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Abstract 25 

Niche-based approaches to community analysis often involve estimating a matrix of pairwise 26 

interactions among species (the “community matrix”), but this task becomes infeasible using 27 

observational data as the number of modeled species increases.  As an alternative, neutral 28 

theories achieve parsimony by assuming that species within a trophic level are exchangeable, 29 

but generally cannot incorporate stabilizing interactions even when they are evident in field 30 

data.  Finally, both regulated (niche) and unregulated (neutral) approaches have rarely been 31 
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fitted directly to survey data using spatio-temporal statistical methods.  We therefore propose 32 

a spatio-temporal and model-based approach to estimate community dynamics that are 33 

partially regulated.  Specifically, we start with a neutral spatio-temporal model where all 34 

species follow ecological drift, which precludes estimating pairwise interactions.   We then 35 

add regulatory relations until model selection favors stopping, where the “rank” of the 36 

interaction matrix may range from zero to the number of species.  A simulation experiment 37 

shows that model selection can accurately identify the rank of the interaction matrix, and that 38 

the identified spatio-temporal model can estimate the magnitude of species interactions.  A 39 

forty-year case study for the Gulf of St. Lawrence marine community shows that recovering 40 

grey seals have an unregulated and negative relation with demersal fishes.  We therefore 41 

conclude that partial regulation is a plausible approximation to community dynamics using 42 

field data, and hypothesize that estimating partial regulation will be expedient in future 43 

analyses of spatio-temporal community dynamics given limited field data.  We conclude by 44 

recommending ongoing research to add explicit models for movement, so that meta-45 

community theory can be confronted with data in a spatio-temporal statistical framework.   46 

Keywords:  neutral theory; community regulation;  spatio-temporal model;  Gulf of St. 47 

Lawrence;  community matrix 48 

Introduction 49 

For at least 50 years, ecologists have conducted research on niche theory, which postulates 50 

that each species within a community occupies a unique ecological niche and that pairwise 51 

interactions arise from overlap in niche (Hutchinson 1957).  Niche theory has encouraged 52 

ongoing research to measure the per-capita impact of one species on another for all pairs of 53 

species in a community or guild.  In sharp contrast, several authors have introduced ‘neutral 54 

theories’ of ecology (Hubbell 2001, Harte 2011) in which species are viewed as exchangeable 55 

within a given trophic level or guild.  Despite their clear differences, there is considerable 56 

empirical support for both niche and neutral theory.  As with most binary distinctions in 57 

ecology (top-down v. bottom up, ratio-dependent v. prey-dependent, etc.), each theory may 58 

generate accurate and useful predictions of community dynamics for a particular temporal, 59 

spatial, taxonomic, and trophic scale.  However, ecologists currently have few quantitative 60 

tools for combining insights from niche and neutral theories.  61 

 Inferring pairwise interactions remains one of the primary research goals in theoretical 62 

and applied ecology.  However, species interactions are difficult to measure because the 63 

strength and sign of pairwise interactions depend on many circumstances, including (but not 64 
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limited to): the presence of additional species (Hixon and Carr 1997); environmental 65 

conditions (Morris 2003); and recent evolutionary history (Stegen et al. 2012).  Manipulative 66 

experiments in micro- and mesocosms remain the gold-standard for inferring species 67 

interactions, but an increase in the number of species results in a factorial increase in the 68 

number of experimental treatments that must be conducted (Wootton and Emmerson 2005).  69 

Given these logistical difficulties, researchers have proposed two largely-independent 70 

approaches for predicting community dynamics:  linear approximations using time series 71 

statistics, and neutral theories involving ecological drift.   72 

 Linear time-series approximations to community dynamics typically involve estimating 73 

the community matrix, defined as the matrix of impacts from increasing the abundance of one 74 

species on the per-capita productivity of every other species.  The community matrix can be 75 

efficiently estimated using a multispecies extension of the Gompertz model for density 76 

dependence (Ives et al. 2003).  Conveniently, this model also permits estimating the 77 

covariance of unexplained variation (termed “process errors” in the following).  The 78 

estimated community matrix in this case represents a first-order Taylor series approximation 79 

to regulatory interactions, and Pfister (1995) gives support that this approach will estimate 80 

interactions with a sign and strength that matches manipulative experiments.   Once the 81 

community matrix and process error covariance are estimated, results can be processed to 82 

yield a plethora of potential indicators of community stability, e.g., resilience or reactivity 83 

(Ives 1995, Neubert and Caswell 1997).  Deyle et al. (2016) extend this framework to permit 84 

estimates of context-dependent species interactions but do not explicitly address the neutral-85 

to-niche continuum.   86 

 By contrast, neutral theories typically postulate that all species (MacArthur and Wilson 87 

1967) or individuals (Hubbell 2001) have identical characteristics.  Given this assumption, 88 

changes in broad-scale community patterns can then be explained via ecological drift, i.e., the 89 

random replacement of individuals or species within a local pool.  This approach avoids 90 

estimating interactions for different species (because all species/individuals have identical 91 

interactions), and remaining parameters (fundamental biodiversity and immigration numbers) 92 

can be estimated from the species-abundance distribution (Etienne and Alonso 2005).  Once 93 

parameters are estimated, species turn-over rates and species-abundance curves can be 94 

projected forward and backwards in time.   95 

 Both time-series and neutral theories for community structure and dynamics would 96 

benefit from including spatial variation explicitly.  For example, Thorson et al. (2014) 97 

demonstrate that estimates of density dependence in time-series population models will be 98 
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biased whenever density varies spatially and density dependence acts locally, and that 99 

including spatial variation also improves precision by using spatial replication to increase 100 

statistical efficiency.  A spatial analogue of time-series models for community dynamics may 101 

therefore result in improved accuracy and precision for predicting pairwise interactions and 102 

community stability.  Spatial variation also underlies many important mechanisms for 103 

community stability (Chesson 2000), such that the estimate of spatio-temporal variation in 104 

productivity is useful in its own right.  Similarly, neutral theories have generally included 105 

space explicitly, e.g., by including the density of individuals (Hubbell 2001) or energy (Harte 106 

2011) as model elements.  However, research has underlined the importance of spatial 107 

variation in environmental conditions (Gilbert and Lechowicz 2004, Gilbert et al. 2006) or 108 

spatio-temporal variation in habitat suitability (Dornelas et al. 2006) to predictions arising 109 

from neutral theory.  We therefore hypothesize that estimating spatial and spatio-temporal 110 

variation in productivity within neutral theory will in some cases improve estimates of 111 

community dynamics.   112 

 We therefore develop a spatio-temporal approach to estimating community dynamics, 113 

where data can be used to discriminate between neutral or highly regulated dynamics.  In 114 

particular, we focus on determining the number of regulatory relations that are identifiable 115 

from a given community data set.  To do so, we propose a new approach, which proceeds 116 

from the null hypothesis that all species follow identical, unregulated ecological drift (neutral 117 

dynamics) and successively adds axes of regulation until adding an additional regulatory 118 

relation is not parsimonious.  This approach provides a continuum between estimating 0 and 119 �2 parameters for density dependence (approximating neutral and fully-regulated dynamics, 120 

respectively, where � is the number of species), and estimating fewer than �2 parameters is 121 

accomplished without zeroing out any single pairwise interaction.  We then demonstrate the 122 

approach using a simulation experiment and a case study involving growth of grey seals 123 

impacting the fish community in the Gulf of St. Lawrence.  Using these examples, we show 124 

that we can identify “partial regulation” (a combination of neutral and regulated components) 125 

in artificial and real-world data sets while accounting for spatio-temporal variation in 126 

productivity and density.  By potentially estimating few than �2 parameters for the species 127 

interactions, we also hypothesize that our spatio-temporal approach will be computationally 128 

feasible for large communities. 129 

Methods 130 
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Time series models for the dynamics of natural communities typically involve a nonlinear 131 

function for growth of each population: 132 ��+1 = �(��) ∘ exp (��+1) (1) 

where �� is a vector of abundances for each of P species in time t (i.e. 133 �� = ��1,� ,�2,� , … ,��,��T), �(��) is a potentially nonlinear, vector-valued function 134 

representing inter- and intra-specific interactions for all species in the community, and we use 135 ∘ to indicate the Hadamard (elementwise) product of two vectors.  �� is a vector of random 136 

effects that approximates unmodeled variation in community dynamics, including time-137 

dependence in f (which is assumed to be fixed in Eq. 1).  Process errors are generally 138 

assumed to follow some exchangeable process, e.g.: 139 ��~MVN(�,�process) (2) 

where �process is the covariance of process errors.  We take the first-order Taylor’s series 140 

expansion of �� ≡ ln(��) around ���, defined as the average observed value for ln(��) during 141 

an interval ���� ≤ � ≤ ����.  This results in a linear approximation to dynamics: 142 ��+1 = � + ��� + ��+1 (3) 

where � is a simple transformation of the community matrix such that a 1% increase in 143 

species j results in a ��,�% increase in productivity for species i (in other words: ��,� =144 �� ln[��]
ln [�(��)]), average productivity is: 145 � = ln[�(���)] − ��� (4) 

and process errors �� now accounts for both time-dependence in C and �, as well as second- 146 

and higher-order components of the Taylor-series approximation. 147 

 Using this approximation, community dynamics are stable as long as the modulus of all 148 

eigenvalues of � are between -1 and 1.  In this case, community equilibrium is: 149 �∗ = (� − �)−1� (5) 

and it is relatively easy to calculate metrics of community stability including (1) the variance 150 

around this equilibrium or (2) the reactivity of the stationary distribution (i.e., the ratio of the 151 

expected distance from community state � to equilibrium �∗, given that x is drawn from its 152 

stationary distribution).   153 

 There are three potential problems with this formulation for community dynamics: 154 

1. Partial regulation:  Equilibrium properties of this model (Eq. 5) have previously been 155 

derived only for the case of stable dynamics, i.e., when the eigenvalues of � are inside the 156 

unit circle.  However, many reasonable ecological models contain non-hyperbolic 157 

equilibria (for which the modulus of the dominant eigenvalue is equal to 1). In this case, 158 
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there is one or more axis that cannot be distinguished from following a random-walk 159 

process in log-densities.   160 

2. Veil of uncertainty:  Following the argument in Strong (1986), we suspect that many 161 

communities have regulation that is only distinguishable sporadically and for long time 162 

series (i.e., due to densities reaching extreme values, or due to density-dependent 163 

responses to infrequent environmental conditions).  In these cases, many real-world data 164 

sets will not have any appearance of (or information about) the form of regulation that has 165 

permitted the community to persist long enough to generate the observed diversity of 166 

species.  In these cases, we believe that it is pragmatic to begin with the assumption of no 167 

regulation (i.e., � = �), and then identify axes of regulation until there is no further 168 

information to identify regulation.  This process may result in a stable community matrix 169 

(i.e., � − � having rank P), but may also result in an estimate of the community matrix 170 

with neutral stability. 171 

3. Curse of dimensionality:  The number of parameters in the community matrix � increases 172 

as P2.  However, adding subsequent species to a community dynamics analysis often 173 

results in adding species with fewer and fewer observations.  We therefore seek an 174 

approximation to � that might have fewer parameters than P2, but where model-selection 175 

tools can be used to identify the degree of dimension-reduction, and where model 176 

selection can potentially result in the unrestricted � (with P2

For these three different but interrelated reasons, we propose a procedure for estimating 179 

partial regulation in natural communities.   180 

 degrees of freedom) being 177 

identified as parsimonious. 178 

Partial regulation, and its connection to neutral dynamics 181 

In the following, we develop a new parameterization for the community matrix.  We begin 182 

with a re-parameterization of our linear approximation (Eq. 3): 183 Δ��+1 = � + ��� + ��+1 (6) 

such that � = � − �, where abundance ��=1 in the first year is estimated for each species.  In 184 

particular, we seek a form of � where one or more linear combinations of log-density for 185 

each species follows ecological drift (i.e., � has one or more eigenvalues equal to zero), and 186 

where the rank R of B (0 ≤ � ≤ �) contains information regarding the mix of neutral and 187 

regulated components to community dynamics.  Specifically, a rank R for the interactions 188 

matrix B implies that � − � linear combinations of log-density follow ecological drift.  Given 189 

that B has rank R, then B has at most �2 − (� − �)2 degrees of freedom.  In particular, we 190 
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use a parameterization such that parameters � can be uniquely mapped onto B (i.e., �(�) ⟼191 �, where g is a differentiable function), and where we can place bounds on the non-zero 192 

eigenvalues.  Appendix S1 proposes two functions for this task, where method #1 restricts � 193 

to have real-valued eigenvalues while method #2 allows both real and complex eigenvalues.  194 

However, exploratory analysis shows that restricting � to have real-valued eigenvalues is 195 

more numerically stable for parameter estimation, so we use this version for subsequent case-196 

study and simulation examples.   Importantly, both methods allow the model to bridge 197 

between 0 and �2 parameters for density dependence, and both methods allow estimation of 198 

non-zero interactions for all pairs of species even when � < � (i.e., ��,�∗ ≠ 0 for all species 199 � and �∗ even when estimating fewer than �2 density-dependence parameters) 200 

 Having defined this model, we note that the case of � = 0 results in � = �, such that 201 Δ��+1 = � + ��+1.  In this case, log-density for each species follows a random-walk process 202 

with drift �, i.e., geometric growth rate for each species is normally distributed with mean � 203 

and covariance �process.  Random-walk dynamics represent a process where each population 204 

follows an exponential increases or decay on average but has stochastic variation around this 205 

level (termed “ecological drift”) .  Although this definition allows species-specific growth 206 

rates, we recover the standard definition of neutrality (e.g., as defined by Hubbell (2001)) if  207 �� is identical for all species.  When � = � for each species, then the community follows 208 

ecological drift starting from initial abundance ��=1.   209 

 We hypothesize that ecological drift (i.e., � = 0) is a reasonable approximation to 210 

community dynamics over short time periods, where � governs whether abundance for each 211 

individual species is expected to increase or decrease over short periods.  However, long-term 212 

dynamics of this model are not biologically realistic when � = � and � = � because, in the 213 

limit as time goes to infinity, the expected population size for each species will go to infinity.  214 

This occurs because each species follows a random-walk process in log-space, such that 215 

extinction is impossible and the variance in log-space goes to infinity.   When specifying 216 

neutral dynamics, the model can be estimated with as few as one freely-estimated parameter 217 

(�process = �2�).  Longer term dynamics can also be stabilized by deriving a value of � < � 218 

that results in finite asymptotic population sizes given the magnitude of process error.  219 

Presumably such a model could be parameterized to generate lognormal species-abundance 220 

curves, following a calculation similar to Engen and Lande (1996), although we do not 221 

pursue the idea here. 222 

Spatio-temporal community dynamics 223 
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Previous research suggests that spatio-temporal models can provide more accurate and 224 

precise estimates of single-species density dependence (Thorson et al. 2014).   We therefore 225 

estimate parameters using a spatio-temporal version of the community-dynamics model.  This 226 

involves replacing all scalar-valued variables with vectors representing density at each of S 227 

sites within a 2-dimensional spatial domain (Cressie and Wikle 2011).  We specifically 228 

replace the vector of log-abundance �� for each species in year t with a matrix �� with 229 

dimension P by S representing log-density ��,�,� in time t for species p at site s, replace 230 

productivity α with A representing productivity ��,� for species p at site s, and replace 231 

process errors �� with �� representing unexplained variation ��,�,�.  The model therefore 232 

becomes: 233 ��+1 = � + (� + �)�� + ��+1 (7) 

where the expectation of initial log-abundance for each species and site (��=1,�,�) is estimated 234 

as a fixed offset ��  from the productivity at that site.  Specifically, we specify ��=1,�,� =235 ��,� + �� + ��=1,�,�, where the variance of initial log-abundance away from its expectation is 236 

identical to the variance of process errors (future studies could explore more-complicated 237 

specifications for initial conditions).  We also specify a distribution for spatial variation in 238 

productivity:  239 

vec(�)~MVN(�A,�spatial ⊗��)  (8) 

where �A is the median productivity across space, �� is a p by p diagonal matrix where each 240 

diagonal element is the pointwise spatial variance ��2 for each species �, and �spatial is a 241 

spatial correlation matrix.  Spatial correlations are defined such that the pairwise correlation 242 

between location � and � + ℎ follows a Matérn function with smoothness of one:  243 ��������(�, � + ℎ) =
1

2�−1Γ(�)
× (�|ℎ|)� × ��(�|ℎ|) 

(9) 

where � is a parameter governing the distance ℎ at which two locations are effective 244 

uncorrelated, � is a smoothness parameter [fixed at 1.0; Simpson et al. (2012)] and �� is the 245 

Bessel function.  Process errors Et  

vec(��)~MVN(�,�spatial ⊗��)  

are also defined spatially: 246 

(10) 

We use a reduced-rank approximation for covariance among species, �� = ��T, such that �� 247 

has rank k and is calculated from a p by k matrix � (Warton et al. 2015, Thorson et al. 2016).  248 

In the following, however, we specify full rank for �� (i.e., � = �).  This model makes three 249 

important simplifying assumptions: (1) that interactions are constant over space and time 250 

(i.e., � is not indexed by location or year), (2) that spatial variation in productivity is 251 
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statistically independent among species, and (3) that the decorrelation distance for each 252 

species is identical (i.e., � does not vary among species).  Each of these assumptions could be 253 

relaxed in future research, but we do not explore them further here. 254 

 Parameters are estimated using sampling data, and we assume that sampling data are 255 

proportional to local density for each species.  We use the following observation model for 256 

continuous-valued data (i.e., samples in units of biomass): 257 

P�� = ��(�)|��(�),�(�),�(�)�
= ⎩⎪⎨
⎪⎧ exp �−��,2��(�)� if � = 0

�1 − exp �−��,2��(�)�� × Lognormal��; , ln� ��(�)
1 − exp �−��,2��(�)�� , ��,12 � if � > 0

� 
(11a

) 

where ��,1 is the standard deviation (in log-space) for non-zero samples, and ��,2 governs the 258 

relationship between the probability of not encountering the species in a sample and the 259 

predicted density for species p, such that probability of a zero sample (C=0) is identical to a 260 

Poisson distribution with intensity ��,2��(�) (i.e., Pr (� > 0) is described using a generalized 261 

linear mixed model using a complementary log-log link).  We use a lognormal distribution so 262 

that future studies could interpret the magnitude of residual variation ��,12  relative to spatio-263 

temporal process errors (��).  Alternatively, if samples are count valued (i.e., have units 264 

numbers) we use the Poisson distribution: 265 

P�� = ��(�)|��(�),�(�),�(�)� = Poisson(��(�))  (11b) 

where in either case, ��(�) = exp (��(�),�(�),�(�)), where ��(�),�(�),�(�) is the estimated log-266 

density for the species, year, and site of the ith

Parameter estimation for spatio-temporal community dynamics 272 

 observation.  If sampling is proportional to 267 

local density with detectability �� for each species, and detectability is constant over time and 268 

space but not perfect (�� ≠ 1), then this will bias estimates of productivity (��,�) and 269 

absolute density (��) but will not otherwise affect estimates of interactions (�) or relative 270 

differences in density across time and space for a single species (��,�,�/∑ ∑ ��,�,���=1��=1 ).   271 

While estimating parameters, we treat the parameters governing interactions (�), process 273 

error covariance (L), the geostatistical range for correlations (�), average productivity for 274 

each species (�A), the magnitude of spatial variation in productivity for each species (��2), the 275 

average offset of initial log-abundance from productivity for each species (��), and 276 

potentially the parameters governing the observation model if using catch-in-biomass data (�) 277 

as fixed effects.  This set of parameters is arguably the minimum number required to account 278 
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for spatial variation (i.e., a Grinnelian niche) for each species, correlated responses to spatio-279 

temporal variation, and the potential for species interactions.  We treat as random the spatial 280 

variation in productivity (�), and the spatial variation in density for each species and year 281 

(��).  We treat density as random, rather than process errors (��) because this results in a 282 

more separable specification for random effects without affecting the overall likelihood of 283 

fixed effects.  This increased separability for random effects then leads to faster parameter 284 

estimation.  Modeling random effects is a procedure for eliciting the expected covariation in 285 

data arising from a proposed set of fixed effects.  Although fixed effects can generally be 286 

estimated for neutral models without recourse to numerical integration techniques (e.g., 287 

Etienne and Alonso 2005), the increased complexity of our model required using numerical 288 

integration within a mixed-model statistical framework for estimating the small number of 289 

fixed effects.  Despite our use of numerical integration for random effects representing 290 

density and spatial variation, the model involves a small number of free parameters relative to 291 

the amount of available data.  Our model using full process-error rank and the observation 292 

model for counts (Eq. 11b) bridges between 1 + 3.5� + 0.5�2 parameters (when dynamics 293 

are unregulated) and 1 + 3.5� + 1.5�2 parameters (when dynamics are fully regulated).  For 294 

biomass sampling data (Eq. 11a), our chosen configuration also involves an additional 2� 295 

parameters for the observation model. 296 

 To identify maximum likelihood estimates for fixed effects, we identify their values that 297 

maximize the marginal likelihood function when integrating across random effects.  To do so, 298 

we use Template Model Builder, TMB (Kristensen 2014, Kristensen et al. 2016) called from 299 

within the R statistical environment (R Core Team 2015), and use the Microsoft R Open 300 

build for low-level parallelization of all computations (https://mran.revolutionanalytics.com/).  301 

For computational efficiency, we also use a stochastic partial differential equation 302 

approximation to all multivariate-normal distributions (i.e., � and ��), and also approximate 303 

these function-valued variables as being piecewise-constant in the neighborhood of a small 304 

number of “knots”, where the number of knots is chosen as a balance of computational speed 305 

and precision (Lindgren et al. 2011, Thorson et al. 2014, 2015).  Estimating parameters using 306 

Template Model Builder involves the following steps: (1) specify the joint log-likelihood of 307 

data and random effects; (2) given specified values of fixed effects, use TMB to identify 308 

values of random effects that maximize the joint log-likelihood; (3) given these values for 309 

fixed and random effects, use TMB to calculate the Laplace approximation to the marginal 310 

likelihood for fixed effects, and its gradient with respect to fixed effects (see e.g., Skaug and 311 
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Fournier 2006); and (4) use the marginal likelihood and its gradients within a nonlinear 312 

minimizer in R to identify maximum likelihood estimates for fixed effects.   313 

 We identify model convergence by confirming that the absolute-value of the final 314 

gradient of the marginal likelihood with respect to fixed effects is <0.01 for all parameters, 315 

and that the Hessian matrix is positive definite.  After identifying maximum likelihood 316 

estimates for fixed effects and confirming convergence, TMB then identifies empirical Bayes 317 

estimates of random effects, and uses a generalized delta method to calculate standard error 318 

estimates for all fixed and random effects.  An R package MIST to apply this Multispecies 319 

Interactions Spatio-Temporal model to new data sets is available on the first author’s GitHub 320 

page (https://github.com/James-Thorson/MIST), and we used v1.1.0 (DOI 321 

10.5281/zenodo.260143).  By using maximum likelihood methods for parameter estimation, 322 

we allow hypothesis testing and probabilistic comparisons of neutral and niche approaches, 323 

as advocated by McGill et al. (2006). 324 

Simulation experiment 325 

We conducted a simulation experiment to explore the statistical properties of our proposed 326 

model.  Specifically we seek to determine: 327 

1. whether we can accurately estimate the interaction matrix (B); and 328 

2. whether model selection tools can accurately identify the number of regulatory 329 

relationships (R), where this number can range from zero (i.e., B=0) to P (i.e., B is 330 

estimated with the restriction that its eigenvalues have range between -1 and 1).   331 

To conduct this experiment, we simulated 50 replicated data sets, where each data set 332 

involves dynamics for four species over 40 years.  Dynamics occur at 25 sites that are 333 

randomly distributed following a 2-dimensional uniform distribution within a square domain, 334 

where each site is sampled in numbers twice per year (2,000 samples total per species).  We 335 

simulated data using Eq. 7-10 and 11b, where �A = 2.0, �spatial = 0.01, �E = 0.05�, where 336 �spatial is specified such that correlations drop to 10% at 20% of the length of an edge of the 337 

square spatial domain.  We specified the interaction matrix: 338 

� = � −0.4 −0.4−0.4 −0.4

−0.1 −0.05−0.1 −0.05
 −0.1 −0.05

 −0.1 −0.05

−0.3 −0.3−0.3 −0.3

�  

(12) 

i.e., where B is composed of two species modules (Holt 1997), where species 1 and 2 are the 339 

first competitive module, and species 3 and 4 are the second competitive module.  We also 340 

included weak competition among modules (such that all species have non-zero interactions), 341 

but where species 1 and 3 have stronger among-module competition than species 2 and 4 342 
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(such that all species have a unique set of interactions).  Given this structure, community 343 

dynamics has two regulated and two unregulated components, i.e., � is within the family of 344 

matrices generated by � = 2 (which has 12 degrees of freedom).  We also compare results 345 

against a null model wherein � is estimated as a diagonal matrix with independent parameters 346 

along the diagonal and process errors are also independent (�E is diagonal).  This null model 347 

includes single-species density dependence in place of community-level regulation, and 348 

illustrates the magnitude of error arising from ignoring community interactions.  Finally, we 349 

conduct a sensitivity analysis illustrating the effect of less-informative data.  To do so, we 350 

conduct another simulation experiment that is identical except that initial log-abundance is 351 

decreased to �A = 1.0.  In both simulation experiments, we record the proportion of 352 

simulation replicates that result in non-convergence, and restrict results to converged models. 353 

Case study application 354 

To demonstrate this method, we use data for four species (Atlantic cod, thorny skate, white 355 

hake, and grey seal) in the Gulf of St. Lawrence from 1971 to 2012, which we previously 356 

published by Swain et al. (2015).  This time series spans two (thorny skate) to four (white 357 

hake) generations at historical levels of natural mortality and age at maturation.  Data for 358 

Atlantic cod, thorny skate, and white hake are obtained from a bottom trawl survey of fishes, 359 

and represent samples of biomass divided by area-swept by the bottom trawl (termed “catch-360 

per-unit-effort”, CPUE, analyzed using Eq. 11a).  Sampling follows a simple random design 361 

involving 63-231 samples per year (5,588 samples total), and for computational efficiency we 362 

assign each sampling location to the nearest of 100 uniformly distributed “knots” such that 363 

we estimate density at each of 100 knots (� = 100) and spatial variation occurring at fine 364 

scales is attributed to residual variation (��,12  in Eq. 11a).  Data for grey seal are estimates of 365 

seal density obtained from analysis of seal tag sightings during this period.  The data set 366 

therefore contains a mix of survey observations and model output.  The data set has 367 

previously been analyzed by Swain et al. (2015), and it is not feasible to simultaneously 368 

estimate spatio-temporal community dynamics and reconstruct seal densities from raw tag-369 

resighting data.  However, the joint analysis of survey data as a Poisson process and tag-370 

resighting data as a Markovian movement process would be an interesting topic for future 371 

research. 372 

Results 373 

Simulation experiment 374 
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We first explore results from our simulation experiment, where we simulate dynamics for 375 

four species with two regulated and two unregulated components (i.e., true � = 2).  In this 376 

case, model selection identifies a model with 2 regulated relationships in almost all 377 

simulation replicates, with 3 and 4 relations identified in a small proportion, and independent 378 

dynamics are never identified (Fig. 1 top panel).  The model with 2 regulated relations 379 

converges in almost all simulation replicates (2%), although the model with independent 380 

dynamics is slightly more stable numerically (0% nonconvergence).  Models with 2 or more 381 

regulated relations are able to improve predictions of density relative to either independent 382 

dynamics, or a model with only one regulatory relation (Fig. 1 bottom panel).  Visualizing 383 

estimates of the interaction matrix (� = � + �) shows that the model generates essentially 384 

unbiased estimates of both within-module competition (e.g., species 1 and 2) and among-385 

module competition (e.g., species 1 and 3, Fig. 2).  Sensitivity analyses show that decreased 386 

sample sizes for sampling result in increased rates of non-convergence and degraded ability 387 

to identify the rank of the interaction matrix, but maintains approximately unbiased estimates 388 

of species interactions (Appendix S2, Fig. S1-S2).  We therefore conclude that the model is 389 

able to accurately identify instances of partial regulation, e.g., to evaluate the strength of 390 

evidence in favor of neutral or niche-based approaches to community regulation, but that 391 

estimating full regulation (� = 4) does not substantially degrade performance when 392 

estimating local density.  393 

Case study: Gulf of St. Lawrence community dynamics 394 

Model selection from our case study identifies the model with three regulatory relationships 395 

as being parsimonious, thus identifying strongest evidence for partially regulated dynamics in 396 

this community.  The estimated interaction matrix (Table 1) shows a strong, negative impact 397 

of grey seals on thorny skate, and a weak negative relation of grey seals on Atlantic cod 398 

(where the former is statistically significant using a 2-sided Wald test; −0.213, SE=0.078, 399 � < 0.01).  By contrast, Atlantic cod and white hake both have significant, positive impacts 400 

with thorny skate.  The eigen-decomposition of this interaction matrix (Fig. 3) shows that the 401 

unregulated component of community dynamics is associated with the negative relation 402 

between grey seals and all fish species (top-left panel).  Other relations have weak regulation 403 

(i.e., eigenvalues different from 1.0).   404 

 Inspecting density maps for each species (Fig. 4) shows that thorny skate has gone from 405 

being ubiquitous to having low density everywhere except in deeper water along the north-406 

eastern seaward boundary.  In contrast, grey seal has shown a marked increase in density in 407 
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shallower waters, particularly near the western coast of Prince Edward Island.  By contrast, 408 

Atlantic cod showed an initial increase and subsequent decrease in density.   Cod distribution 409 

shifted toward the central Magdalen Shallows during the increase and out of it during the 410 

decrease. In recent years, cod densities have decreased the most off the west of Prince 411 

Edward Island, the region where the increase in grey seal density has been most marked. 412 

White hake were initially distributed in warm deeper water along the north-eastern seaward 413 

boundary and in warm shallow inshore waters. Their density initially increased slightly in 414 

these areas and then declined. This decline was most severe in inshore areas, where white 415 

hake are now very rare.   The estimated magnitude of process errors (�process = ���; Fig. 5) 416 

shows that Atlantic cod has the highest residual variation in density (a log-standard deviation 417 

of 0.22), while other species have lower residual variation (log-standard deviation of <0.20).  418 

Residual correlations are generally positive, and are stronger among the three fish species 419 

than between fishes and grey seals.  This implies that processes in addition to pairwise 420 

interactions (e.g., environmental conditions) may cause synchronous variation in productivity 421 

for these fishes.   422 

Discussion 423 

In this paper, we have hypothesized that short-term dynamics for ecological communities will 424 

involve a mixture of regulated and unregulated components, and that the associated 425 

community matrix will be parsimonious in some cases.  We then demonstrated a model for 426 

spatio-temporal community dynamics that uses model selection to identify regulation along a 427 

continuum ranging from neutral dynamics (where every species follows unregulated 428 

ecological drift) to stable dynamics (where the full community matrix of pairwise interactions 429 

is estimated).  A simulation experiment confirms (1) that model selection is able to accurately 430 

identify the number of regulatory relationships given sufficient data, (2) that lack of 431 

convergence is associated with insufficient data to identify the number of regulatory 432 

relations, and (3) that models are generally able to estimate pairwise interactions.  A case 433 

study illustrates our proposed approach for a trophically-linked community involving a 434 

recovering top predator (grey seals).  Previous spatio-temporal models for ecological 435 

communities have generally involved a factor-analysis approach (Warton et al. 2015, 436 

Thorson et al. 2016), where dynamics for P species is approximated using R spatio-temporal 437 

factors (0 ≤ � ≤ �).  We have replaced this phenomenological description of spatio-438 

temporal dynamics with a model that explicitly estimates significant pairwise interactions, 439 

but have retained both (1) the ability to estimate correlations in spatio-temporal dynamics 440 
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among species, and (2) the likely improvement in statistical efficiency from using spatial 441 

replication to estimate interactions.   442 

 We propose this approach to remedy issues in previous neutral and time-series 443 

approaches to community dynamics.  In particular, time-series approaches require estimating 444 

pairwise interactions that increase as the square of the number of species, and this will likely 445 

not be parsimonious (or even identifiable) for large communities.  Similarly, neutral models 446 

have important limitations, inter alia, previous criticism for failing to capture spatial variation 447 

(Gilbert and Lechowicz 2004, Gilbert et al. 2006) or spatio-temporal variation in habitat 448 

suitability for individual species (Dornelas et al. 2006).  By contrast, our approach can be 449 

interpreted as a short-term approximation to neutral spatio-temporal dynamics when there are 450 

no regulatory relations (� = 0, such that � = �) and no drift (� = �).  In this limiting case, 451 

our approach can be reduced to two parameters: the characteristic spatial scale, and the 452 

magnitude of spatio-temporal variation.  The approach can then be expanded to include 453 

correlated responses to spatio-temporal variation, thereby accounting for similar responses to 454 

environmental conditions.  Although we use numerical integration (rather than analytical 455 

integration as has been used previously to describe neutral dynamics, e.g., Etienne and 456 

Alonso (2005)), we argue that our approach bridges low- and high-dimensional applications.   457 

 Previous authors have noted that neutral theory is likely not a suitable approximation to 458 

community dynamics for species at different trophic levels (Hubbell 2001), for which the 459 

assumptions of identical per-capita impacts is particularly unlikely.  By contrast, our study 460 

has shown that partially regulated community dynamics is occurring across two trophic levels 461 

in the Gulf of St. Lawrence.  Specifically, the increase in predators (grey seals) is offset by a 462 

decrease in three prey species (fishes), while other axes of community dynamics are generally 463 

regulated.  We acknowledge that this unregulated component of community dynamics will 464 

probably experience regulation in the future (i.e., the log-density of seals cannot follow a 465 

random-walk process forever).  However, our model identifies that interactions between grey 466 

seals and fishes cannot be distinguished from unregulated dynamics during the past forty 467 

years.    468 

 Estimates of species interactions from this model agree well with the results of more 469 

detailed process-oriented studies for the Gulf of St. Lawrence marine community. The model 470 

estimates that grey seal abundance has followed a density-independent exponential increase. 471 

This is consistent with grey seal population studies which estimate a roughly exponential  472 

increase in grey seal abundance in Atlantic Canada over the past 55 years (Hammill et al. 473 

2014a).  Despite a 50-fold increase in abundance, there is little evidence for a decline in 474 
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productivity over this period.  Increasing seal population size was negatively associated with 475 

densities of all three fish species. These three species are (or have been) important prey of 476 

grey seals in the Gulf of St. Lawrence (Benoit and Bowen 1990, Hammill et al. 2014b). Their 477 

on-going declines, despite currently negligible fishing mortality, are the consequence of large 478 

increases in natural mortality, which appear to reflect increased predation by grey seals 479 

(Swain and Benoît 2015).  The negative impact of seals is estimated to be strongest for thorny 480 

skate. Because of their slow life history (e.g., late maturation), thorny skate are expected a 481 

priori to be most vulnerable to increasing predation rates.  482 

Importantly, our approach is low-dimensional relative to whole-of-ecosystem models that 483 

are frequently used for marine communities (Christensen and Walters 2004, Fulton et al. 484 

2011).  An alternative low-dimensional approach to community modelling involves pre-485 

specifying community modules (e.g., trophic or competitive structures), where species from 486 

different modules have weak or nonexistent interactions.  However, small changes in the 487 

specification of food webs can results in large differences in community properties (Abrams 488 

1993).  We therefore argue that the linear approximation to nonlinear dynamics (projecting 489 

Eq. 1 onto the space spanned by Eq. 3) remains a suitable approximation to short-term 490 

community dynamics (Ives et al. 2003), without requiring a priori specification of 491 

community interactions.  Researchers have previously used model selection to exclude 492 

interactions that were not significantly different from zero (e.g., Hampton et al. 2006).  493 

However, we show that we can reduce the number of estimated parameters even without 494 

“zeroing-out” any pairwise interactions.  In our case, we eliminate parameters by specifying 495 

that some axes of the community are unregulated, so that dynamics of these axes correspond 496 

to a random-walk process.  This random-walk approximation for some axes of community 497 

dynamics appears to be a useful approximation over short time scales (e.g., when analyzing a 498 

small number of generations for some components of the community).   499 

 Finally, we note that our model does not explicitly account for individual movement.  500 

Modelling movement is important to ongoing research regarding spatially explicit neutral 501 

models (Etienne and Rosindell 2011), and is also central to “mass effects” and “patch 502 

dynamics” models for meta-communities (Shoemaker and Melbourne 2016).  Furthermore, 503 

movement in search of preferred habitats often modifies predicted outcomes from pairwise 504 

competitive interactions (Morris 2003).  Future research can explore incorporating advective-505 

diffusive movement within multispecies spatio-temporal models (Thorson et al. In press, 506 

Hooten and Wikle 2010), but previous approaches are computation-intensive and would 507 

likely inhibit simulation testing.  We therefore encourage further development of approximate 508 
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or exact solutions to advective-diffusive movement within spatio-temporal models of 509 

community dynamics.  In particular, mixed-effects models show great promise in providing a 510 

general approximation to the statistical mechanics that also underlies theory for neutral 511 

models.   512 
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Table 1 – Estimates and standard errors (in parentheses) for the interaction matrix (� = � +641 �), where e.g. the 1st row and 2nd

 

 column represents the per-log-capita impact of white hake 642 

and on per-capita productivity of Atlantic cod.  This interaction matrix includes three 643 

regulatory relations (� = 3) amongst all four species (see Fig. 3). 644 

Atlantic cod white hake thorny skate grey seal 

Atlantic cod 0.860 (0.024) 0.095 (0.024) -0.031 (0.010) -0.060 (0.033) 

white hake -0.013 (0.007) 0.999 (0.008) 0.004 (0.003) -0.021 (0.015) 

thorny skate 0.165 (0.048) 0.124 (0.045) 0.631 (0.060) -0.213 (0.078) 

grey seal -0.000 (0.002) -0.004 (0.003) 0.000 (0.001) 0.985 (0.005) 

 645 

Fig. 1  Illustration of model selection results (top panel) using the Akaike Information 646 

Criterion to select the number of regulatory relations � in the interaction matrix B (the bold 647 

number above each bar represents the proportion of simulation replicates where the model 648 

did not converge), and boxplots illustrating root-mean-squared-error (RMSE) in estimates of 649 

log-abundance for each species (bottom panel), �(��)−1∑ ∑ ���,�,� − ���,�,��2��=1��=1 , where 650 ��,�,� is simulated and ���,�,� is predicted log-abundance for each model (the bold number 651 

above each boxplot shows the average RMSE for all species and simulation replicates). 652 

Fig. 2 – Illustration of estimated interaction matrix (C=B+I), where e.g., the top-left panel 653 

shows the element c_1,1 (note the different x-axis ranges for diagonal and off-diagonal 654 

panels), and where the grey histogram represents the estimates from the estimated interaction 655 

matrix C from the model where R is selected using the Akaike Information Criterion, the red 656 

histogram represents estimates from the model where B is an estimated diagonal matrix (i.e., 657 

assuming single-species dynamics), and where the blue line is the true value (note the 658 

different range in the x-axis for each panel).   659 

Fig. 3 – Illustration of the eigen-decomposition of the interaction matrix (C=B+I) for our case 660 

study.  Each panel displays an eigenvalue (listed in the top), and displays values for the 661 

column-eigenvector associated with that eigenvalue.  An eigenvalue of 1.000 indicates a 662 

dimension for community dynamics that follows a random-walk process. 663 

Fig. 4 – Illustration of estimated density �� for each of four species (columns) in the Gulf of 664 

St. Lawrence for five evenly-spaced years (rows: � ∈ {1971, 1981, 1992, 2002, 2012}) 665 

spanning the 42 year period with available data.  Colors for each species represent density 666 

relative to maximum (red) and minimum (blue) density observed for that species.   667 
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Fig. 5 – Estimated covariance of process errors (��) for the Gulf of St. Lawrence community 668 

dynamics case study (where we have assumed full-rank covariance, i.e., � = �) 669 
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