Þ,
ξ*w s,c,pð Þ, ω*

n si, fð Þ, ω*
w si, fð Þ, ε*n si, f , tið Þ, and ε*w si, f , tið Þ) at each

sampling location si is approximated as a bivariate linear inter-
polation from its value at three nearby “knots”; this same
bilinear interpolation is used by R-INLA (Lindgren 2012), and
is explained in more detail in Appendix B in Supporting
Information.

VAST now includes term γn ci, ti,pð Þ+ σ c,pð Þξ*n s,c,pð Þ� �
X si, ti,pð Þ for each of np covariates.2 This extended capability
for density covariates includes ξ*n s,c,pð Þ, which is specified as a
zero-mean Gaussian Markov random field with unit variance
for each category c and covariate p. When estimating a SVC,
VAST estimates its variance σ2(c, p) as a fixed effect and esti-
mating σ2(c, p) = 0 results in the reduced linear effect of that
covariate. Users must specify that γn(ci, ti, p) = 0 for any covari-
ate p that is identical across space whenever intercepts are esti-
mated as fixed effects, and I do this when fitting to cold-pool
extent; VAST includes user settings to specify a model where
γn(ci, ti, p) = 0.

Case-study application
I explore the utility of this new SVC model using bottom-

trawl survey data for fish and decapod species in the eastern
Bering Sea. Previous oceanographic research has shown that
the productivity and spatial structure of this marine ecosystem
is strongly tied to both the spatial extent of sea ice and the
seasonal timing of ice melt. Specifically, sea ice provides a spa-
tial structure for the growth of highly productive phytoplank-
ton, and thereby affects the timing of vertical mixing and
resulting plankton community structure (Stabeno et al. 2012).
Areas with sea ice are also associated with colder bottom

log N ið Þð Þ= βn ci, tið Þ|fflfflfflfflffl{zfflfflfflfflffl}
Intercept

+
Xnω2

f =1

Lωn ci, fð Þω*
n si, fð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Spatial variation

+
Xnε2
f =1

Lεn ci, fð Þε*n si, f , tið Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Spatio−temporal variation

+
Xnp

p= 1

γn ci, ti,pð Þ+ σ c,pð Þξ*n s,c,pð Þ� �
X si, ti,pð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Density covariates

+ …|{z}
Other terms

ð5Þ

2 Previous versions of VAST included only a conventional linear model for
density covariates:

log N ið Þð Þ= βn ci, tið Þ|fflfflfflfflffl{zfflfflfflfflffl}
Intercept

+
Xnω2

f =1

Lωn ci, fð Þωn si, fð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Spatial variation

+
Xnε2

f =1

Lεn ci, fð Þεn si, f , tið Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Spatio−temporal variation

+
Xnp

p=1

γn ci, ti,pð ÞX si, ti,pð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Density covariates

+ …|{z}
Other terms

where γn(ci, ti, p) was constant across space.
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temperatures, affecting distribution for marine species that
either prefer or avoid near-zero water temperatures (Hunt
et al. 2011). I follow past studies in designating the cold pool
as the area with bottom temperatures at or below 2�C (Fig. 1
for the annual landscape of summertime bottom tempera-
tures), and explore using the spatial extent of this cold pool as

an annual oceanographic index to describe spatiotemporal
variation in distribution. The index of cold-pool extent (Fig. 2)
is based on net sensor measurements in the eastern Bering Sea
shelf survey (Lauth and Conner 2016) and has been published
previously (e.g., Thorson et al. 2017) but is here updated to
include data for 2016–2017 (Bob Lauth, pers. comm.).

Fig. 1. Maps showing local bottom temperatures in each year 1982–2017 for each of 200 “knots” used within VAST to approximate spatiotemporal var-
iation in density for each modeled species (see color bar in the bottom-right panel; blue represents low temperatures and red represents high
temperatures).
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Specifically, I seek to answer: (1) does a spatially varying
coefficient model for cold-pool extent explain a substantial
portion of variation in spatial distribution for species in this
region? And (2) does a spatially varying impact of the cold
pool remain useful and significant even when also including
local temperature as a covariate? To answer these questions, I
use data for the 17 numerically dominant bottom-associated
fish and decapod species in the eastern Bering Sea slope bot-
tom trawl survey conducted annually from 1982 onward using
standardized bottom trawl gear by the Alaska Fisheries Science
Center (Lauth and Conner 2016). This survey uses a fixed sta-
tion design involving nearly 370 stations on a 20 km by
20 km grid (including some areas with more dense sampling
near significant islands), and data are publicly available online
(http://www.afsc.noaa.gov/RACE/groundfish/survey_data/data.
htm). I explore the potential effect of local environmental con-
ditions (a quadratic effect of bottom temperature) and regional
conditions (a spatially varying effect of cold-pool extent), and
this results in the following reduced model:

log N ið Þð Þ= βn tið Þ|fflffl{zfflffl}
Intercept

+ σωnω
*
n sið Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Spatial variation

+ σεnε
*
n si, tið Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Spatio−temporal variation

+ γn ti,1ð ÞT si, tið Þ+ γn ti,2ð ÞT2 si, tið Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Quadratic effect of bottom temperature

+ σξnξ*n s,pð ÞC tið Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Effect of cold pool

ð6Þ

where T(s,t) is local bottom temperature for each location
si and year ti for sample i, C(t) is cold-pool extent for year t,
and a similar model is again specified for average density,
log(W(i)).

For each species, I fit eight models, formed as a 4 by 2 facto-
rial cross of four model structures and two data sets. The four
model structures include:

1. No covariates: A model with spatial and spatiotemporal vari-
ation for both numbers density N(i) and average weight W
(i) but no habitat covariates (i.e., γn = γw = 0 and
σξn = σξw = 0).

2. Local temperature: Identical to No covariates except also
including a quadratic effect of bottom temperature, rep-
resenting a dome-shaped response of local density to local
temperatures (i.e., fixing σξn = σξw = 0).

3. Cold-pool extent: Identical to No covariates except also
including a SVC linking numbers density N(i) and average
weight W(i) to cold-pool extent C(t) (i.e., fixing γn = γw = 0).

4. Both: Identical to No covariates except including both a qua-
dratic effect of local temperature and a spatially varying
effect of cold-pool extent (i.e., the full model in Eq. 6).

For all models, I specify a first-order autoregressive process
for spatiotemporal variation, such that hotspots in density are
predicted to persist for subsequent years, where the degree of
autoregression is estimated from available data. I then calcu-
late the proportion of residual spatial and spatiotemporal vari-
ation in numbers density and average weight that is explained
by local temperature, cold-pool extent, or both simultaneously
(Appendix C in Supporting Information) and use this to deter-
mine whether the model with both temperature and cold-pool
extent has increased explanatory power relative to the model
with just local temperature effects.

I fit each of these four models to two different data sets for
each species:

A. Full data: I fit to all bottom-trawl data 1982–2017 available
online in January 2018. Given that I am predicting density
for this same set of years 1982–2017, I do not need to
impose any restrictions of model intercepts, βn(t) and βw(t),
and treat them as fixed effects.

B. Reduced data: I fit to data 1982–2014 and forecast future dis-
tribution shifts 2015–2017. I conduct this forecast under
the assumption of perfect information regarding the value
for cold-pool extent (i.e., using subsequent observations as
forecasted values of ocean conditions in those future years);
the use of perfect information for covariate X(t) implies
that results represent a best-case scenario for the perfor-
mance of this forecast (i.e., a real-world application would
include additional error in X(t) during forecast years which
I do not explore here). Given that I have no data to inform
intercept estimates for forecast years, I assume that model
intercepts follow a probability distribution, which I specify
as following a random-walk process where the variance of
this random walk is estimated from available data.

I fit all models using release 2.2.0 of the R package VAST
(Thorson and Barnett 2017; Thorson 2019b) using Microsoft
Open R (R Core Team 2017). VAST estimates fixed effects

Fig. 2. Time series showing extent of cold pool in the eastern Bering Sea
for modeled years, 1982–2017 (x-axis), where the cold-pool extent is
measured as the area with bottom temperatures at or below 2 �C. The
time series is labeled both for the measured value (left y-axis label) and
the standardized value (right y-axis label), where the standardized value is
included in the model.
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using TMB (Kristensen et al. 2016) and also applies a stochas-
tic partial differential equation approximation to a Matern
spatial correlation function (Lindgren et al. 2011) to reduce
computational requirements while also using a predictive-
process formulation to interpolation spatial variation between
a pre-specified number of “knots” (see Appendix B in
Supporting Information for more details). I use 200 knots
while confirming that results are qualitatively similar even
when changing this number, and choose the location of knots
using a k-means algorithm that minimizes the average dis-
tance between each sample and the nearest knot. I calculate
standard errors using a Bayesian generalization of the delta-
method (Kass and Steffey 1989).

Results
Plotting the spatially varying impact of cold-pool extent (ξn

and ξw) shows how distribution is expected to differ in years
with high cold-pool extent relative to years with average con-
ditions. Visualizing this effect for four biologically diverse spe-
cies shows the varied region-scale impacts of cold-pool extent
on species distribution in the eastern Bering Sea (Fig. 3).
G. chalcogrammus shows decreased densities in northern inner
domain during years with high cold-pool extent, and cold-
pool extent has a larger average effect on average weight W
than numbers density N (i.e., the scale of variation for ξw(s) in
the top-right panel of Fig. 3 is larger than for ξn(s) in the top-
left). Hippoglossus stenolepsis shows elevated number density
(and therefore encounter probability) in the middle domain
during years with high cold-pool extent, but also elevated
average biomass offshore from Bristol Bay. By contrast,
Atheresthes stomias shows elevated number density and aver-
age biomass in the outer domain during years with large cold-
pool extent, and Chionoecetes bairdi shows relatively little
response in number density (and therefore encounter proba-
bility) in years with a large cold pool (i.e., the color scale in
the bottom-left panel of Fig. 3 is very small), while average
biomass is somewhat elevated in small concentrations in the
southern middle domain during these years. These responses
are just a few of the varied impacts occurring across all 17 spe-
cies analyzed here (Appendix D in Supporting Information).

Cold-pool extent explains a portion of variation in log-
density for species in the eastern Bering Sea even when includ-
ing a quadratic effect of bottom temperature (Fig. 4), although
the standard deviation of variation explained by bottom tem-
perature is nearly twice as great on average (0.26/0.21; Fig. 4,
second row) as the spatially varying impact of cold-pool
extent (0.10/0.11; Fig. 4, first row) when both effects are esti-
mated simultaneously. Including both bottom temperature
and cold-pool extent explains 9% of the residual variation
over time for numbers density (Fig. 4, bottom-left panel) and
14% of residual variation over time for average biomass
(Fig. 4, bottom-right panel). Local temperature in isolation
explains only 6% and 8% of residual variation in number

density and average biomass, respectively, and both cold-pool
extent and bottom temperature contribute substantially to the
overall reduction in variance (i.e., as shown by the similar
reduction for “Temp” and “ColdPool” models in bottom row
of Fig. 4).

Fig. 3. Illustration of the spatially varying coefficients ξn(s) and ξw(s) that,
respectively, link annual cold-pool extent to either numbers density N (left
column) or average biomass W (right column) in the Poisson-link delta
model used to predict biomass for each species in the eastern Bering Sea
(see Eqs. 3–5 for details). Although variables N and W have units
numbers-per-area and biomass-per-number, respectively, the spatially
varying coefficient affects these via a log-link and therefore is dimension-
less. Results are shown for the model including a spatially varying impact
of cold-pool extent but not a quadratic effect of local bottom tempera-
ture. Cold-pool extent is standardized to have a mean of zero and stan-
dard deviation of one prior to use and all results are using a Poisson-link
delta model such that cold-pool extent has a linear effect on log-biomass
density; consequently, a location with a coefficient of 0.1 indicates an
approximately 10% increase in expected density for every 1 standard
deviation (87,504 km2) increase in cold-pool extent. Note that the color
scale differs for each species (rows, labeled on left) and linear predictor
(see color bar for scale in each panel).
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Relatedly, the Akaike Information Criterion (AIC) indicates
that including both local bottom temperature and annual
cold-pool extent is parsimonious for 13 of 17 species (Table 1),
and selects local temperature or cold-pool extent for all species
except Hyas lyratus. Comparing a model with cold-pool extent
to the AIC selected model (i.e., comparing “Both” with
“Temp” for Chionoecetes opilio or Lycodes brevipes) shows that
including the cold-pool degrades model parsimony very little
even when it is not selected, and exploration shows that
the estimate of σξ1 and σξ2 are approaching zero in these
instances.

Finally, examining forecasts of northward center of
gravity when fitting to biomass-sampling data for 1982–2014
and forecasting distribution shifts in 2015–2017 (Fig. 5)
shows instances where incorporating local temperature and

cold-pool extent improves forecasts of distribution shift from
2015 to 2017. For example, Lycodes palearis shows a southward
shift in 2015 followed by a rapid shift 100 km northward in
2016–2017. This northward shift is forecasted by all models
because the species has a more southward distribution in 2014
than its long-term average and the autocorrelation in spatio-
temporal variation in all models causes it to revert to its long-
term average. However, models including local temperature
forecast a substantial northward shift in 2015–2016, in accor-
dance with subsequent measurements. Local temperature is
similarly helpful in forecasting the northward shift for
H. stenolepsis and Hyas coarctatus in 2016. Meanwhile, cold-
pool extent is helpful in improving forecasts of northward dis-
tribution in 2015 for Gadus macrocephalus relative to models
with only local temperature effects. Comparing the error in

Fig. 4. Summary of the standard deviation of variation in log-density caused by a spatially varying link to cold-pool extent (first row), a quadratic
response to bottom temperature (second row), or residual variation for site-specific density over time (third row) as impacting either numbers density (left
column) or average biomass (right column); see Appendix C in Supporting Information for detailed calculation. Each panel shows a boxplot (line:
median; box: interquartile range; whiskers: the furthest point within 1.5 times the interquartile range from the median) summarizing the estimated stan-
dard deviation across all 17 analyzed species for a given model (None: neither temperature nor cold pool; Both: both temperature and cold-pool
responses). All panels list the average standard deviation across all 17 species above each boxplot, and the bottom row also lists the average reduction in
residual variance relative to the model without covariates (where, e.g., 50% would indicate that covariates explain half of spatiotemporal variance). Note
the different y-axis scale for each row.
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forecasted center of gravity among models (Fig. 6) shows that
including temperature and cold-pool extent decreases the
median absolute error by 33% (from 15.3 to 10.2 km) for 1-yr
forecasts, 39% for 2-yr forecasts (from 32.3 to 19.8 km), and
6% for 3-yr forecasts (from 38.1 to 36.0 km) relative to a
model with neither covariate, and similarly decreases bias in
forecasts for each year. The model without covariates itself has
similar or lower errors than the persistence forecast for 2- and
3-yr forecasts, due to its inclusion of density dependence as
represented by the autoregressive structure on density
hotspots.

Discussion
In this study, I have shown that SVC models can be used to

explain changes in spatial distribution using annual oceano-
graphic indices. Using data for 17 bottom-associated fish and
crab species in the eastern Bering Sea, I have shown that a
dome-shaped response to local bottom temperature explains
6%–8% of spatiotemporal variation in two predictors of den-
sity, while local temperature and the additional spatially vary-
ing impact of cold-pool extent explain 9%–14% of variation
in these two predictors. In addition, both local temperature
and cold-pool effects are identified as parsimonious by AIC for
13 of the 17 species, and including both effects improves 1-,
2-, or 3-yr forecasts of recent distribution shifts over a model
without covariates or a persistence forecast. I therefore con-
clude that SVCs are a useful tool in the toolbox of methods

available for explaining and forecasting distribution within
SDMs, and are particularly valuable as a way to integrate
regional oceanographic indicators. However, I note that fore-
cast results presented here represent an “upper bound” on
forecast skill, because real-world applications must also fore-
cast oceanographic variables (e.g., cold-pool extent) and bio-
logical responses simultaneously, whereas I have instead used
subsequent observations as perfect information for the ocean-
ographic variable. Improving skill for forecasts of cold-pool
extent in the eastern Bering Sea is a topic of active research
(e.g., Hermann et al. 2016), but current research is focused on
9 month forecasts rather than the 2- and 3-yr forecasts
explored here. The decision of how far to forecast future distri-
bution shifts in other systems will depend upon available skill
in forecasting oceanographic variables as well as the extent of
skill gained by modeling short-term density dependence in
biological dynamics (e.g., Thorson 2019a).

Given the benefit of including spatially varying effects of
oceanographic indices, I also highlight two paradoxes of the
results. Specifically, cold-pool extent is calculated from local
measurements of bottom temperature and represents a highly
compressed representation of physical conditions which
“loses” information about annual differences in the spatial
distribution of cold habitats. However, the analysis shows that
the spatially varying impact of cold-pool extent contains addi-
tional information about species distribution beyond the
information contained in local temperatures. How do fishes
“know” about temperatures occurring in habitats outside the

Table 1. Comparison of ΔAIC for 17 species (listed by common and scientific name) when biomass-sampling data are analyzed using
four candidate models (the model with lowest AIC is indicated in bold); Temp: a quadratic effect of local bottom temperature on num-
ber density and average biomass; ColdPool: a spatially varying effect of annual cold-pool extent on number density and average bio-
mass; None: neither temperature nor cold-pool effects; Both: both temperature and cold-pool effects.

Scientific name Common name None Temp ColdPool Both

Gadus chalcogrammus Walleye pollock 239.4 68.2 138.5 0.0

Gadus macrocephalus Pacific cod 528.6 134.4 363.8 0.0

Hippoglossoides elassodon Flathead sole 175.5 6.2 142.6 0.0
Chionoecetes opilio Snow crab 38.4 0.0 37.8 0.5

Hippoglossus stenolepis Pacific halibut 260.9 87.5 178.4 0.0

Limanda aspera Yellowfin sole 79.8 6.4 67.4 0.0
Pleuronectes quadrituberculatus Alaska plaice 70.3 37.4 20.7 0.0

Chionoecetes bairdi Tanner crab 0.8 6.5 0.0 5.8

Podothecus accipenserinus Sturgeon poacher 212.3 7.4 157.5 0.0
Atheresthes stomias Arrowtooth flounder 475.4 34.6 365.8 0.0

Hyas coarctatus 31.5 11.0 17.3 0.0

Myoxocephalus polyacanthocephalus Great sculpin 85.5 19.5 47.3 0.0
Lycodes palearis Wattled eelpout 98.4 8.5 62.4 0.0

Myoxocephalus jaok Plain sculpin 104.5 26.4 70.1 0.0

Hyas lyratus 0.0 4.3 2.2 6.7

Paralithodes camtschaticus Red king crab 32.4 9.1 23.1 0.0

Lycodes brevipes Shortfin eelpout 8.1 0.0 11.2 2.8
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Fig. 5. Estimates of northward center of gravity (y-axis; note different scale for each species) for each year 2012–2017 (x-axis) for each of 17 species
(panels) and four models (line: estimate; shaded area: +/− one standard error; see color labels in top-left panel) when fitting to data 1982–2014 and fore-
casting distribution in 2015–2017. The dashed lines show estimates when fitting to all data (2012–2017) for each model, which are generally very similar.
Each panel includes the average error for years 2015–2017 (computed as the difference between forecasts and estimates using all data when averaging
across models) for each of four models as well as a “persistence” forecast (i.e., forecasting that the distribution does not change after 2014).
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area being sampled? And how does compressing temperature
measurements result in “more information?” I address these
two questions below.

Regarding how fishes “know” about temperatures occurring
in habitats outside the area being sampled: the fish and deca-
pods analyzed here are highly mobile and select their habitats
after having “sampled” (migrated through or foraged within)
other habitats available regionally. This answer is obvious bio-
logically, and community ecologists acknowledge that many
nonlocal and regional mechanisms are needed to explain spe-
cies distribution and density (HilleRisLambers et al. 2013;
Heino et al. 2017). However, SDMs have typically focused on
including local habitat measurements within regression
models for predicting local densities, and these nonlocal
mechanisms are rarely included explicitly in SDMs. Alterna-
tively, some SDMs apply a kernel smoother to local covariates
prior to inclusion (Chandler and Hepinstall-Cymerman 2016;
Frishkoff et al. 2017); this smoother captures the response to a
spatial average of nearby habitats, but does not allow for com-
plicated dependencies on spatially distant habitats like the
SVC model explored here. I therefore argue that SVCs for
annual oceanographic indices represent a useful and flexible
way to represent habitat selection as animals respond to infor-
mation about resource availability in years with different
oceanographic conditions. For example, pollock in the Bering
Sea have been shown to distribute along the sea-ice break dur-
ing spring (De Robertis and Cokelet 2012), and the location of
the ice-break is driven by several region-scale and lagged pro-
cesses that are not necessarily related to local bottom tempera-
tures (Stabeno et al. 2007). In these cases, a regional covariate
(e.g., sea-ice extent) represents the integrated effect of lagged
and geographically distant habitat conditions that affect fish
decisions regarding habitat selection.

Regarding how compressing temperature measurements
result in more information: the spatially varying effect of
cold-pool extent upon number density and average weight
(Fig. 3) differs greatly among species in a way that cannot be
explained by the local impact of bottom temperature. For
example, G. chalcogrammus has reduced densities along the
northern boundary of the eastern Bering Sea in years with
high cold-pool extent, and this clearly mirrors the areas where
bottom temperatures are strongly impacted by cold-pool
extent. However, Clupea pallasii and H. stenolepsis show con-
trasting effects of cold-pool extent and neither exactly coin-
cides with areas that show greatest changes in local
temperature. I therefore see a spatially varying response to
cold-pool extent as an approximation to regional temperature
impacts that vary among species. In particular, compressing
temperature to calculate cold-pool extent and then using a
species-specific projection of this index on distribution
approximates a flexible process for translating both local and
nonlocal temperatures to densities maps (see Appendix A in
Supporting Information for more details). I therefore encour-
age ongoing research to allow spatiotemporal models to simul-
taneously estimate a generalized function calculating regional
indices from local environmental conditions, in addition to
the nonparametric function that SVC models already involve.
This could perhaps be accomplished by simultaneously esti-
mating parameters for the empirical orthogonal function
models that are typically used to calculate oceanographic indi-
ces and the SDMs that is used to estimate species
distributions.

In particular, a spatially varying coefficient for regional
oceanographic conditions allows analysts to assimilate both
fine-scale and regional covariates in a single modeling frame-
work, rather than building separate models for each resolution

Fig. 6. Distribution of error for forecasts of northward center of gravity (computed as the difference between forecasts and estimates using all data when
averaging across models) for all 17 species when fitting to data 1982–2014 and forecasting distribution in 2015 (left panel), 2016 (middle panel), or
2017 (right panel) using four models or a “persistence” forecast (see Fig. 5 caption for details). The top of each panel lists the median absolute error
(a value close to zero is better) and bias (a value close to zero is better, where a negative value indicates an estimate that is more southward than subse-
quent observations) for each forecast model.
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(e.g., Smart et al. 2012). Alternatively, previous studies have
included regional covariates by estimating a separate spatial
distribution for “warm” and “cool” years in the eastern Bering
Sea (e.g., Hollowed et al. 2012), while the SVC model avoids
classifying regional conditions into categories prior to analy-
sis. In the eastern Bering Sea, cold-pool extent is associated
with many processes that might be associated mechanistically
with habitat selection and resulting fish distribution includ-
ing: plankton prey densities (Stabeno et al. 2012), dominant
modes of physical transport (Zhang et al. 2012), and par-
titioning of available primary productivity between pelagic
and demersal communities (Hunt et al. 2011). The SVC allows
these many upstream and downstream processes affecting dis-
tribution to be summarized in an annual index that is used to
hindcast and forecast spatial patterns in community structure.

Most importantly, I see SVCs for oceanographic indices as
an important programmatic tool to translate climatological
research from physical oceanography into the distribution
models that are used for marine spatial planning (Rassweiler
et al. 2014), essential fish habitat (Rooney et al. 2018), and
EBM (Link and Browman 2014). Methods exist for translating
indices like the PDO into stock assessment models used for
defining harvest limits (Schirripa et al. 2009), and these
methods are increasingly used to evaluate ecological claims
regarding bottom-up limits for fisheries productivity (O’Leary
et al. 2018). However, oceanographic indices are less com-
monly used in SDM forecasts of distribution shift. I hope that
demonstrating the benefit of oceanographic indices in SDMs
will continue to “build a bridge” between fisheries oceanogra-
phy and EBM.

References
Araújo, M. B., and M. New. 2007. Ensemble forecasting of spe-

cies distributions. Trends Ecol. Evol. 22: 42–47. doi:10.
1016/j.tree.2006.09.010

Bacheler, N. M., K. M. Bailey, L. Ciannelli, V. Bartolino, and
K.-S. Chan. 2009. Density-dependent, landscape, and cli-
mate effects on spawning distribution of walleye pollock
Theragra chalcogramma. Mar. Ecol. Prog. Ser. 391: 1–12. doi:
10.3354/meps08259

Bacheler, N. M., L. Ciannelli, K. M. Bailey, and V. Bartolino.
2012. Do walleye pollock exhibit flexibility in where or
when they spawn based on variability in water tempera-
ture? Deep Sea Res. Part II Top. Stud. Oceanogr. 65–70:
208–216. doi:10.1016/j.dsr2.2012.02.001

Barbeaux, S. J., and A. B. Hollowed. 2018. Ontogeny matters:
Climate variability and effects on fish distribution in the
eastern Bering Sea. Fish. Oceanogr. 27: 1–15. doi:10.1111/
fog.12229

Bartolino, V., L. Ciannelli, N. M. Bacheler, and K.-S. Chan.
2011. Ontogenetic and sex-specific differences in density-
dependent habitat selection of a marine fish population.
Ecology 92: 189–200. doi:10.1890/09-1129.1

Chandler, R., and J. Hepinstall-Cymerman. 2016. Estimating
the spatial scales of landscape effects on abundance.
Landsc. Ecol. 31: 1383–1394. doi:10.1007/s10980-016-
0380-z

Cheung, W. W. L., V. W. Y. Lam, and D. Pauly. 2008. Model-
ling present and climate-shifted distribution of marine
fishes and invertebrates. Fisheries Centre, Univ. of British
Columbia. doi:10.1021/la802452v

De Robertis, A., and E. D. Cokelet. 2012. Distribution of fish and
macrozooplankton in ice-covered and open-water areas of the
eastern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr.
65–70: 217–229. doi:10.1016/j.dsr2.2012.02.005

Dolder, P. J., J. T. Thorson, and C. Minto. 2018. Spatial separa-
tion of catches in highly mixed fisheries. Sci. Rep. 8:
13886. doi:10.1038/s41598-018-31881-w

Finley, A. O. 2011. Comparing spatially-varying coefficients
models for analysis of ecological data with non-stationary
and anisotropic residual dependence. Methods Ecol. Evol.
2: 143–154. doi:10.1111/j.2041-210X.2010.00060.x

Frishkoff, L. O., D. L. Mahler, and M.-J. Fortin. 2017. Integrat-
ing over uncertainty in spatial scale of response within
multispecies occupancy models yields more accurate assess-
ments of community composition. bioRxiv. doi:10.1101/
143669

Fulton, E. A., and others. 2011. Lessons in modelling and
management of marine ecosystems: The Atlantis experi-
ence. Fish Fish. 12: 171–188. doi:10.1111/j.1467-2979.
2011.00412.x

Gelfand, A. E., A. M. Schmidt, S. Banerjee, and C. F. Sirmans.
2004. Nonstationary multivariate process modeling
through spatially varying coregionalization. Test 13:
263–312. doi:10.1007/BF02595775

Gelman, A., and J. Hill. 2007. Data analysis using regression
and multilevel/hierarchical models. Cambridge Univ. Press.
doi:10.1016/S0072-9752(07)85018-4

Grimmer, M. 1963. The space-filtering of monthly surface
temperature anomaly data in terms of pattern, using empir-
ical orthogonal functions. Q. J. Roy. Meteorol. Soc. 89:
395–408. doi:10.1002/qj.49708938111

Heino, J., J. Soininen, J. Alahuhta, J. Lappalainen, and R.
Virtanen. 2017. Metacommunity ecology meets biogeogra-
phy: Effects of geographical region, spatial dynamics and
environmental filtering on community structure in aquatic
organisms. Oecologia 183: 121–137. doi:10.1007/s00442-
016-3750-y

Hermann, A. J., and others. 2016. Projected future biophysical
states of the Bering Sea. Deep Sea Res. Part II Top. Stud.
Oceanogr. 134: 30–47. doi:10.1016/j.dsr2.2015.11.001

HilleRisLambers, J., M. A. Harsch, A. K. Ettinger, K. R. Ford,
and E. J. Theobald. 2013. How will biotic interactions influ-
ence climate change–induced range shifts? Ann. N. Y. Acad.
Sci. 1297: 112–125. doi:10.1111/nyas.12182

Hollowed, A. B., S. J. Barbeaux, E. D. Cokelet, E. Farley, S.
Kotwicki, P. H. Ressler, C. Spital, and C. D. Wilson. 2012.

Thorson Spatially varying effect of oceanographic index

2643

https://doi.org/10.1016/j.tree.2006.09.010
https://doi.org/10.1016/j.tree.2006.09.010
https://doi.org/10.3354/meps08259
https://doi.org/10.1016/j.dsr2.2012.02.001
https://doi.org/10.1111/fog.12229
https://doi.org/10.1111/fog.12229
https://doi.org/10.1890/09-1129.1
https://doi.org/10.1007/s10980-016-0380-z
https://doi.org/10.1007/s10980-016-0380-z
https://doi.org/10.1021/la802452v
https://doi.org/10.1016/j.dsr2.2012.02.005
https://doi.org/10.1038/s41598-018-31881-w
https://doi.org/10.1111/j.2041-210X.2010.00060.x
https://doi.org/10.1101/143669
https://doi.org/10.1101/143669
https://doi.org/10.1111/j.1467-2979.2011.00412.x
https://doi.org/10.1111/j.1467-2979.2011.00412.x
https://doi.org/10.1007/BF02595775
https://doi.org/10.1016/S0072-9752(07)85018-4
https://doi.org/10.1002/qj.49708938111
https://doi.org/10.1007/s00442-016-3750-y
https://doi.org/10.1007/s00442-016-3750-y
https://doi.org/10.1016/j.dsr2.2015.11.001
https://doi.org/10.1111/nyas.12182


Effects of climate variations on pelagic ocean habitats and
their role in structuring forage fish distributions in the
Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr.
65–70: 230–250. doi:10.1016/j.dsr2.2012.02.008

Hunt, G. L., and others. 2011. Climate impacts on eastern
Bering Sea foodwebs: A synthesis of new data and an assess-
ment of the oscillating control hypothesis. ICES J. Mar. Sci.
68: 1230–1243. doi:10.1093/icesjms/fsr036

Kai, M., J. T. Thorson, K. R. Piner, and M. N. Maunder. 2017.
Spatio-temporal variation in size-structured populations
using fishery data: An application to shortfin mako (Isurus
oxyrinchus) in the Pacific Ocean. Can. J. Fish. Aquat. Sci.
74: 1765–1780. doi:10.1139/cjfas-2016-0327

Karp, M. A., et al. 2019. Accounting for shifting distributions
and changing productivity in the development of scientific
advice for fishery management. ICES J. Mar. Sci. doi:10.
1093/icesjms/fsz048

Kass, R. E., and D. Steffey. 1989. Approximate bayesian infer-
ence in conditionally independent hierarchical models
(parametric empirical bayes models). J. Am. Stat. Assoc. 84:
717–726. doi:10.2307/2289653

Kidson, J. W. 1975. Tropical eigenvector analysis and the
southern oscillation. Mon. Weather Rev. 103: 187–196.
doi:10.1175/1520-0493(1975)103<0187:TEAATS>2.0.CO;2

Kristensen, K., A. Nielsen, C. W. Berg, H. Skaug, and B. M.
Bell. 2016. TMB: Automatic differentiation and laplace
approximation. J. Stat. Softw. 70: 1–21. doi:10.18637/jss.
v070.i05

Kristensen, K., U. H. Thygesen, K. H. Andersen, and J. E.
Beyer. 2014. Estimating spatio-temporal dynamics of size-
structured populations. Can. J. Fish. Aquat. Sci. 71:
326–336. doi:10.1139/cjfas-2013-0151

Lauth, R. R., and J. Conner. 2016. Results of the 2013 eastern
Bering Sea continental shelf bottom trawl survey of ground-
fish and invertebrate resources. NOAA Technical Memoran-
dum NMFS-AFSC-331. NMFS-AFSC-331. doi:10.1021/acs.
jpclett.6b01835

Lindgren, F. 2012. Continuous domain spatial models in R-
INLA. ISBA Bull. 19: 14–20.

Lindgren, F., H. Rue, and J. Lindström. 2011. An explicit link
between Gaussian fields and Gaussian Markov random
fields: The stochastic partial differential equation approach.
J. R. Stat. Soc. Ser. B Stat. Methodol. 73: 423–498. doi:10.
1111/j.1467-9868.2011.00777.x

Link, J. S., and H. I. Browman. 2014. Integrating what? Levels
of marine ecosystem-based assessment and management.
ICES J. Mar. Sci. 71: 1170–1173. doi:10.1093/icesjms/
fsu026

Mantua, N. J., and S. R. Hare. 2002. The Pacific decadal oscilla-
tion. J. Oceanogr. 58: 35–44. doi:10.1023/A:
1015820616384

North Pacific Fishery Management Council. 2019. Bering Sea
Fishery Ecosystem Plan. North Pacific Fishery Management
Council. doi:10.3352/jeehp.2019.16.16

O’Leary, C. A., T. J. Miller, J. T. Thorson, and J. A. Nye. 2018.
Understanding historical summer flounder (Paralichthys
dentatus) abundance patterns through the incorporation of
oceanography-dependent vital rates in Bayesian hierarchi-
cal models. Can. J. Fish. Aquat. Sci. doi:10.1139/cjfas-2018-
0092

Perretti, C. T., and J. T. Thorson. 2019. Spatio-temporal
dynamics of summer flounder (Paralichthys dentatus) on the
Northeast US shelf. Fish. Res. 215: 62–68. doi:10.1016/j.
fishres.2019.03.006

Pinsky, M. L., G. Reygondeau, R. Caddell, J. Palacios-Abrantes,
J. Spijkers, and W. W. L. Cheung. 2018. Preparing ocean
governance for species on the move. Science 360:
1189–1191. doi:10.1126/science.aat2360

R Core Team. 2017. R: A language and environment for statis-
tical computing, R Foundation for Statistical Computing

Rassweiler, A., C. Costello, R. Hilborn, and D. A. Siegel. 2014.
Integrating scientific guidance into marine spatial plan-
ning. Proc. R. Soc. B Biol. Sci. 281: 20132252.

Rooney, S. C., C. N. Rooper, E. A. Laman, K. A. Turner,
D. W. Cooper, and M. Zimmermann. 2018. Model-based
essential fish habitat definitions for Gulf of Alaska ground-
fish species. NOAA Fisheries. doi:10.1097/ICB.
0000000000000841

Rooper, C. N., M. F. Sigler, P. Goddard, P. Malecha, R. Towler,
K. Williams, R. Wilborn, and M. Zimmermann. 2016. Vali-
dation and improvement of species distribution models for
structure-forming invertebrates in the eastern Bering Sea
with an independent survey. Mar. Ecol. Prog. Ser. 551:
117–130. doi:10.3354/meps11703

Schirripa, M. J., C. P. Goodyear, and R. M. Methot. 2009. Test-
ing different methods of incorporating climate data into
the assessment of US West Coast sablefish. ICES J. Mar. Sci.
66: 1605–1613. doi:10.1093/icesjms/fsp043

Smart, T. I., J. T. Duffy-Anderson, J. K. Horne, E. V. Farley, C. D.
Wilson, and J. M. Napp. 2012. Influence of environment on
walleye pollock eggs, larvae, and juveniles in the southeast-
ern Bering Sea. Deep Sea Res. Part II Top. Stud. Oceanogr.
65–70: 196–207. doi:10.1016/j.dsr2.2012.02.018

Stabeno, P. J., N. A. Bond, and S. A. Salo. 2007. On the recent
warming of the southeastern Bering Sea shelf. Deep Sea
Res. Part II Top. Stud. Oceanogr. 54: 2599–2618. doi:10.
1016/j.dsr2.2007.08.023

Stabeno, P. J., N. B. Kachel, S. E. Moore, J. M. Napp, M. Sigler,
A. Yamaguchi, and A. N. Zerbini. 2012. Comparison of
warm and cold years on the southeastern Bering Sea shelf
and some implications for the ecosystem. Deep Sea Res.
Part II Top. Stud. Oceanogr. 65–70: 31–45. doi:10.1016/j.
dsr2.2012.02.020

Teal, L., S. Marras, M. Peck, and P. Domenici. 2018. Physiol-
ogy-based modelling approaches to characterize fish habitat
suitability: Their usefulness and limitations - ScienceDirect.
Estunarine Coast. Shelf Sci. 201: 56–63. doi:10.1016/j.ecss.
2015.11.014

Thorson Spatially varying effect of oceanographic index

2644

https://doi.org/10.1016/j.dsr2.2012.02.008
https://doi.org/10.1093/icesjms/fsr036
https://doi.org/10.1139/cjfas-2016-0327
https://doi.org/10.1093/icesjms/fsz048
https://doi.org/10.1093/icesjms/fsz048
https://doi.org/10.2307/2289653
https://doi.org/10.1175/1520-0493(1975)103%3C0187:TEAATS%3E2.0.CO;2
https://doi.org/10.18637/jss.v070.i05
https://doi.org/10.18637/jss.v070.i05
https://doi.org/10.1139/cjfas-2013-0151
https://doi.org/10.1021/acs.jpclett.6b01835
https://doi.org/10.1021/acs.jpclett.6b01835
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1093/icesjms/fsu026
https://doi.org/10.1093/icesjms/fsu026
https://doi.org/10.1023/A:1015820616384
https://doi.org/10.1023/A:1015820616384
https://doi.org/10.3352/jeehp.2019.16.16
https://doi.org/10.1139/cjfas-2018-0092
https://doi.org/10.1139/cjfas-2018-0092
https://doi.org/10.1016/j.fishres.2019.03.006
https://doi.org/10.1016/j.fishres.2019.03.006
https://doi.org/10.1126/science.aat2360
https://doi.org/10.1097/ICB.0000000000000841
https://doi.org/10.1097/ICB.0000000000000841
https://doi.org/10.3354/meps11703
https://doi.org/10.1093/icesjms/fsp043
https://doi.org/10.1016/j.dsr2.2012.02.018
https://doi.org/10.1016/j.dsr2.2007.08.023
https://doi.org/10.1016/j.dsr2.2007.08.023
https://doi.org/10.1016/j.dsr2.2012.02.020
https://doi.org/10.1016/j.dsr2.2012.02.020
https://doi.org/10.1016/j.ecss.2015.11.014
https://doi.org/10.1016/j.ecss.2015.11.014


Thorson, J., N. Ianelli, S. B. Munch, K. Ono, and P. D.
Spencer. 2015. Spatial delay-difference models for estimat-
ing spatiotemporal variation in juvenile production and
population abundance. Can. J. Fish. Aquat. Sci. 72:
1897–1915. doi:10.1139/cjfas-2014-0543

Thorson, J. T. 2018. Three problems with the conventional
delta-model for biomass sampling data, and a computation-
ally efficient alternative. Can. J. Fish. Aquat. Sci. 75:
1369–1382. doi:10.1139/cjfas-2017-0266

Thorson, J. T. 2019a. Forecast skill for predicting distribution
shifts: A retrospective experiment for marine fishes in the
eastern Bering Sea. Fish Fish. 20: 159–173. doi:10.1111/faf.
12330

Thorson, J. T. 2019b. Guidance for decisions using the vector
autoregressive spatio-temporal (VAST) package in stock,
ecosystem, habitat and climate assessments. Fish. Res. 210:
143–161. doi:10.1016/j.fishres.2018.10.013

Thorson, J. T., and L. A. K. Barnett. 2017. Comparing esti-
mates of abundance trends and distribution shifts using
single- and multispecies models of fishes and biogenic habi-
tat. ICES J. Mar. Sci. 74: 1311–1321. doi:10.1093/icesjms/
fsw193

Thorson, J. T., J. N. Ianelli, and S. Kotwicki. 2017. The relative
influence of temperature and size-structure on fish distribu-
tion shifts: A case-study on Walleye pollock in the Bering
Sea. Fish Fish. 18: 1073–1084. doi:10.1111/faf.12225

Wood, S. N. 2006. Generalized additive models: An introduc-
tion with R, 1st ed. Chapman and Hall/CRC Press.

Zhang, J., R. Woodgate, and S. Mangiameli. 2012. Towards
seasonal prediction of the distribution and extent of cold
bottom waters on the Bering Sea shelf. Deep Sea Res. Part II
Top. Stud. Oceanogr. 65–70: 58–71. doi:10.1016/j.dsr2.
2012.02.023

Acknowledgments
I thank M. Litzow, L. Rogers, and L. Ciannelli for discussions that

prompted me to investigate spatially varying coefficient models, as well as
sparked my interest in combining physical oceanography with species dis-
tribution models. I also thank C. Rooper, D. McGowan, N. Sibanda, and
one anonymous review for comments on earlier drafts. Finally, I thank the
many scientists who have contributed to the eastern Bering Sea bottom
trawl survey analyzed here, and the developers of Template Model
Builder, without which the R package VAST would not exist.

Conflict of Interest
None declared.

Submitted 12 March 2019

Revised 07 May 2019

Accepted 04 June 2019

Associate editor: Kelly Benoit-Bird

Thorson Spatially varying effect of oceanographic index

2645

https://doi.org/10.1139/cjfas-2014-0543
https://doi.org/10.1139/cjfas-2017-0266
https://doi.org/10.1111/faf.12330
https://doi.org/10.1111/faf.12330
https://doi.org/10.1016/j.fishres.2018.10.013
https://doi.org/10.1093/icesjms/fsw193
https://doi.org/10.1093/icesjms/fsw193
https://doi.org/10.1111/faf.12225
https://doi.org/10.1016/j.dsr2.2012.02.023
https://doi.org/10.1016/j.dsr2.2012.02.023

	 Measuring the impact of oceanographic indices on species distribution shifts: The spatially varying effect of cold-pool ex...
	Methods
	SVC models
	Interpretation of SVCs in spatiotemporal models
	Regression of spatiotemporal variation on an annual index
	Random slope models
	Generalized analysis of nonlocal environmental impacts

	Including SVCs in VAST
	Case-study application

	Results
	Discussion
	References
	Acknowledgments
	Conflict of Interest



