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Abstract: 1 

Fisheries dynamics can be thought of as the reciprocal relationship between an exploited 2 

population and the fishers and/or managers determining the exploitation patterns. Sustainable 3 

production of protein of these coupled human-natural systems requires an understanding of their 4 

dynamics.  Here, we characterized the fishery dynamics for 173 fisheries from around the globe 5 

by applying general additive models to estimated fishing mortality and spawning biomass from 6 

the RAM Legacy Database. GAMs specified to mimic production models and more flexible 7 

GAMs were applied. We show observed dynamics do not always match assumptions made in 8 

management using ‘classical’ fisheries models and the suitability of these assumptions varies 9 

significantly according to large marine ecosystem, habitat, variability in recruitment, maximum 10 

weight of a species, and minimum observed stock biomass.  These results identify circumstances 11 

in which simple models may be useful for management. However, adding flexibility to classical 12 

models often did not substantially improve performance, which suggests in many cases 13 

considering only biomass and removals will not be sufficient to model fishery dynamics. 14 

Knowledge of the suitability of common assumptions in management should be used in selecting 15 

modeling frameworks, setting management targets, testing management strategies, and 16 

developing tools to manage data-limited fisheries.  Effectively balancing expectations of future 17 

protein production from capture fisheries and risk of undesirable outcomes (e.g. ‘fisheries 18 

collapse’) depends on understanding how well we can expect to predict future dynamics of a 19 

fishery using current management paradigms. 20 

 21 

Key words: coupled human-natural systems, effort dynamics, population dynamics, production 22 

models, stock assessment  23 
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 42 

Introduction 43 

Approximately twenty percent of worldwide dietary protein is derived from the sea (FAO, 2016).  44 

Global population is projected to increase to over 9 billion by 2050 (from a current population of 45 

~7 billion; UN-DESA, 2015), but production from capture fisheries stabilized at 85-95 million 46 

metric tonnes (mmt) in the 2000s (FAO, 2016). Fisheries managers are often tasked with 47 

ensuring the fish and invertebrate populations that support these fisheries remain productive and 48 

attempt to do so by modeling the dynamics of exploited populations to determine sustainable 49 

catches.  Models of fishery dynamics often assume the number of individual fish entering a 50 

population is related to spawning biomass (SB) and that decreases in spawning biomass occur 51 

due to natural mortality and fishing mortality (F).  Most management strategies for fisheries are 52 

predicated on the assumption that management can manipulate fishing pressure to achieve 53 

changes in a fished population. However, shifts in population dynamics over time (Szuwalski et 54 

al. 2015) can influence the response of a population to fishing and these responses likely vary by 55 

region and species (Neubauer et al., 2013; Thorson et al. 2012).  Effectively balancing 56 

expectations of future protein production and risk of undesirable outcomes (e.g. ‘ fisheries 57 

collapse’) requires an ability to understand and predict the dynamics of a fishery. 58 

 59 

‘Fisheries dynamics’ are defined here as the manner in which F and SB change at different levels 60 

of F and SB.  Changes in F can be seen as the response of management or fishers to changes in 61 

the population and the perceived level of exploitation; changes in SB can be seen as the response 62 
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of the population to exploitation, density-dependence (i.e. the existence of a ‘carrying capacity’), 63 

and/or environmental forcing.  Fisheries managers make assumptions about the way SB and F 64 

change when developing strategies for management. For example, SB is expected to decrease on 65 

average when F increases, and F might be assumed to decrease when SB is low due decreases in 66 

the profitability of fishing (Thorson et al., 2014) or management action.  The validity of these 67 

assumptions and the predictability of fishery dynamics can influence the performance of a given 68 

management strategy, but these assumptions are not often checked. 69 

 70 

Here we characterize the fishery dynamics for 173 stocks from the RAM Legacy Stock 71 

Assessment Database (Ricard et al, 2012) by fitting generalized additive models to estimates of 72 

SB and F.  Using these fitted models, we ask, “If today’s SB and F are known, can changes in SB 73 

and F next year be predicted based on the past responses of the fishery?” We then link stock 74 

characteristics to a measure of predictability and identify stocks with expected fishery dynamics 75 

given common assumptions of density-dependence, stationary dynamics, active management, 76 

and/or cost-based constraints on fishing effort. Finally, we discuss implications for management 77 

and potential strategies for coping with different levels of predictability and unexpected fishery 78 

dynamics. 79 

 80 

Materials and methods 81 

Time series’ of SB and F from the RAM Legacy Stock Assessment Database were used based on 83 

the criteria that the recruitment estimates for the years extracted must not come directly from a 84 

stock-recruit curve (i.e. predictions of F and SB derived deterministically from assumed structure 85 

of stock assessment models were not used) and at least 18 contiguous years of F and SB were 86 

available.  The RAM Database is the most up-to-date compilation of stock assessments for 87 

stocks fished worldwide. Exploring relationships between potentially dependent, model-derived 88 

quantities can be fraught with statistical pitfalls (Thorson et al., 2015).  However, these are the 89 

best available estimates of F and SB and fisheries management is routinely conducted using 90 

these estimates as accurate representations of reality. Therefore, assumptions made about 91 

fisheries dynamics by managers should be consistent with the dynamics compiled in this 92 

database.  In total, 173 stocks were included in the analysis and time series’ of SB were rescaled 93 

Global fisheries data 82 
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from 0 to 1 before analysis to improve comparability.  Rescaling was not done for F because 94 

fishing mortality already represents a rate that is approximately comparable among stocks 95 

(differences in selectivity will impact the comparability of Fs (Cordue 2011), but selectivities 96 

were not reported in the RAM database). 97 

 98 

Dynamics of the SB and F of a population can be characterized as: 100 

Population dynamics, GAMs, and predictability 99 

1 1, , ( , ) (0, )t t t t t tB F B F f B F N+ + = + + Σ  Eq 1a 

where Bt and Bt+1 are SB in years t and t+1, Ft and Ft+1 are fishing mortality in years t and t+1, 101 

f(Bt,Ft) represents the coupled natural and human dynamics of SB and F, and N(0,Σ) is a 102 

multivariate normal “process error” arising from our model f(Bt,Ft

1 1, , ( , ) (0, )t t t t t tB F B F f B F N+ + − = + Σ

) failing to include all relevant 103 

processes.  We seek to estimate f(), and take the first difference of F and SB: 104 

 Eq 1b 

Given the assumption that Σ is diagonal, we can decompose these dynamics into two 105 

independent equations: 106 

2
1 ( , ) (0, )t t t t BB B g B F N σ+ − = +  

2
1 ( , ) (0, )t t t t FF F h B F N σ+ − = +  

 

Eq 1c 

where g() represents “population dynamics” and h() represents “effort dynamics” (Thorson et al., 107 

2013).  Both g and h can be estimated using non-parametric models given the assumption that Ft 108 

and Bt

 117 

 are known without error.  We used two strategies to fit the fishery dynamics data (Eq. 1c) 109 

here.  First, we estimated g() and h() using generalized additive models (GAMs), but restricted 110 

the number of knots allowed for each to a maximum of 3.  Three knots allowed for quadratic 111 

models to be fit, which represents the prevailing dynamics assumed by most fisheries models (i.e. 112 

the dynamics between SB and F can be described by at most a dome-shaped curve). Second, we 113 

again estimated g() and h() using GAMs, but the number of knots was increased to 5. Five was 114 

chosen to offer more flexibility in estimation, but also increased the potential for overfitting with 115 

some of the shorter time series.  116 
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Predictability of changes in F and SB for both methods was evaluated by excluding the last year 118 

of data, fitting the GAMs, predicting the excluded year using the fitted models and calculating 119 

the absolute relative error of the observed vs. the prediction.  This process was repeated for each 120 

of the last five years of data and the mean absolute relative error over those five years (MARE) is 121 

used here to represent the predictability of changes in F and SB. Excluding the last year from the 122 

analysis and predicting the change mimics the management process in which SB is estimated one 123 

year out and a target F is set. MARE was recorded for the ‘traditional’ dynamics models (i.e. 124 

restricted to quadratic relationships between F and SB) and the ‘flexible’ dynamics model (i.e. 125 

the model in which the number of knots allowed was increased). 126 

 127 

Each of the fitted relationships between SB and F represent a different ‘process effect’ in the 129 

human-natural coupled system of a fishery. Models fit to changes in F describe the way in which 130 

fishers and fisheries managers perceive and interact with a stock, while models fit to changes in 131 

SB describe how the stock responds to exploitation as well as density-dependent and 132 

environmental changes.   133 

Fishery dynamics and expectations 128 

 134 

Before applying the GAMs described above to the observed data, they were fit ted to data drawn 135 

from simulated populations to understand 1) what fishery dynamics are ‘expected’ given a 136 

common model of fishery dynamics used in fisheries management (e.g. Beverton and Holt, 1957) 137 

and 2) how well the GAMs could be expected to reflect the underlying dynamics of a system.  A 138 

production model (equation 2) undergoing an exploitation history in which ‘effort dynamics’ 139 

(equation 3; Thorson et al., 2013) determine fishing mortality was used to simulate data.  The 140 

effort dynamics model defines a point at which economic equilibrium is reached (i.e. profits = 141 

costs) and posits an unregulated fishery will converge upon this point.  The dynamics of a system 142 

driven by effort dynamics (i.e. a spiral in F vs. SB phase space converging on a target over time) 143 

are very similar to those observed in a system managed to a reference point like BMSY. Once a 144 

stock target is specified in management (e.g. BMSY), managers endeavor to maintain the stock at 145 

that point. However, due to errors in the management process (e.g. implementation, process, or 146 

observation), the realized fishing mortality rarely equals the target. Consistent course correction 147 

through management action would therefore be expected to produce a spiral path through F vs. 148 
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SB space, and, consequently, the effort dynamics model is also appropriate to apply to managed 149 

stocks (i.e. all those in this analysis). Models (Eq. 1c) were fit to the changes in F and SB from 150 

data sets simulated for different numbers of observed years and beginning observation of the 151 

fishery at different time in the exploitation. 152 

 153 ��+1 = �� + ��� �1− ���� − �� 
 

Eq 2 

Where: 154 �� Biomass at time t 

r Intrinsic rate of population growth (set to 0.2) 

K Carrying capacity (set to 1000) �� Catch from the fishery at time t 

 155 ��+1 = ���� ( ��� ∗ �0/2)���+1 
 

Eq 3 

Where: 156 � Indicates what fraction of BMSY�0  economic equilibrium occurs (set to 0.5) 

Equilibrium biomass in the absence of fishing � Adjusts the fraction of last year’s catch applied based on the relationship of current 

biomass to the biomass at economic equilibrium (set to 0.2) 

 157 

The predictability of fisheries as a coupled human-natural system (measured as MARE for 159 

predictions based on Eq. 1c) may vary among stocks based on life history characteristics of the 160 

species, or for other reasons.  We therefore conduct a post-hoc analysis of predictability based on 161 

biological and fishery characteristics.  To do so, we use ‘ random forest’ , which is an efficient 162 

statistical method for estimating nonlinear responses and interactions among many potential 163 

predictors (Brieman, 2001).  Random forests boast high classification accuracy, can model non-164 

linear relationships between predictor and response variables, can model complex interactions 165 

among predictor variables, and provide a method for determining variable importance (Cutler et 166 

Random forests: linking stock characteristics to predictability 158 
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al., 2007).  Random forests were an appropriate choice for analysis here because functional 167 

forms and interactions for the variables tested here were not obvious, nor was the analysis 168 

balanced.  When compared to other methods, such as generalized linear models, random forests 169 

are able to reveal more complicated relationships (De’ath and Fabricius, 2000). Random forests 170 

were implemented here using the R package “randomForest” (Breiman et al. 2013). 171 

 172 

Data for classification 173 

Maximum weight, maximum length, maximum age, and habitat type were drawn from FishBase 174 

(Froese and Pauly, 2015; references 39-68 were used to fill gaps in FishBase) and large marine 175 

ecosystem, managing body, phylogenetic order, average F, minimum observed spawning 176 

biomass, and length of time series were drawn or calculated from the RAM Legacy Database 177 

(Ricard et al. 2012) to be tested as explanatory variables for predictability of changes in F and 178 

SB (Table 1). The Spearman’s cross-correlation (1904) between spawning biomass and 179 

recruitment (where the zero lag correlation represent the influence of spawning biomass on 180 

recruitment and the largest correlation of the negatively lagged correlations represents the 181 

influence of recruitment on spawning biomass), the average length of recruitment regimes, and 182 

the coefficient of variation in recruitment were taken from Szuwalski et al. (2015).  183 

 184 

Variables important for determining the predictability of stocks were identified using a stepwise 185 

method similar to Genuer et al. (2010).  Random forests were fit to the data using all identified 186 

predictor variables (table 1) and the variance explained (a ‘pseudo-r2

 194 

) was calculated as 1-mean 187 

square error divided by the variance of the response variable.  The predictor with the lowest 188 

importance score was dropped and random forests were fit to the data again.  The resulting 189 

trajectory of percent variance explained can be used to indicate which variables are important. A 190 

vector of random numbers was also included as a predictor in each random forest to aid in the 191 

identification of important variables. Variables that performed more poorly than the random 192 

number vectors were not considered for inclusion in the final model. 193 

Results 195 

Simulation and defining expected fishery dynamics 196 
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Consistent patterns arose in the estimated relationships between F and SB when GAMs were fit 197 

to data simulated from surplus production and effort-dynamics models (Eq. 2-3) regardless of the 198 

number of data points included.  These consistent patterns form the basis for the ‘expected 199 

dynamics’ against which the RAM Legacy data will be compared. For example, the influence of 200 

F on changes in SB (which tracks the impact of fishing on the population) shows an inverse 201 

relationship (i.e. as F increases, SB decreases for the simulated data sets; solid lines; Figure 1).  202 

Consequently, we defined expected dynamics for this model class as only negative monotonic 203 

relationships.  If this expectation is violated (i.e., no influence of F on SB) then this implies that 204 

fisheries management cannot affect SB by changing F, which would render fisheries 205 

management ineffective. 206 

 207 

The influence of SB on changes in SB reflects density-dependent effects manifested in the 208 

endogenous dynamics of the population.  The relationship between changes in SB and SB was 209 

negative and monotonic for most simulated data sets (dot and dash line; Figure. 1).  The 210 

mechanism behind this relationship can stem from different sorts of density dependence (e.g. 211 

direct cannibalism or competition for resources).  Depensation at low stock sizes could also 212 

result in a concave relationship, but there is little evidence for depensation in fished marine 213 

stocks (Liermann, et al., 2001).  Still, for the purposes of this analysis, expected relationships are 214 

defined as negative monotonic or concave relationships between changes in SB and SB. 215 

  216 

The influence of SB on the change in F indicates how managers (or fishers) change F based on 217 

the perceived size of the stock.  The change in F decreased as SB decreased in the simulated data 218 

sets (dotted line; Figure 1).  This is conceptually intuitive because, even in the absence of 219 

management, as SB decreases the profitability of the fishery should decrease with a decreasing 220 

CPUE.  If management is active, its primary job is to decrease F when SB decreases past a 221 

certain point. However, hyperstability in the CPUE resulting from schooling behavior may allow 222 

F to remain high as SB decreases in open access situations and some management strategies 223 

eschew biomass-based metrics for constant fishing mortality rates.  For this analysis, the 224 

‘expected’ dynamic between changes in F and SB is one in which F decreases at low SB sizes 225 

because it is most consistent with management goals and open-access—however the size at 226 
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which this decrease occurs can be different between unregulated effort-dynamics and active 227 

fisheries management. 228 

 229 

The influence of F on the change in F indicates the way in which managers (or fishers) change F 230 

in response to a perceived level of exploitation.  For the simulated data sets, this relationship is 231 

either flat or convex with respect to SB (dashed line; Figure 1). However, any relationship 232 

between F and changes in F could be plausible, depending on the history of fishing and 233 

management.  Consequently, we have placed no expectations on this relationship in this analysis 234 

(i.e. all forms of the relationship can be ‘expected’). 235 

 236 

The results of this simulation exercise show that the GAMs can be used to estimate the 237 

relationship between SB and F, given the underlying dynamics of the system follow those that 238 

are most often assumed by fisheries managers. Predictions of changes in SB and F were nearly 239 

perfect for the longest simulated time series (60 years; RMSE <0.001 for both) using only the 240 

‘traditional dynamics’ models from above (i.e. those in which the number of knots was construed 241 

to be 3 or fewer). This exercise also produced a baseline for ‘expected dynamics’ given a 242 

‘traditional’ management paradigm. 243 

 244 

Application to global fisheries 245 

For each stock, the functions g() and h() that describe the population and effort dynamics were 246 

estimated from the data with varying degrees of explanatory power.  The predictability of 247 

changes in F and SB based on these fitted models varied significantly across large marine 248 

ecosystem (LME), recruitment variability, maximum weight of the species fished and the ratio of 249 

minimum and maximum observed SB, as indicated by the applied random forests (see Table 1 250 

for a description of tested variables). Predictability of changes in SB also varied across 251 

maximum length of the species fished, while predictability of changes in F also varied among 252 

habitat types. In general, changes in SB were more predictable than changes in F, but there was a 253 

larger variety in predictability of F (0.17 vs. 0.73 MARE; compare top rows of figure 2).  The 254 

average F over the history of the fishery also influenced the predictability of changes in SB to 255 

some extent and the influence of recruitment on SB influenced the predictability of changes in F 256 

(figure 3).  257 
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 258 

Observed fishery dynamics often did not match the classical assumptions of fishery dynamics.  259 

Sixty-two percent of stocks displayed one of three patterns in fishery dynamics: 22% displayed 260 

all expected dynamics, 21% showed density dependence, but SB did not decrease as F increased, 261 

and 19% showed density dependence, but F did not increase as SB increased. In total, dynamics 262 

consistent with density-dependence appeared in 73% of stocks, and SB decreased as F increased 263 

for 54% of stocks. The proportion of stocks that displayed all expected dynamics varied 264 

significantly according to LME, the influence of recruitment on spawning biomass (as seen 265 

through the most significant lagged cross correlation), variability in recruitment, and average F 266 

(figure 4).  Predictability did not markedly improve when moving from models with 3 knots to 5 267 

knots (figure 5). 268 

 269 

Case studies 270 

Predictability was often relatively high when a fishery responded as expected to changes in F and 271 

SB (and hence identifying and managing toward a target level of SB and F was possible). 272 

Sablefish (Anoplopolma fimbria, Anoplopmatidae) in the eastern Bering Sea presented a good 273 

example of expected fishery dynamics (figure 6). SB began relatively high while F was low, SB 274 

decreased as F increased, then F decreased as SB declined further, after which SB subsequently 275 

rebounded. The resulting spiral in F vs. SB phase space was centered around the management 276 

target for the stock (Hanselman et al. 2013). Survey and CPUE data do not start until 1979, so 277 

the early part of the time series’ of F and SB do not have informative data driving them. 278 

However, they could be removed and the same spiral (though a truncated version of it) would be 279 

seen in F vs. SB phase space. This spiral is what produces the ‘predictability’ of the system with 280 

classical models. Errors in predictions of changes in SB were 4% on average for the last 5 years 281 

of data (88th percentile out of all stocks); errors in predicted Fs were 6% on average (97th

 284 

 282 

percentile). 283 

Prediction was very difficult for some stocks, particularly short-lived species with variable 285 

recruitment. Pacific herring (Clupea pallasii, Clupeidae) in the Gulf of Alaska, was a good 286 

example of a stock with poor predictability (2nd percentile and 1st percentile for predictability in 287 

SB and F, respectively).  A relatively long history of exploitation was captured in the assessment 288 
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for herring and large swings in abundance and fishing pressure were observed, during which 289 

much of the F vs SB phase space was explored (figure 6).  However, the responses in a given 290 

area of the phase space were not consistent through the history of the fishery, which translated to 291 

poor predictive performance.    292 

 293 

Some stocks were fished to low levels and never rebounded, even when fishing pressure was 294 

relaxed (a “one-way trip”).  Ten percent of stocks in the analysis showed one-way trips, but 295 

determining if  shifts in population dynamics or overfishing caused the collapses is often difficult. 296 

Walleye pollock (Theragra chalcogramma, Gadidae; figure 6) around the Aleutian Islands 297 

exhibits a ‘one-way trip’ hailed by some as the “most spectacular fishery collapse in North 298 

American history” and was attributed to overfishing (Bailey, 2011). However, changes in F for 299 

pollock were as expected (i.e. F decreases when SB was low), SB did not respond as expected 300 

(i.e. increase when F was low).  Although changes in F were as expected, the timing of these 301 

changes was not immediate—there were several years during which SB was low, but F was still 302 

high, which suggests a lagged management response. 303 

 304 

Counter-intuitive responses to fishing were common.  For example, changes in F for skipjack 305 

tuna (Katsuwonus pelamis, Scombridae) in the Pacific Ocean produced very little change in 306 

SB—spawning biomass actually increased with increases in F (figure 6).  This could be a result 307 

of relatively light fishing pressure and changes in the environment, but European plaice 308 

(Pleuronectes platessa, Pleuronectidae) on the Celtic-Biscay Shelf experienced relatively high 309 

and steady F and showed similarly counter-intuitive patterns—SB changed independently of F 310 

(figure 6).  Responses like these run counter to the assumptions of most management strategies 311 

and corroborate evidence that population dynamics for many exploited species are influenced 312 

more strongly by the factors other than SB over the range of observed stock sizes (Szuwalski et 313 

al. 2015). Plots for all fisheries included in the analysis and supplementary references can be 314 

found in the supplementary materials. 315 

 316 

Discussion 317 

Quantified gradients of predictability 318 
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Gradients of predictability imply gradients in both manageability and the appropriate precaution 319 

to be taken when calculating sustainable catches.  This may be particularly important for stocks 320 

that have little management or are poorly understood, particularly when attempting to manage 321 

under the traditional paradigm of fishery dynamics.  Quantifying and placing fishery dynamics in 322 

a global context (as we have done here) will allow for more appropriate incorporation of 323 

uncertainty in the study and management of exploited populations. The Precautionary Approach 324 

(i.e. when estimates of spawning biomass are uncertain, err on the side of conserving the stock; 325 

FAO 1996) is often invoked to address some of the uncertainty in estimates of SB and F due to 326 

model misspecification and process error, but there is no standardized way of determining an 327 

appropriate amount of precaution (although forecasting error may sometimes be a useful proxy; 328 

Ralston et al, 2011). Our finding suggest less-predictable stocks should be evaluated with greater 329 

caution than more-predictable stocks, given that SB or F is more likely to change unexpectedly 330 

for unpredictable stocks. 331 

  332 

Climate change and increased variability has the potential to drastically influence the 333 

predictability of stocks.  Fisheries managers’ main sources of information when managing stocks 334 

are time series of catch, indices of abundance, and samples of the age and size distribution, from 335 

which the productivity and response of a population to exploitation can sometimes be inferred.  336 

However, if stock productivity is influenced by factors other than SB and large environmental 337 

changes occur, past observations of catch and estimates of abundance will be less informative 338 

about expected future productivity (Szuwalski and Hollowed, 2016).  Changing trophic 339 

interactions over time may have similar influences on the predictability (Szuwalski et al., 2016). 340 

Under all the myriad influence, one-way trips (and the opposite circumstance in which 341 

productivity increases; e.g. Arrowtooth flounder in the Gulf of Alaska, Figure S6) may become 342 

more prevalent as the oceanic environment continues to change (Doney et al., 2012). 343 

 344 

Drivers of predictability 345 

In general, variables identified by this analysis as important for predicting changes in SB and F 346 

make intuitive sense. Longer maximum lengths and higher maximum weights (which both are 347 

related to older maximum ages) buffer against large inter-annual changes in SB and therefore 348 

improve predictability of changes in SB.  Higher CVs of recruitment can make predicting F and 349 
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SB more difficult, particularly if  recruitment comprises a relatively large fraction of exploitable 350 

biomass.  The influence of habitat on predictability of changes in F may stem from differential 351 

selectivity of gear types used in different habitats and differences in management (consider the 352 

targeting ability of a demersal trawl fishery and a pelagic purse seine fishery).  LME was 353 

important for both changes in F and SB, perhaps due to differences in fisheries management or 354 

environmental forcing by geographic area. Higher minimum observed SB improved 355 

predictability in F and SB, perhaps because relatively low SB is correlated with increased 356 

variability in recruitment and hence less-predictable biomass dynamics (Minto et al. 2008).  357 

Stocks with all ‘expected’ fishery dynamics were more likely to have lower minimum observed 358 

SB, higher CVs around recruitment and a higher average F.  These are all factors that predispose 359 

a stock to explore the F vs SB phase space more thoroughly.  360 

 361 

Implications for model suitability 362 

We show ‘classical’ production models do not effectively predict the dynamics of a large 363 

fraction of global fisheries, but many fisheries have sufficient data to perform assessments that 364 

incorporate age-at-length sampling data, tagging data, or other information. Additional biological 365 

information may improve predictability for changes in SB in many cases and the stock 366 

assessments from which the estimated time series of F and SB were drawn would likely predict 367 

changes in SB better than the presented models.   For example, age-composition information will 368 

inform estimates of past recruitment and provide information regarding somatic growth in a 369 

given year (Ono et al., 2015; however, incorporation of additional biological data does not 370 

always decrease uncertainty in management quantities, Kell et al. 2016). Similarly, information 371 

regarding fishery characteristics (profitability, management changes, nominal effort) may 372 

increase predictability for F (Sethi et al, 2010; Menychuk, et al., 2013).  Nevertheless, our results 373 

provide a lower-bound on predictability and can be used to identify relatively unpredictable 374 

stocks, which could then be managed with greater precaution.  Furthermore, the concept 375 

encapsulated by our analysis (e.g. testing the predictability of a given modeling framework for 376 

both simulated and real data) should occupy a central point of any management effort. 377 

 378 

Upwards of 80% of worldwide fisheries are unassessed and minimally managed, and interest is 379 

high in improving assessment and management for these fisheries (Thorson et al., 2012; Costello 380 
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et al., 2012). However, data for assessment are often few.  Methods that only require catch time 381 

series are being explored to assess and manage fisheries (Martell and Froese, 2012; MacCall, 382 

2009), but the debate concerning the information content of catch time series’ is ongoing 383 

(Hilborn and Branch, 2013 vs. Pauly, 2013).  Catch only methods can be justified if fisheries 384 

dynamics match the assumed dynamics of the prevailing fisheries paradigm (Thorson et al., 385 

2013), yet this match is only apparent in 22% of assessed fisheries in our analysis.  This suggests 386 

that, although there is a subset of stocks for which catch-only methods might be possible, catch is 387 

often not a reliable indicator of biomass in the larger scale fisheries examined here (this may not 388 

be the case for small scale and subsistence fisheries).    389 

 390 

Implications for management strategies 391 

Simulation frameworks (e.g. management strategy evaluation, Smith et al, 1999) are often used 392 

to test harvest strategies under a variety of assumed population and effort dynamics. However, 393 

simulation testing requires speculation about what scenarios are plausible or likely (Carpenter, 394 

2002; Rochet and Rice, 2009). Region-specific meta-analysis may provide improved baselines 395 

for simulating scenarios, but our study shows that unpredictable fishery dynamics are more the 396 

rule than the exception, and hence rapid changes in F or SB independent of the current level of F 397 

or SB should be explored.  Similarly, environmental and/or regime shift scenarios for biomass 398 

dynamics are common in the populations analyzed here and management strategies should be 399 

explored that are robust to these changes (e.g. Szuwalski and Punt, 2013).  For many of the 400 

unassessed stocks globally, collection of data required for assessment can be prohibitively 401 

expensive.  Simulation studies are increasingly being suggested for use to identify management 402 

strategies that are robust to a range of fishery dynamics (Bentley and Stokes, 2009; Punt, 2008), 403 

but have been criticized for the lack of variety in the assumed simulation dynamics (Rochet and 404 

Rice, 2009).  We therefore recommend that future simulation studies explore both predictable 405 

dynamics (i.e., density dependent population dynamics combined with endogenous effort 406 

dynamics), unpredictable dynamics (i.e., regime-based population dynamics combined with 407 

rapid shifts in fishing pressure), and non-linear dynamics (as those suggested by Glaser et al., 408 

2015).   409 

 410 
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Successful fisheries management requires an understanding of a population’s response to 411 

exploitation and changes in the environment, if not on a mechanistic level, at least on a 412 

predictive level. Some failures in fisheries management can be traced to incorrect assumptions 413 

about population dynamics (e.g. Walters and Maguire, 1999). Consequently, regular checks that 414 

the dynamics of F and SB (and recruitment dynamics) in a population are operating as assumed 415 

should become a regular part of assessment and management.  The ability of capture fisheries to 416 

continue to support global protein needs depends on our ability to sustainably manage exploited 417 

populations; fisheries managers must more thoroughly examine the way in which they expect a 418 

population to behave to ensure sustainable harvest. 419 
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 535 

 536 

Table 1. Description of variables linked to predictability of changes in F and SB. 537 

Predictor Description 

Maximum length Maximum body length achieved by a species 

Maximum weight Maximum body weight achieved by a species 

Maximum age Maximum age achieved by a species 

Habitat Major habitat occupied by a species (e.g. coral reef, pelagic, demersal) 

LME Large marine ecosystem  

Management Managing body for the stock (e.g. DFO, NMFS, ICCAT) 

Assessment Method of assessment (e.g. VPA, SCAA, Production model) 

Order Phylogenetic order (e.g. Scorpaeniformes) 

Average F Average estimated fishing mortality experienced of the period of 

assessment 

Ratio of minimum and 

maximum observed 

SB 

Minimum estimated spawning biomass over the period of assessment, 

calculated as a fraction of the maximum observed spawning biomass 

Lagged CCF Most significant negatively lagged crosscorrelation between spawning 

biomass and recruitment (indicates the influence of recruitment on SB) 

Recruitment Drivers Drivers of recruitment dynamics as indicated by Szuwalski et al. 2015 

Length Length of the time series for a given stock in this analysis 

Zero CCF Magnitude of the Spearman’s correlation of between spawning biomass 

and recruitment  

Coefficient of 

variation in 

recruitment 

Quantifies the variability in recruitment 

 538 

 539 
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Figure 1. Simulated fishing mortality (F. mort), spawning biomass (Sp.Bio.) from a production 541 

model with effort dynamics determining catch.  The middle row plots the trajectory of the stock 542 

through F and SB phase space; white are the oldest observations, black are the newest.  The 543 

bottom row plots the fitted relationship between changes in F or SB to current F or SB.  Each 544 

column represents a different number of years of simulated data and/or starting observation at 545 

different points in the exploitation history. 546 

 547 

Figure 2.  Variables identified as important in predicting changes in F and SB via random forest. 548 

Changes in F or SB are increasingly predictable (measured in mean absolute relative error 549 

[MARE]) towards the right of the graph.  LMEs for which data for at least 5 stocks were 550 

included in the LME plot. 551 

 552 

Figure 3. Percent variability explained for changes in fishing mortality (F) and spawning biomass 553 

(SB) via random forest as terms are removed from the model. Vertical dashed line in each 554 

represents the random number vector and the variables to the right were retained in the models 555 

presented. 556 

 557 

Figure 4. Frequency of combinations of fishery dynamics and probability of all expected 558 

dynamics.  Below the histogram of observed dynamics (top), the probability of observing all 559 

expected dynamics (i.e. active management and stationary, density-dependent population 560 

dynamics) given 4 variables identified as important by random forests (lagged CCF indicates the 561 

most significant negatively lagged cross correlation).  Shaded areas represent 95% confidence 562 

intervals. 563 

 564 

Figure 5. Changes in root mean square error (RMSE) when moving from estimating the 565 

dynamics of SB and F using GAMs with 3 knots to 5 knots.  A decrease in RMSE indicates 566 

improved predictive ability. 567 

 568 

Figure 6. Example stocks on the spectrum of predictability.  Estimated fishing mortality (F mort), 569 

spawning biomass (Sp.Bio.) and recruits are in the top row.  The middle row plots the trajectory 570 

of the stock through F and SB phase space; white are the oldest observations, black are the 571 
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newest.  The bottom row plots the fitted relationship between changes in F or SB to current F or 572 

SB.  573 
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