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Stock assessment on fishery-dependent data: effect of data quality and 8 

parametrisation for a red snapper fishery 9 

Abstract 10 

Data availability, unreported and unregulated fishing are significant obstacles to evaluating 11 

stock status, especially in tropical areas. Limitations in data quantity and quality can lead to 12 

model misspecification and erroneous data treatments, potentially causing important 13 

changes in model outputs and subsequent management implications. Red snapper Lutjanus 14 

purpureus (Poey) in French Guiana provides an example of a stock with a long-time series of 15 

fishery-dependent data subject to large uncertainty. A flexible catch-at-age model (Stock 16 

Synthesis) was applied to the available data and compared to an historically applied 17 

assessment approach. Inter-model variability based on different model specifications and 18 

data treatments were compared to identify better the status of the resource. Results showed 19 

that a major source of uncertainty in the model was the inclusion of a catch-per-unit-effort 20 

abundance index with questionable ability to track abundance. The Stock Synthesis model 21 

provided a more flexible and viable method than the virtual population analysis approach. 22 

Despite large uncertainty, models depicted a similar trend with a notable stock depletion in 23 

the late 1990s but with two distinct biomass trends in more recent years depending on the 24 

treatment. To reduce uncertainty and preserve this important economic resource, new data 25 

collection programmes and management policies are needed. 26 
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Introduction 31 

Quantitative fishery stock assessments look to produce data-driven estimates of population 32 

abundance and dynamics to inform management decisions (Hilborn & Walters, 2013). 33 

Measurement error associated with a variety of data types and parameters, and natural 34 

process variability in population dynamics all lead to uncertainty in analytical outputs (Francis 35 

& Shotton, 2011). This uncertainty can hinge greatly on the quality and availability of the data 36 

(Chen, Chen, & Stergiou, 2003). Despite the potential for data-derived biases in 37 

assessments that could lead to management failures, improvements in quality and data 38 

availability are often limited by resources like money, time and available expertise (Chen et 39 

al., 2003). Developing harvest strategies based on limited data without waiting for extensive 40 

data sets that my never materialize is critical to responsive and responsible natural resource 41 

management (Dowling et al., 2015). 42 

Data limitation is a global problem, particularly in tropical regions (Amorim, Sousa, Jardim, & 43 

Menezes, 2019). In addition to the challenges of monitoring legal activities, unreported and 44 

unregulated fishing presents an additional significant challenge to informing stock 45 

assessments (Cawthorn & Mariani, 2017). For example, unreported catches and effort can 46 

lead to severely biased estimates of biomass and other model outputs (Omori, Hoenig, 47 

Luehring, & Baier-Lockhart, 2016). This creates a mixed situation of partial coverage in data 48 

streams resulting in uncertainty that deserves respect and acknowledgement, but such 49 

uncertainty is an insufficient reason to avoid using science to inform management (Dowling 50 

et al., 2016). Unfortunately, numerous valuable fishery resources, especially in tropical 51 

areas, remain unevaluated. 52 

The red snapper Lutjanus purpureus (Poey) fishery in French Guiana constitutes a good 53 

example of a data-limited fishery where, despite the availability of long time series of fishery-54 

dependent data, information on the ecology of the species is still poorly understood and data 55 

gaps remain. The commercial handline red snapper fishery in French Guiana is 56 

predominantly performed by Venezuelan boats under a licensing system introduced in the 57 

1980s by the French government and now under EU authority. The licence agreement 58 

requires boats to sell 75% of their catch to a processing factory in French Guiana, while the 59 

other 25% can be sold abroad. Controls at sea and at landing sites exist, but no information 60 

is available on the catch sold beyond French Guiana borders. Moreover, this fishing activity 61 

is mostly focused on smaller fish since the international market demands plate-sized fish 62 

typically below the size of maturity. This type of size-selective fishery can lead to age 63 

truncation if fishing mortality is high (Brunel & Piet, 2013; Reddy et al., 2013). Even if the 64 
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catch of large fish declines, high fishing intensity on small individuals can threaten population 65 

sustainability (Reddy et al., 2013). 66 

Lutjanus purpureus is particularly vulnerable to fishing pressure due to its behaviour and 67 

general life history characteristics (slow-growth, late maturity and seasonal spawning 68 

aggregations (Manickchand-Heileman & Phillip, 1996). Red snapper is known to aggregate 69 

for spawning, a behaviour that can lead to hyperstable signals of population density and 70 

overestimation of the stock size if not accounted for in stock assessments (Erisman, Apel, 71 

MacCall, Román, & Fujita, 2014). Additionally, the specific life history of L. purpureus is not 72 

well understood, creating significant uncertainty in the use of biological parameters (e.g. 73 

growth, natural mortally and reproduction) in French Guiana waters (Rivot, Charuau, Rose, & 74 

Achoun, 2000). 75 

Red snapper in French Guiana provides an example of a stock with multiple data sources 76 

(e.g. catch, fishery-dependent index and biological compositions) of limited quality and 77 

uncertain life history values. Consequently, it is critical to compare several possible model 78 

specifications and data treatments to account for uncertainty in the estimation of 79 

management quantities in any stock assessment. This work takes up the challenge of 80 

assessing L. purpureus by: 1) investigating stock assessment uncertainty based on 81 

limitations in the fishery-dependent data and life history inputs using a flexible statistical 82 

catch at age approach (i.e. the Stock Synthesis (SS) modelling framework) and 2) comparing 83 

results from the SS model to that of a Virtual Population Analysis (VPA) approach that has 84 

historically been used to assess the stock. By accounting for the uncertainty in sources of 85 

data and inputs, the major sources of model output uncertainty are identified and quantified 86 

for management consideration, while using the flexible SS framework may provide a more 87 

advantageous modelling environment compared to the more rigid VPA approach. 88 

Material and methods 89 

Fishery catch data 90 

In French Guiana, red snapper is mostly fished by Venezuelan hand-liners between 30 and 91 

200 m depth. The hand-line fishery is estimated to have started around 1960, with some 92 

information on landings beginning in 1976, with the most reliably data recorded from 1985 93 

onward when Ifremer (Institut Français de Recherche pour l’Exploitation de la Mer) started a 94 

fisheries information database (Tous, 1988). Before 1988, other fishing activities such as 95 

trawling were also targeting red snapper, but catches were not monitored (Prevost, 1989; 96 

Tous, 1988).  97 
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In 1984 a licencing system was implemented requiring Venezuelan boats to sell a fixed 98 

percentage of their catch in French Guiana (50% for 1984 and 75% from 1985 to present). In 99 

addition to the main hand-line fishery, a few boats coming from the French Antilles islands 100 

occasionally fished French Guiana waters with fish traps (e.g. in 2019, less than 70 t or 2.6% 101 

of total yearly catches). Additionally, bycatch in shrimp trawlers takes small (between 8 and 102 

30 cm) red snapper (i.e. in 2007 about 100 t, or 6% of total catches for 23 trawlers), but little 103 

information on the historical time series of these catches is available (Caro & Lampert, 2011). 104 

Currently, only 10 shrimp trawlers remain, likely reducing the amount of red snapper bycatch. 105 

Considering the high uncertainty of the landings data, especially at the beginning of the time-106 

series, and the need to correct for these missing catches, landings data were expanded by 107 

25% for all years to estimate total removals from the red snapper population (Fig. 1). No 108 

information was available to hypothesise any temporal changes in the expansion value.  109 

Abundance data 110 

Fishery-dependent catch per unit effort (CPUE) indices were available from 1986 to 2018 111 

(Fig. 1). CPUE was calculated by dividing the total annual catches by the total annual 112 

number of days at sea estimated from logbooks and/or vessel monitoring systems (VMS) 113 

data (t catch / days at sea). CPUE were not standardised since no historical information in 114 

changes of the fishing techniques or other factors were available. This lack of standardisation 115 

adds uncertainty in the application of this index, but it is the only index available. 116 

Biological data 117 

Length composition (fork length in cm) data were available from 1986 to 2019. Length is 118 

routinely measured by observers at landing sites in Cayenne according to the framework of 119 

the fisheries information system (SIH) implemented by Ifremer. The available data set is 120 

obtained from a monthly sampling plan that subsamples boats landing red snapper. The 121 

sample size has changed over the years following changes in the fishery and improvement in 122 

the statistical analysis to try and optimise the sample size. The length frequency of the 123 

subsample was therefore expanded to match the 25% expansion in landings (to account for 124 

the animals fished in French Guiana waters but landed abroad). 125 

Life history relationships and values 126 

Natural mortality was assumed constant across ages and time. Individual growth was 127 

modelled as a von Bertalanffy function, fecundity was modelled as proportional to weight, 128 

and a Beverton-Holt stock-recruit relationship was assumed. Life history values were fixed in 129 

the reference model and were obtained from literature sources (Table 1). Exploration of 130 

uncertainty in natural mortality (M) and the Beverton-Holt steepness parameters (h; 131 
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recruitment compensation, or average recruitment of a population reduced to 20% of 132 

unfished levels relative to average recruitment of the unfished population) are described in 133 

the next section on sensitivity analysis.  134 

Model description and specification 135 

The assessment was conducted using the Stock Synthesis (SS version 3.30.13.02) 136 

framework that uses maximum likelihood estimation (MLE) to obtain values and calculate 137 

asymptotic uncertainty for estimated parameters and model outputs (Methot Jr & Wetzel, 138 

2013). The model is configured as one sex as females and males were assumed to have the 139 

same life history parameters. Fishery-dependent data (catch, CPUE and length 140 

compositions) were specified as one fleet with dome-shape selectivity as the largest 141 

individuals are not taken in the fishery, a parameterization choice confirmed by fishermen. A 142 

selectivity time block was applied with a break implemented after 1996 and 2018 to account 143 

for a possible change in fishing practice (targeting smaller individuals to adapt to market 144 

demand) as suggested by local fishermen that changed the size composition of the fish 145 

landed. The model with a time block in selectivity improved model fit to the length 146 

compositions (see Appendix B and C). Catch in metric tonnes was assumed known while the 147 

CPUE index assumed a lognormal error with a standard deviation of 0.3 for all years. Length 148 

composition data were modelled with 2-cm length bins between 15 and 85 cm, and relative 149 

sample sizes among years were determined by the samples by trip weighted by catch. The 150 

list of the parameters used in the reference model is provided in Appendix A. The data and 151 

model outputs were summarised using the r4SS package (https://github.com/r4ss/r4ss). 152 

Additional data weighting for lengths and CPUE were unnecessary given the model fit (see 153 

Appendix C).  154 

Sensitivity analysis and likelihood profiles 155 

Model sensitivity to parameter uncertainty was explored via likelihood profiles—the fixing of 156 

the model to various values of a specific parameter to see how model fit and derived outputs 157 

change. Likelihood profiles demonstrate the amount of information (measured by the 158 

changing likelihood metric) contained in the data for the featured parameter. Using the 159 

negative log likelihood metric, any value outside of 1.96 units from the maximum likelihood 160 

estimate (MLE) is considered significantly less supported by the data. The spread of model 161 

outputs within the interval of significant data support therefore provides a measure of 162 

uncertainty in model output based on parameter input. To demonstrate how model output 163 

changes across profiled parameter values, three model outputs were considered: 1) initial 164 

spawning output (SO0); 2) terminal year spawning output (SO2018); 3) the stock status in the 165 

terminal year (SO2018/SO0). Comparing the information content of a particular parameter 166 
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value to the associated model output allows a mapping of model information (i.e. data) to 167 

sensitivity in the model output (i.e. results). Likelihood profiles were conducted for the 168 

following two parameters: 169 

Natural mortality  170 

Natural mortality is one of the most influential and difficult parameters to estimate in fisheries 171 

stock assessment (Lee, Maunder, Piner, & Methot, 2011). Stock assessments often use an 172 

external estimate of M as a fixed value, but may also estimate M within the model. Estimating 173 

M depends on other model specifications (e.g. having at least one fishery with asymptotic 174 

selectivity) and necessitates an exploration of model performance (Brodziak, Ianelli, 175 

Lorenzen, & Methot Jr, 2011; Lee et al., 2011).  176 

The range of M values used in the likelihood profile were defined by first estimating M 177 

indirectly using meta-analytical and empirical methods based on life history parameters. “The 178 

Natural Mortality Tool” (http://barefootecologist.com.au/shiny_m) application was used to 179 

access to many different empirical M estimators. The methods based on maximum age 180 

(Hamel et al., 2015; Then, Hoenig, Hall, & Hewitt, 2015) and on the von Bertalanffy � 181 

parameter (Alverson & Carney, 1975; Jensen, 1996, 1997; Zhang & Megrey, 2006) and 182 

FishLife (Thorson, Munch, Cope, & Gao, 2017) estimates were selected. M estimates varied 183 

between 0.09 and 0.46 per year with a median value of 0.39 per year. These values were 184 

also compared to that of Rivot et al. (2000) who compared three different estimation methods 185 

for French Guiana red snappers suggesting that M ranged from 0.18 to 0.61 per year (Pauly 186 

& Moreau, 1997; Ralston & Polovina, 1987; Rikhter & Efanov, 1976), with 0.29 per year 187 

considered the most plausible. A likelihood profile range of M from 0.10 to 0.60 per year at 188 

an interval of 0.05 was defined using both of the above sources (The Natural Mortality Tool 189 

and Rivot et al. 2000). 190 

Steepness 191 

It is common in stock assessments to define the functional relationship between spawners 192 

and recruits using the reparameterized Beverton-Holt function (Mace & Doonan, 1988) where 193 

steepness (h) is a key parameter. Steepness technically ranges from 0.2 to 1 in the 194 

Beverton-Holt model, though values below 0.3 are often deemed unsustainable (He, Mangel, 195 

& MacCall, 2006). A higher h value loosens the relationship between stock and recruits, 196 

producing higher productivity at smaller stock sizes. A value of h=1 essentially decouples the 197 

stock-recruit relationship (Mangel et al., 2013; Shertzer & Conn, 2012). Steepness defines 198 

some management quantities (e.g. MSY and FMSY), but direct estimation requires contrast in 199 

the data at low and high population sizes.  200 
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Externally-derived steepness values are much more commonly used, and come from life 201 

history parameters and meta-analyses on ecologically similar species (Shertzer & Conn, 202 

2012). The R package “FishLife” (https://github.com/James-Thorson-NOAA/FishLife; 203 

Thorson (2020)) was used to specify h (0.7) for L. purpureus, and the subsequent likelihood 204 

profile range of h was 0.40 to 1 with an interval of 0.05. 205 

Uncertainty in length data 206 

The impact of bias in unsampled lengths was explored from the unreported international 207 

fishery. Unfortunately, no data were available on the proportion of fish sold abroad, but local 208 

fisherman indicate bigger fish are typically landed for markets outside French Guiana. To test 209 

this hypothesis, length compositions of the non-monitored landings (assumed to represent 210 

25% of the total catch) from 1991 to present were modified to include individuals larger than 211 

40 cm following the average length distribution composition for years 1986-1991 (period 212 

when larger individuals were fished). This model was then compared to the reference model 213 

using only sampled lengths.  214 

Uncertainty in CPUE  215 

The available raw CPUE data used in this study were exclusively derived from fishery-216 

dependent time series and were non standardised since little information are available on 217 

sampling conditions, fish biology and movement patterns, or on changes in fishing behaviour. 218 

To understand the influence of the CPUE index on model outputs better, the reference SS 219 

model was compared to a model with no CPUE index, thus relying only on catches and 220 

lengths as inputs. The assumption of linearity between CPUE and abundance was 221 

investigated by estimating the exponent of a power function relationship between the CPUE 222 

index and the catchability (Hilborn & Walters, 2013; Methot, 2009). 223 

Comparison to VPA  224 

The L. purpureus stock was first assessed in 2012 by applying a VPA on commercial length 225 

frequency data from 1986 following a von Bertalanffy growth relationship and assuming a 226 

maximum age of 13 years (Lampert, 2012). VPA uses a backward projection to estimate 227 

recruits with no stock recruit relationship, while SS assumes the Beverton-Holt stock-228 

recruitment relationship. The SS model also assumes length variability at age, whereas the 229 

length-age relationship in the VPA was taken straight from the von Bertalanffy curve. The 230 

VPA model was constructed following the equations in example 18 of Sparre and Venema 231 

(1998). A plus-group was employed for the last age group. F (and Z) are age-specific with 232 

the plus group applying a constant average F value. The VPA model does not explicitly 233 

specify selectivity. The VPA model did not consider the CPUE data and applied a constant 234 
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fishing mortality by cohorts (averaged over the most recent 5 years) to estimate stock 235 

biomass. Natural mortality in the VPA model was fixed at 0.29. The VPA model was run 236 

again with the most recent data and main outputs (total biomass, recruitment, spawning 237 

biomass and relative spawning biomass relative to the first year of the model) were 238 

compared to the SS model. 239 

RESULTS 240 

Reference model 241 

The reference SS model of the red snapper shows a stock in initial decline, but in recent 242 

years increases in biomass despite increasing catches (Fig. 2). Recruitment is at its highest 243 

post-2000, when the CPUE time series shows a steady increase. Current relative stock 244 

status is very high and well above what would be considered maximum sustainable biomass 245 

(Fig. 2). 246 

Likelihood profiles 247 

Natural mortality  248 

The model tends to support higher values of natural mortality (Fig. 3, likelihood panel), but 249 

the amount of information in the model on natural mortality is very limited. Most of the 250 

information comes from the assumed prior on M when looking at the likelihood components 251 

in the profile (Appendix C). Initial and final spawning output are very sensitive to the 252 

assumption of lower M values (Fig. 3). Despite the sensitivity in the absolute biomass 253 

measures, the relative biomass was similar across the full profile (Fig. 3). This illustrates a 254 

situation where the model is poorly informed on the absolute biomass of the stock, but the 255 

current stock status is robust to changes in perception of M and indicative of a high stock 256 

status.  257 

The SS-estimated M value was particularly high (0.46 per year) and probably unrealistic for 258 

L. purpureus given the life history and lack of information on M contained in the data (Fig. 3). 259 

For this reason, the median value of 0.39 per year from the nine empirical estimation 260 

methods was fixed and assumed for both sexes in the reference assessment model.  261 

Steepness 262 

The steepness likelihood profile showed the available data had no information on the 263 

steepness value (Fig. 4). Biomass changed non-linearly to steepness, with higher biomass at 264 

lower steepness values, a typical result when looking across steepness values. Relative 265 

stock status, while somewhat sensitive to the value of h, was consistently high across all 266 

steepness values given the other data and parameter specifications in the reference model.  267 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

Uncertainty in length data 268 

The inclusion of larger individuals on the length compositions resulted in slightly different 269 

estimated selectivity parameters in the two-time periods (Appendix E) that result in large 270 

overlap in biomass estimates between the length composition treatments (Fig. 6). The small 271 

differences between models are highlighted by slightly larger biomass estimates, higher 272 

relative stock sizes and lower fishing pressure in the model including larger individuals, 273 

although well within the bounds of uncertainty of the reference model.  274 

Uncertainty in CPUE  275 

Removing the CPUE index strongly affected model output, resulting in a more pessimistic 276 

situation for both ending biomass and subsequent stock status (Fig. 7 and Appendix D). The 277 

scale of the initial population biomass was not sensitive to inclusion of the CPUE index, but 278 

the final biomass was sensitive, pointing to the importance of the CPUE index as a source of 279 

current stock status information. Whether this data sets contains an unbiased signal relative 280 

to noise regarding the trend in the population is a critical assumption when interpreting these 281 

results.  282 

The SS model using a power relationship between the CPUE index and the catchability 283 

suggests hyperdepletion in the raw CPUE (estimated catchability power value of 2.62). The 284 

model outputs also incorporated more uncertainty relative to the reference model but the 285 

trends were similar (Appendix F). Any interpretation using the raw CPUE index should be 286 

considered with enormous caution.  287 

Comparison to VPA 288 

SS outputs for the reference model and the model without CPUE were compared to the 289 

results from the VPA model (Fig. 2). As previously demonstrated, these two specifications of 290 

the SS models differ mostly in years after 2001. Before 2001, the VPA model showed 291 

relatively lower biomass levels compared to the SS outputs, though both models suggest the 292 

lowest biomass was in the early 2000s (Fig. 2). From about 2010, the outputs of SS model 293 

without CPUE (recruitments, SSB and total biomass) resulted closer to the VPA estimation. 294 

On the other hand, the relative stock status as defined by the first year of the time series 295 

(SSBcurrent/SSB1986) indicates a larger decline for SS model without CPUE compared with the 296 

VPA. Note, the VPA uses only the length data, not the CPUE, yet still shows recovery, 297 

whereas the SS with no CPUE scenario shows a persistent decline. 298 

Given the historical VPA assumes a lower M value than the SS models, an additional VPA 299 

model with the same M value used in the SS model was performed. This sensitivity did not 300 
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result in enough change in the VPA model to account for the different biomass scales 301 

between the VPA and SS models. 302 

Discussion 303 

When applying complex stock assessment models in data-limited situations, it is important to 304 

have the flexibility to explore major axes of uncertainty and alternative model specifications, 305 

and not rely on the output of just one model. SS is a powerful and flexible modelling 306 

framework accommodating many ways of exploring uncertainty, including data inputs and 307 

major life history parameter exploration. Sensitivity analysis can be performed on several 308 

assumptions (e.g. growth parameters or selectivity shape), but results can be difficult to 309 

interpret if the probabilistic statements for the different values are unknown (Maunder & 310 

Piner, 2015). Natural mortality and particularly steepness can be difficult to estimate in stock 311 

assessments, as both benefit from contrast in the data. Although empirical estimators for M 312 

are available, their imprecision (Kenchington, 2014) requires further characterisation of 313 

uncertainty outside one model specification (i.e. using only one value of M). Sensitivity 314 

analyses are recommended to test for the robustness of model outputs to parameter and 315 

data choices and offer a fuller representation of uncertainty and effects of model 316 

misspecifications (Brooks & Deroba, 2015). Erroneous estimation of M can lead to over- or 317 

underestimates of stock biomass and status, poorly informing management of the resource 318 

(Kenchington, 2014). Mortality rates for Lutjanus species reported in literature from Florida to 319 

Brazil range widely from 0.11 to 0.49 per year (Arreguín-Sánchez, Munro, Balgos, & Pauly, 320 

1996; Burton, 2002; Rivot et al., 2000; Topping & Szedlmayer, 2013). Our likelihood profile 321 

and sensitivity analysis showed the largest changes in model output with low M values. 322 

Given the prior constructed here (based on life history values via empirical M estimators) 323 

drove the estimation of M and profiling showed no information to delineated M values >0.4, 324 

fixing M to 0.39 per year seemed a very reasonable decision when determining a reference 325 

model.  326 

This model also showed sensitivity to steepness for several model derived quantities, a 327 

common result as changes in the steepness value usually causes major uncertainty in the 328 

estimation of management quantities (Zhou, 2007). But the model also was unable to 329 

estimate steepness given the lack of strong contrast in population biomass and recruitment, 330 

despite the u-shaped population dynamics in the model using CPUE (Lee, Maunder, Piner, & 331 

Methot, 2012; Magnusson & Hilborn, 2007). 332 

Length composition data are one of the easier data sources to collect for many species, 333 

although non-representative sampling can potentially cause bias in interpreting sampled 334 

lengths. Length data are a central component for age-structured models, especially when 335 
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aging data are typically not available (Heery & Berkson, 2009), providing information on gear 336 

selectivity, recruitment pulses, and stock status (as well as life history parameter information 337 

in some situations). Length data can suffer from systematic errors during the sampling of 338 

catch that make it unrepresentative of the true catch. While the causes of bias in sampling 339 

fishery-dependent length composition data are recognised (e.g. non-random sample 340 

collection, limited access to fishery catch or poor sampling design), the effect of it on stock 341 

assessment is always not straightforward (Gerritsen & McGrath, 2007; Heery & Berkson, 342 

2009). Here it was demonstrated that correcting for the main source of sampling error (no 343 

sampling of the exported portion of catch) for L. purpureus had little effect on model outputs. 344 

While this lack of model sensitivity points to model robustness to this particular data 345 

scenario, representativeness in the length data should always either be ensured through 346 

proper sampling design or evaluated in the model with the exploration of data scenarios. 347 

One of the biggest sources of uncertainty in the red snapper model was the inclusion of the 348 

CPUE-based abundance index. CPUE misspecification can cause a significant weakness in 349 

the model performance when linking the population trend to the abundance index (Methot Jr 350 

& Wetzel, 2013; Wiedenmann & Jensen, 2017). In the case of this model, the final trend in 351 

the population dynamics demonstrated a major dichotomy in results depending on the 352 

treatment of the CPUE index. Removing it caused the population to continue to decline (as 353 

the catch continued to increase) instead of rebound. This also demonstrates how the signal 354 

in the index was different to that of the length composition data. Competing signals in data 355 

sources are very common in integrated stock assessments, and must be resolved using data 356 

weighting or, ideally, alternative model specification (Maunder and Piner, 2017). Such data 357 

weighting choices are a major consideration when model building and defining appropriate 358 

sensitivity analyses.  359 

Fishery-dependent CPUE is known to vary over time violating the assumption of being 360 

proportional to abundance. Several methods have been employed to incorporate time-361 

varying catchability into stock assessments (e. g. random walk) but fishery-dependent CPUE 362 

generally need standardisation (Wilberg, Thorson, Linton, & Berkson, 2009). CPUE data 363 

series can be standardised to account for a variety of factors, however standardisation can 364 

only correct for measured factors and require available data for each factor (Wilberg et al., 365 

2009). Information on stock spatial and temporal variability and technological changes in the 366 

French Guiana red snapper fishery is fragmentary and incomplete, thus, CPUE 367 

standardisation for this red snapper model is currently not possible. The incorporation of a 368 

non-linear power function between the CPUE index and the catchability suggests possible 369 

hyperdepletion that added more uncertainty to the model outputs. One possible mechanism 370 

explaining this result is that the grouping behaviour of snappers can lead to localised 371 
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depletions as already showed for Lutjanus spp. In the Gulf of Mexico (Saul, Brooks, & Die, 372 

2020). Nevertheless, those results should be interpreted with caution since the CPUE 373 

integrated in the model were not standardised. Future use of CPUE as an index in this 374 

assessment should consider the possibility of incorporating time-varying or non-proportional 375 

catchability if additional data could be collected to improve CPUE standardisation and 376 

application. 377 

The VPA approach has a long history of application to major fished stocks in French Guiana 378 

and several European regions, but this methods requires a relatively complete data set and 379 

can often accommodate only the most recent period of the fishery since age composition 380 

data are rarely available for the beginning of the fishery (Stewart & Martell, 2015). The VPA 381 

approach requires a complete catch-at-age time series that is often estimated from cohort 382 

slicing of length data (Ailloud et al., 2015). This type of procedures can introduce a large and 383 

unpredictable uncertainty that can influence VPA assessments (Carruthers, Kell, & Palma, 384 

2017). The SS model does not need catches-at age and can directly integrate length 385 

datasets using growth parameters and uncertainty in length at age, thus integrating this 386 

uncertainty in the assessment (Methot Jr & Wetzel, 2013). SS and VPA follow a similar 387 

process but in opposite directions (VPA is a backward projection model while SS is a forward 388 

projection model) and adopt a different selectivity approach (Punt, Hurtado-Ferro, & Whitten, 389 

2014) and treatment of recruitment. In the recent years, French Guiana stock assessments 390 

has been performed with both methods to compare the results. The possibility to use SS 391 

exclusively for future assessments is now a consideration. The differences result in a notable 392 

difference in absolute biomass estimation among the approaches. Stewart and Martell (2015) 393 

also found a biomass difference comparing VPA and SS models. The catch and length 394 

version of the SS model, which is the most similar SS model to the data used in the VPA 395 

model, was also different in both population trend and biomass size. These models all give 396 

very different measures of absolute and/or relative stocks size, and thus management should 397 

consider the most appropriate way to weight these different model specifications to inform 398 

management (Stewart & Martell, 2015). The SS model allows for flexibility and uncertainty 399 

specification and should be preferred over VPA for further management scenarios. 400 

Conclusion 401 

Dealing with data-limited fisheries and unreported times series can be particularly 402 

challenging, and model misspecification and data treatments can cause important changes in 403 

the model outputs and management suggestions. Prioritising some of the data and down-404 

weighting others can be a solution to reduce conflicts but it can be difficult to choosing these 405 

weightings (Ichinokawa, Okamura, & Takeuchi, 2014). These conflicts instead should be 406 
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confronted with model exploration to avoid model mis-specification (Wang & Maunder, 2017) 407 

or re-evaluation of the representativeness of the data in question. Thorough sensitivity 408 

analysis and even simulation analysis may be needed to identify potential bias and 409 

misspecifications. 410 

The present results showed that for French Guiana L. purpureus the SS model provided a 411 

flexible and viable method to assess the exploitation status of the stock and the uncertainty 412 

to model specification and data set choices given the limitations in available data and life 413 

history inputs. The available data were insufficient for the estimation of natural mortality and 414 

steepness, necessitating a sensitivity exploration through a likelihood profile to understand 415 

how model outputs were affected by the values of these parameters. This model also 416 

showed sensitivity to data inputs, as the CPUE index seems to contrast with the length 417 

composition data-set. Whether this is due to truly different signals in the data, lack of proper 418 

standardization in the CPUE, or unrepresentativeness of the data is not known at this time, 419 

but it does pinpoint a critical research topic to improve future stock assessments of red 420 

snapper. Despite the above uncertainties, all models were depicting a similar trend with 421 

notable stock depletion in the late 1990s. Biomass is recovering in recent years when using 422 

the CPUE abundance index (~60% of the unfished spawning biomass) despite stable fishing 423 

mortality. To preserve this important economic resource, new data collections (e.g. 424 

measuring lengths of all catches; improving the quality of the CPUE time series with 425 

electronic monitoring; development of a fishery-independent survey; collecting ageing 426 

structures) can be added directly to the SS model configured here, while enforceable 427 

management measures (e.g. hook size regulations; developing spatial and temporal 428 

restrictions; limit illegal activities; catch limits) should be explored.  429 
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 593 

Tables 594 

Table 1: Life history parameters employed in this study 595 

von Bertalanffy growth 

coefficient (k) 

0.12 year-1 (Rivot et al., 2000) 

von Bertalanffy asymptotic 

length (Linf) 

105 cm (Rivot et al., 2000) 

length-weight allometric 

parameter (b) 

2.95455 (Lampert, Achoun, & Levrel, 

2013) 

length-weight scaling 

parameter (a) 

1.97E-05 (Lampert et al., 2013) 

maximum age 13 year (Rivot et al., 2000) 

maximum length 88 cm (Rivot et al., 2000) 

Length at 50% maturity 32 cm  

 596 

Figure legends 597 
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Fig. 1: Catches and catch per unit effort (CPUE) data employed in red snapper SS model. 598 

Fig. 2: Comparison of the main model outputs for the reference SS model, the SS model 599 

without catch per unit effort (CPUE) and the virtual population analysis (VPA). 600 

Fig. 3: Likelihood profile for natural mortality and derived quantities (initial spawning output 601 

(SO0); spawning output in 2018 (SO2018), stock status (SO2018/SO0) in the French Guiana red 602 

snapper SS model. The natural mortality of 0.39 estimated by “The Natural Mortality tool” is 603 

showed by a grey dot. 604 

Fig. 4: Likelihood profile for steepness (h) and derived quantities (initial spawning output 605 

(SO0); spawning output in 2018 (SO2018), stock status (SO2018/SO0) in the French Guiana red 606 

snapper SS model. The steepness value of 0.7 estimated by Fishlife is showed by a grey 607 

dot. 608 

Fig. 5: Comparison of the main model outputs and index fit for the reference model and the 609 

model using the modified length composition dataset. 610 

Fig. 6: Comparison of the main model outputs and index fit for the reference model and the 611 

model without catch per unit effort (CPUE).  612 
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