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Stock assessment on fishery-dependent data: effect of data quality and
parametrisation for a red snapper fishery

Abstract

Data availability, unreported and unregulated fishing are significant obstacles to evaluating
stock status, especially in tropical areas. Limitations in data quantity and quality can lead to
model misspecification and erroneous data treatments, potentially causing important
changes in model outputs and subsequent management implications. Red snapper Lutjanus
purpureus (Poey) in French Guiana provides an example of a stock with a long-time series of
fishery-dependent_data subject to large uncertainty. A flexible catch-at-age model (Stock
Synthesis)®was applied to the available data and compared to an historically applied
assessment approach. Inter-model variability based on different model specifications and
data treatments were compared to identify better the status of the resource. Results showed
that a major_source of uncertainty in the model was the inclusion of a catch-per-unit-effort
abundance lindex with questionable ability to track abundance. The Stock Synthesis model
provided a more_ flexible and viable method than the virtual population analysis approach.
Despite large uncertainty, models depicted a similar trend with a notable stock depletion in
the late 1990s but with two distinct biomass trends in more recent years depending on the
treatment. Toreduce uncertainty and preserve this important economic resource, new data

collection programmes and management policies are needed.
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Introduction

Quantitative fishery stock assessments look to produce data-driven estimates of population
abundance and dynamics to inform management decisions (Hilborn & Walters, 2013).
Measurement error associated with a variety of data types and parameters, and natural
process variability'in population dynamics all lead to uncertainty in analytical outputs (Francis
& Shotton, 2011).\This uncertainty can hinge greatly on the quality and availability of the data
(Chen, Chenyp=&mStergiou, 2003). Despite the potential for data-derived biases in
assessments that could lead to management failures, improvements in quality and data
availability are"often limited by resources like money, time and available expertise (Chen et
al., 2003). Developing harvest strategies based on limited data without waiting for extensive
data sets that my never materialize is critical to responsive and responsible natural resource

management (Dowling et al., 2015).

Data limitation'is'a global problem, particularly in tropical regions (Amorim, Sousa, Jardim, &
Menezes, 2019)7"In addition to the challenges of monitoring legal activities, unreported and
unregulated’ fishing presents an additional significant challenge to informing stock
assessments (Cawthorn & Mariani, 2017). For example, unreported catches and effort can
lead to severely biased estimates of biomass and other model outputs (Omori, Hoenig,
Luehring, & Baier-Lockhart, 2016). This creates a mixed situation of partial coverage in data
streams resulting in uncertainty that deserves respect and acknowledgement, but such
uncertainty is«an insufficient reason to avoid using science to inform management (Dowling
et al.,, 2016). Unfortunately, numerous valuable fishery resources, especially in tropical

areas, remain unevaluated.

The red snapper. Lutianus purpureus (Poey) fishery in French Guiana constitutes a good
example of @ data-limited fishery where, despite the availability of long time series of fishery-
dependent data,.information on the ecology of the species is still poorly understood and data
gaps remain. The commercial handline red snapper fishery in French Guiana is
predominantly performed by Venezuelan boats under a licensing system introduced in the
1980s by the.French government and now under EU authority. The licence agreement
requires boats to sell 75% of their catch to a processing factory in French Guiana, while the
other 25% can.be"sold abroad. Controls at sea and at landing sites exist, but no information
is available,on the catch sold beyond French Guiana borders. Moreover, this fishing activity
is mostly focused on smaller fish since the international market demands plate-sized fish
typically below the size of maturity. This type of size-selective fishery can lead to age
truncation if fishing mortality is high (Brunel & Piet, 2013; Reddy et al., 2013). Even if the
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catch of large fish declines, high fishing intensity on small individuals can threaten population
sustainability (Reddy et al., 2013).

Lutjanus purpureus is particularly vulnerable to fishing pressure due to its behaviour and
general life history characteristics (slow-growth, late maturity and seasonal spawning
aggregations®(Manickchand-Heileman & Phillip, 1996). Red snapper is known to aggregate
for spawning, a behaviour that can lead to hyperstable signals of population density and
overestimation=of the stock size if not accounted for in stock assessments (Erisman, Apel,
MacCall, Roman, & Fuijita, 2014). Additionally, the specific life history of L. purpureus is not
well understood; “creating significant uncertainty in the use of biological parameters (e.g.
growth, natural maortally and reproduction) in French Guiana waters (Rivot, Charuau, Rose, &
Achoun, 2000).

Red snappersin French Guiana provides an example of a stock with multiple data sources
(e.g. catch, fishery-dependent index and biological compositions) of limited quality and
uncertain lifevhistory values. Consequently, it is critical to compare several possible model
specifications and data treatments to account for uncertainty in the estimation of
management ‘quantities in any stock assessment. This work takes up the challenge of
assessing L. \purpureus by: 1) investigating stock assessment uncertainty based on
limitations in“the*fishery-dependent data and life history inputs using a flexible statistical
catch at age.approach (i.e. the Stock Synthesis (SS) modelling framework) and 2) comparing
results from_the”SS model to that of a Virtual Population Analysis (VPA) approach that has
historically been used to assess the stock. By accounting for the uncertainty in sources of
data and inputs, the major sources of model output uncertainty are identified and quantified
for management consideration, while using the flexible SS framework may provide a more

advantageous modelling environment compared to the more rigid VPA approach.
Material and methods
Fishery catch'data

In French Guiana, red snapper is mostly fished by Venezuelan hand-liners between 30 and
200 m depth. The hand-line fishery is estimated to have started around 1960, with some
information on landings beginning in 1976, with the most reliably data recorded from 1985
onward when Ifremer (Institut Frangais de Recherche pour I'Exploitation de la Mer) started a
fisheries information database (Tous, 1988). Before 1988, other fishing activities such as
trawling were also targeting red snapper, but catches were not monitored (Prevost, 1989;
Tous, 1988).
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In 1984 a licencing system was implemented requiring Venezuelan boats to sell a fixed
percentage of their catch in French Guiana (50% for 1984 and 75% from 1985 to present). In
addition to the main hand-line fishery, a few boats coming from the French Antilles islands
occasionally fished French Guiana waters with fish traps (e.g. in 2019, less than 70 t or 2.6%
of total yearly catehes). Additionally, bycatch in shrimp trawlers takes small (between 8 and
30 cm) red snapper (i.e. in 2007 about 100 t, or 6% of total catches for 23 trawlers), but little
information an the historical time series of these catches is available (Caro & Lampert, 2011).
Currently,.only.10.shrimp trawlers remain, likely reducing the amount of red snapper bycatch.
Considering the high uncertainty of the landings data, especially at the beginning of the time-
series, and the need to correct for these missing catches, landings data were expanded by
25% for all 'years to estimate total removals from the red snapper population (Fig. 1). No
information was available to hypothesise any temporal changes in the expansion value.

Abundance.data

Fishery-dependent catch per unit effort (CPUE) indices were available from 1986 to 2018
(Fig. 1). CPUE was calculated by dividing the total annual catches by the total annual
number of days“at sea estimated from logbooks and/or vessel monitoring systems (VMS)
data (t catch /\days at sea). CPUE were not standardised since no historical information in
changes of the fishing techniques or other factors were available. This lack of standardisation
adds uncertainty in the application of this index, but it is the only index available.

Biologicaldata

Length composition (fork length in cm) data were available from 1986 to 2019. Length is
routinely measured by observers at landing sites in Cayenne according to the framework of
the fisherieg information system (SIH) implemented by Ifremer. The available data set is
obtained fromwarfmonthly sampling plan that subsamples boats landing red snapper. The
sample size‘thas changed over the years following changes in the fishery and improvement in
the statistical"analysis to try and optimise the sample size. The length frequency of the
subsample'was therefore expanded to match the 25% expansion in landings (to account for
the animals fished.in French Guiana waters but landed abroad).

Life history relationships and values

Natural mortality was assumed constant across ages and time. Individual growth was
modelled as a von Bertalanffy function, fecundity was modelled as proportional to weight,
and a Beverton-Holt stock-recruit relationship was assumed. Life history values were fixed in
the reference model and were obtained from literature sources (Table 1). Exploration of
uncertainty in natural mortality (M) and the Beverton-Holt steepness parameters (h;
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recruitment compensation, or average recruitment of a population reduced to 20% of
unfished levels relative to average recruitment of the unfished population) are described in

the next section on sensitivity analysis.
Model description and specification

The assessment was conducted using the Stock Synthesis (SS version 3.30.13.02)
framework that uses maximum likelihood estimation (MLE) to obtain values and calculate
asymptotic uncertainty for estimated parameters and model outputs (Methot Jr & Wetzel,
2013). The model is configured as one sex as females and males were assumed to have the
same life histery parameters. Fishery-dependent data (catch, CPUE and length
compositions) were specified as one fleet with dome-shape selectivity as the largest
individuals are not taken in the fishery, a parameterization choice confirmed by fishermen. A
selectivity time block was applied with a break implemented after 1996 and 2018 to account
for a possible change in fishing practice (targeting smaller individuals to adapt to market
demand) as"suggested by local fishermen that changed the size composition of the fish
landed. The model with a time block in selectivity improved model fit to the length
compositions{see"Appendix B and C). Catch in metric tonnes was assumed known while the
CPUE index assumed a lognormal error with a standard deviation of 0.3 for all years. Length
composition data*were modelled with 2-cm length bins between 15 and 85 cm, and relative
sample sizes.among years were determined by the samples by trip weighted by catch. The
list of the parameters used in the reference model is provided in Appendix A. The data and
model outputs were summarised using the r4SS package (https:/github.com/r4ss/r4ss).
Additional data weighting for lengths and CPUE were unnecessary given the model fit (see
Appendix C)-

Sensitivity 'analysis and likelihood profiles

Model sensitivity to parameter uncertainty was explored via likelihood profiles—the fixing of
the modelto various values of a specific parameter to see how model fit and derived outputs
change. Likelihood profiles demonstrate the amount of information (measured by the
changing likelihoed metric) contained in the data for the featured parameter. Using the
negative loglikelthood metric, any value outside of 1.96 units from the maximum likelihood
estimate (MLE) is considered significantly less supported by the data. The spread of model
outputs withinthe interval of significant data support therefore provides a measure of
uncertainty in model output based on parameter input. To demonstrate how model output
changes across profiled parameter values, three model outputs were considered: 1) initial
spawning output (SOy); 2) terminal year spawning output (SO201g); 3) the stock status in the
terminal year (SO,418/SOp). Comparing the information content of a particular parameter
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value to the associated model output allows a mapping of model information (i.e. data) to
sensitivity in the model output (i.e. results). Likelihood profiles were conducted for the

following two parameters:

Natural mortality

Natural mortality is one of the most influential and difficult parameters to estimate in fisheries
stock assessment (Lee, Maunder, Piner, & Methot, 2011). Stock assessments often use an
external estimate of M as a fixed value, but may also estimate M within the model. Estimating
M depends(on other model specifications (e.g. having at least one fishery with asymptotic
selectivity) andphecessitates an exploration of model performance (Brodziak, lanelli,
Lorenzen, & Methot Jr, 2011; Lee et al., 2011).

The range (of /M values used in the likelihood profile were defined by first estimating M
indirectly using meta-analytical and empirical methods based on life history parameters. “The
Natural Mortality ‘Tool” (http://barefootecologist.com.au/shiny m) application was used to

access to many different empirical M estimators. The methods based on maximum age
(Hamel et al., 2015; Then, Hoenig, Hall, & Hewitt, 2015) and on the von Bertalanffy K
parameter (Alverson & Carney, 1975; Jensen, 1996, 1997; Zhang & Megrey, 2006) and
FishLife (Thorson, Munch, Cope, & Gao, 2017) estimates were selected. M estimates varied
between 0.09 _and. 0.46 per year with a median value of 0.39 per year. These values were
also comparedte,that of Rivot et al. (2000) who compared three different estimation methods
for French’Guiana red snappers suggesting that M ranged from 0.18 to 0.61 per year (Pauly
& Moreau, 1997; Ralston & Polovina, 1987; Rikhter & Efanov, 1976), with 0.29 per year
considered the most plausible. A likelihood profile range of M from 0.10 to 0.60 per year at
an interval of 0:05 was defined using both of the above sources (The Natural Mortality Tool
and Rivot et al. 2000).

Steepness

It is common in stock assessments to define the functional relationship between spawners
and recruits using the reparameterized Beverton-Holt function (Mace & Doonan, 1988) where
steepness (h) is/a key parameter. Steepness technically ranges from 0.2 to 1 in the
Beverton-Holt model, though values below 0.3 are often deemed unsustainable (He, Mangel,
& MacCall, 2006). A higher h value loosens the relationship between stock and recruits,
producing higherproductivity at smaller stock sizes. A value of h=1 essentially decouples the
stock-recruit relationship (Mangel et al., 2013; Shertzer & Conn, 2012). Steepness defines
some management quantities (e.g. MSY and Fysy), but direct estimation requires contrast in
the data at low and high population sizes.
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Externally-derived steepness values are much more commonly used, and come from life
history parameters and meta-analyses on ecologically similar species (Shertzer & Conn,
2012). The R package “FishLife” (https:/github.com/James-Thorson-NOAA/FishLife;
Thorson (2020)) was used to specify h (0.7) for L. purpureus, and the subsequent likelihood

profile range of hwas 0.40 to 1 with an interval of 0.05.
Uncertainty'in length data

The impact of bias in unsampled lengths was explored from the unreported international
fishery. Unfartunately, no data were available on the proportion of fish sold abroad, but local
fisherman indicate bigger fish are typically landed for markets outside French Guiana. To test
this hypothesis, length compositions of the non-monitored landings (assumed to represent
25% of the total'eatch) from 1991 to present were modified to include individuals larger than
40 cm followinggthe average length distribution composition for years 1986-1991 (period
when larger individuals were fished). This model was then compared to the reference model
using only sampled lengths.

Uncertainty.in CPUE

The available' raw CPUE data used in this study were exclusively derived from fishery-
dependent timesseries and were non standardised since little information are available on
sampling‘conditions, fish biology and movement patterns, or on changes in fishing behaviour.
To understand.the influence of the CPUE index on model outputs better, the reference SS
model was“eompared to a model with no CPUE index, thus relying only on catches and
lengths as inputs. The assumption of linearity between CPUE and abundance was
investigated-bysestimating the exponent of a power function relationship between the CPUE
index and the catchability (Hilborn & Walters, 2013; Methot, 2009).

Comparison to VPA

The L. purpureussstock was first assessed in 2012 by applying a VPA on commercial length
frequency=data=from 1986 following a von Bertalanffy growth relationship and assuming a
maximum age of 13 years (Lampert, 2012). VPA uses a backward projection to estimate
recruits withmnos'stock recruit relationship, while SS assumes the Beverton-Holt stock-
recruitment relationship. The SS model also assumes length variability at age, whereas the
length-age relationship in the VPA was taken straight from the von Bertalanffy curve. The
VPA model was constructed following the equations in example 18 of Sparre and Venema
(1998). A plus-group was employed for the last age group. F (and Z) are age-specific with
the plus group applying a constant average F value. The VPA model does not explicitly
specify selectivity. The VPA model did not consider the CPUE data and applied a constant

This article is protected by copyright. All rights reserved


https://github.com/James-Thorson-NOAA/FishLife

235
236
237
238
239

240

241

242
243
244
245
246

247

248

249
250
251
252
253
254
255
256
257

258
259
260
261

262

263
264
265
266
267

fishing mortality by cohorts (averaged over the most recent 5 years) to estimate stock
biomass. Natural mortality in the VPA model was fixed at 0.29. The VPA model was run
again with the most recent data and main outputs (total biomass, recruitment, spawning
biomass and relative spawning biomass relative to the first year of the model) were
compared to the SS model.

RESULTS
Reference model

The reference:SS:model of the red snapper shows a stock in initial decline, but in recent
years increases intbiomass despite increasing catches (Fig. 2). Recruitment is at its highest
post-2000, when'the CPUE time series shows a steady increase. Current relative stock

status is very high and well above what would be considered maximum sustainable biomass
(Fig. 2).

Likelihood profiles

Natural mortality

The model tendsito support higher values of natural mortality (Fig. 3, likelihood panel), but
the amount oftinformation in the model on natural mortality is very limited. Most of the
informatiogn®comes from the assumed prior on M when looking at the likelihood components
in the profile (Appendix C). Initial and final spawning output are very sensitive to the
assumption=of=lower M values (Fig. 3). Despite the sensitivity in the absolute biomass
measures, the relative biomass was similar across the full profile (Fig. 3). This illustrates a
situation where the model is poorly informed on the absolute biomass of the stock, but the
current stockrstatus is robust to changes in perception of M and indicative of a high stock
status.

The SS-estimated M value was particularly high (0.46 per year) and probably unrealistic for
L. purpureus given the life history and lack of information on M contained in the data (Fig. 3).
For this reason, the median value of 0.39 per year from the nine empirical estimation

methods was fixed and assumed for both sexes in the reference assessment model.

Steepness

The steepnessalikelihood profile showed the available data had no information on the
steepness value (Fig. 4). Biomass changed non-linearly to steepness, with higher biomass at
lower steepness values, a typical result when looking across steepness values. Relative
stock status, while somewhat sensitive to the value of h, was consistently high across all
steepness values given the other data and parameter specifications in the reference model.
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Uncertainty in length data

The inclusion of larger individuals on the length compositions resulted in slightly different
estimated selectivity parameters in the two-time periods (Appendix E) that result in large
overlap in biomass estimates between the length composition treatments (Fig. 6). The small
differences: between models are highlighted by slightly larger biomass estimates, higher
relative stogk sizes and lower fishing pressure in the model including larger individuals,
although wellwithinsthe bounds of uncertainty of the reference model.

Uncertainty in CPUE

Removing the CPUE index strongly affected model output, resulting in a more pessimistic
situation for beth ending biomass and subsequent stock status (Fig. 7 and Appendix D). The
scale of the inijtial population biomass was not sensitive to inclusion of the CPUE index, but
the final biomass was sensitive, pointing to the importance of the CPUE index as a source of
current stock status information. Whether this data sets contains an unbiased signal relative
to noise regarding the trend in the population is a critical assumption when interpreting these

results.

The SS model using a power relationship between the CPUE index and the catchability
suggests hyperdepletion in the raw CPUE (estimated catchability power value of 2.62). The
model outputs also incorporated more uncertainty relative to the reference model but the
trends were similar (Appendix F). Any interpretation using the raw CPUE index should be

consideredwith®™enormous caution.
Comparison to VPA

SS outputs for‘the reference model and the model without CPUE were compared to the
results from'the VPA model (Fig. 2). As previously demonstrated, these two specifications of
the SS models™differ mostly in years after 2001. Before 2001, the VPA model showed
relatively lowerbiomass levels compared to the SS outputs, though both models suggest the
lowest biomass:was in the early 2000s (Fig. 2). From about 2010, the outputs of SS model
without CPUE"(recruitments, SSB and total biomass) resulted closer to the VPA estimation.
On the othershand, the relative stock status as defined by the first year of the time series
(SSBcurent/ SSB19ss) indicates a larger decline for SS model without CPUE compared with the
VPA. Note,"the VPA uses only the length data, not the CPUE, yet still shows recovery,

whereas the SS with no CPUE scenario shows a persistent decline.

Given the historical VPA assumes a lower M value than the SS models, an additional VPA
model with the same M value used in the SS model was performed. This sensitivity did not
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result in enough change in the VPA model to account for the different biomass scales
between the VPA and SS models.

Discussion

When applying complex stock assessment models in data-limited situations, it is important to
have the flexibility to explore major axes of uncertainty and alternative model specifications,
and not rely on the output of just one model. SS is a powerful and flexible modelling
framework accommodating many ways of exploring uncertainty, including data inputs and
major life history parameter exploration. Sensitivity analysis can be performed on several
assumptions.(e.g. growth parameters or selectivity shape), but results can be difficult to
interpret if the probabilistic statements for the different values are unknown (Maunder &
Piner, 2015)aNatural mortality and particularly steepness can be difficult to estimate in stock
assessmentsy‘asdboth benefit from contrast in the data. Although empirical estimators for M
are available, their imprecision (Kenchington, 2014) requires further characterisation of
uncertainty routside one model specification (i.e. using only one value of M). Sensitivity
analyses aré recommended to test for the robustness of model outputs to parameter and
data choicés™and offer a fuller representation of uncertainty and effects of model
misspecifications (Brooks & Deroba, 2015). Erroneous estimation of M can lead to over- or
underestimates of stock biomass and status, poorly informing management of the resource
(Kenchington, 2014). Mortality rates for Lutjanus species reported in literature from Florida to
Brazil range widely from 0.11 to 0.49 per year (Arreguin-Sanchez, Munro, Balgos, & Pauly,
1996; Burton, 2002; Rivot et al., 2000; Topping & Szedimayer, 2013). Our likelihood profile
and sensitivity analysis showed the largest changes in model output with low M values.
Given the prior‘constructed here (based on life history values via empirical M estimators)
drove the estimation of M and profiling showed no information to delineated M values >0.4,
fixing M to 0.39"per year seemed a very reasonable decision when determining a reference
model.

This modelralso showed sensitivity to steepness for several model derived quantities, a
common resulizas: changes in the steepness value usually causes major uncertainty in the
estimation of management quantities (Zhou, 2007). But the model also was unable to
estimate steepness given the lack of strong contrast in population biomass and recruitment,
despite theyu-shaped population dynamics in the model using CPUE (Lee, Maunder, Piner, &
Methot, 2012; Magnusson & Hilborn, 2007).

Length composition data are one of the easier data sources to collect for many species,
although non-representative sampling can potentially cause bias in interpreting sampled
lengths. Length data are a central component for age-structured models, especially when
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aging data are typically not available (Heery & Berkson, 2009), providing information on gear
selectivity, recruitment pulses, and stock status (as well as life history parameter information
in some situations). Length data can suffer from systematic errors during the sampling of
catch that make it unrepresentative of the true catch. While the causes of bias in sampling
fishery-dependenty length composition data are recognised (e.g. non-random sample
collection, limited access to fishery catch or poor sampling design), the effect of it on stock
assessment.is always not straightforward (Gerritsen & McGrath, 2007; Heery & Berkson,
2009). Here.it. was demonstrated that correcting for the main source of sampling error (no
sampling of'the exported portion of catch) for L. purpureus had little effect on model outputs.
While this lackmef model sensitivity points to model robustness to this particular data
scenario, representativeness in the length data should always either be ensured through
proper sampling design or evaluated in the model with the exploration of data scenarios.

One of the biggest sources of uncertainty in the red snapper model was the inclusion of the
CPUE-based abundance index. CPUE misspecification can cause a significant weakness in
the model performance when linking the population trend to the abundance index (Methot Jr
& Wetzel, 2013; Wiedenmann & Jensen, 2017). In the case of this model, the final trend in
the populationsdynamics demonstrated a major dichotomy in results depending on the
treatment of the CPUE index. Removing it caused the population to continue to decline (as
the catchyeontinued to increase) instead of rebound. This also demonstrates how the signal
in the index wasudifferent to that of the length composition data. Competing signals in data
sources are.very.common in integrated stock assessments, and must be resolved using data
weighting or, ideally, alternative model specification (Maunder and Piner, 2017). Such data
weighting choices are a major consideration when model building and defining appropriate
sensitivity analyses.

Fishery-dependent CPUE is known to vary over time violating the assumption of being
proportional to abundance. Several methods have been employed to incorporate time-
varying catchability into stock assessments (e. g. random walk) but fishery-dependent CPUE
generally need standardisation (Wilberg, Thorson, Linton, & Berkson, 2009). CPUE data
series can be standardised to account for a variety of factors, however standardisation can
only correct for measured factors and require available data for each factor (Wilberg et al.,
2009). Infarmation on stock spatial and temporal variability and technological changes in the
French Guianawred snapper fishery is fragmentary and incomplete, thus, CPUE
standardisation for this red snapper model is currently not possible. The incorporation of a
non-linear power function between the CPUE index and the catchability suggests possible
hyperdepletion that added more uncertainty to the model outputs. One possible mechanism
explaining this result is that the grouping behaviour of snappers can lead to localised
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depletions as already showed for Lutjanus spp. In the Gulf of Mexico (Saul, Brooks, & Die,
2020). Nevertheless, those results should be interpreted with caution since the CPUE
integrated in the model were not standardised. Future use of CPUE as an index in this
assessment should consider the possibility of incorporating time-varying or non-proportional
catchability 4if additional data could be collected to improve CPUE standardisation and
application.

The VPA approachrhas a long history of application to major fished stocks in French Guiana
and several European regions, but this methods requires a relatively complete data set and
can often accommodate only the most recent period of the fishery since age composition
data are rarely available for the beginning of the fishery (Stewart & Martell, 2015). The VPA
approach requires a complete catch-at-age time series that is often estimated from cohort
slicing of length data (Ailloud et al., 2015). This type of procedures can introduce a large and
unpredictable _uncertainty that can influence VPA assessments (Carruthers, Kell, & Palma,
2017). The SS model does not need catches-at age and can directly integrate length
datasets using.growth parameters and uncertainty in length at age, thus integrating this
uncertainty in_the assessment (Methot Jr & Wetzel, 2013). SS and VPA follow a similar
process but inepposite directions (VPA is a backward projection model while SS is a forward
projection model) and adopt a different selectivity approach (Punt, Hurtado-Ferro, & Whitten,
2014) and-treatment of recruitment. In the recent years, French Guiana stock assessments
has been performed with both methods to compare the results. The possibility to use SS
exclusively for.future assessments is now a consideration. The differences result in a notable
difference in absolute biomass estimation among the approaches. Stewart and Martell (2015)
also found ‘a_biomass difference comparing VPA and SS models. The catch and length
version of thesSS model, which is the most similar SS model to the data used in the VPA
model, was'also _different in both population trend and biomass size. These models all give
very differentsmeasures of absolute and/or relative stocks size, and thus management should
consider the most appropriate way to weight these different model specifications to inform
management.(Stewart & Martell, 2015). The SS model allows for flexibility and uncertainty

specificationrandishould be preferred over VPA for further management scenarios.
Conclusion

Dealing ‘with 'data-limited fisheries and unreported times series can be particularly
challenging, and model misspecification and data treatments can cause important changes in
the model outputs and management suggestions. Prioritising some of the data and down-
weighting others can be a solution to reduce conflicts but it can be difficult to choosing these
weightings (Ichinokawa, Okamura, & Takeuchi, 2014). These conflicts instead should be
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confronted with model exploration to avoid model mis-specification (Wang & Maunder, 2017)
or re-evaluation of the representativeness of the data in question. Thorough sensitivity
analysis and even simulation analysis may be needed to identify potential bias and

misspecifications.

The present results showed that for French Guiana L. purpureus the SS model provided a
flexible and wviablesmethod to assess the exploitation status of the stock and the uncertainty
to model speeification and data set choices given the limitations in available data and life
history inputs. The available data were insufficient for the estimation of natural mortality and
steepness, necessitating a sensitivity exploration through a likelihood profile to understand
how model| outputs were affected by the values of these parameters. This model also
showed sensitivity to data inputs, as the CPUE index seems to contrast with the length
composition data-set. Whether this is due to truly different signals in the data, lack of proper
standardization. in.the CPUE, or unrepresentativeness of the data is not known at this time,
but it does pinpoint a critical research topic to improve future stock assessments of red
snapper. Despite.the above uncertainties, all models were depicting a similar trend with
notable stock depletion in the late 1990s. Biomass is recovering in recent years when using
the CPUE abundance index (~60% of the unfished spawning biomass) despite stable fishing
mortality. Te ‘preserve this important economic resource, new data collections (e.g.
measuring=lengths of all catches; improving the quality of the CPUE time series with
electronic monitering; development of a fishery-independent survey; collecting ageing
structures) can.be added directly to the SS model configured here, while enforceable
management measures (e.g. hook size regulations; developing spatial and temporal
restrictions; limit illegal activities; catch limits) should be explored.
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Tables

Table 1: Life history parameters employed in this study

von Bertalanffy'growth 0.12 year-1 (Rivot et al., 2000)
coefficient (k)

von Bertalanffy asymptotic 105 cm (Rivot et al., 2000)
length (Linf)

length-weight-allometric 2.95455 (Lampert, Achoun, & Levrel,
parameter (b) 2013)
length-weight scaling 1.97E-05 (Lampert et al., 2013)

parameter (a)

maximum age 13 year (Rivot et al., 2000)
maximum:length 88 cm (Rivot et al., 2000)
Length at 50% maturity 32cm

Figure legends

This article is protected by copyright. All rights reserved




598

599
600

601
602
603
604

605
606
607
608

609
610

611
612

Fig. 1: Catches and catch per unit effort (CPUE) data employed in red snapper SS model.

Fig. 2: Comparison of the main model outputs for the reference SS model, the SS model
without catch per unit effort (CPUE) and the virtual population analysis (VPA).

Fig. 3: Likelihood profile for natural mortality and derived quantities (initial spawning output
(SOy); spawning output in 2018 (SOxy1g), stock status (SO2015/SOy) in the French Guiana red
snapper SS model. The natural mortality of 0.39 estimated by “The Natural Mortality tool” is
showed by a grey dot.

Fig. 4: Likelihoodsprofile for steepness (h) and derived quantities (initial spawning output
(SOy); spawning output in 2018 (SOy01s), stock status (SO2q18/SOy) in the French Guiana red
snapper SS model. The steepness value of 0.7 estimated by Fishlife is showed by a grey
dot.

Fig. 5: Comparison of the main model outputs and index fit for the reference model and the
model using.the.modified length composition dataset.

Fig. 6: Comparison of the main model outputs and index fit for the reference model and the
model without catch per unit effort (CPUE).
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