

1 **Beyond visualizing catch-at-age models: lessons learned**
2 **from the r4ss package about software to support stock**
3 **assessments**

4 Ian G. Taylor^{a,*}, Kathryn L. Doering^b, Kelli F. Johnson^a, Chantel R. Wetzel^a, Ian J. Stewart^c

5

6 ^aFishery Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, National
7 Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E,
8 Seattle, WA 98112, USA

9 ^bCaelum Research Corporation under contract to Northwest Fisheries Science Center, National Marine
10 Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA
11 98112, USA

12 ^cInternational Pacific Halibut Commission, 2320 West Commodore Way, Suite 300, Seattle, WA 98199,
13 United States

14

15 *Corresponding author. Email address: ian.taylor@noaa.gov

16

17 Keywords: r4ss, Stock Synthesis, Model diagnostics, Conditional age-at-length data, R packages

18

19

20

21 **Abstract**

22

23 Stock assessment analysts are exploring an increasingly diverse and complex range of models while also
24 facing higher expectations for consistency, documentation, and transparency in reports and
25 management advice, all within a tight timeline. Meeting these goals requires increased efficiency at all
26 steps in the assessment process from data processing, through model development and selection, to
27 report writing and review. Here, we describe one widely used tool that has proven successful in
28 increasing the efficiency of the assessment process: the *r4ss* package, which supports the use of the
29 Stock Synthesis modeling framework. What began 15 years ago as a tool to provide simple model
30 diagnostics, including plots showing data and model results, has grown into a large collection of R
31 functions to support many aspects of the assessment process. We provide an overview of the *r4ss*
32 features and illustrate its utility with examples from recent applications. Finally, we discuss lessons
33 learned from the ongoing development of *r4ss* that can be applied to similar efforts associated with the
34 next generation of stock assessment packages.

35

36 **1. Introduction**

37

38 Assessment of fish stocks (hereafter referred to as “stocks”) is a necessary task, largely because of
39 mandates by federal and regional governing bodies to provide information about stock status and apply
40 harvest control rules to inform catch limits under harvest policies. While incorporating disparate data
41 sources into a single population model (integrated analysis) to determine stock status is routine,
42 understanding the fit to each data set and its associated influence on the model results can be
43 challenging (Maunder and Punt, 2013; Maunder and Piner, 2015). A standardized set of visualization
44 tools is key to providing understanding and transparency throughout this process for stock assessment

45 analysts, reviewers, stakeholders, and managers. For example, standardized tools allow analysts to
46 quickly understand model results and explore new model configurations during the model development
47 and peer review processes; reviewers scrutinize the analyses and investigate other alternatives with the
48 aid of visualization tools, ultimately deciding if the assessment results are appropriate for use by
49 management; and lastly, stakeholders and managers need to understand the model results, and hence,
50 need intuitive visualization tools to inform the range of management options and decide on which
51 management measures to take.

52

53 Visualization tools can aid analysts throughout the assessment process. For example, Richards et al.
54 (1997) found while developing a stock assessment for Pacific ocean perch (*Sebastes alutus*) that
55 visualization tools allowed them to better understand their data sets and pinpoint data features that
56 needed to be accommodated, develop a statistical catch-at-age model well suited to the data sets, and
57 evaluate model output more thoroughly. Stock assessments often require hundreds of model runs.

58 Tools for quickly visualizing model results allow analysts to more efficiently select among them. As an
59 illustration of the power of automated workflows and visualization tools, calculating residuals by hand
60 would take hours, while visualizing patterns in residuals already plotted can take just minutes.

61 Visualization tools can also relieve the feeling of being time-poor when conducting stock assessments
62 (Bentley, 2015). Aside from efficiency, a thorough and standardized set of tools for visualizing model
63 output can help catch errors such as misspecified models and aid in the report writing process, as most
64 stock assessment reports require numerous figures and tables.

65

66 The peer review process for stock assessments (e.g., Brown et al., 2020), to determine if assessment
67 results can be used by management bodies for decision making, benefits from visualization tools. For
68 example, Regular et al. (2020) found that interactive data and model dashboards improved their ability

69 to communicate with stakeholders during the stock assessment review process for a northern cod stock
70 in the northwest Atlantic. Producing standardized figures across assessments increases ease of
71 understanding for readers and simplifies comparisons across assessments. Often, peer reviewers are
72 tasked with evaluating modeling decisions and model results, ultimately deciding if the assessment
73 results are appropriate for use by management. Requests for visualizations made during assessment
74 review processes are often expected in subsequent reviews, especially if the same reviewers may be
75 engaged in the future, and should be added to assessment analyst toolboxes, such that they can be
76 better prepared for future reviews. Thus, this toolbox grows with each review and helps facilitate
77 efficient reviews, because analysts are able to quickly produce desired output before it is asked for.

78

79 The Terms of Reference (ToR) for stock assessment reviews have also coevolved with visualization tools,
80 increasing the value of standardization. For instance, 10 years ago the ToR for groundfish stock
81 assessments conducted for the Pacific Fishery Management Council (PFMC 2009) had an eight-point
82 bulleted list of general stock assessment team deliverables, while the ToR used in 2019 (PFMC 2019) had
83 a check list of 74 elements within 18 sections with more specificity. These ToR changes have been driven
84 in part by feedback from reviewers seeing the benefit of new visualizations and diagnostics for individual
85 assessments as described above. The ToR changes, in turn, lead to wider adoption of the new
86 approaches for analysts working to meet them, a shift which is easier when the analysts can use shared
87 tools to meet the new standards.

88

89 Effectively translating complicated assessment models and results into an easily digestible form for
90 fishery managers and stakeholders can be challenging, especially when presenting information across a
91 large range of stocks (Dichmont et al. 2016). Presenting assessment results in a consistent manner
92 across stocks can lessen the communication challenge, allowing for improved discussions between

93 analysts, stakeholders, and managers. The development and application of an assessment toolbox for
94 use by analysts facilitates this process without creating additional workload.

95

96 Communication methods for stock assessment results are not a frequent topic in fisheries science
97 journals, but it is an area where new ideas are rapidly developing and which deserves greater
98 prominence in the literature. The widespread adoption of the generalized integrated analysis platform
99 Stock Synthesis (SS, Methot and Wetzel, 2013) provided an opportunity to develop a standardized set of
100 visualization and automation tools, given a larger pool of potential applications, users, and contributors
101 (Punt and Maunder, 2013). Here, we discuss how *r4ss*, an R package containing tools for working with SS
102 models, has improved the stock assessment development and review processes for individual analysts,
103 reviewers, and managers over its 15 years of active development. We also highlight lessons learned
104 from developing and using *r4ss* that could be applied when developing new visualization tools for a new
105 stock assessment modeling platform.

106

107 **1.1 History**

108

109 The *r4ss* package grew organically from a single code script written by a single author in 2005 for use in
110 the R statistical programming language (R Core Team, 2020) to a large open-source R package with
111 many contributors. Before *r4ss* was developed, the typical workflow for SS users was examining the
112 output text files directly or importing them into Excel where figures were generated using Visual Basic
113 scripts or created manually for each model. The figures were time-consuming to create, had limited
114 reproducibility, and did not provide reviewers and managers with a consistent product with which they
115 could become familiar as modifications for an individual model were rarely generalized for the benefit of
116 other models. The original *r4ss* R script became widely used by the stock assessment team at the

117 National Oceanic and Atmospheric Administration (NOAA) Northwest Fisheries Science Center (NWFSC)
118 and grew in complexity as members of the assessment team provided suggestions for additions. The
119 increase in use also increased the burden associated with maintaining the code, and in 2008 the lead
120 developer role was shifted to a postdoctoral researcher which allowed for more directed development,
121 facilitating the growth and use of the code to function across SS-assessed stocks. Shortly thereafter, the
122 code was put under version control and released as open source to facilitate distribution and
123 development, to increase transparency, and to reduce the burden of maintenance on any individual
124 developer.

125

126 Although, in the early years of its development, most of the code was written by just two people,
127 feedback from users was essential to improving the package. In particular, conversations with
128 participants at the annual Inter-American Tropical Tuna Commission (IATTC) Stock Assessment
129 Workshop series (since succeeded by the Center for the Advancement of Population Assessment
130 Methodology workshops) led to significant steps forward in the project. The initial public release of *r4ss*
131 took place during the 2008 IATTC workshop (Maunder, 2008); discussions at the 2009 workshop inspired
132 the conversion of the script into a formal R package available on the Comprehensive R Archive Network
133 (CRAN); and a demonstration of the Javascript viewer for Multifan-CL (SPC, 2010) associated with the
134 2011 workshop led to the development of an HTML viewer for *r4ss* plots. Formatting the *r4ss* script as
135 an R package brought the benefits of structured documentation for each function; making the *r4ss*
136 package available on CRAN made it easier to find and install (as CRAN is the first source most users will
137 look to for R packages). The number of authors, all of whom have made substantial code contributions,
138 has also grown from 5 in 2009 to 29 in 2020. The methods used to incorporate code into the *r4ss*
139 codebase have also evolved from contributors emailing files to the lead developer, to GitHub pull
140 requests that get automatically checked and manually reviewed before merging. Although the

141 development workflow has grown more sophisticated, the organic evolution of *r4ss* leaves many legacy
142 aspects of the code and package structure, which are typical of research software (Ram et al. 2019), but
143 would be designed differently if starting from scratch today.

144

145 **1.2 Overview of the package**

146

147 The *r4ss* package (github.com/r4ss/r4ss) includes functions designed to work with SS input and output
148 files (Supplement 1). The main types of functions in the package are: 1) functions to read and plot
149 information from SS output files to visualize model results; 2) functions to automate tasks associated
150 with SS models that are routinely performed; and 3) functions to read, create or modify SS input files.
151 In the examples, we will focus on functions to visualize model results and automate routine tasks.

152

153 **2. Examples**

154 **2.1 Multimodel management (Pacific halibut)**

155 The Pacific halibut (*Hippoglossus stenolepis*) stock assessment comprises four individual models which
156 are used to create an ensemble for management use by the International Pacific Halibut Commission
157 (IPHC; Stewart and Martell, 2015; Stewart and Hicks, 2018). Each of the models represent a different
158 hypothesis regarding the best approach for modelling the stock dynamics. The four models vary in the
159 length of the modelled period, the level of data aggregation, and data-weighting, among other factors
160 (Stewart and Hicks, 2020). Use of special features (e.g., environmental covariates, time-varying
161 catchability) in a subset of the models is automatically detected by *r4ss* functions and appropriate
162 reporting is included in subsequent output. With four models to diagnose, it is efficient to run the same
163 function calls and retrieve a complete set of output without having to adjust the code for each individual

164 model. When suitable models have been identified and refined, the output can be easily summarized
165 (Figure 1).

166 This application also highlights the benefit of standardized output for review purposes. For the 2019
167 stock assessment, the IPHC conducted a two-stage review, utilizing its standing Scientific Review Board,
168 as well as a contracted external reviewer (IPHC 2020). Model input files and directories containing the
169 *r4ss* HTML and individual output files from the *SS_output* function were provided electronically to all
170 reviewers. This approach allowed for standardized reporting (reviewers were all familiar with *r4ss*
171 output) and comprehensive diagnostics for all four models in a more detailed summary than could have
172 been provided only in a standard written document. Reviewers were not required to re-run the *r4ss*
173 code to explore the detailed results, but the HTML-approach re-created a user-friendly summary on
174 demand.

175 **2.2 Adoption of new modeling approaches and diagnostics (Big skate)**

176

177 The 2019 assessment of big skate (*Beringraja binoculata*) off the U.S. west coast (Taylor et al., 2019)
178 illustrates the efficiency gained by using tools like *r4ss*. Specifically, *r4ss* facilitated the use of conditional
179 age-at-length (CAAL) data, exploration of numerous model configurations, timely model development
180 during the review process, and an efficient development and revision of the assessment report.

181

182 The stock assessment of big skate used CAAL data (Figure 2), which has become a standard treatment of
183 age- and length-composition data collected from the same samples used in integrated assessments to
184 reduce biases associated with length-based selection and better inform parameters related to variability
185 in length-at-age (Hoyle and Maunder, 2006; Stewart, 2005; Piner et al., 2016). However, adopting this
186 approach to modeling compositional data was initially hampered by lack of associated model diagnostics

187 and appropriate data weighting methods. In response to this concern new diagnostics were developed,
188 including the calculation of the implied fit to the marginal age composition (called “ghost” age
189 compositions within *r4ss*) and a new diagnostic figure to evaluate the fit of the model expectation to the
190 mean and variability around the mean age at length (Figure 3). Data weighting approaches for CAAL data
191 have likewise been the subject of ongoing research and new diagnostics. Francis (2011) proposed a new
192 approach to tuning input sample sizes for marginal composition data. Two authors independently
193 developed R code for applying the Francis (2011) algorithm and their functions were combined and
194 contributed to *r4ss* in 2014. This facilitated more frequent use of this method and the discovery that an
195 extension was needed for CAAL data (Punt 2017) which was subsequently incorporated into *r4ss*. The
196 assessment of big skate used the Francis-Punt tuning method but also considered the sensitivity of the
197 model results to the Dirichlet-Multinomial (Thorson et al., 2017) and McAllister-Ianelli (McAllister and
198 Ianelli, 1997) methods of data weighting as alternatives. These sensitivity analyses were trivial to
199 implement and easy to compare thanks to the support for all three approaches in SS and *r4ss*. Choosing
200 among the methods unfortunately remains somewhat subjective, but the opportunity to quickly develop
201 all three models and examine the associated fits to the CAAL data and other data types is essential for
202 understanding the impact of data weighting choices on the perception of stock status and the structural
203 uncertainty associated with assessment results.

204

205 The assessment of big skate also benefited from previous work to understand sex ratios in models fit to
206 data for Pacific halibut. These explorations led to the inclusion of a new diagnostic figure within *r4ss*
207 showing the sex ratio derived from the observed and expected age- or length-composition data (Figure
208 4). For big skate, the figure revealed unbalanced sex ratios at sizes where there was little evidence of
209 dimorphic growth, suggesting that sex-specific differences in selectivity should be included in the model.
210 The availability of a diagnostic previously developed for a different stock was vital to the model

211 development during a period where the time available to explore new ways to understand patterns in
212 the data was limited. After applying the diagnostic to big skate, discussions facilitated by the use of the
213 GitHub issue tracker led to further refinement of the diagnostic. This collaborative effort highlights how
214 open source code can increase efficiency, promote collective understanding, and allow for incremental
215 progress.

216

217 **2.3 Efficient exploration of alternative models (Big skate)**

218

219 In the process of developing the big skate assessment, over 800 different model configurations were run
220 during 2 months, almost 200 of which were run during the 5-day review meeting. These included seven
221 new candidate “base” models, 108 models that were part of likelihood profiles, 72 sensitivity analyses,
222 and three alternative forecast scenarios. Functions in *r4ss* were used to run the likelihood profiles and
223 create the associated plots as well as automatically repeat sensitivity analyses for new candidate
224 models. This volume of model examination, comparison, and selection has become a typical part of the
225 assessment process in many regions, but thorough examination of this many models is only possible
226 with tools to quickly compare and aggregate results.

227

228 In total, approximately 40,000 standard *r4ss* diagnostic figures were created during the 2-month model
229 development period (~200 figures from each of ~200 models). The option to look at a suite of
230 diagnostics for any given model allowed the authors to quickly determine whether the data were
231 entered into the model input files correctly, look for outliers, and, as the models developed, evaluate
232 whether alternative modeling approaches merited further consideration. The full collection of diagnostic
233 figures and tables and the associated HTML viewer files (e.g., r4ss.github.io/r4ss/BigSkate) for models

234 that were discussed in the review were shared with the review panel to allow them to further explore
235 these models beyond the limited information that could be provided in a brief presentation.

236

237 **2.4 Bayesian applications (Pacific hake)**

238 The use of Bayesian methods for integrated assessment models have well-documented benefits (e.g.
239 use of prior information and better characterization of posterior distribution) and challenges (slow run
240 times and shifting focus from uncertainty in model structure) (Maunder 2003, Stewart et al. 2013;
241 Monnahan et al. 2019). Analysts using Bayesian approaches are best served by having efficient
242 approaches for comparing posterior distributions to maximum posterior density (MPD) estimates and
243 associated asymptotic uncertainty (Fournier et al. 2012; Stewart et al. 2013). Examining the relationship
244 between these posterior estimates and prior distributions is also vital to understanding the influence of
245 the choice of prior. The annual stock assessment for Pacific hake (Grandin et al. 2020) has used Markov
246 Chain Monte Carlo (MCMC) sampling to characterize posterior density distributions for nearly two
247 decades. The *r4ss* package can be used to plot the prior and posterior distribution of all estimated
248 parameters (Figure 5) as well as time series plots comparing quantiles from the posterior samples of
249 derived quantities to the associated MPD estimates and their asymptotic uncertainty intervals. This
250 functionality was initially developed for Pacific hake in 2011 but generalized to work for any SS model; it
251 has allowed the assessment team for Pacific hake to demonstrate the qualitative similarities between
252 the two estimation methods and use more computationally intensive MCMC sampling for a subset of
253 the models explored while showing only the more rapidly available MPD results for numerous sensitivity
254 analyses. However, many of the plots included in the Pacific hake assessment report require custom
255 code (available at github.com/pacific-hake/hake-assessment) as the *r4ss* package does not contain the
256 necessary tools to plot a variety of valuable diagnostics for Bayesian models, such as the fit of posterior
257 distribution of expected values to observed data. Adoption of the no-U-turn sampler for SS and other

258 models using ADMB and TMB (Monnahan and Kristensen, 2018), which decreases model runtime
259 compared to the default Metropolis-Hasting algorithm used for MCMC in ADMB, may increase the use
260 of posterior sampling in integrated models and inspire generalization of the custom Pacific hake code for
261 more widespread use by users of *r4ss* or other generalized packages.

262 **3. Collective experience of the authors**

263 In addition to the examples above, *r4ss* has facilitated the formalization of many assessment authors'
264 "tips and tricks" for efficiently building, diagnosing, and reporting stock assessment models. Sharing of
265 collective experience reduces the learning curve for new assessment authors and also provides structure
266 to remind experienced authors of perennial pitfalls. This section reports a series of problems that we the
267 authors have collectively encountered across a large number of individual stock assessments that
268 standardized and generalized tools like *r4ss* can solve (Table 1).

269

270 **4. Discussion**

271 Software packages are often described as black boxes (Dichmont et al., 2016) and fitting models to data
272 has previously been described as an art rather than a science because of numerous non-trivial choices in
273 the model development process (e.g., how to specify the model, how to weight the data). Fortunately,
274 stock assessment scientists are formally trained in at least either model development or model fitting,
275 helping to ensure that results fulfill mandates to provide best available science. Where stock assessment
276 scientists typically lack formal training is in data visualization and how to effectively communicate
277 science to stakeholders and fishery managers. Punt and Hilborn (1997) summed up the problem
278 suggesting that "the art of stock assessment involves determining what to present to managers and the
279 best way to summarize information." The importance of creating effective visualizations and effectively
280 communicating science has also been noted in Management Strategy Evaluation processes (Miller et al.

281 2019). Because it is difficult to predict what decision makers know versus what they need to know
282 (Fischhoff, 2013), leaning towards archiving vast amounts of easily accessible information is a typical
283 practice among stock assessment scientists and their associated organizations. Key to this approach has
284 been the development of open source tools such as *r4ss* that reduce the time needed to manipulate
285 model-input files and run sensitivity analyses, summarize model output in a standardized way to
286 minimize the time needed to interpret output, and openly document assumptions and protocols used
287 along the way.

288

289 **4.1 Successes**

290 We attribute some of the success of *r4ss* to increases in the use and usability of open source tools for
291 science (e.g., Stewart Lowndes et al., 2017; Boettiger et al., 2015; Huber et al., 2015). Software
292 development tools like version control and automated testing have facilitated the continuous
293 development process and increased the reliability of the code base. As more scientific disciplines model
294 themselves after the geospatial community, a leader when it comes to open source and free software
295 development (Bocher and Neteler, 2012), code sharing has become the norm. We recognize that
296 exposing one's work in this way may be uncomfortable at first, but the benefits to the community far
297 outweigh the costs. For example, the routine use of *r4ss* by different users with models fit to a diverse
298 array of datasets leads to the discovery of bugs (whereas bugs may go unnoticed with personal code)
299 that can be reported (to github.com/r4ss/r4ss/issues) and fixed. Many of the users also suggested fixes
300 and improvements. Thus, the *r4ss* functions become more reliable and more useful than code used for
301 one-off manipulations.

302

303 The *r4ss* project has been successful for the stock assessment process as a whole. For individual stock
304 assessment analysts, using *r4ss* allows for a more automated workflow in which it is easier to pinpoint

305 issues during the base model development process, run sensitivity analyses, and generate figures for
306 reports. The package can also be used by analysts who lack the time or training to develop their own
307 personal diagnostics code, thus empowering many to conduct higher-quality stock assessments. The
308 availability of *r4ss* as a platform for distributing new diagnostics and tuning methods has contributed to
309 collaboration among researchers and facilitated timely adoption of the new approaches within the stock
310 assessment community. For reviewers, managers, and stakeholders, the standardized and extensive set
311 of plots created by *r4ss* has made the stock assessment process and its results more transparent and
312 easier to interpret. One unintentional consequence of the availability of automated visualization tools is
313 that reviewers and managers often expect more output, which reduces some of the time-savings that
314 the tools provide for individual analysts. However, movement toward more standardized model
315 diagnostics for integrated fisheries models (Carvalho et al., this issue) mitigates this challenge.

316

317 Outside of the stock assessment workflow, *r4ss* can also be used as a dependency for other tools for
318 working with SS models. For example, instead of maintaining similar functionality, the *ss3sim* R package
319 (Anderson et al., 2014) imports *r4ss* as a dependency. This allows *ss3sim* to benefit from improvements
320 and fixes added to *r4ss*. As the use of SS has grown, so has the ecosystem of tools that interact with it
321 for conducting simulation analyses, MSEs, data-limited models and other tasks specific to a particular
322 region or stock (Cope and Wetzel, this issue). We foresee a similar proliferation of tools associated with
323 any widely used next generation assessment platform, where the basic functions of interpreting output
324 files and interacting with input files can be contained within a single package on which others depend.

325

326 **4.2 Challenges**

327 The *r4ss* project also reveals the challenges of a standardized tool. It was created without foresight into
328 what it would become, leading to a variety of problems. For example, a mismatch between the names

329 used in *r4ss* and SS as well as non-standardized naming and output in SS are common issues that are
330 difficult to remedy without a significant impact on the large set of additional R packages and individual
331 scripts that depend on *r4ss*. Keeping up with the development of SS while maintaining backward
332 compatibility with older versions of SS that are still in use is a challenge for the *r4ss* developers. While
333 *r4ss* saves time for users, it creates more work for developers and maintainers.

334

335 Another challenge is the increasing scope of *r4ss* over time, as more functions and options have been
336 added to the package. Generally, the scope of *r4ss* is “tools in R to work with Stock Synthesis”, but
337 initially the scope of *r4ss* was “visualization tools in R to work with Stock Synthesis”. This creates
338 challenges in balancing flexibility for advanced users with understandability for newer users, while
339 maintaining interoperability with various dependent projects like *ss3sim* and automated assessment
340 document writing approaches. “Scope creep” is a common problem in software projects, including R
341 packages. For example, the R package *devtools*, which is widely used by R package developers
342 (Wickham, 2015) was split into multiple smaller R packages as a solution to *devtools* becoming large and
343 thus harder to develop and for other packages to depend on (Hester, 2018). A similar approach could be
344 applied to *r4ss* to manage this balance.

345

346 In addition to the increase in scope associated with new functions added to *r4ss*, the range of uses for
347 the figures created by the original *r4ss* code has grown over time. The original intent was to produce
348 quick diagnostics for use by assessment analysts, but those figures (many of which are effectively
349 unchanged in appearance since 2005), are now frequently used in assessment reports and
350 presentations, contexts which would benefit from additional adjustments and refinements.

351

352 Finally, creating a collaborative community is challenging. While *r4ss* has successfully facilitated
353 collaborations among stock assessment scientists working around the world, it is difficult to encourage
354 contributions to a collaborative tool over individual development. This is especially challenging because
355 most stock assessment scientists (like many scientists working in other disciplines) have little to no
356 formal software development training and thus the hurdle of learning collaborative software
357 development tools like version control is high. In cases where formally trained software developers (as
358 opposed to scientists) are the ones writing code, these developers are often working alone, unlike in
359 typical software engineering environments (Killcoyne and Boyle, 2009), so collaboration is not as
360 common. The *r4ss* developers have encouraged collaboration by allowing contributions in multiple
361 ways, from formal pull requests via a version control system to emailing code to *r4ss* maintainers. We
362 also recognize that contributing code is not the only way to contribute to a tool; for example, bug
363 reports and discussions taking place through the *r4ss* issue tracker also allow people who may never
364 touch the *r4ss* codebase to contribute. Like the Ocean Health Index project (Stewart Lowndes et al.,
365 2017) and many other open source projects, the *r4ss* community attempts to meet collaborators where
366 they are in terms of understanding and using software development tools, while encouraging and
367 empowering them to learn new approaches and practices.

368

369 **4.3 Recommendations**

370 The 15-year history of *r4ss* development provides insight for the future development of tools to work
371 with stock assessment models. First, automating the creation of model diagnostics and plots is a
372 fundamental aspect of developing a generalized model package, as it is too time consuming for analysts
373 and reviewers to evaluate the validity of models using ad hoc approaches. The challenge of developing
374 *r4ss* after SS highlights the difficulties in retrofitting tools to work with existing models. Retrofitting *r4ss*
375 to SS has led to model inputs and outputs that change over time and are not standardized with other

376 modeling platforms, thus creating an increase in development time for *r4ss*. Thus, we believe that
377 development of future tools for stock assessment modeling workflows should be developed in tandem
378 with any new stock assessment modeling framework and some standardization is needed between the
379 stock assessment model framework (or frameworks) and tools for efficient workflow and model
380 diagnostics. However, the stock assessment modeling framework and associated tools should be kept
381 somewhat independent, as the software requirements and development processes for assessment
382 modeling frameworks, which depend on computational efficiency and reliability, are different from
383 those that best suit associated tools like *r4ss*. While long-term planning is helpful, it will not be possible
384 to perfectly plan the tools because future needs are unpredictable. Adopting a flexible approach will be
385 necessary in a future tool.

386

387 We recommend using R as the basis for similar tools associated with the next generation of integrated
388 models. While there are other languages that could be faster or better-suited to some of the tasks, R is
389 widely used in fisheries science (Schnute et al., 2007, Anderson et al. 2020) and thus there is a larger
390 pool of potential users and developers. We argue that having a large group of users and developers is
391 more important than computational efficiency for this aspect of the stock assessment process.

392

393 We also think that the open source development model and creating an environment in which users'
394 contributions are encouraged is key to the success of a future diagnostic tool. Once the core elements
395 are in place for a tool, users can contribute functions like new plots without having to understand much
396 about the package. Open source leads to more bugs being caught and fixed quickly while also facilitating
397 the growth of the tool to fit the ever changing needs of stock assessment science. While open source
398 software may be "free", it still has maintenance costs, typically in the form of maintainers' time. In the
399 case of *r4ss*, there is a primary maintainer who typically spends about 8 hours a week working on the

400 package. Maintenance is necessary for the long-term sustainability of software (Ram et al. 2019). Who
401 (organizations or individuals) will maintain the software and how much time they can devote to
402 maintenance should be carefully considered during the planning stages of a new stock assessment
403 modeling framework and its associated diagnostic tool.

404

405 Standard software development tools and practices are key for creating scientific software that works
406 well (Wilson et al., 2014; Wilson et al., 2017) and will be important to use in tools designed to work with
407 the next generation of integrated models. At a bare minimum, the software should be under version
408 control, hosted in a public repository and provide standard workflows for collaborative coding. Other
409 tools that are essential to maintaining code that works are a testing framework for running unit and
410 integration tests (and writing tests as code is added) and a continuous integration tool to automatically
411 build the software and run the testing framework often.

412

413 One limitation of *r4ss* is it is designed to only work with a single stock assessment platform, SS. Non-
414 standardized inputs and outputs among assessment model frameworks create challenges for comparing
415 modeling approaches. A generalized package not specific to any assessment model framework would
416 eliminate this problem while also allowing analysts to consider other potential model configurations not
417 available in a single framework and more easily compare models developed in different frameworks.
418 However, to our knowledge, no package which has sought to provide this type of generality has been
419 widely used for more than one assessment platform. There are multiple challenges with creating a
420 generalized package for model diagnostics. First, the differences in input and output formats used in
421 different stock assessment platforms (such as those listed in Punt et al., this issue) would add overhead
422 associated with translating into a common framework. Second, development of a generalized tool
423 would require expertise in multiple assessment platforms (e.g., an attempt to create a function within

424 *r4ss* to convert SS output into the format required by another diagnostic package was unsuccessful
425 because no one was adequately familiar with both platforms). Rather than focus on development of a
426 more generalized version of a tool like *r4ss*, we believe that the effort would be better invested in the
427 design and use of more standard formats in the next generation of stock assessment platforms and their
428 associated tools for input and output process and model diagnostics. However, tools to translate input
429 files between assessment packages have been successfully developed largely as one-off projects when
430 the comparison of results across platforms is desired. For example, tools to compile results across
431 assessment platforms were developed while conducting a project to formally compare some stock
432 assessment platforms used in the U.S. (Li, 2020). These tools have the potential to become more
433 generalized for future projects. Unfortunately, it is normally faster to get code to work only for what is
434 directly needed rather than creating generalized code. As ensemble modelling in stock assessment
435 (Stewart and Martell, 2015) becomes more popular, efforts to translate inputs and output between
436 assessment platforms may become increasingly worthwhile.

437

438 Tools similar to *r4ss* which are developed in the future should also consider the divergent needs for
439 interactive exploration of model results and production of written reports. Regular et al. (2020) argue
440 that interactive visualizations support deeper understanding of models, but we have found that the
441 consistent set of figures as stand-alone image files (and associated captions) created by *r4ss* has been
442 valuable for automating the compiling of assessment reports. It is difficult to create a tool that works
443 well for all purposes, so whether interactive or static visualizations (or both) are needed given the
444 purpose of the tool should be carefully considered.

445

446 Development of a consistent format for assessment reports across regions and agencies could further
447 simplify the report-writing process by providing all the benefits of shared code discussed above as well

448 as improve understanding of the reports for the many reviewers and researchers who work with stock
449 assessments from multiple regions. For example, standardized static visualizations of patterns in data
450 across 113 rockfish species developed by Anderson et al. (2020) have made these data more accessible
451 to more people through two page reports that can be quickly explored. However, standardizing reports
452 would require a significant effort as the processes for changing the Terms of Reference for stock
453 assessment reports and reviews, the stock assessment modeling platforms, and the tools like *r4ss* that
454 provide the bridge between them, differ among regions and agencies.

455
456 Finally, although the *r4ss* code is open source and available for use in any future project, we recommend
457 that any successor to the *r4ss* package should be developed from the ground up, learning from the
458 successes and challenges of *r4ss*, and copying the useful features of *r4ss*, but not utilizing the existing
459 code. This type of restart occurred when Stock Synthesis was converted from FORTRAN to ADMB during
460 Hurricane Isabel in 2003, providing the basis for a long period of utility for a large community of stock
461 assessment scientists. Replacing *r4ss* will take a huge effort, but we have found that the value of *r4ss*
462 has not just come from the tool itself, but the understanding and experience gained and community
463 built by all those who have contributed to this effort.

464
465 **5. Acknowledgements**

466 We thank Mark Maunder and Simon Hoyle for their role in organizing the IATTC and CAPAM workshops
467 that have led to so much development of *r4ss* as well as our co-authors of the *r4ss* package: Z. Teresa
468 A'mar, Sean C. Anderson, Andrew B. Cooper, LaTreese S. Denson, Robbie L. Emmet, Tommy M. Garrison,
469 Andrea M. Havron, Allan C. Hicks, Watal M. Iwasaki, Neil L. Klaer, Gwladys I. Lambert, Carey R.
470 McGilliard, Cole C. Monnahan, Iago Mosqueira, Kotaro Ono, André E. Punt, Megan M. Stachura,

471 Christine C. Stawitz, Andi Stephens, Yukio Takeuchi, James T. Thorson, Nathan Vaughan, John R. Wallace,
472 and Athol R. Whitten. Finally, we thank the NOAA staff who provided an internal review and the three
473 anonymous reviewers for their suggestions and comments.

474 **6. References**

475 Anderson, S.C., Keppel, E.A., and Edwards, A.M., 2020. Reproducible visualization of raw
476 fisheries data for 113 species improves transparency, assessment efficiency, and monitoring.
477 Fisheries. <https://doi.org/10.1002/fsh.10441>.

478 Anderson, S. C., Monnahan, C. C., Johnson, K. F., Ono, K., and Valero, J. L., 2014. ss3sim: an R
479 package for fisheries stock assessment simulation with Stock Synthesis. PLoS One. 9 (4), e92725.
480 <https://doi.org/10.1371/journal.pone.0092725>

481 Bentley, N., 2015. Data and time poverty in fisheries estimation: potential approaches and
482 solutions. ICES Journal of Marine Science. 72 (1), 186-193.
483 <https://doi.org/10.1093/icesjms/fsu023>.

484 Bocher, E., and Neteler, M., 2012. Geospatial Free and Open Source Software in the 21st
485 Century. Springer, Berlin, Heidelberg. 261 p. <https://doi.org/10.1007/978-3-642-10595-1>.

486 Boettiger, C., Chamberlain, S., Hart, E., and Ram, K., 2015. Building software, building
487 community: lessons from the rOpenSci project. Journal of open research software, 3 (1), e8.
488 <https://doi.org/10.5334/jors.bu>

489 Brown, L. D., Cai, T. T., and DasGupta, A., 2001. Interval Estimation for a Binomial Proportion.
490 Statistical Science. 16 (2), 101-117. <https://www.jstor.org/stable/2676784>.

491 Brown, S. K., Shivilani, M., Koenke, R. F., Agnew, D., Byrd, J., Cryer, M., Dichmont, C., Die, D.,
492 Michaels, W., Reid, K., Rice, J., Sparholt, H., and Weinberg, J., 2020. Patterns and practices in

493 fisheries assessment peer review systems. *Marine Policy*. 117 (2020), 103880.

494 <https://doi.org/10.1016/j.marpol.2020.103880>.

495 Carvalho, F. et al. (submitted to this issue). A Cookbook for Using Model Diagnostics in Integrated Stock

496 Assessments.

497 Dichmont, C.M., Deng, R.A., Punt, A.E., Brodziak, J., Chang, Y.-J., Cope, J.M., Ianelli, J.N., Legault, C.M.,

498 Methot, R.D., Porch, C.E., Prager, M.H., and Shertzer, K.W. 2016. A review of stock assessment

499 packages in the United States. *Fisheries Research* 183: 447-460.

500 Fischhoff, B., 2013. The sciences of science communication. *Proceedings of the National Academy of*

501 *Sciences of the United States of America*. 110 (3), 14033-14039.

502 <https://doi.org/10.1073/pnas.1213273110>.

503 Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A. and Sibert,

504 J., 2012. AD Model Builder: using automatic differentiation for statistical inference of highly

505 parameterized complex nonlinear models. *Optimization Methods and Software*, 27(2), pp.233-

506 249. <https://doi.org/10.1080/10556788.2011.597854>.

507 Francis, R. C., 2011. Data weighting in statistical fisheries stock assessment models. *Canadian Journal of*

508 *Fisheries and Aquatic Sciences*. 68 (6), 1124-1138. <https://doi.org/10.1139/F2011-025>

509 Grandin, C.J., K.F. Johnson, A.M. Edwards, and A.M. Berger. 2020. Status of the Pacific Hake (whiting)

510 stock in U.S. and Canadian waters in 2020. Prepared by the Joint Technical Committee of the

511 U.S. and Canada Pacific Hake/Whiting Agreement, National Marine Fisheries Service and

512 Fisheries and Oceans Canada. 273 p.

513 Hester, J. 2018. “devtools 2.0.0” <https://www.tidyverse.org/blog/2018/10/devtools-2-0-0/> (last

514 accessed: 4 August 2020).

515 Hoyle, S. and M. Maunder, 2006. "Status of yellowfin tuna in the eastern Pacific Ocean in 2004 and
516 outlook for 2005". Inter-American Tropical Tuna Commission Stock Assessment Report 6, pp. 3-
517 102.

518 Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C., Davis, S.,
519 Gatto, L. , Girke, T., Gottardo, R., Hahne, F., Hansen, K. D., Irizarry, R. A., Lawrence, M., Love, M.
520 I., MacDonald, J., Obenchain, V., Oles, A., K., Pages, H., Reyes, A., Shannon, P., Smyth, G. K.,
521 Tenenbaum, D., Waldron, L., and Morgan, M., 2015. Orchestrating high-throughput genomic
522 analysis with Bioconductor. *Nature Methods*. 12, 115–121.
523 <https://doi.org/10.1038/nmeth.3252>.

524 IPHC 2020. "Stock Assessment" <https://www.iphc.int/management/science-and-research/stock-assessment> (last accessed: 5 August 2020).

525 Killcoyne, S., Boyle, J., 2009. Managing chaos: lessons learned developing software in the life sciences.
526 Computing in Science and Engineering. 11 (6), 20-29. <https://doi.org/10.1109/MCSE.2009.198>.

527 Li, B. 2020. Stock Assessment Model Comparison Project <https://github.com/Bai-Li-NOAA/Stock-Assessment-Model-Comparison-Project> (last access: 13 August 2020).

528 Stewart Lowndes, J. S., Best, B. D., Scarborough, C., Afflerbach, J. C., Frazier, M. R., O'Hara, C. C. Jiang, N.,
529 and Halpern, B. S., 2017. Our path to better science in less time using open data science tools.
530 *Nature Ecology and Evolution*. 1 (6), 1-7. <https://doi.org/10.1038/s41559-017-0160>.

531 Maunder, M.N., 2003. Paradigm shifts in fisheries stock assessment: from integrated analysis to
532 Bayesian analysis and back again. *Natural Resource Modeling*. 16, 465-475.
533 <https://doi.org/10.1111/j.1939-7445.2003.tb00123.x>

536 Maunder, M. 2008. Workshop on spatial analysis for stock assessment. Inter-American Tropical Tuna
537 Commission, La Jolla, California, 14–17 October 2007

538 Maunder, M. N., Piner, K. R., 2015. Contemporary fisheries stock assessment: many issues still remain.
539 ICES Journal of Marine Science. 72 (1), 7-18. <https://doi.org/10.1093/icesjms/fsu015>

540 Maunder, M. N., Punt, A. E., 2013. A review of integrated analysis in fisheries stock assessment. Fisheries
541 Research. 142, 61-74. <https://doi.org/10.1016/j.fishres.2012.07.025>

542 McAllister, M. K., Ianelli, J. N., 1997. Bayesian stock assessment using catch-age data and the sampling -
543 importance resampling algorithm. Canadian Journal of Fisheries and Aquatic Sciences. 54 (2),
544 284-300. <https://doi.org/10.1139/f96-285>

545 Methot, R. D., Wetzel, C. R., 2013. Stock synthesis: A biological and statistical framework for fish stock
546 assessment and fishery management. Fisheries Research. 142, 86-99.
547 <https://doi.org/10.1016/j.fishres.2012.10.012>.

548 Miller, S. K., Anganuzzi, A., Butterworth, D. S., Davies, C. R., Donovan, G. P., Nickson, A., Rademeyer, R.
549 A., Restrepo, V., 2019. Improving communication: the key to more effective MSE processes.
550 Canadian Journal of Fisheries and Aquatic Sciences, 76 (4), 643-656.
551 <https://doi.org/10.1139/cjfas-2018-0134>

552 Monnahan, C. C., Branch, T. A., Thorson, J. T., Stewart, I. J., & Szuwalski, C. S., 2019. Overcoming long
553 Bayesian run times in integrated fisheries stock assessments. ICES Journal of Marine Science, 76
554 (6): 1477-1488. <https://doi.org/10.1093/icesjms/fsz059>

555 Monnahan, C. C., and Kristensen, K., 2018. No-U-turn sampling for fast Bayesian inference in ADMB and
556 TMB: Introducing the *adnuts* and *tmbstan* R packages. PloS one, 13 (5): e0197954.
557 <https://doi.org/10.1371/journal.pone.0197954>

558 PFMC 2009. Terms of reference for the groundfish stock assessment and review process for 2009-2010.

559 Pacific Fishery Management Council, Portland, OR.

560 PFMC 2019. Terms of reference for the groundfish and coastal pelagic species stock assessment review

561 process for 2019-2020. Pacific Fishery Management Council, Portland, OR. Available from

562 <https://www.pcouncil.org/documents/2019/04/terms-of-reference-for-the-groundfish-and-coastal-pelagic-species-stock-assessment-review-process-for-2019-2020-april-2019.pdf/> (last

563 accessed 5 August 2020).

564

565 Piner K. R., Lee, H.H., and Maunder, M. N. 2016. Evaluation of using random-at-length observations and

566 an equilibrium approximation of the population age structure in fitting the von Bertalanffy

567 growth function. Fish. Res. 180: 128-137. <https://doi.org/10.1016/j.fishres.2015.05.024>.

568 Punt, A. E. 2017. Some insights into data weighting in integrated stock assessments. Fish. Res. 192: 52-

569 65. <https://doi.org/10.1016/j.fishres.2015.12.006>.

570 Punt, A. E., Dunn, A., Elvarsson, B., Hampton, J., Hoyle, S. D., Maunder, M. N., Methot, R. D. and Nielsen,

571 A., 2020. Essential features of the next-generation integrated fisheries stock assessment

572 package: A perspective. Fisheries Research 229: 105617.

573 <https://doi.org/10.1016/j.fishres.2020.105617>.

574 Punt, A. E., and Hilborn, R., 1997. Fisheries stock assessment and decision analysis: the Bayesian

575 approach. Reviews in Fish Biology and Fisheries. 7, 35–63.

576 <https://doi.org/10.1023/A:1018419207494>

577 Punt, A. E., and Maunder, M. N., 2013. Stock Synthesis: Advancing stock assessment application and

578 research through the use of a general stock assessment computer program. Fisheries Research

579 142, 1-2. <https://doi.org/10.1016/j.fishres.2012.11.001>

580 R Core Team (2020). R: A language and environment for statistical computing. R Foundation for
581 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

582 Ram, K., Boettiger, C., Chamberlain, S., Ross, N., Salmon, M., and Butland, S., 2019. A Community of
583 practice around peer review for long-term research software sustainability. Computing in
584 Science and Engineering. 21 (2), 59-65. <https://doi.org/10.1109/MCSE.2018.2882753>.

585 Regular, P. M., Robertson, G. J., Rogers, R., and Lewis, K. P., 2020. Improving the communication and
586 accessibility of stock assessment using interactive visualization tools. Canadian Journal of
587 Fisheries and Aquatic Sciences. <https://doi.org/10.1139/cjfas-2019-0424>.

588 Richards, L. J., Schnute, J. T. and Olsen, N., 1997. Visualizing catch–age analysis: a case study. Canadian
589 Journal of Fisheries and Aquatic Sciences, 54 (7), 1646-1658. <https://doi.org/10.1139/f97-073>.

590 Schnute, J. T., Maunder, M. N., and Ianelli, J. N. 2007. Designing tools to evaluate fishery management
591 strategies: can the scientific community deliver? ICES Journal of Marine Science. 64 (6), 1077-
592 1084. <https://doi.org/10.1093/icesjms/fsm109>

593 SPC 2010. “MFCL Viewer” <https://oceanfish.spc.int/ofpsection/sam/research/272-mfcl-viewer?lang=en>
594 (last accessed 4 August 2020).

595 Stewart, I.J., Hicks, A.C., Taylor, I.G., Thorson, J.T., Wetzel, C. and Kupschus, S., 2013. A
596 comparison of stock assessment uncertainty estimates using maximum likelihood and Bayesian
597 methods implemented with the same model framework. Fisheries Research 142, 37-46.

598 Stewart, I. J., 2005. Status of the U.S. English sole resource in 2005. In Status of the Pacific Coast
599 Groundfish Fishery through 2005, Stock Assessment and Fishery Evaluation: Stock Assessments
600 and Rebuilding Analyses (Volume II). Pacific Fishery Management Council, Portland, OR. 221 p.

601 Stewart, I. J., and Hicks, A. C., 2018. Interannual stability from ensemble modelling. Canadian
602 Journal of Fisheries and Aquatic Sciences. 75 (12), 2109-2113. Available from
603 <https://doi.org/10.1139/cjfas-2018-0238>.

604 Stewart, I. J., and Hicks, A. 2020. Assessment of the Pacific halibut (*Hippoglossus stenolepis*) stock at the
605 end of 2019. International Pacific Halibut Commission, Seattle, WA. 32 p. Available from
606 <https://www.iphc.int/uploads/pdf/sa/2020/iphc-2020-sa-01.pdf> (last accessed: 4 August 2020)

607

608 Stewart, I. J., and Martell, S. J. D., 2015. Reconciling stock assessment paradigms to better inform
609 fisheries management. ICES Journal of Marine Science. 72 (8), 2187-2196.
610 <https://doi.org/10.1093/icesjms/fsv061>.

611

612 Taylor, I. G., Gertseva, V., Stephens, A. and Bizzarro, J. 2019. Status of Big Skate (*Beringraja binoculata*)
613 Off the U.S. West Coast. Pacific Fishery Management Council, Portland, OR. 184 p. Available
614 from <https://www.pcouncil.org/documents/2019/10/status-of-big-skate-beringraja-binoculata-off-the-u-s-pacific-coast-in-2019-october-2019.pdf> (last accessed: 4 August 2020)

615

616 Thorson, J. T., Johnson, K. F., Methot, R. D. and Taylor, I. G., 2017. Model-based estimates of effective
617 sample size in stock assessment models using the Dirichlet-multinomial distribution. Fisheries
618 Research. 192, 84-93. <https://doi.org/10.1016/j.fishres.2016.06.005>

619 Wickham, H., 2015. R packages: organize, test, document, and share your code. "O'Reilly Media, Inc.".
620 ISBN:978-1-4919-1056-6.

621 Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., Haddock, S. H. D., Huff, K. D.,
622 Mitchell, I. M., Plumbley, M. D., Waugh, B., White, E. P., and Wilson, P., 2014. Best practices for

623 scientific computing. PLOS Biology, 12 (1), e1001745.

624 <https://doi.org/10.1371/journal.pbio.1001745>

625 Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., and Teal, T. K., 2017. Good enough practices
626 in scientific computing. PLOS computational biology. 13 (6), e1005510.

627 <https://doi.org/10.1371/journal.pcbi.1005510>

628

629 **Tables**

630 **Table 1.** Issues related to the stock assessment modeling process and potential solutions to alleviate or
631 minimize the issues.

Issue	Solution
Placeholder values for data not available at the start of the assessment process inadvertently retained in the final model.	Frequently make and view plots of data included in input files.
Parameters on bounds in the final model.	The <i>r4ss</i> HTML viewer includes a table that highlights parameters on bounds in red so they are easily identified and a plot of the estimated parameter values and associated uncertainty relative to the parameter bounds and prior distribution; consider reconfiguring the model.
Incorrect parameterization of processes because it is difficult to see the resulting form from model input files, e.g., selectivity curve.	Plots of processes resulting from input parameters such as selectivity are automatically available in the <i>r4ss</i> HTML viewer; change input parameters until the desired shape is found.
Confounded parameters.	A correlation check is included in the <i>r4ss</i> HTML viewer; consider reconfiguring the model.
Small model changes can have cascading effects on the model results that go unnoticed.	The <i>r4ss</i> HTML viewer allows examination of the holistic model results and comparison functions

allow for easy visualization of how results change with each change to input files.

Using custom plotting code not under version control edited by multiple analysts independently can lead to confusion and makes splitting up work difficult.

Sensitivities requested during a review process can be difficult to set up and implement quickly without errors.

Use generalized and standardized tools to modify the model files increases the robustness of results and decreases the likelihood of errors.

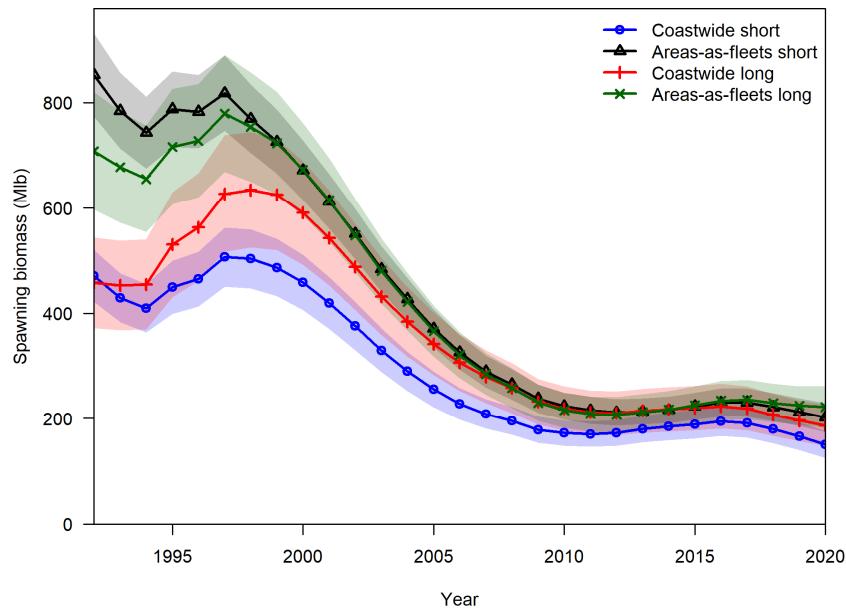
Need to quickly update figures and tables when models change.

Use code (e.g., R Markdown or LaTeX) with a standardized plotting tool to generate reports.

632

633

634 **Figures**

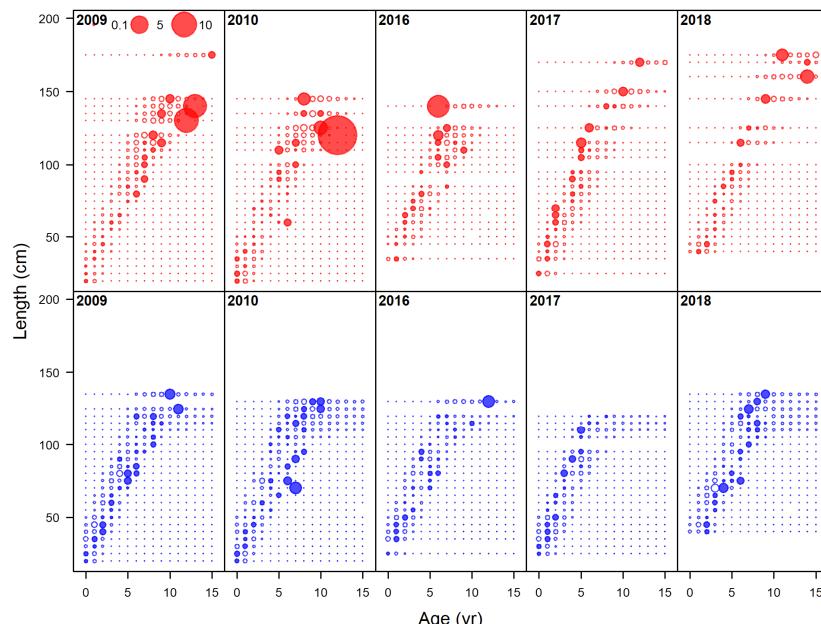


635

636 Figure 1. Recent time-series of individual model estimates for female spawning biomass for Pacific halibut created using the
637 *SSplotComparisons* function in *r4ss*. The shaded polygons represent the approximate 95% confidence intervals derived from
638 asymptotic uncertainty estimates from the models.

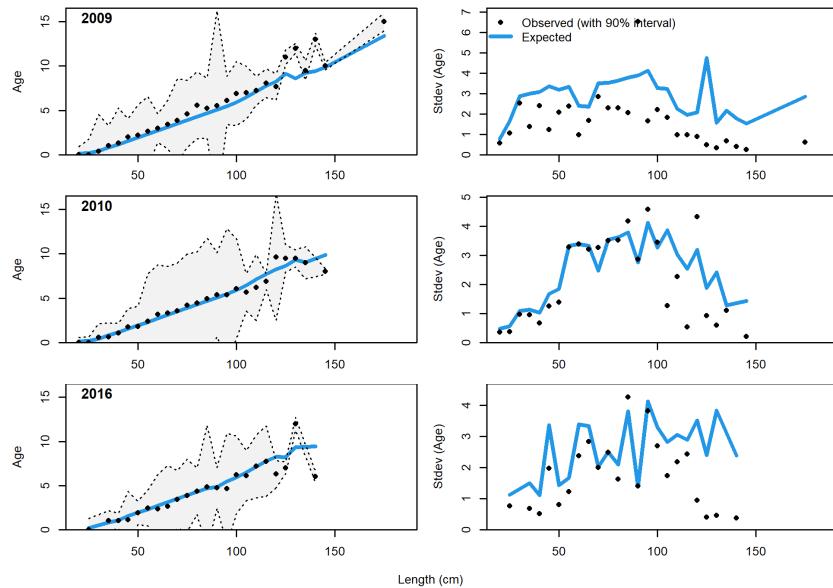
639

640



641

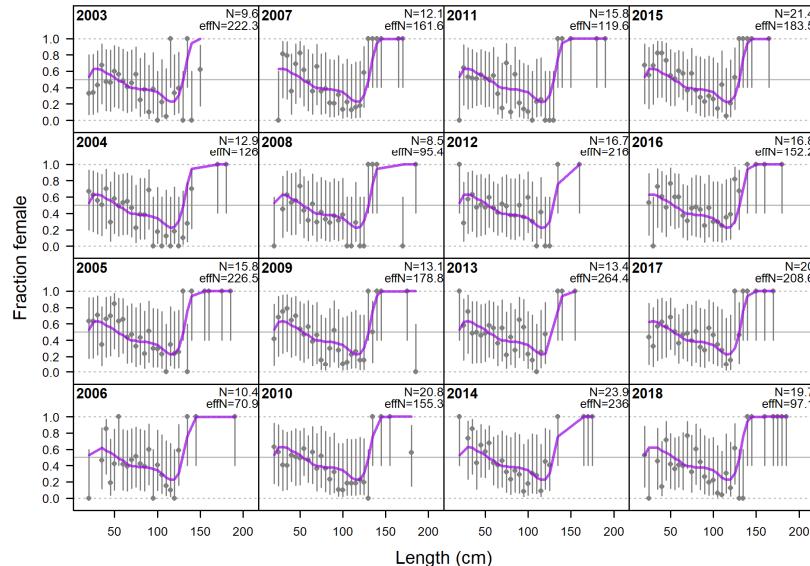
642 Figure 2. Pearson residuals showing fit of big skate model to conditional age-at-length data. Upper panels are females (red
643 circles) and lower panels males (blue circles). Filled circles represent observations greater than the expectation, while unfilled
644 circles represent observations less than the expectation. Size of the circles (key at top of upper left panel) represent the
645 magnitude of the residual. The year in which the conditional age-at-length data were collected is shown in the upper left corner
646 of each panel.



647

648 Figure 3. Application of the conditional-age-at-length diagnostic plot for three years of big skate age and length data. The left
 649 panels are mean observed age at length by length bin (points) with 90% confidence intervals (shading) calculated from the
 650 asymptotic standard errors (SE) compared to the expected mean age at length (solid line) for each year (upper left corner of
 651 each left panel). The right panels show the corresponding mean age at length SE values (points) compared to the expected
 652 standard deviation (line).

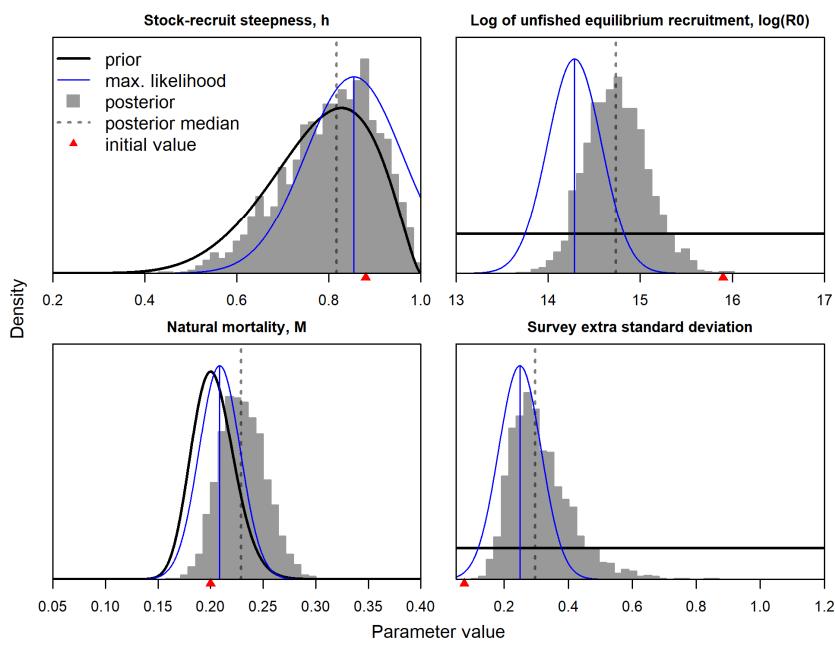
653



654

655 Figure 4. Sex ratios calculated from the bottom trawl survey length composition samples of big skate. Observed sex ratios
 656 (points) with 75% intervals (vertical lines) calculated as a Jeffreys interval (Brown et al., 2001). The model expectation is shown
 657 in the purple line. The year in which the length composition samples were collected is shown in the upper left corner of each
 658 panel. The adjusted input sample size (N) and effective sample size associated with the McAllister-lanelli tuning (effN) are
 659 shown in the upper right corner of each panel.

660



661

662 Figure 5. Prior and posterior density estimates for four parameters in the Pacific hake stock assessment. The gray polygons
 663 show the distribution of values from 2000 MCMC samples while the blue lines show the maximum posterior density estimate
 664 and the normal approximation to the posterior based on the asymptotic approximation of the parameter variance. The black
 665 lines show the prior distributions (a beta distribution for steepness, a lognormal distribution for natural mortality, and uniform
 666 distributions for the other two parameters). Starting values for the MPD estimation are shown in the red triangles.

667