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Abstract

Niche-based-approaches to community analysis often invastienating a matrix of pairwise
interactions'amaong species (the “community matrikt,this task becomes infeasible using
observationatiata as the number of modeled species incredsean alternativeneutral

theories achieve parsimony by assuming that species within a trophic level are exchangeable,
but generally‘eannot incorporate stabilizing interactions even when they are @vifieldt

data. Finally, botlmegulated (nichednd unregulated (neutral) approaches hauelybeen
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fitted directly to survey data using spat@mporal statisticahethods. W& thereforgoropose
aspatietemporal and model-based appro&xhstimatecommunity dynamics that are
partially regulated Specifically, ve start witha neutral spatidgemporalmodelwhere all
species follonecological drift, whiclprecludesestimating pairwise interactionsVe then
add regulatory-relations until model selection favors stopmpihgre theérank” of the
interaction matrixnay range from zero to the number of species. A simulation experiment
showsthat'model selectiooan accuratelidentify the rank othe interaction matrixand that
theidentified spatiotemporal model can estimatee magnitude of species interactiors.
forty-yearcase,study for the Gulf of St. Lawrence marine community shows that recovering
grey seals have an unregulated and negegiaéionwith demersal fishesWe therefore
conclude that'partial regulation is a plausible approximation to community dynanmgs usi
field data, and hypothesize that estimating partial regulation wiékpedient in future
analyses o$patigtemporal community dynamics given limited field data. We conclude by
recommending ongoing research to add explicit models for movement, so that meta-
community.theory can be confronted with data in a spgatigporal statistical framework
Keywor ds. -haeutral theory; community regulation; spagonporal model Gulf of St.
Lawrence; ,community matrix
I ntroduetion
For at leasb@years, ecologists hageenducted researan niche theory, which postulates
that each species within a community occupies a unique ecological nictregralrwise
interactions aris&rom overlap in niche (Hutchinson 1957). Niche theory has encouraged
ongoing researclotmeasure the p@apita impacbf onespecies on another for all pairs of
species inla communityr guild. In sharp contrast, several authors have introduced ‘neutral
theories’ of.eecelogyHubbell 2001, Harte 2011) in whidpecies are viewed as exchangeable
within a.given.trophic level or guild. Despite their clear differences, there is considerable
empiricalssupport foboth niche and neutral theonAs with most binary distinctions in
ecology (top-down v. bottom upatio-dependent v. prey-dependent, eteachtheorymay
generate accurate and useful predictions of community dynéoniaparticulartemporal,
spatial,taxonomic, and tropb scale However, ecologistsurrentlyhave fewguantitative
tools for combining insights from niche and neutral theories.

Inferring pairwise interactions remains one of firanary research goals in theoretical
and applied ecologyHowever, species interactions are difficult to measure because the
strength and sign of pairwise interactions depend on many circumstances, inclutlimaf (b
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limited to):the presence afdditionalspeciegHixon and Carr 1997); environmental
conditions (Morris 2003); and recent evolutionarstbiy (Stegen et al. 2012). Manilative
experiments in microand mesocosms remain the getdndard for inferring species

interactions, but an increase in the numbespafties results in a factoriatrease in the

number of experimental treatments that must be conducted (Wootton and Emmerson 2005).

Given theséogistical difficulties,researcherbave proposetivo largelyindependent
approaches for predicting community dynamitinear approximations using time series
statistics, and neutral theori@solving ecological drift.

Linear ime-series pproximations to community dynamics typically invokstimating
the community.matrix, defined as the matrix of impacts from increasing the abarafae
species on'the peapita productivity of every other species. The community matrix can be
efficiently estimated using a multispecies extension of the Gompertz modigrfsity
dependence (Ives et al. 2003). Convenientlg,tfodel also permits estimatitige
covariance of unexplained variation (termed “process errors” in the following). The
estimated ‘community matrix in this case represents eofidgtr Taylor series approximation
to regulatoryinteractions, anéfister(1995)gives support that thispproach will estimate
interactions,with a sign and strength that matches manipulative experiments. Once the
community matrix and process eramvariance are estimated, results can be processed to
yield a plethora of potential indicators of community stability, e.g., res#ienceactivity
(Ives 1995, Neubert and Caswell 199Deyle et al(2016) extendhis frameworkd permit
estimate®f context-dependerspecies interactiontsut donot explicitly address the neutral
to-niche continuum.

By contrast, putral theories typically postulate tlat speciegMacArthur and Wilson
1967) or individuals (Hubbell 200hgave identical characteristics. Given this assumption,
changes in.broad-scale community patterns can then be explained via ecoldtjica. dtihe
random replacement of individuals or species within a local pool. Thisagipavoids
estimatingrinteractions for different species (because all species/individuals have identical
interactions)yand remaining parameters (fundamental biodiversity and imongrambers)
can be estimated from the speeamindance distribution (Etienne and Alonso 20@)ce
parameters are estimated, species-twer rates and spectabundance curves can be
projected forward and backwards in time.

Both timeseries and neutrétheoriesfor community structure and dynamics would
benefitfrom including spatial variation explicitly. For exampldorson et al(2014)

demonstrateghat estimates of density dependencenme-seriespopulation modelsvill be
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biased whenever density varies spatially dedsity dependence acts ldgaand that

including spatial variatiomlso improves precision by using spatial replicatmimcrease
statistical efficiency A spatial analogue of time-series models for community dynamics may
therefore result ilmproved accuracy and precision for predicting pairwise interactions and
community-stability. Spatial variation also underlies many important mecharisms f
community stability (Chesson 200@uch that the estimate of spatgnporal variation in
productivity ts useful in its own right. Similarlyneutraltheories have generally included
space explicitly, e.g., by including the density of individuals (Hubbell 2001) or e(ieagie
2011)as model.elementdHowever, research has underlined the importanspaifal

variation imyenvironmental cortebns (Gilbert and Lechowicz 2004, Gilbert et al. 2006) or
spatietemporal variation in habitat suitabilifipornelas et al. 200@p predictionsarising

from neutral'theory Wethereforehypothesizahat estimatingpatial and spatitemporal
variation in productivity within neutral theory with some cases improve estimates of
community dynamics.

We therefore develop a spatemporal approach to estimating community dynamics,
where data.canbe useddiscriminate between neutral or highly regulated dynamiics
particular, we focus on ¢&rmining the number of regulatory relations that are identifiable
from a given community data set. To do so, we propose a new approach, ebexds
from the null.hypothesis that all species follow identicaregulate@cological drift Qettral
dynanics) and successively adds axeseagfulation until adding an additional regulatory
relationis not parsimonious. This approach provides a continuum between estimating 0 and
P? parameters for density dependeragpfoximating neutral and fully-regulated dynamics,
respectively, where is the number of species), and estimating fewer Efgmarameters is
accomplished without zeroing out any single pairwise interaciidathendemonstrat¢he
approach using a simulation experiment and a case study involving growth of grey seals
impacting.the.fish community in the Gulf of St. Lawrence. Using these examplelsowe s
that we canidentify “partialegulatiori (a combination of neutral and regulated components)
in artificial-andrealworld data sets while accounting for spagoaporal variatia in
productivity’and density. By potentially estimating few ti®Zrparameters for the species
interactionswealsohypothesize that our spatio-temporal approach will be computationally

feasible for large communities
Methods
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131 Time series radels for the dynamics of natural communities typically involve a nonlinear
132 function for growth of each population:
Neyq = f(0g) o exp (€441) 1)
133 wheren, is a vector ohbundance®r each ofP species in time (i.e.
134 n, = {nl,t,nz,t, ...,np’t}T), f(n,) is apotentially nonlinear, vectoraluedfunction
135 representingnter- and intraspecific interaction$or all species in the communjtgnd we use
136 o to indicatethe Hadamard (elementwjsgroduct of two vectorse, is a vector of random
137 effects that.approximates unmodeled varialimoommunity dynamics, including time
138 dependence ififwhich is assumed to bixed in Eq. 1. Process errors agenerally
139 assumed tosfellow some exchangeable proaegs
€ ~MVN(0, Zprocess) (2)
140  whereX, . cess.iS.the covariance of process errow§e take the firsbrder Taylors series
141 expansion ok, = In(n,) aroundx,, defined as the average observed valuénf@t,) during
142 anintervally,;;"'< t < Thax- This results in a linear approximation to dynamics:
Xpp1 = O+ CXp + €441 (3)
143 whereC is @ simple transformation of the community matrix such that a 1% increase in

144  specieg results’in a; ;% increase irproductivity forspecies (in other wordst; ; =

145

7t 10 U (D), average productivity is:

a = In[f(e®)] — Cx (4)
146 andprocess errors, now accounts for both timgependence i€ anda, as well as second
147 and higher-order components of the Tayderies approximation.
148 Using this approximation, community dynamics are stable as loting asodulus oéll
149 eigenvalues o€ are betweenl and 1. In this case, community equilibrium is:

x*=I-0"1a (5)

150 anditis relatively easy to calculate metrics of community stability including (1) the variance
151 around thissequilibrium or (2) the reactivity of the statiorgisgribution (.e., the ratio of the
152 expected distance from community stati® equilibriumx*, given thaix is drawn from its
153 stationary distribution).
154 There arghreepotential problems with this formulation for community dynamics:

155 1. Partial regulation: Equilibrium properties of tB model (Eqg. have previously been

156 derivedonly for the case ddtable dynamics, i.e., when the eigenvalues afeinside the
157 unit circle Howevermany reasonable ecological models contain non-hyperbolic
158 equilibria (for which the modulus of the dominant eigenvalue is equal bo this case,
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there is one or more axis thannot be distinguished from following a randaralk
process in loglensities.

2. Velil of uncertainty: Following the argument in Strong (198@)e suspect that many
communities haveegulationthat is only distinguishable sporadicadigd for long time
series(i.erdue to densities reaching extreme values, or due to density-dependent
responses to infrequent environmental conditions). In these cases, many realateorld
sets will'not have any appearance of (or information about) the form of regulationghat ha
permited the community to persiktng enough to generate the observed diversity of
species.. In.these cases, we believe that it is pragmdegiowith the assumption of no
regulation (i<e.C = I), and then identify axes of regulatiantil there is no further
information to identifyregulation This process may result in a stable community matrix
(i.e.,C — T having rankP), but may also result in an gsateof the community matrix
with neutral stability

3. Curse of dimensionality: The number of parameters in the community matiixcreases
asP?. However, adding subsequent species to a community dynamics aofirsis
results inyadding species witkvier and fewer observations. We therefore seek an
approximation tcC that might have fewer parameters tinbut where modeselection
tools'.€an be used to identify the degree of dimension-reduction, and where model
selection.can potentialkesult inthe unrestricted (with P? degrees of freedom) being
identified as parsimonious.

For these three different buterelated reasons, we propose a procedure for estimating

partialregulationin natural communities.

Partial regulation, and its connection to neutral dynamics

In the following,.we develop new parameterization for the community matki¥e begin

with a reparameterization of our linear approximation (Eq. 3):

AXpq = o0+ Bxy + €144 (6)
such thaB="C= I, where abundance_; in the first year is estimated for each species.
particular, we'seek a forof B where one or more linear combinationsaaf-density for
each specie®llows ecological drift (i.e.B has one or more eigenvalwsgual to zerp and
where the ranRof B (0 < R < P) contains information regarding the mix of neutral and
regulated components to community dynamigpecifically,a rankR for the interactions
matrix B implies thatP — R linear combinations of log-density follow ecological drift. Given

thatB has rankR, thenB has at mosP? — (P — R)? degrees of freedonin particular, ve
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use gparameterization such that parameecsan be uniquely mapped ordi.e.,g(0) —

B, whereg is adifferentiablefunction), andvherewe can place hads on the nomero
eigenvalues. Appendix itoposes two functiorfer this task, where method #1 restriBts

to have realalued eigenvalues while method #2 allows both real and complex eigenvalues.
However; exploratory analysis shows thedtrictingB to have realvalued eigenvalues is

more numerically stable for parameter estimation, so we use this vinsgubsequentase
study and simulation examples. Importantly, both methods allow the model to bridge
betweerD andP? parameterfor density dependence, and both methods allow estimation of
non-zero interagtions for all pairs of species even wkenP (i.e.,b, ,» # 0 for all species

p andp* even:when estimating fewer thAA densitydependence parameters)

Having defined this model, we note that the cage sf0 results inB = 0, such that
Ax; .1 = a+ g.4. Inthis case, loglensity for each species follows a randeailk process
with drift a, i.e.,geometriogrowth ratefor each species is normally distributed with meaan
and covariane&g;.,c.ss- Randomwalk dynamics represent a process wheaehpopulation
follows anexponentiahcrease®r decay on average but has stochastic variation around this
level (termed ‘ecdogical drift’). Although this definition allows specisgecific growth
rates, we recover the standaefinition of neutrality (e.g., as defined by Hubbell (200fL))
a,, is identical.for all speciesWhena = 0 for each species, then the community follows
ecologicaldriftstarting frominitial abundance,_;.

We hypothesize that ecological drift (i.2.= 0) is a reasonable approximation to
communitysdynamics over short time periods, whegoverns whether abundance for each
individual species is expected to increase or decrease over short periods. Hang¥eryi
dynamics ofithis modelrenot biologcally realisticwhenB = 0 anda = 0 because, in the
limit as time goes to infinity, the expected population gizeeach speciewill go to infinity.
This occurs because each species follows a raivdaknprocess in logpace, such that
extinction 1s inpossible and the varia@an logspace goes to infinity. When specifying
neutral dynamics, the model can be estimated with as few as oneefstigipted parameter
(Zprocess = 02Der Longer term dynamics can also be stabilized by deriving a valmedd
that results,in finite asymptotic population sizes given the magnitude of proass e
Presumably such a model could be parameterized to generate lognormataipaactksice
curves, following a calculation similar to Engen and Lande (1996), although we do not
pursue the idea here.

Spatio-temporal community dynamics

This article is protected by copyright. All rights reserved



224
225
226
227
228
229
230
231
232
233

234
235
236
237

238
239

240
241
242
243

244
245
246

247
248
249
250
251

Previous research suggests that sgataporal models can provide more accurate and
precise estimates of singtpecies density depender{@@orson et al. 2014) We therefore
estimate parameters using a spatimporal version of the communitiynamics model This
involves replaimg all scalatvalued variables with vectors representing density at eash of
sites withinraadimensional spatial doma{Cressie and Wikle 2011)We specifically
replacethe‘vector of log-abundangg for each species in yeawith a matrixX; with
dimensionP by Srepresenting loglensityx, , ¢ in timet for specieg at sites, replace
productivity a with A repregrting productivitya,, ; for species at sites, and replace
process errorspwith E, representing unexplained variatien, ;. The model therefore
becomes:

Xip1 =A+ A+ B)X; +E¢yy (7)
wherethe expectation dhitial log-abundancéor each species and s{te_, ,, ;) is estimated
as a fixed offsef,, from the prodativity at that site. Specificallyye specifyx;—;, =
a,s + By ¥€=1ps, Wherethe variance of initialog-abundance away from its expectation is
identical tothevariance of process errors (future studies could explorecoorglicated
specifications for initial conditions)We also spefy a distribution for spatial variation in
productivity:

vec(A)~MVN(pa, Rspatial & Za) (8)
wherepgsiS the median productivity across spakgjs ap by p diagonal matrix where each
diagonal element is the pointwise spatial variantéor each species, andRpatia iS @
spatial correlation matrix. Spatial correlations @éned such that the paiise correlation
between lo€atiom ands + h follows a Magrn function with smoothness of one:

(9)

Rspatial(sls +h) = X (x|h])™ X Kv(KIhD

1
2711 (n)
wherexkis/a'parameter governing the distahcg which two locations are effective
uncorrelatedn is a smoothness paramefiexed at 1.0; Simpsoet al. (2012] andK,, is the
Bessel function. Process err@sare also defined spatially

vec(E;)~MVN(0, Rgpatial ® Zg) (20)
We use’a reducecnk approkmation for covariance among speciEs,= LLT, such thalg
has rankk and is calculated fromm@by k matrix L (Warton et al. 2015, Thorson et al. 2016).
In the following, however, we specify full rank fBg (i.e.,K = P). This model makethree
important simplifying assumptions: (1) that interactions are constantspace and time

(i.e.,B is not indexed by location or year), (2) that spatial variation in productivity is
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statistically independent among specesd (3) that the decorrelation distance for each
species is identical (i.ex,does not vary among spes). Each of these assumptions could be
relaxed in future research, but we do not explore them further here.

Parameters are estimated using sampling data, and we assume that sampling data are
proportionaltorlocal density for each speciese ¥8e thdollowing observation model for
continuous-valuedata(i.e.,samplesn units of biomags
P(C = ¢, Do) p(05)) (11a

exp (—Zp,lep(i)) ifC=0 )
= { (1 — exp (—zp,zlp(i))) X Lognormal (C; ,1n< A, (@) ' ),z£,1> ifC >0
k 1—exp (—Zp'z/lp (1))

wherez, , is thestandard deviatio(in log-spacefor non-zero samples, aag, governs the

relationslip*between the probability efot encountering the species in a sample and the
predicted density for specipssuch that probability of a zero samp@=() is identical to a
Poisson distribution with intensity, ,4, (i) (i.e.,Pr (C > 0) is described using a generalized
linear mixed model using a complementary log-log link). We use a lognormal distriboition s
that future studies could interpret the magnitude of residual variﬁiprelative to spatio
temporal.process errorBy). Alternatively, ifsamplesare count valued (i.e., have units
numbers)ve use the Poissatistribution

P(C = ¢ (i)|xt(i),p(i),s(i)) = Poisson(4,(i)) (11b)
where in either casa, (i) = exp (X¢()p(i).si))» Wherexe;) »(i),si) iS the estimatetbg-
density forthe'species, year, and site ofithebservation. If sampling is proportional to
local density with detectability,, for each species, and detectability is constant over time and
space but not perfeag # 1), then this will bias estimates pfoductivity @, ;) and
absolute densityX(;) but will not otherwise affect estimates of interactidBsdr relative
differences-in-density across time and space for a single spegjeg ) SN Xtp,s)-
Parameter estimation for spatio-temporal community dynamics
While estimating parametense treat the parameters governing interacti@psprocess
error covariancel(), the geostatistical range for correlationy @verage productivity for
each speciequfy); the magnitude of spatial variation in productivity each specief;), the
averageoffset of initiallog-abundance from productivity f@ach speciegf), and
potentially the parameters governing the observation model if usingiodbobmassdata ¢)

as fixed effects This set of parameters is arguably the mininmumber required to account
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279 for spatial variation (i.e., a Grinnelian niche) for each species, correlated responses-o spatio
280 temporal variation, and the potential for species interactidfesireat as random the spatial
281 variation in productivity A), andthespatial variation in density for each species and year
282 (X;). We treat density as random, rather than process eErQnsgcause this results in a
283 more separable“specification for random effeathout affecting the overall likelihooof

284 fixed dfects. This increased separability for random effects tleads to faster parameter
285 estimation Modeling randoneffects is a procedure for eliciting the expeatedariation in
286 data arising from a proposed set of fixed effects. Although fixed etfantgenerally be

287 estimated for neutral models without recourseumerical integratiotechniques (e.g.,

288 Etienne and. Alonso 2005), the increased complexity of our model requirechusiegical
289 integration'withina mixedmodelstatisticalframework for estimating the small number of
290 fixed effects. Despite our use of numerical integration fandom effectsepresenting

291 density and spatial variatipthe modeinvolvesa small number diree parametenelative to
292 the amountf available dataOur model using full process-error rank and the observation
293 model for counts (Eq. 11b) bridges betwéen 3.5P + 0.5P? parameters (when dynamics
294  are unregulated) arid+ 3.5P + 1.5P2 parameters (whedynamics are fully regulated). For
295 biomass sampling data (Eqg. 11a), our chosen configuration also involves an adzlRional
296 parameters for the observation model.

297 To identify"maximum likelihood estimates for fixed effects, we identify thalwes that
298 maximize the marginal likelihood function when integrating across random effexto 9o,
299 we use Template Model Builder, TMEBTristensen 2014, Kristensen et al. 20&8élled from
300 within the R statistical environme(® Core Team 2015), and use the Microsoft R Open

301 build for lowdevel parallelization of all computationist{ps://mran.revolutionanalytics.com/

302 For computational efficiency, we also use a stochastic partial differential equation

303 approximation.to all multivariateormal distributions (i.eA andE;), and also approximate

304 these functionsalued variables as being piecewg®stant in the neighborhood of a small

305 number of “knots”, where the number of knots is chosen as a balance of computational speed
306 and precision(Lindgren et al. 2011, Thorson et al. 2014, 2E&)mding parameters using

307 TemplatesModel Buildr involves the following steps: (1pecify the joint loglikelihood of

308 data and random effects; (2) given specified values of fixed effects, use TMB to identify

309 values of random effects that riaize the joint lg-likelihood; (3) gven these values for

310 fixed and random effects, use TMB to calculate the Laplace approximation to tjieahar

311 likelihood for fixed effects, and its gradient with respect to fixed eff@ets e.g., Skaug and
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Fournier 2006)and (4) se the marginal likelihood and its gradients within a nonlinear
minimizer in R to identify maximum likelihood estimates for fixed effects.

We identify model convergence by confirming theg aibsoluteralue of the final
gradient of the marginal likelihood with respect to fixed effects is <0.01 for alinedess,
and thatithe"Hessian matrix is positive definikdter identifying maximum likelihood
estimates for fixed effecand confirming convergencé€MB then identifies mpirical Bayes
estimates 'of random effects, and uses a generalized delta method to calculate standard error
estimatesfor all fixednd randoneffects. An R packageMIST to apply thisMultispecies
Interactions.Spatid enmporal modelto new data sets is available on the first author’'s GitHub
page (ttpsi//github.com/James-Thorson/MI$and we used v1.1.0 (DOI
10.5281/zenod0:260143). By using maximum likelihood methadsai@meter estimation,
we allow hypothesis testing and probabilistic comparisdmeutral and niche approaches,
as advocated by McGill et 42006).

Simulation experiment

We conduada simulation experiment to explore the statistical propertiesioproposed
model. Specifically we seek to determine:
1. whether,we.can accurately estimate the interaction m&)pad
2. whether model selection tools can accurately identify the numlvegolfatory
relationshipsk), where this number can range from zero (Be0) toP (i.e.,Bis
estimated with the restriction that its eigenvalues have range betivard 1).
To conduct this experiment, veamulatel 50replicated data sets, where each data set
involves dynamics for four species over 40 years. Dynamics occur aé2thaitare
randomly distributed following a 2-dimensional uniform distribution withsquare domain,
where each site is sampled in numbeise per yearn2,000 samples total per specietye
simulate data using Eq. 7-10 and 11b, whppe= 2.0, 0spatia1 = 0.01, Zg = 0.051, where
Rspatial ISsSpeeified such that correlations drop to 10% at 20% of the length of an edge of the
square spatial domain. We spéaifthe interaction matrix:
-04 -04 -0.1 -0.05 (12)
RE
-0.1 -0.05 -03 -0.3

i.e., whereB is composed of two species modules (Holt 19@Hhere species 1 aihrethe
first competitive module, anspecies3 and 4 are the second competitive module. We also
included weak competition among modules (such that all species havenmonteractions),

but where species 1 and 3 have stronger among-module conmpiigtiospecies 2 and 4
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(such that all species have a unique set of interactidgislen this structure, community
dynamics has two regulated and two unregulated componentB,isevjthin the family of
matrices generated /= 2 (which has 12 degrees of freedoritye also compare results
against a null model whereBiis estimated as a diagonal matrix with independent parameters
along thé"diagonaind process errors are also independgniy diagonal). This null model
includes singlespecies density dependence in place of commuenist-regulation, and
illustrates the magnitude of error arising from ignoring community interactienslly, we
conduct atsensitivity analysis illustrating the effect of-ilefsrmative data. To do so, we
conduct anether simulation experiment that is identical except that inittablmgdance is
decreasedip,.= 1.0. In both simulation experiments, we record the proportion of
simulation‘replicates that result in roanvergence, and restri@sults to converged models.
Case study application

To demonstrate this method, we use data for four species (Atlantic cod, thomwsie

hake, and grey.seal) in the Gulf of St. Lawrence from 1971 to 2012, which we previously
published bySwain efal. (2015). This time series spamao (thorny skate) to fouwhite

hake) g@nerations at historical levels of natural mortality and age at matur&eta. for

Atlantic cody therny skate, and white hake are obtained from a bottom trawl survey sf fishe
and represent samples of biomdsaded by area-swept by the bottom trat@r(ned “catch
per-uniteffort’”CPUE analyzed using Eq. 11a). Sampling follows a simple random design
involving 63-231 samples per year (5,588 samples total), and for computational efficeency w
assign each sampling location to the nearest of 100 uniformly distributed “knots” such that
we estimate density at each of 100 kn6ts=(100) and spatial variation occurring at fine
scalegs attributed to residual variatiompz(1 in Eq. 11a).Data for grey seal are estimates of
seal densitysobtained from analysis of seal tag sightings during this period. alsetdat
therefore.contains a mix of survey observations and model output. The data set has
previously been‘analyzed by Swain et al. (2015), and it is not feasible to simultgneousl|
estimate spabHtemporal community dynamics and reconstruct seal densities from raw tag
resighting data.” However, the joint analysis of survey data as a Ppissess and tag
resighting'data as a Markovian movement process would be an interesting topiartor f
research.

Results

Simulation experiment
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We first explore results from our simulation experiment, where we simulate dynamics for
four species with twoegulatedand two unregulated components (i.e., ®ue 2). In this
case, model selection identifies a moa@h 2 regulated relationshipa almost all
simulationreplicates, with Z&and 4relationsidentified in a small proportion, and independent
dynanicsare'never identifiedFig. 1 top panel). The model with 2 regulated relations
converges in almost allmulation replicates (2%), although the model with independent
dynamics is slightly more stable numerically (0% nonconvergence). Models with@er
regulated relations are able to improve predictions of density relative to either independent
dynamics, or a;model with only one regulatory relation (Fig. 1 bottom panel). Visualizing
estimates of the interaction matr& £ B + I) shows that the model generates essentially
unbiased estimates of bathithin-module competition (e.g., species 1 and 2) and among-
module competition (e.g., species 1 and 3, Fig SBnsitivity analyses show that decreased
sample sizes for sampling result in increased rates etoovergence and degraded ability
to identify the rank of the interaction matrix, but maintainsrapimately unbiased estimates
of species'interactions (Appendix,32g. S1-S2).We therefore conclude that the model is
able to accurately identify instances of pantégjulation, e.g., to evaluate the strength of
evidence insfaver of neutral or niche-based approaches to community regulation, but that
estimating. full regulationR = 4) does not substantially degrade performance when
estimating loeal density
Case study: Gulf of St. Lawrence community dynamics
Model selectiorfrom our case studgentifies the model with threegulatory relationships
as being parsimonious, thus identifying strongest evidence for partially regulated cyimami
this community. ' The estimated interaction matrix (Table 1) shows a strong, négaot
of grey seal®n. thorny skateand a weak negativelationof grey seal®n Atlantic cod
(where the former istatistically signifcant using a 2ided Wald test:-0.213, SE=0.078,
p < 0.01)= By=eontrast, Atlantic cod and white hake both hsigeificant positiveimpacts
with thorny'skate. The eigen-decompositiorta$ interaction matrix (Fig.)¥hows that the
unregulated*component of community dynanmcassociatedith the negative relation
between.grey seals and all fish species-fgdigpanel). Other relationsaveweakregulation
(i.e., eigenvaluedifferent from1.0).

Inspecting density maps for each species (Bighdws that thorny skate has gone from
being ubiquitous to having low density everywhere except in deeper water along the north-

eastern seawatubundary. In contrast, grey seal has shown a mankeghsean density in
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shallower waters, particularly near the western coast of Prince Edward Island. By contrast,
Atlantic cod showed an initial increase and subsequent decrease in density. @ndidistr
shifted toward the central Magdalen Shallows during the increase and out of itttering
decrease. In recent years, cod densities have decreased the most off the west of Prince
Edward Island;the region where the increase in grey seal densbigdrasnost marked.
White hakeé were initially distributed in warm deeper water along the-padtern seaward
boundary and in'warm shallow inshore waters. Their density initially increagbtlysin

these areas and then declined. This decline was most severe in inshore areas, where white
hake are now very rare. The estimated magnitude of process Eprgess{ = LLT; Fig. 5)
shows that'Atlantic cod has the highest residual variation in deadibg-§tandard deviation
of 0.22), while other specidsave lower residual variation (log-standard deviation(2§).
Residual correlations are generally positiaed are stronger among the three fish species
than between fishes and grey sedlbis implies that processes in addition to pairwise
interactons.(e.gs environmental conditions) may cause synchronous variation in productivity
for these fishes.

Discussion

In this paper, we have hypothesized that stesrts dynamics for ecological communities will
involve a'mixture of regulated and unregulated components, and that the associated
community=smatrix will be parsimonious in some cases. We then demonstrated aonodel f
spatietemporalcommunity dynamics that uses model selectiandeatify regulationalonga
continuumiranging from neutral dynamics (where every species follows unregulated
ecological drift).to stable dynamics (where thk community matrix of pairwise interactions
is estimated). A‘'simulation experiment confirms (1) tmatdel selection is able to accurately
identify thesmumber of regulatory relationships given sufficient data, (2)ablaolf
convergencesissassociated with insufficient data to identify the number of regulator
relations;"and(3) that models are generally able to estimate pairwise interacticase A
study illustrate®ur proposed approadbr a trophicallylinked community involving a
recovering top predator (grey seals). Previous spatnporal mdels for ecological
communities lhave generally involved a facamalysis approacfwarton et al. 2015,

Thorson et al. 2016), where dynamicsRospeciess approximated using spatietemporal
factors(0 < R < P). We have replaced this phenomenological description of spatio
temporal dynamics with a model that explicitly estimates significant pairwise interactions

but have retaineboth (1)the ability to estimate correlations in spatonporal dynamics
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441 amongspeciesand (2) the likely improvement in statistical efficiency from using spatial
442  replication to estimate interactians

443 We propose this approach to remedy issues in previous neuttaharskries

444  approaches to community dynamics. In particularetseries approaches require estimating
445 pairwiserinteractions that increase as the square of the number of species, and this will likely
446 not be parsSimonious (or even identifiable) for large communities. Similarly aheutdels

447 haveimportant limitatiors, inter alia, previouscriticism for failing to capturspatial variation
448 (Gilbert and Lechowicz 2004, Gilbert et al. 2006) or sptgroporal variation in habitat

449 suitability for individual specie@Dornelas et al. 2006). By contrast, our approach can be
450 interpreted,as a'sheterm approximation to neutrapatietemporaldynamicswvhen there are
451 no regulatory/relationsk(= 0, such thaB = 0) and no drift A = 0). In this limitingcase,

452  our approacltan be reduced two parametersthe characteristispatial scaleandthe

453 magnitude of spatio-temporal variation. The approach can then be expanded to include
454  correlated responses to spagonporal variation, thereby accounting for similar responses to
455  environmental conditions. Although we use numeiitggration (atherthananalytical

456 integration.asshas been ugweviouslyto describeneutral dynamics, e.g., Etienne and

457  Alonso (2005)),.we argue that our approach bisdge- and highdimensionahpplications

458 Previous authors have noted that neutral theory is likely not a suitable apgiiorito

459 community dymamics for species at different trophic lefidlsdbell 2001), for which the

460 assumptions of identical peepita impacts is particularly unlikelyBy contrast, our study

461 has shown thatartially regulatedcommunity dynamics is occurring across two trophic levels
462 in the Gulf of St. Lawrence. Specifically, tnerease irpredatorsdrey sealgis offset by a

463 decrease in three prey speciisheg, while other axes of community dynamics are generally
464 regulated. We acknowledge that this unregulated component of community dynamics will
465 probablyexperience reguten in the future(i.e., the log-densitpf sealscannot follow a

466 randomwalkprocess foever). Howevergur model identifieshat interactions between grey
467 seals and fishes'cannot be distinguished from unregulated dyrthming the past forty

468 years

469 Estimates of species interactions from this model agree well with the results of more
470 detailed processriented studies for the Gulf of St. Lawrence marine community. The model
471 estimates that grey seal abundance has followed a derdgiyendent exponéal increase.

472 This is consistent with grey seal population studies which estimate a roughly exglonenti
473 increase in grey seal abundance in Atlantic Canada over the past 5@-geansill et al.

474 2014a). Despite a 5@d increase in abundance, there is little evidencea figclinan
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productivity over this period. Increasing seal population size was negativelyadsdatith
densities of all three fish species. These three species are (or have been) important prey of
grey seals in the Gulf of St. Lawma(Benoit and Bowen 1990, Hammill et al. 2014b). Their
on-going declines, despite currently negligible fishing mortality, are the consemqidage
increases in‘natel mortality, which appear to reflect increased predation by grey seals
(Swain and Benoit 2015). The negative impact of seals is estimated to be strorteshyor
skate. Because of theilow life history (e.g., late maturation), thorny skate are expected
priori to be most vulnerable to increasing predation rates.

Importantly,. our approacis low-dimensional relative to wholef-ecosystem models that
are frequently used for marine commities (Christensen and Walters 2004, Fulton et al.
2011) AnTalternativelow-dimensional approacto community modellingnvolves pre-
specifying community modules (e.qg., trophic or competitive struglundnere speciefrom
different modules have weak or nonexistent interactions. However, small chanpes in t
specification of food webs can results in large differences in community pro{@dbiesns
1993) We, therefore argue that the linear approximation to nonlinear dynamics (jpigjecti
Eqg. 1 onto.thelspace spanned by Eq. 3) remains a suitable approximation t@rehort
community,, dynamics(lves et al. 2003), without requiring priori specification of
community interactions Researchers have previously used model selection to exclude
interactions_that were not significantly differefmom zero (e.g., Hampton et al. 2006)
However, we show that we can reduce the number of estimated paraewetersithout
“zeroing-out” any pairwise interactions. In our case eliminateparameters by specifying
that some axes of the community are unregulated, so that dynainthese axesorrespond
to a randomwalk process This randorrwalk approximation for some axes of community
dynamicsappears to be a useful approxtioa over short time scales (e.g., when analyzng
small number of generations feomecomponents of the community).

Finally, we note that our model does not explicitly account for individual movement.
Modelling movement igmportant to ongoing research regarding spatially explicit neutral
models (Etienne and Rosindell 2011), adlso central to “mass effects” and “patch
dynamics*maodels for meteommunitiefShamaker and Melbourne 2016). Fwtinore,
movement in‘'search of preferred habitats often modifies predicted outfromgsmirwise
competitive interaction@Viorris 2003) Future research can explore incorporating advective
diffusive movement within multispecies spatemporal model§Thorson et al. In press,
Hooten and Wikle 2010), but previous approaches are computation-intensive and would

likely inhibit simulation testing. We therefore encourage further developofi@miproximate
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509 or exact solutionsotadvectivediffusive movement within spatio-temporal models of

510 community dynamics. In particular, mixed-effects models show great promise in pgoaidi
511 general approximation to the statistical mechanics that also underlies theory for neutral
512 models.
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Table 1 -Estimates and standard errors (in parentheses) for the interaction (Gatr& +
1), where e.g. theSirow and 2° column represents tiperlog-capitaimpact of white hake
and on per-capita productivity étlantic cod. This interaction matrix includes three
regulatory relation§R = 3) amongst all four species (see Fig. 3).

Atlantic cod white hake thorny skate grey seal

Atlantic cad 0.860 (0.024)  0.095 (0.024) -0.031 (0.010) -0.060 (0.033)
white haké 0.013 (0.007) 0.999 (0.008) 0.004 (0.003) -0.021 (0.015)
thorny skate 0.165 (0.048) 0.124 (0.045) 0.631 (0.060) -0.213 (0.078)
grey seal -0.000 (0.002) -0.004 (0.003) 0.000 (0.001) 0.985 (0.005)

Fig. 1 lllustration of model selection resuitsp panelusing the Akaike Information
Criterion to select the number of regulatoglationsR in the interaction matri® (the bold
number above each bar represents the proportion of simulation replicatesheherodel

did not converge), and boxplots illustrating romtansquareeerror (RMSE) in estimates of

log-abundance for each species (bottom padeﬂsT)‘l Y Y (xsep — fs’t’p)z, where

Xstp IS simulated and, ,, is predicted logabundance for each model (the bold number
above each"boxplot shows the average RMSE for all species and simulation replicates)
Fig. 2 —lllustration of estimated interaction matrix (C=B+l), where e.g., thddfiganel

shows theelement c_1,1 (note the different x-axis ranges for diagonal and off-diagonal
panels), and where the grey histogram represents the estimates frotmtatdsnteraction
matrix C fromthe model where R is selected using the Akaike Information Criterion, the red
histogram/represents estimates from the model where B is an estimated diagonal matrix (i.e.,
assuming single-species dynamics), and where tleelinle is the true value (note the

different range in the-axis for each panel).

Fig. 3 —lllustration of the eigemlecomposition of the interaction matrix (C=B+I) for our case
study. Eachspanel displays an eigenvalue (listed in the top), and digplags for the
column-eigenvector associated with that eigenvalue. An eigenvalue of 1.000 indicates a
dimension.fer community dynamics that follows a randeatk process.

Fig. 4 —lllustration of estimated densiXj, for eachof four species (columns) in the Gulf of

St. Lawrence for five evenlgpaced years (rows:€ {1971,1981,1992,2002,2012})

spanning the 42 year periadth available data. Colors for each species represent density
relative to maximum (red) and minimum (blue) density observethédrspecies.
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668 Fig.5 —Estimated covariance of process err@s (for the Gulf of St. Lawrence community

669 dynamics case study (where we have assumedaioll covariance, i.eK = P)
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