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Abstract

Stock assessment analysts are exploring an increasingly diverse and complex range of models while also
facing higher expectations for consistency, documentation, and transparency in reports and
management advice, all within a tight timeline. Meeting these goals requires increased efficiency at all
steps in the assessment process from data processing, through model development and selection, to
report writing and review. Here, we describe one widely used tool that has proven successful in
increasing the efficiency of the assessment process: the r4ss package, which supports the use of the
Stock Synthesis modeling framework. What began 15 years ago as a tool to provide simple model
diagnostics, including plots showing data and model results, has grown into a large collection of R
functions to support many aspects of the assessment process. We provide an overview of the r4ss
features and illustrate its utility with examples from recent applications. Finally, we discuss lessons
learned from the ongoing development of r4ss that can be applied to similar efforts associated with the

next generation of stock assessment packages.

1. Introduction

Assessment of fish stocks (hereafter referred to as “stocks”) is a necessary task, largely because of
mandates by federal and regional governing bodies to provide information about stock status and apply
harvest control rules to inform catch limits under harvest policies. While incorporating disparate data
sources into a single population model (integrated analysis) to determine stock status is routine,
understanding the fit to each data set and its associated influence on the model results can be
challenging (Maunder and Punt, 2013; Maunder and Piner, 2015). A standardized set of visualization

tools is key to providing understanding and transparency throughout this process for stock assessment
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analysts, reviewers, stakeholders, and managers. For example, standardized tools allow analysts to
quickly understand model results and explore new model configurations during the model development
and peer review processes; reviewers scrutinize the analyses and investigate other alternatives with the
aid of visualization tools, ultimately deciding if the assessment results are appropriate for use by
management; and lastly, stakeholders and managers need to understand the model results, and hence,
need intuitive visualization tools to inform the range of management options and decide on which

management measures to take.

Visualization tools can aid analysts throughout the assessment process. For example, Richards et al.
(1997) found while developing a stock assessment for Pacific ocean perch (Sebastes alutus) that
visualization tools allowed them to better understand their data sets and pinpoint data features that
needed to be accommodated, develop a statistical catch-at-age model well suited to the data sets, and
evaluate model output more thoroughly. Stock assessments often require hundreds of model runs.
Tools for quickly visualizing model results allow analysts to more efficiently select among them. As an
illustration of the power of automated workflows and visualization tools, calculating residuals by hand
would take hours, while visualizing patterns in residuals already plotted can take just minutes.
Visualization tools can also relieve the feeling of being time-poor when conducting stock assessments
(Bentley, 2015). Aside from efficiency, a thorough and standardized set of tools for visualizing model
output can help catch errors such as misspecified models and aid in the report writing process, as most

stock assessment reports require numerous figures and tables.

The peer review process for stock assessments (e.g., Brown et al., 2020), to determine if assessment
results can be used by management bodies for decision making, benefits from visualization tools. For

example, Regular et al. (2020) found that interactive data and model dashboards improved their ability
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to communicate with stakeholders during the stock assessment review process for a northern cod stock
in the northwest Atlantic. Producing standardized figures across assessments increases ease of
understanding for readers and simplifies comparisons across assessments. Often, peer reviewers are
tasked with evaluating modeling decisions and model results, ultimately deciding if the assessment
results are appropriate for use by management. Requests for visualizations made during assessment
review processes are often expected in subsequent reviews, especially if the same reviewers may be
engaged in the future, and should be added to assessment analyst toolboxes, such that they can be
better prepared for future reviews. Thus, this toolbox grows with each review and helps facilitate

efficient reviews, because analysts are able to quickly produce desired output before it is asked for.

The Terms of Reference (ToR) for stock assessment reviews have also coevolved with visualization tools,
increasing the value of standardization. For instance, 10 years ago the ToR for groundfish stock
assessments conducted for the Pacific Fishery Management Council (PFMC 2009) had an eight-point
bulleted list of general stock assessment team deliverables, while the ToR used in 2019 (PFMC 2019) had
a check list of 74 elements within 18 sections with more specificity. These ToR changes have been driven
in part by feedback from reviewers seeing the benefit of new visualizations and diagnostics for individual
assessments as described above. The ToR changes, in turn, lead to wider adoption of the new
approaches for analysts working to meet them, a shift which is easier when the analysts can use shared

tools to meet the new standards.

Effectively translating complicated assessment models and results into an easily digestible form for
fishery managers and stakeholders can be challenging, especially when presenting information across a
large range of stocks (Dichmont et al. 2016). Presenting assessment results in a consistent manner

across stocks can lessen the communication challenge, allowing for improved discussions between
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analysts, stakeholders, and managers. The development and application of an assessment toolbox for

use by analysts facilitates this process without creating additional workload.

Communication methods for stock assessment results are not a frequent topic in fisheries science
journals, but it is an area where new ideas are rapidly developing and which deserves greater
prominence in the literature. The widespread adoption of the generalized integrated analysis platform
Stock Synthesis (SS, Methot and Wetzel, 2013) provided an opportunity to develop a standardized set of
visualization and automation tools, given a larger pool of potential applications, users, and contributors
(Punt and Maunder, 2013). Here, we discuss how r4ss, an R package containing tools for working with SS
models, has improved the stock assessment development and review processes for individual analysts,
reviewers, and managers over its 15 years of active development. We also highlight lessons learned
from developing and using r4ss that could be applied when developing new visualization tools for a new

stock assessment modeling platform.

1.1 History

The r4ss package grew organically from a single code script written by a single author in 2005 for use in
the R statistical programming language (R Core Team, 2020) to a large open-source R package with
many contributors. Before r4ss was developed, the typical workflow for SS users was examining the
output text files directly or importing them into Excel where figures were generated using Visual Basic
scripts or created manually for each model. The figures were time-consuming to create, had limited
reproducibility, and did not provide reviewers and managers with a consistent product with which they
could become familiar as modifications for an individual model were rarely generalized for the benefit of

other models. The original r4ss R script became widely used by the stock assessment team at the
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National Oceanic and Atmospheric Administration (NOAA) Northwest Fisheries Science Center (NWFSC)
and grew in complexity as members of the assessment team provided suggestions for additions. The
increase in use also increased the burden associated with maintaining the code, and in 2008 the lead
developer role was shifted to a postdoctoral researcher which allowed for more directed development,
facilitating the growth and use of the code to function across SS-assessed stocks. Shortly thereafter, the
code was put under version control and released as open source to facilitate distribution and
development, to increase transparency, and to reduce the burden of maintenance on any individual

developer.

Although, in the early years of its development, most of the code was written by just two people,
feedback from users was essential to improving the package. In particular, conversations with
participants at the annual Inter-American Tropical Tuna Commission (IATTC) Stock Assessment
Workshop series (since succeeded by the Center for the Advancement of Population Assessment
Methodology workshops) led to significant steps forward in the project. The initial public release of r4ss
took place during the 2008 IATTC workshop (Maunder, 2008); discussions at the 2009 workshop inspired
the conversion of the script into a formal R package available on the Comprehensive R Archive Network
(CRAN); and a demonstration of the Javascript viewer for Multifan-CL (SPC, 2010) associated with the
2011 workshop led to the development of an HTML viewer for r4ss plots. Formatting the r4ss script as
an R package brought the benefits of structured documentation for each function; making the r4ss
package available on CRAN made it easier to find and install (as CRAN is the first source most users will
look to for R packages). The number of authors, all of whom have made substantial code contributions,
has also grown from 5 in 2009 to 29 in 2020. The methods used to incorporate code into the r4ss
codebase have also evolved from contributors emailing files to the lead developer, to GitHub pull

requests that get automatically checked and manually reviewed before merging. Although the
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development workflow has grown more sophisticated, the organic evolution of r4ss leaves many legacy

aspects of the code and package structure, which are typical of research software (Ram et al. 2019), but

would be designed differently if starting from scratch today.

1.2 Overview of the package

The rdss package (github.com/r4ss/r4ss) includes functions designed to work with SS input and output

files (Supplement 1). The main types of functions in the package are: 1) functions to read and plot
information from SS output files to visualize model results; 2) functions to automate tasks associated
with SS models that are routinely performed; and 3) functions to read, create or modify SS input files.

In the examples, we will focus on functions to visualize model results and automate routine tasks.

2. Examples

2.1 Multimodel management (Pacific halibut)

The Pacific halibut (Hippoglossus stenolepis) stock assessment comprises four individual models which
are used to create an ensemble for management use by the International Pacific Halibut Commission
(IPHC; Stewart and Martell, 2015; Stewart and Hicks, 2018). Each of the models represent a different
hypothesis regarding the best approach for modelling the stock dynamics. The four models vary in the
length of the modelled period, the level of data aggregation, and data-weighting, among other factors
(Stewart and Hicks, 2020). Use of special features (e.g., environmental covariates, time-varying
catchability) in a subset of the models is automatically detected by r4ss functions and appropriate
reporting is included in subsequent output. With four models to diagnose, it is efficient to run the same

function calls and retrieve a complete set of output without having to adjust the code for each individual
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model. When suitable models have been identified and refined, the output can be easily summarized

(Figure 1).

This application also highlights the benefit of standardized output for review purposes. For the 2019
stock assessment, the IPHC conducted a two-stage review, utilizing its standing Scientific Review Board,
as well as a contracted external reviewer (IPHC 2020). Model input files and directories containing the
r4ss HTML and individual output files from the SS_output function were provided electronically to all
reviewers. This approach allowed for standardized reporting (reviewers were all familiar with r4ss
output) and comprehensive diagnostics for all four models in a more detailed summary than could have
been provided only in a standard written document. Reviewers were not required to re-run the r4ss
code to explore the detailed results, but the HTML-approach re-created a user-friendly summary on

demand.

2.2 Adoption of new modeling approaches and diagnostics (Big skate)

The 2019 assessment of big skate (Beringraja binoculata) off the U.S. west coast (Taylor et al., 2019)
illustrates the efficiency gained by using tools like r4ss. Specifically, r4ss facilitated the use of conditional
age-at-length (CAAL) data, exploration of numerous model configurations, timely model development

during the review process, and an efficient development and revision of the assessment report.

The stock assessment of big skate used CAAL data (Figure 2), which has become a standard treatment of
age- and length-composition data collected from the same samples used in integrated assessments to
reduce biases associated with length-based selection and better inform parameters related to variability
in length-at-age (Hoyle and Maunder, 2006; Stewart, 2005; Piner et al., 2016). However, adopting this

approach to modeling compositional data was initially hampered by lack of associated model diagnostics
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and appropriate data weighting methods. In response to this concern new diagnostics were developed,
including the calculation of the implied fit to the marginal age composition (called “ghost” age
compositions within r4ss) and a new diagnostic figure to evaluate the fit of the model expectation to the
mean and variability around the mean age at length (Figure 3). Data weighting approaches for CAAL data
have likewise been the subject of ongoing research and new diagnostics. Francis (2011) proposed a new
approach to tuning input sample sizes for marginal composition data. Two authors independently
developed R code for applying the Francis (2011) algorithm and their functions were combined and
contributed to r4ss in 2014. This facilitated more frequent use of this method and the discovery that an
extension was needed for CAAL data (Punt 2017) which was subsequently incorporated into r4ss. The
assessment of big skate used the Francis-Punt tuning method but also considered the sensitivity of the
model results to the Dirichlet-Multinomial (Thorson et al., 2017) and McAllister-lanelli (McAllister and
lanelli, 1997) methods of data weighting as alternatives. These sensitivity analyses were trivial to
implement and easy to compare thanks to the support for all three approaches in SS and r4ss. Choosing
among the methods unfortunately remains somewhat subjective, but the opportunity to quickly develop
all three models and examine the associated fits to the CAAL data and other data types is essential for
understanding the impact of data weighting choices on the perception of stock status and the structural

uncertainty associated with assessment results.

The assessment of big skate also benefited from previous work to understand sex ratios in models fit to
data for Pacific halibut. These explorations led to the inclusion of a new diagnostic figure within r4ss
showing the sex ratio derived from the observed and expected age- or length-composition data (Figure
4). For big skate, the figure revealed unbalanced sex ratios at sizes where there was little evidence of
dimorphic growth, suggesting that sex-specific differences in selectivity should be included in the model.

The availability of a diagnostic previously developed for a different stock was vital to the model
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development during a period where the time available to explore new ways to understand patterns in

the data was limited. After applying the diagnostic to big skate, discussions facilitated by the use of the
GitHub issue tracker led to further refinement of the diagnostic. This collaborative effort highlights how
open source code can increase efficiency, promote collective understanding, and allow for incremental

progress.

2.3 Efficient exploration of alternative models (Big skate)

In the process of developing the big skate assessment, over 800 different model configurations were run
during 2 months, almost 200 of which were run during the 5-day review meeting. These included seven
new candidate “base” models, 108 models that were part of likelihood profiles, 72 sensitivity analyses,
and three alternative forecast scenarios. Functions in r4ss were used to run the likelihood profiles and
create the associated plots as well as automatically repeat sensitivity analyses for new candidate
models. This volume of model examination, comparison, and selection has become a typical part of the
assessment process in many regions, but thorough examination of this many models is only possible

with tools to quickly compare and aggregate results.

In total, approximately 40,000 standard r4ss diagnostic figures were created during the 2-month model
development period (~200 figures from each of ~200 models). The option to look at a suite of
diagnostics for any given model allowed the authors to quickly determine whether the data were
entered into the model input files correctly, look for outliers, and, as the models developed, evaluate
whether alternative modeling approaches merited further consideration. The full collection of diagnostic

figures and tables and the associated HTML viewer files (e.g., rdss.github.io/r4ss/BigSkate) for models

10
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that were discussed in the review were shared with the review panel to allow them to further explore

these models beyond the limited information that could be provided in a brief presentation.

2.4 Bayesian applications (Pacific hake)

The use of Bayesian methods for integrated assessment models have well-documented benefits (e.g.
use of prior information and better characterization of posterior distribution) and challenges (slow run
times and shifting focus from uncertainty in model structure) (Maunder 2003, Stewart et al. 2013;
Monnahan et al. 2019). Analysts using Bayesian approaches are best served by having efficient
approaches for comparing posterior distributions to maximum posterior density (MPD) estimates and
associated asymptotic uncertainty (Fournier et al. 2012; Stewart et al. 2013). Examining the relationship
between these posterior estimates and prior distributions is also vital to understanding the influence of
the choice of prior. The annual stock assessment for Pacific hake (Grandin et al. 2020) has used Markov
Chain Monte Carlo (MCMC) sampling to characterize posterior density distributions for nearly two
decades. The r4ss package can be used to plot the prior and posterior distribution of all estimated
parameters (Figure 5) as well as time series plots comparing quantiles from the posterior samples of
derived quantities to the associated MPD estimates and their asymptotic uncertainty intervals. This
functionality was initially developed for Pacific hake in 2011 but generalized to work for any SS model; it
has allowed the assessment team for Pacific hake to demonstrate the qualitative similarities between
the two estimation methods and use more computationally intensive MCMC sampling for a subset of
the models explored while showing only the more rapidly available MPD results for numerous sensitivity

analyses. However, many of the plots included in the Pacific hake assessment report require custom

code (available at github.com/pacific-hake/hake-assessment) as the r4ss package does not contain the
necessary tools to plot a variety of valuable diagnostics for Bayesian models, such as the fit of posterior

distribution of expected values to observed data. Adoption of the no-U-turn sampler for SS and other

11
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models using ADMB and TMB (Monnahan and Kristensen, 2018), which decreases model runtime
compared to the default Metropolis-Hasting algorithm used for MCMC in ADMB, may increase the use
of posterior sampling in integrated models and inspire generalization of the custom Pacific hake code for

more widespread use by users of r4ss or other generalized packages.

3. Collective experience of the authors

In addition to the examples above, r4ss has facilitated the formalization of many assessment authors’
“tips and tricks” for efficiently building, diagnosing, and reporting stock assessment models. Sharing of
collective experience reduces the learning curve for new assessment authors and also provides structure
to remind experienced authors of perennial pitfalls. This section reports a series of problems that we the
authors have collectively encountered across a large number of individual stock assessments that

standardized and generalized tools like r4ss can solve (Table 1).

4. Discussion

Software packages are often described as black boxes (Dichmont et al., 2016) and fitting models to data
has previously been described as an art rather than a science because of numerous non-trivial choices in
the model development process (e.g., how to specify the model, how to weight the data). Fortunately,
stock assessment scientists are formally trained in at least either model development or model fitting,
helping to ensure that results fulfill mandates to provide best available science. Where stock assessment
scientists typically lack formal training is in data visualization and how to effectively communicate
science to stakeholders and fishery managers. Punt and Hilborn (1997) summed up the problem
suggesting that “the art of stock assessment involves determining what to present to managers and the
best way to summarize information.” The importance of creating effective visualizations and effectively

communicating science has also been noted in Management Strategy Evaluation processes (Miller et al.
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2019). Because it is difficult to predict what decision makers know versus what they need to know
(Fischhoff, 2013), leaning towards archiving vast amounts of easily accessible information is a typical
practice among stock assessment scientists and their associated organizations. Key to this approach has
been the development of open source tools such as r4ss that reduce the time needed to manipulate
model-input files and run sensitivity analyses, summarize model output in a standardized way to
minimize the time needed to interpret output, and openly document assumptions and protocols used

along the way.

4.1 Successes

We attribute some of the success of r4ss to increases in the use and usability of open source tools for
science (e.g., Stewart Lowndes et al., 2017; Boettiger et al., 2015; Huber et al., 2015). Software
development tools like version control and automated testing have facilitated the continuous
development process and increased the reliability of the code base. As more scientific disciplines model
themselves after the geospatial community, a leader when it comes to open source and free software
development (Bocher and Neteler, 2012), code sharing has become the norm. We recognize that
exposing one’s work in this way may be uncomfortable at first, but the benefits to the community far
outweigh the costs. For example, the routine use of r4ss by different users with models fit to a diverse
array of datasets leads to the discovery of bugs (whereas bugs may go unnoticed with personal code)

that can be reported (to github.com/r4ss/r4ss/issues) and fixed. Many of the users also suggested fixes

and improvements. Thus, the r4ss functions become more reliable and more useful than code used for

one-off manipulations.

The r4ss project has been successful for the stock assessment process as a whole. For individual stock

assessment analysts, using r4ss allows for a more automated workflow in which it is easier to pinpoint
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issues during the base model development process, run sensitivity analyses, and generate figures for
reports. The package can also be used by analysts who lack the time or training to develop their own
personal diagnostics code, thus empowering many to conduct higher-quality stock assessments. The
availability of r4ss as a platform for distributing new diagnostics and tuning methods has contributed to
collaboration among researchers and facilitated timely adoption of the new approaches within the stock
assessment community. For reviewers, managers, and stakeholders, the standardized and extensive set
of plots created by r4ss has made the stock assessment process and its results more transparent and
easier to interpret. One unintentional consequence of the availability of automated visualization tools is
that reviewers and managers often expect more output, which reduces some of the time-savings that
the tools provide for individual analysts. However, movement toward more standardized model

diagnostics for integrated fisheries models (Carvalho et al., this issue) mitigates this challenge.

Outside of the stock assessment workflow, r4ss can also be used as a dependency for other tools for
working with SS models. For example, instead of maintaining similar functionality, the ss3sim R package
(Anderson et al., 2014) imports r4ss as a dependency. This allows ss3sim to benefit from improvements
and fixes added to r4ss. As the use of SS has grown, so has the ecosystem of tools that interact with it
for conducting simulation analyses, MSEs, data-limited models and other tasks specific to a particular
region or stock (Cope and Wetzel, this issue). We foresee a similar proliferation of tools associated with
any widely used next generation assessment platform, where the basic functions of interpreting output

files and interacting with input files can be contained within a single package on which others depend.

4.2 Challenges

The r4ss project also reveals the challenges of a standardized tool. It was created without foresight into

what it would become, leading to a variety of problems. For example, a mismatch between the names
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used in r4ss and SS as well as non-standardized naming and output in SS are common issues that are
difficult to remedy without a significant impact on the large set of additional R packages and individual
scripts that depend on r4ss. Keeping up with the development of SS while maintaining backward
compatibility with older versions of SS that are still in use is a challenge for the r4ss developers. While

r4ss saves time for users, it creates more work for developers and maintainers.

Another challenge is the increasing scope of r4ss over time, as more functions and options have been
added to the package. Generally, the scope of r4ss is “tools in R to work with Stock Synthesis”, but
initially the scope of r4ss was “visualization tools in R to work with Stock Synthesis”. This creates
challenges in balancing flexibility for advanced users with understandability for newer users, while
maintaining interoperability with various dependent projects like ss3sim and automated assessment
document writing approaches. “Scope creep” is a common problem in software projects, including R

packages. For example, the R package devtools, which is widely used by R package developers

(Wickham, 2015) was split into multiple smaller R packages as a solution to devtools becoming large and

thus harder to develop and for other packages to depend on (Hester, 2018). A similar approach could be

applied to r4ss to manage this balance.

In addition to the increase in scope associated with new functions added to r4ss, the range of uses for
the figures created by the original rdss code has grown over time. The original intent was to produce
quick diagnostics for use by assessment analysts, but those figures (many of which are effectively
unchanged in appearance since 2005), are now frequently used in assessment reports and

presentations, contexts which would benefit from additional adjustments and refinements.

15



352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

Finally, creating a collaborative community is challenging. While r4ss has successfully facilitated
collaborations among stock assessment scientists working around the world, it is difficult to encourage
contributions to a collaborative tool over individual development. This is especially challenging because
most stock assessment scientists (like many scientists working in other disciplines) have little to no
formal software development training and thus the hurdle of learning collaborative software
development tools like version control is high. In cases where formally trained software developers (as
opposed to scientists) are the ones writing code, these developers are often working alone, unlike in
typical software engineering environments (Killcoyne and Boyle, 2009), so collaboration is not as
common. The r4ss developers have encouraged collaboration by allowing contributions in multiple
ways, from formal pull requests via a version control system to emailing code to r4ss maintainers. We
also recognize that contributing code is not the only way to contribute to a tool; for example, bug
reports and discussions taking place through the rdss issue tracker also allow people who may never
touch the r4ss codebase to contribute. Like the Ocean Health Index project (Stewart Lowndes et al.,
2017) and many other open source projects, the r4ss community attempts to meet collaborators where
they are in terms of understanding and using software development tools, while encouraging and

empowering them to learn new approaches and practices.

4.3 Recommendations

The 15-year history of rdss development provides insight for the future development of tools to work
with stock assessment models. First, automating the creation of model diagnostics and plots is a
fundamental aspect of developing a generalized model package, as it is too time consuming for analysts
and reviewers to evaluate the validity of models using ad hoc approaches. The challenge of developing
rd4ss after SS highlights the difficulties in retrofitting tools to work with existing models. Retrofitting r4ss

to SS has led to model inputs and outputs that change over time and are not standardized with other
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modeling platforms, thus creating an increase in development time for r4ss. Thus, we believe that
development of future tools for stock assessment modeling workflows should be developed in tandem
with any new stock assessment modeling framework and some standardization is needed between the
stock assessment model framework (or frameworks) and tools for efficient workflow and model
diagnostics. However, the stock assessment modeling framework and associated tools should be kept
somewhat independent, as the software requirements and development processes for assessment
modeling frameworks, which depend on computational efficiency and reliability, are different from
those that best suit associated tools like r4ss. While long-term planning is helpful, it will not be possible
to perfectly plan the tools because future needs are unpredictable. Adopting a flexible approach will be

necessary in a future tool.

We recommend using R as the basis for similar tools associated with the next generation of integrated
models. While there are other languages that could be faster or better-suited to some of the tasks, R is
widely used in fisheries science (Schnute et al., 2007, Anderson et al. 2020) and thus there is a larger
pool of potential users and developers. We argue that having a large group of users and developers is

more important than computational efficiency for this aspect of the stock assessment process.

We also think that the open source development model and creating an environment in which users’
contributions are encouraged is key to the success of a future diagnostic tool. Once the core elements
are in place for a tool, users can contribute functions like new plots without having to understand much
about the package. Open source leads to more bugs being caught and fixed quickly while also facilitating
the growth of the tool to fit the ever changing needs of stock assessment science. While open source
software may be “free”, it still has maintenance costs, typically in the form of maintainers’ time. In the

case of rdss, there is a primary maintainer who typically spends about 8 hours a week working on the
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package. Maintenance is necessary for the long-term sustainability of software (Ram et al. 2019). Who
(organizations or individuals) will maintain the software and how much time they can devote to
maintenance should be carefully considered during the planning stages of a new stock assessment

modeling framework and its associated diagnostic tool.

Standard software development tools and practices are key for creating scientific software that works
well (Wilson et al., 2014; Wilson et al., 2017) and will be important to use in tools designed to work with
the next generation of integrated models. At a bare minimum, the software should be under version
control, hosted in a public repository and provide standard workflows for collaborative coding. Other
tools that are essential to maintaining code that works are a testing framework for running unit and
integration tests (and writing tests as code is added) and a continuous integration tool to automatically

build the software and run the testing framework often.

One limitation of r4ss is it is designed to only work with a single stock assessment platform, SS. Non-
standardized inputs and outputs among assessment model frameworks create challenges for comparing
modeling approaches. A generalized package not specific to any assessment model framework would
eliminate this problem while also allowing analysts to consider other potential model configurations not
available in a single framework and more easily compare models developed in different frameworks.
However, to our knowledge, no package which has sought to provide this type of generality has been
widely used for more than one assessment platform. There are multiple challenges with creating a
generalized package for model diagnostics. First, the differences in input and output formats used in
different stock assessment platforms (such as those listed in Punt et al., this issue) would add overhead
associated with translating into a common framework. Second, development of a generalized tool

would require expertise in multiple assessment platforms (e.g., an attempt to create a function within
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rdss to convert SS output into the format required by another diagnostic package was unsuccessful
because no one was adequately familiar with both platforms). Rather than focus on development of a
more generalized version of a tool like r4ss, we believe that the effort would be better invested in the
design and use of more standard formats in the next generation of stock assessment platforms and their
associated tools for input and output process and model diagnostics. However, tools to translate input
files between assessment packages have been successfully developed largely as one-off projects when
the comparison of results across platforms is desired. For example, tools to compile results across
assessment platforms were developed while conducting a project to formally compare some stock
assessment platforms used in the U.S. (Li, 2020). These tools have the potential to become more
generalized for future projects. Unfortunately, it is normally faster to get code to work only for what is
directly needed rather than creating generalized code. As ensemble modelling in stock assessment
(Stewart and Martell, 2015) becomes more popular, efforts to translate inputs and output between

assessment platforms may become increasingly worthwhile.

Tools similar to r4ss which are developed in the future should also consider the divergent needs for
interactive exploration of model results and production of written reports. Regular et al. (2020) argue
that interactive visualizations support deeper understanding of models, but we have found that the
consistent set of figures as stand-alone image files (and associated captions) created by r4ss has been
valuable for automating the compiling of assessment reports. It is difficult to create a tool that works
well for all purposes, so whether interactive or static visualizations (or both) are needed given the

purpose of the tool should be carefully considered.

Development of a consistent format for assessment reports across regions and agencies could further

simplify the report-writing process by providing all the benefits of shared code discussed above as well
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as improve understanding of the reports for the many reviewers and researchers who work with stock
assessments from multiple regions. For example, standardized static visualizations of patterns in data
across 113 rockfish species developed by Anderson et al. (2020) have made these data more accessible
to more people through two page reports that can be quickly explored. However, standardizing reports
would require a significant effort as the processes for changing the Terms of Reference for stock
assessment reports and reviews, the stock assessment modeling platforms, and the tools like r4ss that

provide the bridge between them, differ among regions and agencies.

Finally, although the r4ss code is open source and available for use in any future project, we recommend
that any successor to the r4ss package should be developed from the ground up, learning from the
successes and challenges or rd4ss, and copying the useful features of r4ss, but not utilizing the existing
code. This type of restart occurred when Stock Synthesis was converted from FORTRAN to ADMB during
Hurricane Isabel in 2003, providing the basis for a long period of utility for a large community of stock
assessment scientists. Replacing r4ss will take a huge effort, but we have found that the value of r4ss
has not just come from the tool itself, but the understanding and experience gained and community

built by all those who have contributed to this effort.
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Tables

Table 1. Issues related to the stock assessment modeling process and potential solutions to alleviate or

minimize the issues.

Issue

Solution

Placeholder values for data not available at the
start of the assessment process inadvertently

retained in the final model.

Parameters on bounds in the final model.

Incorrect parameterization of processes because
it is difficult to see the resulting form from model

input files, e.g., selectivity curve.

Confounded parameters.

Small model changes can have cascading effects

on the model results that go unnoticed.

Frequently make and view plots of data included

in input files.

The r4ss HTML viewer includes a table that
highlights parameters on bounds in red so they
are easily identified and a plot of the estimated
parameter values and associated uncertainty
relative to the parameter bounds and prior

distribution; consider reconfiguring the model.

Plots of processes resulting from input
parameters such as selectivity are automatically
available in the r4ss HTML viewer; change input

parameters until the desired shape is found.

A correlation check is included in the r4ss HTML

viewer; consider reconfiguring the model.

The r4ss HTML viewer allows examination of the

holistic model results and comparison functions
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632

633

allow for easy visualization of how results change

with each change to input files.

Using custom plotting code not under version Use standardized tools under version control.
control edited by multiple analysts independently
can lead to confusion and makes splitting up work

difficult.

Sensitivities requested during a review process Use generalized and standardized tools to modify
can be difficult to set up and implement quickly the model files increases the robustness of results

without errors. and decreases the likelihood of errors.

Need to quickly update figures and tables when Use code (e.g., R Markdown or LaTeX) with a

models change. standardized plotting tool to generate reports.
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Figure 1. Recent time-series of individual model estimates for female spawning biomass for Pacific halibut created using the
SSplotComparisons function in r4ss.The shaded polygons represent the approximate 95% confidence intervals derived from

asymptotic uncertainty estimates from the models.
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Figure 2. Pearson residuals showing fit of big skate model to conditional age-at-length data. Upper panels are females (red

circles) and lower panels males (blue circles). Filled circles represent observations greater than the expectation, while unfilled

circles represent observations less than the expectation. Size of the circles (key at top of upper left panel) represent the

magnitude of the residual. The year in which the conditional age-at-length data were collected is shown in the upper left corner

of each

panel.
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Figure 3. Application of the conditional-age-at-length diagnostic plot for three years of big skate age and length data. The left
panels are mean observed age at length by length bin (points) with 90% confidence intervals (shading) calculated from the
asymptotic standard errors (SE) compared to the expected mean age at length (solid line) for each year (upper left corner of
each left panel). The right panels show the corresponding mean age at length SE values (points) compared to the expected

standard deviation (line).
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Figure 4. Sex ratios calculated from the bottom trawl survey length composition samples of big skate. Observed sex ratios
(points) with 75% intervals (vertical lines) calculated as a Jeffreys interval (Brown et al., 2001). The model expectation is shown
in the purple line. The year in which the length composition samples were collected is shown in the upper left corner of each
panel. The adjusted input sample size (N) and effective sample size associated with the McAllister-lanelli tuning (effN) are

shown in the upper right corner of each panel.
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664 and the normal approximation to the posterior based on the asymptotic approximation of the parameter variance. The black

665 lines show the prior distributions (a beta distribution for steepness, a lognormal distribution for natural mortality, and uniform
666 distributions for the other two parameters). Starting values for the MPD estimation are shown in the red triangles.
667
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