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Abstract:

Scientists ‘and resource manageeed to know life historparameterge.g, average

mortality.rate, individual growth rate, maximum length or mass, and timing of itgatiar

understand andwrespond to risks to natural populations and ecosystems. For over one-hundred

years, scientists have identified “life history invantst (LHI) representingairs of
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parameters whose ratio is theorized t@wbestant across species. LHén promise tallow
prediction ofmany parameters from fieltheasurements of a few important traits. Using LHI
in this way, however, neglects any residual patterpsiametersvhen making predictions.
We thereforeapplya multivariatemodel for eighvariables (seven parameters and
temperaturejprall 32,000 marine fishes, and include taxonomic structure for resigvitis
levels for ¢lass, order, family, genus, and species).illUétratethat this approacpredicts
variablesprobabilistically fortaxa with many or few data. We then use this model to resolve
threequestions regardinge-history parameters in fishes. Specifically we shinat (1) on
average there ish24% decrease the Brody growtltoefficientfor every1% increase in
maximum Size;(2) the ratio of natural mortalityateand growthcoefficientis nota LHI but
instead varies systematically basedtmtiming of maturation, where movement along this
life-history axis'is predictably correlatetith species taxonomyand (3) threariablesmust

be known per species to precisely predict remaining life-history variablesdistvibute our
predictive model as an R package to allow futureHitery predictiongor fishesto be
conditioned ortaxonomy and lifdhistay data for fishes worldwide. This package also
contains predietions (and predictive intervals) for mortality, maturity, size, and growth

parameters.far.all described fishes

Keywords: Lifehistory theory; natural mortality; individual growth; meataalysis;

phylogenetic regression; life-history invariant

I ntroduction

Biological characteristicge.g., individual growth rates, age at maturation, maximum body
length and mass, and adrdtes ofhatural mortality greatly differ among different animal

species. These characteristics (or more precisely, their value avanagegd individuals for

a species at a given location and time) are sometimes termehisliéey parameters”, and

these parameters play an important roleufuaterstanding and managipgpulations and
ecosystems=infishgor example, these lifbistory parameters are important to determine
sustainablesharvest rates, estimate harvest rates from changes in average length, and project
the likely_impact of different management actions (Quinn and Deriso 1999). Unfolyunate
some or lofithese lifehistory parameters are unknown or poorly measured for most
harvested species. Ideally, these parameters would be estimated at the same time as trends in
population abundance and fishery harvest rates, e.g., by using a data-integrated stock
assessment model to jointly analyze data from surveys and fisfiaaader and Punt

2013) However, it is often infeasible (or even impossible) to estimathiktery parameters

This article is protected by copyright. All rights reserved



64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

in a stock assessment model given available data or resgMagsusson and Hilborn
2007).

As one example, the average adult aiteatural mortality is perhaps the most diffieult
to-estimate life history parameter. Estimating natural mortality using-neagpture
samplingy cohort analysis, multispecies models of predation rates, or datat@utegoak
assessment models are eagpensive, resource-intensive, and often laden with modeling
assumptions. As a consequence, fisheries scientists since the 1950s have sought alternative
approaches to informing natural mortality a given speciesOne common approach is to
infer a likely,rate of natural mortality from the value of correlatedHitory parameters. A
recent review identified 29 different methods for estimating natural mortality from limited
data, and concluded that many of these methods fail for at least some bpeaiese they
were derived based on small samples with limited taxonomic breadth (Kenchington 2014).
As an alternative; authors have simultaneously estimated relationships amongentigtipl
history parameters, but these studies have generally involved small groups lgfretzded
species rather than fishes in genékddon and Ault 2016).

Fortunatelyjife-history variables (includingstimates ofife-history parametaifrom
field-measurementas well as environmental conditions, e.g., temperature) have been
compiled into public databases (e.g., Fishbase; Froese 1990, 2@t Inctude species
within most majorfish taxa. In principle, these databases allow us to use phylogenetic
information and correlations among life hist@grameterso obtain better estimates of vital
rates for both welktudied and poorlgtudied species. Metmalyses of life history
parameters in fishes indicate that multiple parameters can be described using a reduced set of
ordinates or group@Vinemiller and Rose 1992). Life history theory (e.g., Roff 1984,
Charnov 1993, Jensen 1996) and more recently the metabolic theory of 8rlmgy et al.
2004)have.provided a conctyal framework thaéxplainsobserved correlatiorssmong
traits. In particular, ratios of particular kfestoryparameters are ofteéheorized to be nearly
constantcrossiwidely different taxgCharnov et al. 1991)A special case of lifhistory
relationships=eccurs when the units are identical for parameters in the numerator and
denominater, such that the ratio is dimensionless. Charnov (1993) and others have defined
these as “lifehistory invariants” (LHI), and claimed that these dimensionless numbers in
some cases will be conserved across taxa. In practichjdttey theory, LHI, and observed
correlations suggest théitwe know the adult mass aaderage environments@mperature
of a given specie@vhich are relatively easy to measure in the field), we can use this

information to predict other, unknown life-history parameters. Obviously, if local stacke
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available regarding additional liféistory parameters for that given species (e.g., local
measurements of age at maturation), then these local results may also improve estimates of
other parameters for that species.

Many studies have shown that relationships amondigfry parameters vary
taxonomieally;'so that relationships are more similar for closely related species than
otherwise unrelated speci@sg., Stearns 1983, Crespi and Teo 2002, Thorson et al. 2014b,
Nadon and Ault 2016, Dick et al. 2017). Intuitively, this suggests that taxonomic information
can also be usefwhen we predicting life historgarameters One approach to formalize
this intuition, is to apply a multivariate extension of the standard phylogenetic foodel
genetic evelution (Felsenstein 1985, Grafen 1989). Using this model, we predict that
parametergollow.a random evolution over time, where correlations anidegnistory
parametergncodeneutral” (i.e., variablepr “conserved” (constantglationships. Given
information regarding the evolutionary lineage of a given taxonomic tree (i.e.stioe
divergence for every included species), this evolutionary model can inform dgonelat
among twao,species by the time that has elapsed since their most recent common ancestor. In
the absence.of detailed evolutionary information, this tree can instead by apskiising
taxonomiciinformation (e.g., by assuming that two species from the same geneoaeare m
related thantwo species in the same family but not the same genera).

In this study, we predict life histomariables (temperature and Hfestory parameters)
for all >32,000 fishes worldwide while accounting for similain the relationships among
life-history_parameters for fishes that are taxonomically related, explicitly representing
residual error including correlations among parameters, and accounting for migaing/da
then use results to address the following outstanding questigasiing lifehistory
parameteri fishes (1) What is the average relatiomglbetweerthe Brody growth
coefficient K, and maximum sizd., (for which different theories have previously been
published)?.2).ls the ratio of natural mortality and the growtlzoefficientK a LHI, or
does it vary'systematicallg.g., based on timing of maturity other lifehistory
parameter®rand (3) How manyariablesmust be known per species to precisely predict
remainingglifehistoryvariableg(i.e., how manyarameters are “neutral” vs. “conservgd”

We also distribute an R packageshLife (https://github.com/James-Thorson/Fish).ife

containing code to ra4n this multivariate lifehistory model as well agsults from itting it

to data from FishBase. This R package can also be used to update predictions &wahdivi
stocks based on additional, staggecific studies, and therefore has use for basic and applied
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research on fishes worldwidét also includes an Rshirgraphical user interfaceshich can

be used twisualize predicted lifdistory parametergor any fish species worldwide.

Methods

Life history theory and invariants

There are fourrmain difficulties when predicting liiestory parameters for all fishes

worldwide;

1. Measurementerrors. Fieldmeasurements of life history parametans imprecise and
often cerrelated (e.g., a negative correlation in estimategedrody growttcoefficient
and asymptat length). We therefore treat existing records ofliifgtory parameters as
imperfect measures of “trugsarameter$or a given species, where residaealors covary
amongparameters Estimatingesidualcovariance is feasible whenever multiple
measurements are available for a single species (where we assume a single “true”
parametersalue for each species; Thorson e{2014a)). This residual covariance is a
combination of measurement errors (covariance in field measurements) amgyichiol
variation within a given species (e.g., variatioparameteramong years or
populatiens)dn the following, we assume that field measurements chigéory
parametersare unbiased, although future work could address this assumption by
estimating average bias relative to a minusted data s€see e.g., Thorson et al. 2014a).

2. Incompletedata: No single fieldstudy will provide estimates @ll important lifehistory
parameters- insteada study willgenerally report a subset pdrameterghat are
estimated using data frothat study’s design. To calculate the probability distributibn
availabledatawhile accounting for covariation in field measuremdatsnecessary in a
likelihood or Bayesian approach to parameter estimation), wethersforeaccount for
“incomplete data”, i.e., the valuesldé-historyparameterghat are not reported for each
individual study. We therefore use standard missing-data methods under the assumption
that data.are’*missing at random” (i.e., that missing values can be imputecfrorted
values).

3. Taxonomiecsimilarity: Many parameterare more similar for taxonomically related
speciesithan otherwise unrelated species. Importantly, this similarity is apparent at every
taxonomicilevel, e.g., among taxonomic classes (Charnov et al., 189il)es(Beverton
1992) and speciegThorson et al. 2014b, Dick et al. 201A)e therefore specify that
parameters vary “hierarchically”, e.g., are different for Orders within a Class, Families

within an Order, Genera within a Family, and Species within a Qesugcommended
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164 by Hoenig et al. 2016)Measurements are only available $pecies, so average
165 parameter$or higherlevel taxa are nevelirectly observed.

166 4. Unknown functional forms. There is little agreement about the exact functidoah of

167 the relationships amomgarameters. For example, recent studies have argugdoiatyk
168 et al.”2015)-and against (Nadon and Ault 2016) a purported dependence of rate-

169 parametersM/k) and the ratio of lengtatmaturity (,,,.) and asymptotic maximum

170 length €,). We therefore use a IHeistory model that can potentially include

171 covariation amongnultiple parametersrather than only modelling ratios among pairs of
172 parametersPublished lifehistory relationships are often multiplicative (i.e., the product
173 of ageatmaturity and natural mortality is approximately constant among species,

174 Beverton and Holt (1959)), so taking logarithms often resultdiivear (additive)

175 relationship'amongarameteror at least results in relationships that can be lose

176 approximated abeing linear

177  Weovercomghese foudifficulties by specifying a multivariate model for trait evolution

178  along a taxonomic tree, while using replicated samples for each individuassfeeci

179  distinguishdtrait:€volution from residual covariance (e.gimedion errors when calculating
180  parameter&om.field data)

181  Multivariate model for trait-evolution along taxonomic trees

182  Taxonomies.are defined such that, for any taxonomic classification, it belongstty erac
183  classification for any higher taxonomic level (e.g., every family belongs to exacttyrdee
184  etc). Therefore, we can define a set of taxonomic levels (dags,Order, Family, Genus,
185 and Species), and every taxon (e.g., g&ehastes) is the “child” of exactly one “parent”

186  taxon (e.g., familysebastidae). It is therefore possible to factor the probability distribution
187  for all life-history variablesvithin a taxonomy by specifying a series of conditional

188  probabilities forvariablesfor a given taxon via theariables of “ancestors” (the “parent”

189  taxon, its.“parent”, etcjFelsenstein 1985)In the following, we specify a firsirder Markov
190  process fortrait.evolution (i.evariablesfor a “child” taxon depend only upon values for its
191  “parent” taxon):

192 We approximate trait evolution via a multivariate randwadk process. However, in the
193  absence of a high-quality chronology representing smeedivergence for all fishes, we

194  have approximated trait-evolution by estimating covariation for taxonomss€daOrders

195  within Classes, families within Orders, genera within families, and species within genera (i.e.,
196  assuming that the time since divergence is approximately equal for all families within any
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Order, etc.).Specifically, we define the true (unobbsed) valuex, ; of variablej (of n,
modelledvariable$ and taxory (of n; modelled taxa), where, is the vector of true
variabledfor that taxon. Mriablesthendepend only upon the value of variabiesthe
parent-taxon:

Xg~MVN (Xp(g), Zi(g)) (1)
wherep(g) is the index of the parent-taxon for chidandl(g) indicates the taxonomic
level of the childtaxon (e.g./(g) = 1 when the childaxon is a taxonomic Class, and
l(g) = 5 when the child-taxon is a taxonomic specieéf)e evolutionaryeovarianceX; g,
may itself ¥ary along the taxonomic tree. For simplicity,assume thahe correlation
among variables identical for all taxonomic levels, but that the variance changes among
levels Specifically, wedecompose evolutionagevarianceg, ,, into components caused by
common faetoers*(sensu “exploratory factor analysis,” Lawley 1940) or independentavolut
of each variables

g = A (LgL} + D) (2)
whereL; is a lowerdiagonaln; by n; matrix (0 < ny < n;) approximating covariance
amongvariables (wherg; is the Cholesky decomposition &f'Z — D whenny = n)), D is
a diagonalmatrix with diagonal elemen;%representing independent component of
variance in tra#evolution and4, is the relative covariance explained by taxonomic lével
relative tothe variance explained by taxonomiad@r (i.e., we specify that_; = 1 to
ensurevariable identifiability) The assumption that evolutionargrelation is identical
among taxonomic levels is analogous to the assumption in conventional coalescest model
(Felsenstein 1973at the evolutionary covariance does not change over time. Future
analyses could explore relaxing this assumption, although it would presumably require a
large increase in estimated coefficieritsgd and random effects).

We then.estimate variabley specifying a distribution for augmentddtay; for theith
study:

Yi~MVN (X4, V) 3)
whereV isitheresidualcovariance, which also includes factaodel L., with rankn;/) and
independent variance componemﬁ)( Many studies have missing values (i.e., instances
wherey; ; = NA), and we assume that these are misairrgndom (i.e., available data are

representative of missing data). Given this assumption, missing ddbe t@eated as

random with a uniform distribution:
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yu={ e )
yij ity # NA
whereg;; is the missing value forariablej or observation, and

g;j~Uniform(lb, ub) (4b)
wherelbandub-aresetfar below and above the range of data obsemuath that further
decreasesl/increases in their valbas no impact on model results.

We then estimate fixed effects by identifying values that maximize the marginal
likelihood function. Fixed effects include evolutionagvariance ks andajz), residual
covariancek(, andv]-z), and the ratio of evolution covariance among taxonomic lexgls (
We also treatas fixed the averagduey; for each lifehistoryvariablej for the common
ancestor of the taxonomic tree (Phyllum Chordata). The marginal likelihood usatat
while integrating, across the joint probability of data and random effects with respect to
random effects.. We treat as random the true (lat@hip d variablesfor each taxonx;) as
well as allimissing datéseeEq. 3 and 4lfor their distribution). We approximate the
marginal likelihood using the Laplace approximation (Skaug and Fournier 2006),
implemented using Template Model Build&ristensen et al. 2016yithin the R statistical
environment (R Core Team 2015). TMB also providhesgradients of the marginal
likelihood with,respect to fixed effects, and we use these gradients in a conventional
nonlinear@ptimizer to identify maximum likelihood estimafielh E) for fixed effects
Given the MLE for fixed effects, we then calculat@stard errors using a generalization of
the delta-method and the matrix 8f @erivatives of the marginal likelihood function with
respect to fixed,effects.

Database

We compile all"available records eifght life-history variables (sevdiie history parameters
andtemperaturen, = 8): natural mortality ratel{), Brody growthcoefficient(K),
asymptotic maximum lengthL (), asymptotic maximum mas¥#/,), length at maturity
(Lmat), @ge at maturityd;, ), maximum aged,,..), andaveraggemperatureT(). We

apply the lifehistory model to data for all eight variables, although we also report results
from a sensitivity analysis where we analyse only the sevehisiferyvariabled(i.e.,
excluding temperature)Subsets ofttese variableare often obtained from the same study
(e.g., a study providing bothandL,, for a single population of a given species), and we

record all measurements from a single study as a vector of data
yi = {ln(M) ) ln(k) ) ln(Loo) ) ln(Woo) ) ln(Lmat) ) ln(amat) ) ln(amax) 4 T} (5)
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for theith study, while recording missing variables for each studyAasWe use a log
transformation foall variables (except temperatufg because (1) this transforms gil; to
have unbounded support (matching the support of the multivariate normal distribarion
Eq. 3, and (2) because this resutidife-history invariants being expressed as linear
constraints that can be approximated using linear equationdi{é)g),— In (K) is
approximately costant if M /K is a life-history invariant) All variableswere downloaded
from FishBasd€Froese 1990) using thmackagefishbase (Boettiger et al. 2015) on Aug. 25,
2016 and ‘@ur database is distributed with R packegalife. In total, we obtained 29,196
variables ljfe-history parameters and temperatufie®m 9,853 studies = 9,853) for 3,551
unique species‘of the 33,112h species that are listed within FishBase. For each species,
we also noted the taxonomic Class, Order, and Family for a given Latin binomial (Genus-
species) hame.

Model exploration

Next, we fittedthe evolutionary model for lithistory variableso this entire database while
varying model.complexity in two ways: varying the number of fixed effects used to
approximateicovariance in trait-evolutian; § or residual covariatiom(;). We specifically
perform a gridsearch across all eigpbmbinations for each configuration;(= {1,2, ...,8}
andn, = {12, ...,8}), for a total of 64 models. For each model we confirmttiafinal
gradient of.the marginal likelihood with respect to each fixed effects was @@d)01), and
that the hessian dfie negative logikelihood with respect to fixed effects was positive
definite. We then record Empirical Bayes predictions of vakjefor each taxon, and use
the generalized delmethod to calculate predictive covariarize (x,) for thesevariables.

To calculate‘the variandge life-historyvariablesexplainedon averagéy knowing

taxonomicinformation for a fistwe calculate the total covariance among variades

> (6)
CO‘Utoml s Z 21 + V
=1

where the total variance for each individlif-historyvariablecorrespond to diagonal
elements ofowvy,;,;- The variance explained Ipgrfect knowledge of average hfestory

variablesfor,the highestl* taxonomic levels then corresponds to:

a (7)
COVexpiained @) = z %
=1
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282  such that the proportion of variance explained by perfect information about the lhighest
283 taxonomic levels for variablgis Y-, Z; (,))/[251 Z; (G, /) + V(,j)]. Similarly, the

284  residualcovariancen predictions givemerfectinformation about the firdt taxonomic

285 levels for a given speci&®v,,..4(1*) is expected to be:

> (8)
Covpred(l*) = CoViorqr — Covexplained(l*) -V= Z %
I=l"+1
286  However, inpracticeve have imperfect information about average-historyvariablesfor
287  higher taxonomic levels, such th@&iv,,,.., (1) > Y 1 whereCovy,,.qq(1*) —

288 Y .., X, Measures our imprecisiavhen estimating averageluesfor higher taxonomic
289 levels.
290 To interpretselationships among differenttiestory variableswe firstpredictvariables

291  Xp,eq fOr aspecies with an Class, Order, family, genus, and species that is not within the
292 database (where, = p), as well as the predicted covariamlzm(xpred) for these variables

293 (whereCov(xmd) = CoV¢orqr — V). ThisCov(x,.q) represents the predicted covariation
294  for life-histeryvariablesfor a fish about which nothing is otherwiseokyn, and it has rank
295  n; becauseiit'is/Calculated fraZp (which itself has rank,; becauseX,; includes a diagonal
296 componenD). We then calculate the eigdecomposition of this covariance, and examine
297 therelative.magnitude afigenvalues to determine how many dimensamesnecessary to
298  explain the vast majority (99%) of trasbvariance.For eigenvalues that explain a substantial
299  proportiongof covariance, we then inspect their eigenvectors, where the ratim \alties in
300 agiven eigenvector corresponds to the slope of a given axis of covarihatferring

301 relationships among variables from their predicted covariafion(x,,..4), is similarin

302 some waygormajor axis regressiofMAR), andMAR is a usefufor estimating relationships
303 among variable®¥ andZ whenevel1) an analyst seeks a relationship amirandZ

304  without specifying either variable as “fixed” or “random”, and (2) it is unknown whethe
305 future users willibe predicting from Z or Z fromY (Warton et al. 2006)Unlike

306 conventional MAR, however, we use multipbeords of each variabfer a given species

307  (severaly; for the same taxog) and multiple taxa for the same paréoton (severak, for

308 the same,(,)) to separately estimate evolutionary and residual covari@peamdV), and

309 our ability to separately estimate these two sources of covariance eliminates one major
310 drawbackwhen using conventionMAR (Seim and Saether 1983, McArdle 1988).

311 Results
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312  Descriptiveresults

313  Wefirst demonstrate our predictions af eightvariables (seven lif@istory parameters and
314 temperaturefor six specieschosen for illustration purposes from the approximately 33,104
315 fish speciedisted in FishBase (Fidl-2). Model selection using the Akaike information

316  criterion(AlIC)'supports using a model where (1) the evolutionary covariatioe $sim of

317 five factors fi; ='5) and additional, independent variance for eaaiable and (2) the

318 residual covariance is the sumtbfee factorsi,, = 3) and additional variance for each

319 factor. We use this model in the following, but confirm that results are edgeatichanged
320 when using.other models with similaAIC (Table 1)

321 Model predictions follow a multivariate normal distributi@s implied by the structure
322  of our model); anave visualize this predictive covarianagsing ellipses to represent a region
323  with a desired coverage(this casea 95% predictive ellipse). Predictions at high

324 taxonomic levels (e.qg., fotlapecies in class Actinopterygii) have wide confidence ellipses
325 (due to the_accumulation of variance when predictengablesbased only on high taxonomic
326 levels, see\Eq.)7 Similarly, lower taxonomic levels generally have more precise (smaller)
327  predictive ellipsegas expected given Eq..8The exception is when predictimgriablesfor

328 a species with,no available data. In this case, the prediction is identical to timezvest

329 ancestorwith available data. For exampleg;, gpecies of genuSebastes without available

330 datahaspredietions equivalent to the predictive distributiorSefastes (results not shown).
331 Similarly, in the unlikely event that an entire family has no available data, predictions for any
332 species within that family aidentical to the predictions for that taxonomic order. In this
333  way, species without available information are guaranteed to haverézsse predictionsf

334 life-historyvariableshan species with abundant data.

335 We interpret the relationship among vates using the eigedecomposition of the

336  predictivecevariance for all fishes (Table 2). This covariance antifewpistoryvariabless
337 estimated while.controlling for residual covariance, e.g., arising from estimation error when
338 calculatinglife=history parameters from available field data (Table Bjie dominant

339 eigenvectofortrait-covariances associated almost entirely with temperature (loading:

340 —0.995).Fhe value of this eigenvector for natural mortality indicates th&Caricrease in
341 temperature issassociated with a 5% increase in natural mortality rate on avidrisge.

342  increase in natural mortality is also positively associated twélgrowthcoefficient and

343  negatively associated with asymptotic weight and maximum age (astlogigassociations).

344  Given its high loading with temperature, we interpret this axis as representing the effect of
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temperature (or environmental characteristics associated with temperature, e.g., latitude) on
metabolic rates.

Question #1: What isthe aver age association between growth rate and maximum size

The second axis when analyzialy eight variablegxplains approximately 80% of remaining
variance(aftercontrollingfor the impact of temperatyseandhas strongest association with
asymptotic mas(Table 3. Loadings indicate proportional variation in lengtbmaturity

and asymptotic length, and a greater-thahic increase iasymptotiomasswith increasing
asymptotie length (i.e1% increase in asymptotic length is associated Wi %% increase

in asymptotic masr a 3.21% increase for the sensitiatyalysisexcluding temperature,
TableS1)."A 10% increase in asymptotic mass is in turn associated with a 2.4% decrease in
mortality rateand growthcoefficient Collectively, this axis suggests thetdy sizes the
dominant axis of variatiofor life-history parameters ifishes that arsubject to the same

temperatureand thaincreased size is negatively associated with mortalitygaoathrates
Notably, theallemetricscalingof growthcoefficientand asymptotic Iength‘a%i8 = —1.24)

is betweenthewalue ef.0 predicted by Charnov et al. (2013) and g#dlicted by Pauly
and Binohlan (1996), and this result is robostxcludingtemperature (Tablel$ showing

—0258 _ —1.19).
0.217

Question #2: T'stheratio of natural mortality rate and growth coefficient aLHI?

The firsttand.seand axes of variation explain @/of total varianceand both have had

nearly proportional scaling @hortality (M) and growthcoefficient(K). In isolationthese

two axegherefoere suggest that the ralg'k is constant among fisheslowever, species

show large variation in the ratio of natural mortality and grasegfficient(Fig. 3), arising
predictably aleng phylogenetic lineages. In particular, family Sebastidaelatsaty low

M /k, Salmonidae has relatively high/k, and Scombridae and Lutjanidae fall somewhere in
the middle(3™ panel of Fig. 3).

This variation inM /k is generated largely via th& axis of variationTable 3, which
explains 1.6% of total variationwWhile small, this is neverthele868% ofthe variance
remainingafterraccounting for mass and tengbere (or after accounting for mass when
excludingtemperature, Tablel)S Importantly, this axis is the only component
evolutionary covariance to have substantidlfferent scalingoetweerasymptotic length and
lengthat-maturity, or betweematural mortalityratesand growthcoefficients Positive
movement along this axis represents a decredsg, iYL, and we interpret this axis as

representing theming of maturationoptimization of fecundity with respect to age-
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maturity (following Charnov and Berrigan 1991 decreased,,,:/L. IS thenassociated
with an increasedalueof M /k (Fig. 4). Importantly, related taxa (e.g., species within the
same taxonomic family) cluster closely together in valuds,gf/L., andM /k, suggesting
that thesgparametergvolve gradually within lineages. This implies that species within the
same taxon(e.g., species within the same genilshevhighly informative about the value of
Lnat/Lo @NdM k. For exampleSebastidae species have relatively high valuek,fgr/

L., (where a value of indicates thagrowthceases anaturatior), and also haveelatively

low valuesiforM /k compared to other fishes.

Question #3s Hew many parameters must be known to predict remaining parameter s?
Inspecting theigerdecomposition of predictive variance for fishes shows that three axes
explain 99% of total variamcin alleight variablegTable 3. Given results from this eigen
decomposition, we infer that we could eliminate 99% of total variance when prgdioi
remaininglife-historyvariablesf abundant sampling data allowed us to have pedect
measurements, eémperature, maximum size, and either natural mortality or individual
growth rates for a given species. As sensitivity analysis, we atsm the model while
excluding temperature (Appendix S1 Table S1). In this case, the first two axes 8%pta

of total variation, and the eigenvalues and eigenvectors for these axes are strafaglyosim
the 2% dnd.3" axes of the model involving tempéuee.

Finally, we*visualize the proportion of variance explained for @adlableusing this
model(Fig. 5)when decomposing total covariance into covariance explained by Class,
Order, family, genus and species, as well as residual covatiaheee residual covariance is
shown in Table 3). This decomposition shows that residual covariance explains
approximately 10% of total variation on average acvasgbles Residual variation is
greatest (approximately 20%) for grovabefficients(K) and mortality #/) rates, where
estimates oboth are expected to Ipeost variable given typicdield-measurementsand is
lowest (approximately 5%) for maximum length and lerajthraturity. Evolutionary
covariance is greatest for differdatnily within a givenorder, and is relatively similar for
other taxonomic levels.

Discussion

In this study, we,havapplieda multivariate model fothe evolutiorof life-history
parameter$o a global database of fish variablesluding individual growth, sizemortality,
maturity, and average temperaturé/e have then used this model to resolve three ongoing

guestions regarding fish lifeistory, as discussed in detail belowe alsodistribute our
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results as an R package (with a graphical user interface)ahdtte used to predict life-
history parametersor any of the nearly 33,000 described fish specidsese predictions are
informed usinglata in FishBase as well as taxonomic similarity to dikbrspeciesvith
many or few data.

Predictions*from oumodelindicatethat variation among all eighriablescan be

described/using three main dimensions, representing tempefatyreie (maximum body

massW,,), and thdiming of maturatior(covariation amoné/l- and%). The first

dimension.conforms to the metabolic theory of ecology (Brown et al. 200#h predicts
thattemperature .contreimetabolic ratesinderlying individual growtland activity levels
among taxa worldwide. Similarly, the second dimension conforms &z#spectrum
theory of marine communities (Andersen et al. 20@®jch predicts thagrowth and
mortality are.defined by asymptotic madsowever, we also find that a third dimensitme(
biological tradeoffs between growth, maturity, and longevity) explains an important
component of variation (60% of variance after controlling for temperature axichoma
size) By identifying a third dimension of covariation, our results contrast with previous
empirical studies of fish life history, whigiredict growth, mortality, and maturity from a
species’ asymptotic maés.g., Eq. 3 and 5c of Charnov et al. 2018)terestingly our three
dimensionsteorrespond to the three predictors for natural moeatitpatedy Pauly
(1980) although this latter study did not include maturity as either predictor or response
variable.

We conclude that three dimensions are sufficient to capture 99% of covariation among
our eight variables, and a natural question is whether this number of dimensionssignbnsi
with existing lifethistory theory. We therefore compile a list of previously published
relationships among these eightifistoryvariables for fishes that are based entirelgrup
theoreticaloptimization of fithessather than empiricalbservations (Appendix $2 This
table shows that reported relationships can often be derived from one-artaithexample,
Jensen (1996) attributes thigdl to Beverton and Holt (Eq. TB1-4,B1-5, andTB1-6 in
Appendix S2). However, the third LHTB1-6) can be derived from the others given that
growth follows a von Bertalanffy growth curvEB1-1). We therefore identify a minimal set
of life history relationships that can be used to derive or approximate all other reported
relationships (Tabld). We refer to this as a “minimal and sufficient” set of relationships,
because it involves the mmal number of equations (i.e., eliminates equations that can be

derived from others) but still is sufficient to contain (or approximate) the other reported
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444  relationships.These six relationships represesn Bertalanffy growth (T4k); allometric

445  scalingof weightatlength (T42), maximizing fecundity with respect to age at maturity-(T4
446  3) and the Brody growth coefficient (T4-4), the definition of maximum @ge5), and the

447  metabolic scaling with temperatui®4-6). We also hypothesize whighriablesn these six
448  equations arerlikely to be conserved or varying among fish species. By examining the
449  number ofifree parameters that can be used to calculate all eight variables in this study (see
450 Table 4 caption), we preditiiat all eight lifehistoryvarigblescan be weHldescribed via 3

451  dimensions. fis prediction is generallgonsistent with our empirical conclusitrat all

452  variablescan be well predicted given perfect knowledge of thierebles for each species

453 Across all fishes, walsoconcludethatasymptotic lengthin(L,,) increases 24% faster

454  than any decrease in growdbefficientin(K) among species, i.dn(K) «< —1.241In(L,,) as

455 indicated by the"™ axis of variation This estimate arises after using replicated sampling for
456  each individual Species to estimate the residoghriance for these two parametarsing

457  from estimation errors: as expected, this residual covariance is negative hetiliggrand

458 In(K) (see Table 3) Following Charnov and Berrigan (1991), we interpretcbisriance

459  betweerln(lg)@ndin(K) as species optimizing their fecundity with respect to growth rates,
460  with resulting‘impacts on asymptotic length and mass. p@adicted coefficienfusing a

461  variant ofimajor axis regression)awser to theelationshipin(k) « —In(L,,) predictedoy

462  Charnov et.al"(2013) thahe relationshipn(k) o« —2In(L.,) predicted by Pauly and

463  Binohlan (1996). The product of growtbefficientand asymptotic massthe anabolic rate
464  for juveniles (Mangel 2006, Charnov et al. 2Q58) our resultsuggestshat largebodied

465 specie®n average have a highjarvenileanabolic rate (i.egre able to access greater

466  densities of available food as juven)les

467 Lasty, weeoncludethat he ratio of natural mortality raendthe Brody growth

468 coefficient(%) issnot itself conserved acrogzesieg(i.e., not a “life history invariantas
469  claimed by Jensef1996 Eq. 8). Instead species wiglow growthrelative to mortality

470  (relatively high%) also have lower maturation length relative to maximum length (relatively

471  low %), suchthat the ratio of agatmaturity @,,,;) and maximum agexf,,,) is

472  approximately conserved among species. This result explains large differe%cmsdrmg

473  taxonomic groups, e.g., whesebastes specieshave very Iow% and highLG—“t relative to

474  other taxgThorson et al. 2014b). Thassociation betwee% and% is nota new

[se]
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475  discovery (Holt 1958, Beverton 1992, Hordyk et al. 201&)fact, it is easy tqustify
476  theoreticallygiven the assumption that lifetime reproductive ougutrecruit is proportional
477  to survivalto-maturity andmnass at maturitfwe follow the presentation from Mang@006

478  Chap. 2))
B

mat

F(amqe) = exp (—Ma,,q¢) X al
479  wherea is'the average mass per standardized volmag represents ontogenic changes in
480  body shapeOptimizing fithess (a,,4;) With respect ta,,,; yields:
1 (M + ,BK)

Anat = E log

M
481  where substituting,,, .. for a,,, and re-arranging then yields:
Lmat — ( IBK )
Lo M + BK

482  This derivatiorthereforesuggests thaﬁ;"—“t and% should have a nonlinear association.

483  Despite thisstheoretical evidence, however, authors have periodically suggm%’adst
484  constant among'speciésg., Jensen 1996). Our stualgoestimats taxonomic variation

485  around this relationship, e.g., where salmonids have kﬁgﬁéman predicted from thef]fr

486 (i.e., aresclosernto determinate growhin otherwise predicted), whereas Scombrids are the

487  opposite lessdeterminate growth than otherwise predictédje hope that this combination
488  of theoretical and empirical evidence will put to rest the notion%h\aa life-history

489  invariant, and will encourage future research to explain residual pateunsd life-history

490 relationships among taxa.

491 Finally, we note several shortcomings of our current study, which could potentially be
492  explored infuture researchMost importantly, previous evolutionary studies have often used
493  rates of molecular evolutiamther than taxonomic information to account foref@ations

494  among specie@=elsenstein 1973, 1985). Using tisealescent model” for molecular

495  evolution,ananalyst can model an evolutiondrge adbeing shaped by standard population-
496  genetic forees™ For this reason, authors have argued that the coalescent model provides a
497  coherentsstatistical basis for analygspecies lineages. However, the coalescent model may
498  be difficult to apply in practice because it involgeveralunknown parameters including

499  effective population size, recombination rate, and selection history (i.efj\eeked random

500 mutation rate). In particular, a largevolutionarytree (like weanalysesere) may include

501 branches with large differences in evolutionaaes, and these differences may lead to
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502 difficulties in reconstructing the species tree, or in accurately approximating correlations
503 among specielBased only on time since divergence (Takahashi et al. 2001, Rosenberg and
504 Nordborg 2002). Therefore, we hamnsteadused a taxonomic tree to approximate the

505 evolutionary time since divergence for all pairs of sped®s. current approach is similar to
506 previoustisheries metanalyses that have used nested random effects to explain variation in
507 species paramateat different taxonomic level$-ossGrant et al. 2016)and wve recommend

508 future research conducting a detailed comparison of the two metiAelalso note that

509 future research could explore different evolutionary-covariance occurrindeatedif

510 taxonomic levels, where different covariance could be interpreted as representing different
511  evolutionary constraints operating at short (speleesh or long (family or classlevel)

512  evolutionary scales. This exploration would not be possible using the conventional

513 coalescent' model, so we see this potential for future research as one advantage to our current

514  approach.

515 Secondly;'we have nekplicitly included many variables that might be expected to

516  control opportunities for growth or reproduction in fishes. For example, spec@Eweters

517 like maximum size are associated with depth and lati{Gddliet et al. 2001, Gertseva et al.
518 2010) These patternvay be driven tgome extent by temperatuifeauly 2010), and our

519 model therefere indirectly accounts for depth and latitude vi@gnelusion of temperature

520 measurementsHowever, other factors controlling opportunities for growth include predation
521  andfood availability(Winemiller 1989) We have not included any variable to directly

522  measure differences in food availability or predation, and identifying such a vdgable

523 using regiopakyvariation in primary production) could perhaps improvaitiery

524  predictionsiin fishesLikewise,humaninduced changes in life histoparameters could alter
525 therelationshipamong traif€onover and Munch 20020 including a variable representing
526  exploitation-history may similarly improve predictiomssome fishesWhile a large portion

527  of variability is captured in the three main dimensions presentedftiher precisionand

528 ecological insightould be gaining by including additional, ecologically relevant variables in

529 the life-history analysis

530 Thirdlypwe have used data from FishBase without attemptinigstmiminate between
531  high andow-quality studies (e.ghetweerestimates of natural mortality arising from high
532 quality tagrecapture vs. lowequality catch curves for lightly impacted pdgtions).

533  Previous work suggests that FishBase records are on averageiased measure of high

534  quality for individual species (Thorson et al. 2014a)e Ndve alsassimilated records that
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include a large proportion of missinglues(i.e., 63% ofall values are missing) ankis high
proportion of missing records may impact our ability to precisely estimate theenai
dimensions for representing trait-covariation. To account for this high proportioissihg

datg we used a “rankeduction” technique to estimate covariation among varidBlesr et

al. 2003 Warton et al. 2015), and this allowed us to select a parsimonious number of
parameters for both evolutionary and residual covariation. However, it is difficult to assess
the potential impact of missing data on estimating the dimensionality of dimayiand we
recommend future statistical exploration regarding this topic.

We distributean R packag€&ishLife containing code to replicate or update our analysis,
and packaging results when fitted to FishBase data. R'package includes predictions for
all marine fishes, where species without any available data are predicted using information
from all relatedtaxa. The packaaleo includes a function to update predictiohife-
history parameterfor a given species based wsersupplieddata. In this way, it can be
used to generate specEsecific predictions of lifdistory parametethat combine both
global and'local data. Many previous studies have developed relationships for predicting
these same.variables.g., where lifdiistory data are combined with assunigatctional
relationshipsamangvariableso estimate a small set mfodelparameters, and these
relationships and modphrameters are then used to prelifiethistoryvariablesfor
unobserved spe@éPauly and Binohlan 1996, Froese and Binohlan 2000jyaet al.

2015, Nadon and Ault 2016). By contrast, our approach uses both paodeieters (fixed
effects) as well as patterns in residuals among taxa (random effects) when préféieting
historyvariablesfor any speciesand therefore bridges between analyses of all fish species
(Pauly and Binohlan 1996, Charnov et al. 2C41%) analyses restricted to specific taxa
(Thorson et al. 2014b, Nadon and Ault 2016). We believe thahed-effectapproach

(and R packagEishLife) has several benefits relative to previous regressigmoaches
including:.(1)it predictslife-historyvariablesprobabilisticallyfor speciesvhile using
information-about related taxa to inform predictiof® it predicts uncertaintior species
based on thesquantity of data that are available, so that sp&ttiesany fieldmeasurements
of life-histaryyvariables have predictions that are more precise than species with only a few
field measurements(3) it uses the full set of lifaistoryvariables available for a given
speies to predict all unknowwariables e.g. rather than calculating natural mortality fr@an
singlevariable(i.e., maximum age) and ignoriadj othess (e.g., individual growth tas.
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Data Availability

Data availablefrom the Github Repositoriattps://doi.org/10.5281/zenodo.826921

Table 1- Model selection results fahe multivariate model of fish lifehistoryvariables

Number of.factors for covariance Number of factors for observatiol AALC
among taxa covariance

5 3 0.0
0.4
3.8
6.0
6.4
7.1
9.3

OO OO O &~ Ol
g g b~ w b~ b

Table 2— Summary of predictive covariance among all eight life history varialftesdictive
covariancesissdecomposed into eight orthogonal components, where the first component
explains thesmaximum variance, the second explains the maximum varianeeebianting

for the ' component, etc. The first three components explain 99% of total variance, and we
list the predicted variance for each¢bw), proportion of total variance’(?row),

cumulative proportion of variance't3ow), and association ¢fiat component with different

life-historyvariables(which we term “loadings”). The ratio of two loadings represents the
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721  average relationship between two variables along the axis of variationergeceby that
722  eigenvector

Eigenvectors

#1 #2 #3
Variance'decomposition
Eigenvalue 52.348 10.09 1.051
Proportionof variance 0.816 0.157 0.016
Cumulativeproportionof variance 0.816 0.973 0.990
L oadings
In(Ly) -0.019 0.258 0.120
In(K) 0.043 -0.204 0.360
In(W,,) -0.039 0.838 0.393
In(amax) -0.039 0.200 -0.523
In(a,qt) -0.042 0.207 -0.481
In(M) 0.050 -0.205 0.437
In(Lyae) -0.022 0.241 0.048
Temperature 0.995 0.079 -0.060

723
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724  Table 3 -Measurement covariance (lowkerangle, including diagonal) and resulting correlation (upper triangle, indibgtéold-fonj for
725  replicated measurements of editérhistoryvariablefor a given species (e.g., th& Bow and £' columnshows the negative measurement
726  covariance.betwedn(K) andin(L,)).
In(Ly,) In(K) In(W,) In(ame) In(ang) In(M) In(L,,:) Temperature
In(L,,) 0.063 -0.585 0.964 0.205 0545  -0.299 0.598 -0.035
In(K) -0.082  0.311 -0.562 -0.354  -0.399 0584  -0.168 0.087
In(W,) 0.189 -0.244 0.609 0.185 0.514 -0.280 0.566 -0.029
In(@pq) 0.018 -0.07 0.051 0.127 0.448 -0.564 0.234 -0.154
In(amae) 0.043 -0.069 0.127 0.050 0.100 -0.389 0.663 -0.140
In(M) -0.037 0.158 -0.106 -0.097 -0.060 0.236 0.041 0.161
In(Lpae) 0.034  -0.021 0.099 0.019 0.047 0.005 0.050 -0.081
Temperature -0.025 0.137 -0.064 -0.154 -0.124 0.220 -0.051 7.912
727
728
729
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730 Table4 —Minimal (i.e., nonaredundant) and sufficient (i.e., not missing any relations) set of
731 theoretical lifehistory relationships among the eight life history variables

732 {M,K, amat, Lmatr Loo» Weo, @max, T} @nalyzedn this study. These relationships involve six
733 exogenous parameters, fr, 5, E, A, C}, and if these parameters are constant for all fishes,
734  we expect thatall eight variables are constrained within a subspace with 2 degrees of freedom
735 (= 8variables — 6 relations). We hypothesize thatr (average mass per standardized

736  volume) does not vary systematically among fish@gpntogenic changes in body shape)
737 will vary systematically among fishes, (allometric scaling of prenature survival to length
738  atmaturity).does not vary systematically/{anabolic rate) does not vary systematicdlly;

739  (activation‘energy from metabolic theory) does not vary systematically; éenerage

740  mortality rate/'wherT > E) may or may not vary systematically. We therefore hypothesize
741  that the value for all eigiariables for each fish can be described viacdordinates,

742 {R,T,B}or{R,T,B, C}, depending upon whethéris constant or varies among fishes.

Eq. Relationship Theoretical justification Notes
T4-1  Loat Individual energy -
= Lo.exp.(—Kapat) gain/loss
T4-z log(W,) Spatial scaling of a is average tissue mass pe
= log(a) + flog (L) individual body size volume; f is ontogenic

changes in body shape

T4-Z 55 _ R Maximizing individual Eq.T1-1 andT1-3 imply:
M 1-R fecundity W.r.t.a,,q; Lypage 6
WhereR = imat L, 6&6+M/K
) and:
1 0K+ M
mat = Elog( M )
T4-4 Lo, =AXK™" Maximizing individual A is anabolic rate
Wherehs= %log (1- fecundity w.r.t.K
R)

T4-E In(0.01) Trueby definition of -

max =y

Amax @S the agdo
which 1% of post-
larval individuals

survive
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] E . . . I _
T4-€ M = C x exp (_ _) Metabolic scaling of E is activation energy (~0-6
T biological rates and 0.7 eV) divided by
temperature Boltzmann'’s constant

(8.617x10° eV/IK)
C is proportionality constant
betweenV and metabolic

energy

743
744

745  Fig. 1 — Predictive distributiofor eight life-historyvariablesof three species of genus
746 Thunnus T. alalunga, T. thynnus, andT. albacares), as well as the predictivdstribution for
747  genus Thunnussand its ancestral tdaan{ly Scombridae, order Perciformes, and class
748  Actinopterygi)=«Panels show the 95% pretive distribution for all lifehistoryvariablesn
749  our database: individual growth @xis) and natural mortality rate-@xis; topleft right);

750 asymptoti¢'maximum weight (x-axis) and asymptotic maximum leng#xig;-topright

751  panel); maximum age {axis) and age at maturity-@xis; bottoraleft panel); and length at
752  maturity (xaxis) and average temperature for the specpagia distribution (yaxis;

753 bottom-right'panel).

754  Fig. 2 —Predictive distributiofor eight life-historyvariablesof three species of genus

755  Sebastes (S alutus, S. pinniger, andS. crameri), see Fig. 2 caption for details

756  Fig. 3 — Marginal predictive distribution foatio of natural mortalityateand the Brody

757  growthcoefficient(derived from the predictive covariance fafM) andin(K)) for each

758  taxon in the life history database, highlighting results for four taxonomic familie

759  (Sebastidae, Salmonidae, Scombridae, Lutjanidae) that are frequently fishe

760  Fig. 4 —Predictive distribution (showing the bivariate 95% predictive interealMf/K (x-

761  axis) VS.Lygeflsm,,. (Y-axis)for each taxon in thefé history database (see Figc&ption for
762  details) where.the bottom panel shows the predicted relationship from Holt (1958), see Tabl
763 1, EQ.T1.3.

764  Fig. 5 — Proportion of variance explained by Class, Order, family, genus, species, and
765  residual covariance calculated using Eq. €lass is darkest grey; residual is lightest grey;
766  and other levels are ordered according to the precedingViat)ablesdiffer in the

767  magnitude of residual covariance, but the proportion explained by taxonomic levels is
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768  otherwise proportional amongriables. “Comb.” refers to the sum of variance for all
769  variables, and thus represents varia@xplained on average amowvariables
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