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Abstract:

Fisheries dynamics can kbought of as the reciprocal relationship between an exploited
population and the fishers and/or managers determining the exploitation paftestasnable
production of proteirof these coupled humaratural systems requires an understanding of their
dynamics Here,we characterizethe fishery dynamics for 173 fisheries from around the globe
by applying general additive models to estimated fishing mortality and spawningsbitrora

the RAM 'Legacy Databas&AMs specifiedto mimic production models and more flexible
GAMs were appliedWe showobserved dynamics do not always match assumptiade in
managementising ‘classical’ fisheries models and the suitability of these assumptiies
significantly aeeording tdarge marine ecosysterhabitat,variability in recruitment maximum
weightof a'speciesandminimum observed stock biomasghese results identify circumstances
in which simple.models may be useful for management. However, adding flexibilitystical
models often_did not substantially improve performancehich suggests in many cases
considering_only biomass and removals will not be sufficient to model fishery dynamics
Knowledgerofthesuitability of common assumptions managemerghould be useih selecting
modeling “frameworks,setting management targetsgsting management strategies, and
developing.tooldo managedatatimited fisheries. Effectively balancing expectations of future
protein _production from capture fisheries and risk of undesirable outcomes (shgrids

collapse’) depends on understanding how well we can expect to predict future dynamics of a

fishery using current management paradigms.

Key words:eoupled humamatural systemseffort dynamics, population dynamics, production
modelsstock assessment
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I ntroductien

Approximately wenty percent of worldwide dietary protein is derived from the BA®( 2016.
Global population is projected to increasewr9 billion by 2050 (from a current population of
~7 billion; UN-DESA, 2d5), but production frontapture fisheries stabilized at-85 million
metric toppes(mmt) in the 2000s (FAO, 2016 Fisheries managerare often tasked with
ensuringthe fishhand invertebratpopulationghat supportthesefisheriesremain productiveand
attempt tordoso bynodding the dynamics of exploited populations to determine sustainable
catches Models of fishery dynamgoften assumehe number of individual fish entering a
populationis related tospawning biomaséSB) andthat decreases spawning biomassccur
due tonatural mortality and fishing mortalifF). Most management strategies for fisheries are
predicated.on.theassumptionthat management can manipulaishing pressure to achieve
changes.in,a fished populatiadowever,shifts in population dynamics over tinfBzuwalski et

al. 2015-eaninfluence theesponse of a population to fishiagd these responsideely vary by
region and speciegNeubauer et al., 2013; Thorson et al. 2012Effectively balancing
expectations of future protein producti@md rik of undesirable outcomes (e.fisheries

collapse’) requirean ability tounderstand and predict tdgnamics of a fishery

‘Fisheries dynamicsaredefinedhereasthe manner in which F and SB change at different levels
of F and SB. Changes in F can be seen as the response of management or fishers to changes in

the population and the perceived level of exploitation; changes in SB can be seemssathser
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of the population to exploitation, densitgpendence (i.e. the existence of a ‘carrying capacity’),
andbr environmental forcing. Fisheries managers make assumptions about the way SB and F
change when developing strategies for management. For examplegX§Batedto decreas®n
averagevhen Fincreasesand F might be assumed to decrease when SB is low due decreases in
the profitability. of fishing(Thorson et al., 20)4or management actionThe validity of these
assumptions and the predictability of fisheégnamics can influence thperformanceof a given

managéement strategy, but these assumptions are not often checked.

Here we characterize thdishery dynamicsfor 173 stocks from the RAM Legacy Stock
Assessment Database (Ricard et al, 2@i2)tting generalized additivenodels to estimates of
SB and F.“Using these fitted models, we ask, “If today’s SB and F are known, can ch&Rjes in
and F next year be predictbdsed on the past responses of the fistiewye thenlink stock
characteristics to a measurepoédictabilityand identifystocks withexpectedishery dynamics
given common_assumptions afensitydependencgestationarydynamics,active management
and/or cosbasedconstrainton fishing effort Finally, we discuss implications for management
and potential'strategies for coping with different levels of predictabilityumectpectedishery
dynamics:

Materials and methods
Global fisheries dta
Time series™of,SB and F from the RAM Legacy Stock Assessment Database welbasesttdn

the criteriasthat the recruitment estimates for the years extracted must not come directly from a
stockrecruit curve (i.epredictions of F and SB derived determiiaiglly from assumed structure

of stock assessment mod&lsre not used) and at least 18 contiguous years of F and SB were
available.  The RAM Database is the mosttoqdlate compilation of stock assessments for
stocks fished worldwide. Exploring relationships between potentially dependent.-deoideld
guantities_ean be fraught with statistical pitfallh¢rson et al., 20)5 However, these are the

best available estimates of F and SB and fisheries management is routinely conducted using
these estimates as accurate representations of reality. Therefore, assumptions made about
fisheries dynamics by managers should be consistent with the dynascomgpiled in this
database In total, 173 stocks were included in the analysis and time series’ of SB were rescaled
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from O to 1 before analysis to improve comparability. Rescaling was not done for Usdeca
fishing mortality alreadyrepresents a rate that is approximately comparable among stocks
(differences in selectivity will impact the comparability of fordue 2011)but selectivities

were not reported in the RAM database)

Population.dynamic$GAMs, and predictability

Dynamies of'the SB and F of a population can be characterized as:
B..,F,=B.,F+f(B,F)+N(OZX) Eq la
whereB; andBg1 are SB in yearsandt+1, F; andF, are fishing mortalityin yearst andt+1,
f(Bi,Fi) represents the couplashturaland human dynamics of SB and F, aW@,2) is a
multivariate normal “process error” arising from our maiB|,F+) failing to include all relevant

processes. We seek to estinf@teand take the first difference of F and SB:
B.,F.,-B,F=f(B,F)+N(OZ) Eq 1b

(SRS
Given the assumption thal is diagonal, we can decompose these dynamics into two

independent equations:
Bt+l_ Bt =g(Bt,Ft)+N(0,0'é) Eq 1c

Ft+1_ Ft = h(Bt’ Ft)+ N(O’UE)

whereg() represent$population dynamicsand h() represents “effort dynamics” (Thorson et al.,
2013). Bothg andh can be estimated using rparametric models given the assumption Ehat
andB; are knewn without error. We uséwno strategies to fit the fishery dynamics dgiqg. 1c)

here. First, weestimatedy() andh() using generalized additive models (GAMs), but regdct

the number of knots allowed for each to a maximun3.ofThreeknots alloved for quadratic
modelsto be-fitpwhichrepresents the prevailing dynamics assumed by most fisheries models (i.e.
the dynamies-between SB and F can be described by at most skiapse curve)Secondwe
againestimatedy() andh() using GAMs, but the number of knots was increased to 5. Wwae
chosen to offer,more flexibility in estimation, kalso increasgthe potential for overfitting with

some of the shorter time series
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118  Predictability of changes in F and SB for both methods was evaluated by excluding therlast yea
119  of data, fitting the GAMSs, predicting the excluded year using the fitted models amndhtaty

120 the absolute relative error of the observed vs. the prediclibis process was repeated &ach

121  of the last five years of data and the mean absolute relative error over those five years (MARE) is
122 used here to.represent the predictability of changes in F and SB. Excluding thar&simethe

123 analysis and predictg the change mimics the management process in \Bdk estimated one

124  year out and a'target F is sMtARE wasrecorded for the ‘traditional’ dynamics models (i.e.

125 restricted to quadratic relationships between F and SB) andlekible’ dynamics mode(i.e.

126  the modelin which the number of knots allowed was increased).

127

128  Fishery dynamics and expectations

129  Each of the fitted relationships between SB and F represent a different ‘process effect’ in the
130 humannaturalcoupled system of a fishery. Models fit to changes in F describe the way in which
131  fishers and fisheries managers perceive and interact with a stock, while models fit to changes in
132 SB describemshow the stock responds to exploitation as well as ddepiwlent and

133  environmentalkchanges.

134

135  Before applying the GAMs described abdwehe observed data, theserefittedto data drawn

136 from simulated populations to understabdwhat fishery dynamics are ‘expected’ given a

137  common model of fishery dynamics usadisheries manageme(d.g. Beverton and Holt, 1957)

138  and 2) howwell the GAMs could be expected to reflect the underlying dynamics o€ syst

139  productionsmedel (equatioB) undergoing an exploitation history in which ‘effort dynamics’

140  (equation(3 Thorson et al., 2013) determine fishingprtality wasused to simulate data. The

141  effort dynamics,model definespoint at which economic equilibrium is reached (i.e. profits =

142 costs) and posits an unregulated fishery will converge upon this point. Theidymd a system

143  driven by effort:dynamics (i.e. a spiral in F vs. SB phase space converging on a targetever t
144  are very similar to those observed in a system managed to a reference poipisiik©Bce a

145  stock targets specified in management (e.gudy), manages endeavor to maintain tretockat

146  that point. However, due to errors in the management process (e.g. implementatiess, gyoc

147  observation), the realized fishing mortality rarely equals the target. @oist®urse correction

148  through management action woultereforebe expected to produce a spiral path through F vs.
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SB space, and, consequently, the effort dynamicdelis alsoappropriateo apply to managed
stocks (i.e. all those in this analysi§)odels (Eq. 1c)werefit to the changes in F and SB from
data sets simulated for different numbers of observed years and beginning observti®mn of

fishery at different time in the exploitation.

B
B,., = B, + 1B, <1——t)—ct Eq2
K
Where
B; Biomass at time
r Intrinsic rate of population growth (set to 0.2)
K Carrying capacity (set to 1000)
Ct Catch from the fishery at tinte
_ Ct B, x Eq 3
Cer1 = B_t(—a " BO/Z) Biiq
Where
a Indicates what fraction of &y economic equilibrium occurs (set to 0.5)
B, Equilibriumbiomassn the absence of fishing
x Adjusts the fraction of last year’s catch applied based on the relationshiprexftc

biomass to the biomass at economic equilibrium (set to 0.2)

Randoniforests. linking stock characteristics to predictability

The predictability of fisheries as a coupled humatural system (measured as MARE for
predictions based on Eq. 1¢c) may vary among stocks based on life history chacsctdrisie
species, or foother reasons. We therefore conduct a-postanalysis of predictability based on
biological and fishery characteristics. To do so, we‘taedom forest which is an efficient
statistical method for estimating nonlinear responses and interactionsy amany potential
predictors(Brieman, 2001).Random forestboast high classification accuracy, can model-non
linear relationships between predictor and response variables, can model complex interactions

among predictor variableand provide a method for determining variable importaGeelé¢r et
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al., 2007. Random forestsvere an appropriate choice for analysis here because functional
forms and interactions for the variables tested here were not obviousjasdhe analysis
balanced. When compared to other methods, such as generalized linear raodeis, forests
are able to reveal more complicated relationshpsgth and Fabricius, 20pORandom forests

wereimplemented here using the R package “randomForBetinhan et al2013.

Data for“classification

Maximum weight, maximum length, maximum age, and habitat type were drawn fsbBaBe
(Froese and Pauly, 201geferences 388 were used to fill gaps in FishBase) and large marine
ecosystem; managing body, phylogenetic order, average F, minimum observed spawning
biomass, anddength of time series were drawn or calculated from the RAM Legacy Database
(Ricard et al. 2012to betested as explanatory variables for predictability of changes in F and
SB (Table_1) The Spearman’srosscorrelation (1904)between spawning biomass and
recruitment(where the zero lag correlation represent the influence of spawning biomass on
recruitmentwand the largest correlation of the negatively lagged correlations represents the
influence of recruitment on spawning biomass), the average length of recruitmersegid

the coeffieient of variation in recruitment were taken from Szuwalski 2@l15).

Variables important for determining the predictability of stocks were itkhtising a stepwise
method similar to Genuer et a2Q10. Random forestaerefit to the data using all identified
predictor variables (table 1) and the variance explained (a ‘pséudas calculated asthean

square error=divided by the variancetbé& response variable. The predictor with the lowest
importance score was dropped and random fomgste fit to the data again. The resulting
trajectory of percent variance explained can be used to indicate which variables are important. A
vector of rmadom numbers was also included as a predictor in eaxom foresto aid in the
identification_of important variables. Variables that performed more poorly than the random

number veetors were hoonsidered for inclusion in the final model.

Results
Smulation and defining expected fishery dynamics
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Consistent patterns arose in the estimated relationships between F and SB when GAMs were fit
to data simulated from surplus production and effigriamics models (Eq-2) regardless of the
number of data qints included. These consistent pattarform the basis for the ‘expected
dynamics’ against which the RAM Legacy data will be compdfed example,he influence of

F on changes.in SBvhich tracks the impact of fishing on the population) shows an sever
relationship (i.e. & F increases, SB decreases for the simulated datsdeldines; Figire 1).
Consequently,"we defideexpected dynamics for this model class as only negative monotonic
relationships ifthis expectation is violated (i.ao influence of F on SBhen thisimpliesthat
fisheries Imanagement cannot affect SB by changingwkich would render fisheries

managementsineffective

The influence ‘of SB on changes in SB reflects derggpyendent effects manifested in the
endogenouslynamics of the population. The relationship between changes in SB and SB was
negative and_monotonic famost simulated data setsl¢t anddash line; Figre 1). The
mechanismsbehind this relationsiipn stemfrom different sorts of density dependeresg

direct canibalism orcompetition forresources Depensation at low stock sizes could also
result in“awconcave relationship, but there is little evidence for depensati@hed fmarine
stocks (Liemann, et al., 2001). Still, for the purposeshi$ analysis, expected relationships are
defined as negative monotonicayncave relationships between changes in SB and SB.

The influepee ef SB on the change in F indicates how managers (or fishers) change F based on
the perceivedssize of the stock. The chande decreased as SB decreased in the simulated data
sets (lotted line; Figure 1). This is conceptually intuitive because, even in the absence of
management, as SB decreases the profitability of the fishenyilddecrease with a decreasing
CPUE. If mmanagement is active, its primary job is to decrease F when SB decreases past a
certain point.. However, hyperstability in the CPUE resulting from schooling behasipallow

F to remainthigh as SB decreasesopen acess situations and some management strategies
eschew biomastased metrics for constant fishing mortality rates. For this analysis, the
‘expected’ dynamic between changes in F and SB is one in which F decreases at low SB sizes

because it is most consistewith management goaBnd operaccess-however the size at
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which this decrease occurs can be different betwaeagulated effortlynamics and active

fisheries management

The influence of F on the change in F indicates the way in which managers (or fishers)Fchange
in response.to. a perceived level of exploitation. For the simulated data sets, this relationship is
either flat or_convex with respect to SBaghedline; Figure 1). However, any relationship
between F*and changes in F could be plausible, depending on the history of &sding
managementConsequently, we have placed no expectations on this relationship in this analysis

(i.e. all forms of the relationship can be ‘expected’).

The results” of this simulation exercise show that the GAMs can be used to estimate the
relationship between SB and F, given the underlying dynamics of the system follow ttose th
are most often assumed by fisheries managers. Predictions of changes in SB and F were nearly
perfect for.the longest simulated time serié8 years; RMSE <0.001 for both) using otie
‘traditionalsdynamics’ modelsfrom above (i.e. those in which the number of knots was construed

to be 3 or fewer). This exercise also produced a baseline for ‘expected dynawersagi

‘traditionalmanag@mer paradigm.

Application to global fisheries

For each stockhe functiongy() andh() that describe the population and effort dynamics were
estimated sfromthe data with varying degrees of explanatory power. The predictabflity
changes inuFand SBbased on these fitted modalaried significantly acrosslarge marine
ecosysteml(ME), recruitmentvariability, maximum weight of the species fished &hne ratio of
minimum and maximum observed SB, as indicated by the applied random {eesstable 1
for a description of tested variable$redictability of changesin SB also varied across
maximum_length of the species fisheudhile predictability ofchanges irF also variedamong
habitat typesln general, changes in SB were more predictablet¢hanges in Fout there was a
larger variety,in predictability of FO(17 vs. 0.73 MARE; compare top rows of figuje Zhe
average F over the history of the fishery also infludrtbe predictability of changes in SB to
some extent and the influence of recruitment on SB influenced the predictabilityngiesha F
(figure 3).

This article is protected by copyright. All rights reserved



258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

11

Observed fishery dynamiasten did not match thelassicalassumptions ofishery dynamics.
Sixty-two percent of stockdisplayed one ofhreepatterns in fishery dynamic82% displayd

all expected dynami¢c21% showed density dependence, but SB did not decrease as F increased,
and 19% shewed density dependence, but F dithogaseas SB increasedin total, dynamics
consistent with/densitgependence appeargd73% of stocks andSB decreased as F increased

for 54% of“stocks.The proportion of stocks that displayed all expected dynawecged
significantlyaccording toLME, the influence ofrecruitment on spawning biomass (as seen
through the maost significant lagged cross correlatiealiability in recruitment and average F
(figure 4). Predictability did not markedly improve when moving from models with 3 knots to 5
knots (figure 5).

Case studies

Predictabilitywas ofterrelatively highwhen a fishery respoed as expected to changes in F and
SB (and heneedentifying and manging toward a target level of SBnd Fwas possible)
Sablefish(Anoplopolma fimbria, Anoplopmatidae)n the eastern Bering S¢mesentéd a good
example-of.expectefishery dynamics (figure 65B beganrelatively highwhile F waslow, SB
decreasg.as F increask thenF decreastas SB decling further, after whiclSB subsequently
reboundedThe resultingspiral inF vs. SB phasspacewas centered around the management
target for the stockHanselman et al. 201.3Survey and CPUE data do not start until 1979, so
the early parthof the time series’ of F and 88 not have informative data drivirthem.
However, they'could be removed and the same spiral (though a truncated version ofiifyevoul
seen in Flvs. SB phase space. This spiral is what produces the ‘predictability’ of the system with
classical modelsErrorsin predictions of changdn SBwere 4% on average for the last 5 years
of data (88" _percentile out of all stockskerros in predicted B were 6% on average (47

percentile)

Predictionwas very difficult for some stocks, particularly shdited species with variable
recruitment Pacific herring Clupea pallasii, Clupeidae)in the Gulf of Alaskawas a good
example of a stock with poor predictability'{percentile and SLpercentile for predictability in
SB and F, respectively)A relatively long history of exploitatiowascaptured in the assessment
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for herring and large swings in abundance and fishing pressene observedduring which
much of the F vs SB phase spacas explored {igure 6. However, the responses in a given
area of the phase spawerenot consistentiirough the history of the fishery, whitctanslate to

poor predictive performance.

Some stocks werished to low levels and never reboeddeven when fishing pressuveas
relaxed(a™oneway trip”). Ten percent of stocks in the analysis showedwag trips, but
determiningfshifts in population dynamics or overfishiegused the collapsesoften difficult
Walleye pollock (Theragra chalcogramma, Gadidae figure 6) aroundthe Aleutian Islands
exhibits asopeway trip’ hailed by some ate “most spectacular fishercollapse in North
American histery’andwas attributed to overfishing (Bailey, 2011 owever,changes in F for
pollock were asiexpected (i.e. F decreases whernnw@Blow), SB did not respond as expected
(i.e. increase when #waslow). Although changes in F were as expected, the timing of these
changes was not immediat¢here were several years during which SB was low, but F was still

high, whichrsuggests a lagged management response.

Countermtuitive responses to fishingere common. For example, changes in F for skipjack
tuna Katsuwonus pelamis, Scombridae)in the Pacific Ocean produced very little change in
SB—spawningbiomassactuallyincreased with increases in(figure 6) This could be a result

of relatively light fishing pressur@nd changes in the environment, but European plaice
(Pleuronectes platessa, Pleuronectidaepn the CeltieBiscay Shelf experienced relatively high
and steadysksand shedsimilaly counterintuitive patterns—SB changd independently of F
(figure 6) Responses like these run counter to the assumptions of most management strategies
and corroborate, evidencthat population dynamickr many exploited species amgfluenced
more stronghby, the factors other tha®B over the range of observed stock sig@suwalski et

al. 2015. Plots/for all fisheries included in the analyaisd supplementary referencesn be
found in thessupplementary materials.

Discussion
Quantified gradients of predictability
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Gradients of predictability imply gradients in both manageability and the appeopretaution

to be taken when calculating sustainable catclidss may beparticularly importantor stocks

that have little management or are poorly understood, particularly attempting tomana@

under theraditionalparadigm of fishery dynamicsQuantifyingand placindgishery dynamics in

a global contextlas we have done hergjill allow for more appropriate incorporation of
uncertainty.in the study and management of exploited populafibesPrecautionary Approach

(i.e. when“estimates of spawning biomass are uncertain, err on the side of conserving the stock;
FAO 1996)is often invoked to address some of the uncertainty in estimates of SB and F due to
model misspecification and process error, but there is no standardigedfwetermining an
appropriate amount of precaution (although forecasting error may sometiraessbé&il proxy;
Ralston et'al, 2011). Our finding suggessdpredictable stocks should be evaluated with greater
caution than morpredictable stocks, given that SB or F is more likely to change unexpectedly

for unpredictable stocks.

Climate changeand increased variabilityhas the potential to drastically influence the
predictability ‘of stocks. Fisheries managenmsin sources of information when managing stocks
are time series of catch, indices of abundance, and samples of the age and sizeodisfrdoati
which thesproductivity and response of a population to exploitation can sometimes helinfer
However, if stock productivity is influenced by factors other than SB and largeoemeéntal
changes occur, past observations of catch and estinfatdsimdance will be less informative
about expected future productivity (Szuwalski and Hollowed, 2016). Changing trophic
interactionssaver time may have similar influences on the predictabilityv@&ski et al., 2016).
Under all the myriad influence,neway trips (and the opposite circumstance in which
productivity increases; e.g. Arrowtooth flounder in the Gulf of Alaska, Figure S6) may ecom

more prevalent.as the oceanitvironment continues to change (Doney et al., 2012).

Drivers of predictability

In general,"ariablesidentified by this analysis @mportantfor predicting changes in SB and F
make intuitive sense. Longer maximum lengths and higher maximum wéighith both are
related toolder maximum agesbuffer against large inteannual changes i8B and therefore
improve predictability of changes in SB. Higher CVs of recruitment can maketmg F and
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SB more difficult, particularlyf recruitment comprises a relatively large fraction of exploitable
biomass. The influence of habitat on predictability of changes in F may stendifferantial
selectivity of gear types used in different habitats and differences in management (dbesider
targeting ability, of ademersaltrawl fishery anda pelagic purse seine fishery). LME was
important for.both changes in F and SB, perhaps due to differences in fisheries management
environmental/ forcing by geographic area. Higher minimum obser88d improved
predictability“in’ F and SB, perhaps because relatively SB is correlated with increased
variability “in“recruitment and hence $gredictable biomass dynami¢Minto et al. 2008

Stoclks with all ‘expected fishery dynamics were more likely to have lower minimum observed

SB, higher,CVs,around recruitment and a higher average F. These are all factors that predispose

a stock to explore the F vs SB phase space more thoroughly.

Implications for model suitability

We show classical’ production models do not effectively predict the dynamics aiga la
fraction ofsglobal fisheries, but mariigherieshave sufficient data to perform assessments that
incorporate aged-length samplinglata, tagging data, or other infiaaition Additional biological
information,may improve predictability for changes in SB in many cases and the stock
assessments from which the estimated time series of F and SB were drawn would likely predict
changes in SB better than the presented modets. example, ageomposition information will
inform estimates of past recruitment and providi®rmation regardingsomatic growth in a
given year(Ong et al., 2015; however, incorporation of additional biological data does not
always decrease uncertinn management quantities, Kell et al. 2Q18)milarly, information
regarding| fishery characteristics (profitability, management changes, nominal effort) may
increase predictability for F5gethi et al, 2010; Menychuk, et al., 2D13levertheless, our results
provide a_loweibound on predictability and can be used to identify relatively unpredictable
stocks, whichcould then be managed with greater precautiemrthermore, the concept
encapsulated by our analysis (e.g. testingptieglictability of a given modeling framework for

both simulated and real data) should occupy a central point of any management effort.

Upwards of 80% of worldwide fisheries are unassessed and minimally managedeeest iat
high inimproving assessmeand management fénese fisheriegThorson et al., 2012; Costello
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381 et al.,, 2012 However, datdor assessment are ofteew. Methods that only require catch time

382 seriesare being exploretb assess and manage fishefiglartell and Froese, 2012acCall,

383 2009, but the debateoncerning theinformation content of catch time serieis' ongoing

384  (Hilborn and Branch, 2013 vs. Pauly, 2D13Catch only methodsan be justified iffisheries

385 dynamicsmatch the assumed dynamics of the prevailing fishgraggadigm Thorson et al.,

386  2013),yet this_matchs only apparent ir22% of assessed fisheries in our analysis. This suggests
387 that, although'theris a subset of stocks for which catohly methods might bpossible catch is

388  often not areliablendicator of biomass in the larger scale fisheries examined here (this may not
389  be the case for'small scale and subsistence fisheries)

390

391  Implicationsfor‘management strategies

392  Simulation frameworks (e.g. management strategy evaly®imith et al, 1999are often used

393 to test harvest strategies under a variety of assumed population and effort dyméoaiever,

394  simulation\testing requires speculation about what scenarios are plausibldyo(Qi&epenter,

395 2002; Rochetwand Rice, 200Regionspecific metaanalysis may provide improved baselines
396 for simulatingsscenarios, but our study shows that unpredictable fishery dynaenmera the

397 rule than‘the exception, and hence rapid changésomSBindependent of the current levelfof

398 or SB should be explored. Similarly, environmental and/or regime shift scenarios for biomas
399 dynamics are common in the populations analyzed &edemanagement strategies should be
400 explored that are robust to these changeg. Szuwalski and Punt, 2013 For many of the

401  unassessed“stocks globally, collection of data required for assessment can b