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Spatial capture–recapture (SCR) methods have become widely applied in ecology. The 
immediate adoption of SCR is due to the fact that it resolves some major criticisms 
of traditional capture–recapture methods related to heterogeneity in detectabililty, 
and the emergence of new technologies (e.g. camera traps, non-invasive genetics) 
that have vastly improved our ability to collection spatially explicit observation data 
on individuals. However, the utility of SCR methods reaches far beyond simply 
convenience and data availability. SCR presents a formal statistical framework that can 
be used to test explicit hypotheses about core elements of population and landscape 
ecology, and has profound implications for how we study animal populations. In 
this software note, we describe the technical basis and analytical workflow of oSCR, 
an R package for analyzing spatial encounter history data using a multi-session sex-
structured likelihood. The impetus for developing oSCR was to create an accessible 
and transparent analysis tool that allows users to conveniently and intuitively formulate 
statistical models that map directly to fundamental processes of interest in spatial 
population ecology (e.g. space use, resource selection, density and connectivity). We 
have placed an emphasis on creating a transparent and accessible code base that is 
coupled with a logical workflow that we hope stimulates active participation in further 
technical developments.
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Background

Spatial capture–recapture (SCR) was originally developed as an extension of traditional 
(i.e. non-spatial) mark–recapture to accommodate live trapping of animals (Efford 
2004) but is now acknowledged as a profound advancement in spatial statistical mod-
eling of animal populations (Borchers et al. 2016, Royle et al. 2018). SCR represents 
a unifying framework for investigating many aspects of spatial population ecology 
using data collected by the repeated encountering or capturing of individual animals 
(i.e. encounter histories) across space. With over a decade of development and applica-
tion, ecologists have used SCR to examine a variety of topics including landscape and 
network connectivity, demography, resource selection and movement and dispersal 
(reviewed by Royle et al. 2018).
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As with other hierarchical models in ecology (Royle and 
Dorazio 2008), the formal linkage between ecological pro-
cesses and observational processes in an SCR model has 
allowed for better inferences on the former and more robust 
accommodation of the latter. In particular, SCR consid-
ers the collection of individuals in a population as a latent 
spatial point process of activity centers represented by coor-
dinates distributed within some region of interest. A prob-
ability model for the activity centers can be used to estimate 
variation in density across space as it relates to environmental 
attributes or summarized to provide the density/abundance 
for a given area and time frame. Conditional on the latent 
point process, the probability of observing or encountering 
an individual at a sampling device is a function of the dis-
tance between the individual’s activity center and the location 
of the sampling device. This distance function approximates 
the average scale of individual movement about an activ-
ity center and is often associated with home range features 
(Royle  et  al. 2014). By adding spatial context to the eco-
logical and observational processes, SCR overcomes several 
deficiencies of traditional mark–recapture related to defining 
the sampling region and it expands the scope of potential 
inferences about both individual and population level attri-
butes. Any survey methods that produce spatial encounters 
of individuals can provide the necessary data for fitting SCR 
models and exploring ecological hypotheses about the spatial 
structure of animal populations.

The rapid adoption of SCR has been supported by new 
technologies that ease the collection of spatial encounter 
information and by analytical resources that make model 
fitting for such data more accessible to a wider audience. 
Non-invasive sampling techniques where individuals can be 
encountered and identities determined without physical cap-
ture allow researchers to efficiently sample large landscapes, 
particularly useful for wide-ranging species (Long 2008). 
The most common techniques are camera trapping, in which 
remote cameras provide individual encounters for species 
with unique natural markings; and non-invasive genetic sam-
pling (NGS), where genetic material collected through active 
(e.g. hair snare) or passive (e.g. scat) methods yields DNA for 
identification of individuals for any species. The collection 
of marks, whether by photograph or genotype, can occur at 
fixed locations in space or by search–encounter approaches 
where observers use systematic spatial surveys and record 
unique locations of individual encounters. This flexibility in 
data collection enables the application of SCR methods to 
population estimation for a wide range of species.

Regardless of the technique used to collect spatial encoun-
ter histories, many variations of an SCR model can be fit in 
freely available software programs across a spectrum of user 
proficiency and potential for customization. Programs like 
DENSITY (Efford et al. 2004) and its R package descendent 
secr (Efford 2019) are designed to allow both novice and 
advanced users to fit a wide collection of SCR models using 
maximum likelihood estimation, though custom specifica-
tions are not possible. Intermediate users can write custom 
SCR likelihood specifications with the BUGS language 

(Lunn  et  al. 2009) to estimate parameters with a Bayesian 
approach by Markov chain Monte Carlo (MCMC), as first 
illustrated in Royle and Young (2008). A major advantage of 
the BUGS approach is the ease with which users can develop 
their own code (Kéry 2010) or adapt code already published 
(Royle et  al. 2014). A disadvantage is that complex BUGS 
models can be notoriously slow, limiting the ability to eas-
ily explore multiple model structures or accommodate com-
plex spatio–temporal dynamics. It is noteworthy, however, 
that these challenges have been addressed somewhat with the 
recent development of NIMBLE (de Valpine  et  al. 2017). 
Advanced users can freely construct custom code to address 
specific modeling problems, though high specificity can result 
in limited utility beyond the original purpose (and, thus, low 
adoption/application by other users). The tremendous benefit 
of open source software is that some initial efforts at general-
ity can provide a framework upon which additional optional 
complexity can be built by interested collaborators, facilitated 
by community-shared development platforms (e.g. GitHub). 
With this notion in mind, we present the oSCR package for 
fitting SCR models in R.

We started developing the oSCR project in 2014 to 
achieve two key objectives: First, we wanted a platform for 
fitting basic SCR models that accommodated non-Euclidean 
distance models in the form of least-cost path (Royle et al. 
2013b, Sutherland  et  al. 2014) and handled full sex-
specificity using a full likelihood approach in which fully 
or partially observed sex data are included in the likelihood 
(Royle et al. 2015, Fuller et al. 2016). Second, we required 
a fully open and accessible implementation of the package 
so that a user moderately proficient in computing and sta-
tistics could understand, verify, and extend its capabilities 
and ensure timely development to meet rapidly developing 
analytical needs. Thus, oSCR is implemented completely in 
native R, meaning that anyone proficient in R can contrib-
ute to the project. From a conceptual standpoint, we aimed 
to provide a platform for using individual encounter history 
data to address the three core elements of spatial population 
ecology (Royle et al. 2018): 1) modeling spatial variation in 
density using inhomogeneous Poisson point process models 
(Borchers and Efford 2008); 2) modeling landscape con-
nectivity using a model which allows for effective distance 
to be parameterized in terms of landscape structure, with 
the parameters of that ‘cost-distance’ model estimated from 
observed data; and 3) integration of explicit resource selec-
tion models and telemetry data into spatial capture–recapture 
models (Royle et al. 2015, Linden et al. 2018). These con-
cepts define the core functionality of oSCR. In this note, we 
describe the technical basis and analytical workflow of oSCR 
(Table 1, 2).

Methods and features

The modeling framework implemented in the oSCR 
package is that of a multi-session sex-structured spa-
tial capture–recapture (MSSS-SCR) model. The two key 
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features of the construction of the MSSS-SCR likelihood 
are (a) it accommodates sex structure in the form of a 
categorical individual covariate (Royle  et  al. 2015) and 
an additional parameter which is the population prob-
ability that an individual belongs to the baseline group 
(e.g. ‘female’), and (b) it accommodates discrete groups 
or sessions where Ng is the population size of group g (e.g. 
Nfemale). We feel that these two features, along with the 
additional essential elements of the SCR model, address a 
large majority of applications. However, we also note that 
encounter data does not have to be stratified by indepen-
dent sessions, nor is it essential that information about sex 

is available. Rather, we developed the multi-session sex-
structured architecture because it offers a very flexible and 
general likelihood structure.

The basic SCR model and likelihood

SCR models assume that a population of N individuals 
each have an associated spatial location which represents the 
home range or activity center of the individual, represented 
by the geographic coordinates si = (sX,i, sY,i). The collection 
of such activity centers s1, s2, …, sN is regarded as a realiza-
tion of a statistical spatial point process (Illian et al. 2008).  

Table 1. A description of a typical oSCR workflow, including the relevant oSCR functions. A full documented version of the workflow is 
provided as a Supplementary vignette Appendix 1.

Workflow step Process In oSCR

Set up Read in TDF and EDF objects. The EDF and TDF files should be read into R. This is not an 
oSCR process.

–

Formatting Process and link EDF and TDF files to create the main oSCR data object, an scrFrame. data2oscr()
Plotting an scrFrame produces visualisations of the individual encounters and detector 

locations.
plot()

Create a state space object with the desired characteristics (i.e. resolution and buffer). make.ssDF()
Plotting an ssDF produces a visualisation of the state space and, if an scrFrame is 

supplied, trap locations.
plot()

Model fitting Use standard R formula notation to specify, and fit, models for density, baseline detection, 
and sigma.

oSCR.fit()

Model selection Create an oSCR-specific list of fitted objects that can be manipulated to produce standard 
AIC-based model ranking and summaries.

fitList.oSCR()

Produce a ranked model table and model × parameter coefficient matrix. modSel.oSCR()
Prediction Produce predicted values from a fitted density, detection or sigma model. Predictions and 

95% confidence intervals are on the ‘real’ scale.
get.real()

Table 2. A description of the various models fitted, and data structures needed, in oSCR. The model formulation and data structures follow 
the model description provided in Royle et al. (2018).

Par Formulation Description and data structures

p0 g p Xk k k( ) =0 0α α+ ∑ Baseline encounter model (p ~ X). This model describes the probability (g = logit) or rate (g = log) 
of detection at distance = 0 and can vary by sex, session, and both constant or time-varying 
trap-level covariates. Detections are stored as Encounter Data Files (EDF) documenting 
individual, session, trap, and occasion ID, and if sex if recorded. Trap information such as 
coordinates and covariates are stored as session-specific Trap Deployment Files (TDF). 
data2oscr() links the EDF and TDFs by trap location to generate the scrFrame.

σ log( ) = 0σ γ γ+ ∑k k kX Spatial decay model (sig ~ X). This model represents an explicit source of heterogeneity related 
to the distance between individual activity centers and traps. The parameter can vary by sex, 
session, or as a function of session-specific covariates added to the sigCovs (a session-by-
covariate data frame) in the scrFrame.

d(s) log d s Xk k k( ) = 0( ) + ∑β β Spatial point process model (D ~ X). The default homogeneous point process model assumes 
density in each pixel of the state space (ssDF, see Table 1) is the same. Spatially 
heterogeneous density surfaces can be modelled using an inhomogeneous point process 
model that relates variation in density to spatially referenced (pixel-specific) covariates. 
Spatial covariates can be added directly to the ssDF as named columns that can by 
referenced in the model formula in the typical way (e.g. D ~ X for covariate X).

δ cost( , ) =
21

1

υ υ
δ υ δ υ

a a

z a z ae e
+

( ) +( )+
Cost function model (asu ~ X). Estimation of resistance parameters (δ) provides a direct measure 

of the strength of species–landscape interactions allowing flexible (asymmetric and non-
stationary) detection functions that depend on activity center location and the surrounding 
landscape. The cost function model is not restricted to a single landscape covariate and 
follows standard model syntax. To fit these models, a second spatial data frame, the 
costDF, must be provided. The costDF must have the same spatial extent, and at least the 
same resolution (but preferably finer) as the ssDF, and the argument distmet="ecol" 
passed to oSCR.fit(). Covariates of interest are added as named columns in the costDF.
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The simplest point process assumes that the activity centers 
are distributed uniformly in space, denoted by

si ∼ Uniform S( ) 	  

where S  is the state space of the point process (this is the 
area for which density and abundance will be estimated). 
This can be thought of as a prior distribution for possible 
locations of activity centers of individuals that might be cap-
tured by the sampling effort. The point process is perhaps the 
most important element of SCR models as it accommodates 
many elements of spatial population ecology. Moreover, the 
state space of the point process is a critical element of the 
SCR model, as it induces an explicit linkage between density 
and population size as well as an explicit definition of the 
effective area sampled (Royle  et  al. 2018). The uniformity 
assumption corresponds to a type of point process model 
called a homogeneous point process in which the density of 
points is spatially constant. Under this model, estimation is 
of either the total number of points N or the expected value 
E(D) = N/A where D is density and A is the area of the state 
space. One important generalization of this model allows for 
the possibility that density depends on one or more spatially 
referenced covariates. For example, if z(s) is a covariate (e.g. 
habitat structure) at location s, then the inhomogeneous 
point process model posits that

Pr( ) exp ( )s s∝ β1z( ) 	  

where the parameter β1, to be estimated, affects the relative 
density of points along a gradient of z(s).

The spatial point process describes the spatial structure 
of the population to be sampled. With the introduction of 
this point process, the capture–recapture framework can be 
extended directly to include a model for the probability of 
detection of an individual. The probability of detection at 
trap xj for j = 1, 2, …, J can be described as a function of 
Euclidean distance between the individual’s activity center, 
s, and x. A common formulation for describing this condi-
tional-on-s detection probability is the half-normal encoun-
ter probability model:

p p( , ) exp /x s x s= − − ( )( )0
2 22σ 	  

This model introduces two key parameters in the SCR model: 
the baseline encounter probability p0, which is the probability 
that an individual with activity center s is detected at loca-
tion x = s, and the parameter σ, which controls the rate of 
decrease in detection probability as a function of the distance 
between x and s. Intuitively, σ relates to the extent of space 
used by an individual of the species under study. Many 
functional forms of the detection probability model are pos-
sible (Efford 2018), and they may involve different param-
eters that have slightly different meanings than p0 and σ of 

the half-normal model, but these details are minor aspects 
of the SCR modeling framework. oSCR implements two 
detection functions – the half-normal model and the two-
parameter hazard model where σ is, again, the spatial scale 
parameter but p0 is the detection rate, as well as variations of 
these that involve non-Euclidean distance. Others could be 
easily added by the user if required.

Maximum likelihood estimation in SCR models is based 
on the marginal likelihood in which we remove the latent 
variable s from the conditional-on-s likelihood by averaging 
(or marginalizing) over the possible values of s. Therefore, 
we first identify the conditional-on-s likelihood. The model 
for encounter observation yijk for individual i, at trap j, on 
occasion k, conditional on si, is

y pijk i i| ( , ; )s x s∼ θBern( ) 	  (1)

where we have indicated the dependence of encounter 
probability, p, on s and parameters θ = (p0, σ) explicitly. The 
joint distribution of the data for individual i is the product of 
J × K such terms (i.e. contributions from each of J traps and 
K occasions):

y s x si i
k

K

j

J

j ip| , = , ;
=1 =1

θ θ[ ] ( )( )∏∏Bern 	  

We note this assumes that encounter of individual i in each 
trap is independent of encounters in every other trap, con-
ditional on si. This is the fundamental property of models 
implemented in oSCR. The marginal likelihood is computed 
by removing si by integration from the conditional-on-s 
likelihood, so we compute the marginal probability mass 
function (pmf) for each encounter history yi:

y y s s si i d| = | ,θ θ[ ] [ ][ ]∫S 	  

In the default SCR model, we assume the activity centers s are 
uniformly distributed throughout the state space, which is to 
say: s[ ] ( )= 1/ A S  where A S( )  is the area of the prescribed 
state space S . But, in general, oSCR accommodates spatial 
variation in density as noted below. In oSCR we compute this 
marginal likelihood by evaluating the integrand on a regular 
grid of points of equal area and computing the average of the 
integrand over that grid of points. This grid of points defines 
the state space object (see Methods and features) which must 
be specified by the user. Let u = 1, 2, …, G index a grid of  
G points, su, where the area of grid cells is constant. In this 
case, the marginal pmf of yi, is approximated by

y y si
u

G

i uG
| =

1
| ,

=1

θ θ[ ] [ ]∑ 	  (2)

The joint likelihood for the data from n observed individuals, 
assuming independence of encounters among and between 
individuals, is the product of n such terms and, in addition, 
a contribution of the n0 = N − n uncaptured individuals. 
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Obviously each of these all-zero encounter histories will have 
the same marginal pmf contribution in the likelihood given 
above, and we denote that marginal probability by π0. The 
only question is, how many? We therefore include the num-
ber of such all-zero encounter histories (that is, the number 
of individuals not encountered) as an unknown parameter of 
the model. With n0 unknown, we have to be sure to include 
a combinatorial term to account for the fact that, of the n 

observed individuals, there are 
N
n







 ways to realize a sample 

of size n. Therefore, the joint likelihood has this form:

L θ θ π, | =
!

! !
| .0

0 =1
0
0n

N
n n i

n

i
ny y( ) [ ]








∏ 	  (3)

This is discussed in Borchers and Efford (2008) as the con-
ditional-on-N form of the likelihood, and referred to by 
Royle et al. (2013a) as the ‘binomial-form’ due to its origin 
as arising from an assumption that n is a binomial outcome 
from a population of size N (and also it is ‘binomial looking’).

The binomial-form of the likelihood just described can be 
analyzed directly in oSCR (option DorN == "N") and, in 
this case, log(n0) is estimated along with parameters p0 and 
σ and other covariates of the models as described in Table 2. 
Important variations of this model accommodated in oSCR 
modify the binomial observation model to allow for multiple 
detections during an occasion – a Poisson observation model 
(encmod = "P"), and a multinomial or multi-catch obser-
vation model (encmod = "M"). For these observation 
models, there are no additional considerations in building the 
likelihood, only in replacing the Bernoulli observation model 
with an appropriate alternative.

Poisson-integrated likelihood

For likelihood analysis it is convenient to remove N from the 
likelihood by putting a Poisson prior distribution on it. That 
is, we assume N D A∼ Poisson × ( )( )S  where A S( )  is the 
area of the state space and D is the density of activity centers. 
Under this prior, we can remove N from the binomial-form 
of the likelihood, again by summation over the possible val-
ues of N. We call this the Poisson-integrated likelihood which 
is implemented in oSCR (as the default with option DorN 
= "D") and also is the default likelihood form in secr 
(Efford 2018). To compute the Poisson-integrated likelihood 
we do a further level of marginalization over the Poisson prior 
distribution:

n i
i

n
NN

n n N
0=0 0

0
0!

! !
|

( )
!

∞

∑ ∏[ ]







−y α π exp Λ Λ
	  

where Λ = × ( )D A S . Carrying out the summation produces:

L α α π, | = | (1 )0Λ Λ Λy y( ) [ ]







− −( )∏
i

i
n exp 	  (4)

We emphasize there are two marginalizations involved in the 
formation of this likelihood: 1) the integration to remove 
the latent variables s; and, 2) summation to remove the 
parameter N.

A more general expression for the Poisson-integrated 
likelihood recognizes that the Poisson assumption for N 
implies that, on a discrete state space, the number of activ-
ity centers in a state-space pixel, N(s), is also Poisson with 
mean D(s)A(s) where A(s) is the area of the state-space pixel 
having center coordinate s and D(s) is the pixel density. 
This is the property of compound additivity which defines a 
Poisson point process and allows for specifying explicit mod-
els for the distribution of individuals across homogeneous or 
heterogeneous landscapes. In particular, if we suppose that 
D(s) depends on measurable covariates at the scale of the 
state-space resolution (i.e. pixel size), e.g.

log D z( ) = ( )0 1s s( ) +β β 	  

then the conditional intensity function for the n observed 
activity centers can be expressed as:

Pr( ) =
( )
( )

s s
s

D
Du u∑

	  

Then, the marginalization operation of each observed 
encounter history is

y y s si
u

G

i u u| , = | , ( | )
=1

θ β θ β[ ] [ ]∑ Pr 	  (5)

and Λ = × ( )D A S  is replaced with D Au uu

G
( ) ( )

1
s s

=∑   
in Eq. 4.

These considerations of formulating the binomial-form 
of the likelihood and then translating it to the Poisson-
integrated form define a general class of SCR models which 
can accommodate Bernoulli, Poisson or multinomial encoun-
ters and allow for the modeling of covariates on the various 
elemental parameters p0, σ and D(s). The scope of these 
models is described in Table 2. We now define two additional 
important structural elements that define the core likelihood 
structure implemented in oSCR.

Class or sex-structured likelihood

In most studies we record some information about the sex of 
individuals which might be used in developing sex-structured 
models in which one or more parameters depend on sex. 
Moreover, it is common in practice to have some missing val-
ues of sex due to DNA samples not amplifying, poor photo 
quality, or other considerations. To build models with sex 
specificity of parameters, we require a different form of the 
likelihood which accommodates observed sex data; such data 
are informative about the sex ratio of the population and, 
hence, relative densities of males and females (Royle  et  al. 
2015). This new form of the likelihood is used by default 
if sex information is included in the core oSCR data object, 
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the scrFrame, and thus, all models fit using the same data 
object have comparable likelihoods, and AIC-based model 
comparisons can be used. The form of sex-structured model 
described here is implemented in the oSCR package.

In general, let there be n1 captured individuals with 
sex data, n2 captured individuals with missing values, and 
n0 = N − n1 − n2 undetected individuals. Let ci indicate the sex 
of individual i, having possible values c ∈ (0, 1) with prob-
abilities (1 − ψ, ψ). The likelihood for individual encounter 
histories which have missing sex requires one additional level 
of marginalization. In addition to removing s from the con-
ditional likelihood we now have to remove the missing sex 
variable from the conditional-on-sex likelihood to compute 
[yi|θ, ci] by averaging the two sex-specific components:

y y yi i i i ic c| = | , = 0 (1 ) | , =1θ θ ψ θ ψ[ ] [ ] − + [ ] 	  

There are n2 such contributions to the likelihood. In addi-
tion, each of the individuals with observed sex contribute a 
component of this form: yi i

ci cic| , (1 )1θ ψ ψ[ ] − − . Therefore, 
the binomial-form of the likelihood when sex information is 
available for at least some individuals has the form:

L p n
N

n n
c

i

n

i i
ci ci, , | =

!
! !

| =1, (1 )0
0 =1

1
1ψ θ ψ ψy y( ) [ ] −












∏ −

ii

n

i
n

=1

2

0
0[ | ]∏












y θ π

	  

where n = n1 + n2 and π0 is the marginal probability of the 
‘all-zero’ encounter history, averaged over all possible groups. 
Remember, for the SCR model, the elemental part of the 
likelihood is the marginal likelihood of an individual’s 
encounter history, averaged over possible values of s. For 
encounter histories which have missing sex data, we then 
have to do an additional marginalization over possible values 
of the sex variable producing the [yi|θ] term above.

Multi-session structure

A common situation in many studies is to collect data on dis-
tinct more-or-less independent populations. For example, a 
camera trapping study might take place in multiple reserves or 
use multiple camera trap grids spaced far apart. Or sampling 
for amphibians using artificial cover objects (ACOs) involves 
replicated ACO arrays in different habitats (Sutherland et al. 
2016, Schmidt  et  al. 2017). Replication might occur over 
time as well – sampling in different seasons or years. It is 
important to be able to combine the data from such repli-
cated studies into a single statistical model in order to increase 
in statistical power, and also to test effects which might rep-
resent important contrasts among the sampled populations. 
In practice, these populations are called ‘sessions’, groups, or 
strata and the model which integrates the data from different 
sessions is referred to as a multi-session model. The Poisson-
integrated likelihood previously introduced applies directly 

to this multi-session structure. Let Ng be the population size 
for group g, then the multi-session model assumes:

N g g∼ λPoisson( ) 	  

where the Ng are mutually independent random variables. 
The basic likelihood described above can then be computed 
by independently marginalizing over this prior distribution 
for Ng for the data from each group to obtain the marginal 
likelihood as a function of λg. This affords enormous flex-
ibility in modeling because sessions can be spatial, temporal, 
indexed by other factors (e.g. species, age class), or combina-
tions of multiple stratification variables. Moreover, explicit 
models can be formulated for λg. For example, suppose the 
stratification variable represents a unique trapping grid in a 
small mammal study (Converse et al. 2009):

log( ) = 0 1 2λ β β βg g g+ +Trt Habitat 	  

and then the data from all groups are simultaneously used 
to estimate parameters of the SCR detection model and the 
information among groups is used to estimate the parameters 
describing variation in λg.

A key assumption of the multi-session model is indepen-
dence of the observed encounter histories among groups and 
also independence of the population size random variables 
Ng. One implication of this is that it precludes individuals 
from appearing in multiple groups, which might happen if 
the trapping arrays are close together or if the groups repre-
sent the same population sampled over time. The effect of 
ignoring this non-independence should not produce bias in 
parameter estimates, but will likely lead to an over-statement 
of precision. Simulations would be required to understand 
the magnitude by which precision is overstated. In addi-
tion, the independence assumption is probably invalid if 
some of the group structure represents sub-groups within 
populations. For example, male and female sub-populations 
of multiple groups, or age classes, or species sub-groups. 
In such cases, we might expect population size of these 
sub-groups to covary.

Advanced models and features

Ecological distance model

Using a least cost path approach, SCR allows the estima-
tion of one or more resistance parameters, δ, that quantify 
how movement is influenced by local landscape structure. 
The model replaces Euclidean distance with ‘ecological’ dis-
tance (Royle et al. 2013b) and therefore relaxes the restrictive 
assumptions of symmetrical and stationary space use regard-
less of the surrounding habitat (Sutherland et al. 2014, 2018, 
Fuller et al. 2016). Estimating parameters of the cost func-
tion requires specification of a fourth model in the oSCR 
model call, and a second state–space-like spatially referenced 
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data frame, a costDF, that has the coordinates of the pixel 
centroids and associated pixel specific covariates (Table 2, 
code supplement in Sutherland et al. 2018).

Telemetry/RSF model

The integration of telemetry data can allow for improved 
parameter estimation by informing the σ parameter and/
or supporting a resource selection function (RSF) as part of 
the encounter model (Royle et al. 2013a, Tenan et al. 2017, 
Linden et  al. 2018). Under the assumption that individual 
encounters at traps are a ‘thinned’ version of telemetry fixes 
(and that telemetered individuals are representative of the 
population targeted by trapping), certain parameters can be 
shared in the likelihoods for each data source. The original 
model formulation by Royle et al. (2013a) involved indepen-
dent data, such that telemetered individuals did not appear 
in the spatial encounter histories generated by the trap 
sampling. Linden et al. (2018) described the marginal likeli-
hood for situations where telemetered individuals were also 
encountered at traps, allowing each data source to be infor-
mative about the latent activity centers for relevant individu-
als. oSCR allows both independent and dependent telemetry 
data and various options for the degree of telemetry integra-
tion. In all cases, fixes need to be summarized as pixel counts 
within the state space (with functions provided to achieve 
this) and RSF integration requires an additional data frame, 
rsfDF, similar to the costDF, with a resolution match-
ing the state space (Table 2, code available in Linden et al. 
2018). We note that, currently, oSCR cannot model serial 
correlation in telemetry fixes and assumes that fix locations 
are independent across time.

Describing the oSCR workflow

Here we outline a typical oSCR analysis and pair the workflow 
with an example using redbacked salamander (RBS) data 
(Sutherland  et  al. 2016). A complete annotated workflow 
is provided in the Supplementary vignette Appendix 1, and 
here we highlight the data objects and functions required to 
conduct an SCR analysis in oSCR (Table 1).

Every spatial capture–recapture study gives rise to at least 
two data structures around which we have built the data 
processing step of the oSCR workflow. The first data object 
is a ‘Trap Deployment File’ (TDF) containing, at minimum, 
the name and coordinates of each trap or detector. In addi-
tion, the TDF can contain trap-by-occasion binary operation 
data (1 = operational, 0 = not operational), and, if available, 
trap-specific covariates that may or may not vary by occa-
sion. If all detectors are operational in all occasions, there is 
no need to supply trap operation data. Trap characteristics 
(name, location and operation data) and covariates are sepa-
rated by a column of ‘\’‘s’. Because the number of occasions 
can vary between sessions, it is natural to have separate TDFs 
for each session which is required for oSCR.

The second data source is the ‘Encounter Data File’ (EDF) 
which contains the individual encounter history data. This 
has, at a minimum, columns containing the unique individ-
ual identifier, the name of the trap in which it was detected, 
the occasion during which the encounter occurred, and a 
numeric session identifier. If the sex of the species can be 
determined, this information can also be included as an addi-
tional column which may include missing values. Unlike the 
TDF, and because there is a session identifier, encounter data 
from all sessions are included in a single EDF. The names of 
the traps in the EDF must match the names in the associated 
TDFs. The sex column should contain only 'M' for males, 
'F' for females, and an unknown identifier (we use 'U') 
for unknowns.

Once these objects have been read into R, the oSCR work-
flow begins with the creation of an scrFrame, a data object 
that links the EDF and TDFs, checks for errors, and formats 
the data for analysis. The scrFrame is created using the 
helper function data2oscr() and contains the following 
data objects:

•• caphist – session-specific list of individual-by-trap-by-
occasion encounter history arrays. Array can be binary or 
contain capture frequencies

•• traps – session-specific list of trap coordinates
•• trapCovs – session-specific list of trap-by-covariate 

data frames containing trap specific covariate values
•• trapOperation – session-specific trap-by-occasion 

binary matrix denoting whether traps were operational
•• indCovs – session-specific list of individual covariates. 

These data frames contain the sex of the individual if sex 
information is provided

•• sigCovs – session-by-covariate data frame of covariates

Typing the scrFrame object name produces summaries 
of the trapping effort and detections by session (number of 
individuals: n individuals, traps: n traps, and occa-
sions: n occasions), and of the capture histories (average 
number of times an individual is encounters: avg caps, 
average number of spatial locations individuals are encoun-
tered at: avg spatial caps, the mean maximum dis-
tance moved: mmdm, and the mmdm pooled across sessions). 
The spatial encounter history data can also be summarized 
graphically using plot(scrFrame) (Fig. 1).

A key, but often under-appreciated, part of an SCR analy-
sis is the definition of the state space (S ). In oSCR, a list 
containing a state space for each session is required. We make 
the state space definition an explicit part of the workflow 
via the function make.ssDF(). The function requires an 
scrFrame (which contains the session-specific trap coor-
dinates), a value specifying the buffering distance around 
the traps, and a resolution value that determines the spac-
ing of the state–space centroids. The units of the buffer and 
resolution should be in the same units as the traps, which 
themselves should be in Cartesian coordinates (e.g. utm, not 
lat long). From experience, a general rule of thumb is a buf-
fer distance of 3–4× the estimated σ from the half normal 



1466

encounter model, and a resolution of 0.5 × σ (see also Efford 
2018). The state space can also be summarized graphically 
using plot() (Fig. 2). Of course, σ is not known a priori, 
so it is recommended that a range of buffer and resolution 
values are tested to confirm that parameter estimates are 
insensitive to the choice of values.

The RBS study system is a set of four independent arti-
ficial cover board arrays set in a small woodland in Ithaca, 
New York. Each array consists of 50 small (25 × 25 cm) cover 
boards (detectors) arranged in a 5 × 10 m rectangle with each 
board separated by 1 m (Fig. 1, 2, Snippet 1). Because each 
array is independent we define each as an independent ‘ses-
sion’ (session 1–4). Arrays were visited 7, 5, 6 and 4 times, 
respectively, from September to November in 2014 (Snippet 
1). During each visit (or occasion), every board was checked, 
and unmarked salamanders were given unique individual 
marks by injecting visual implant elastomer (Grant 2008). 
Individual spatial encounter histories were generated from 
the collection of the location, occasion, and identity of every 

individual detected. See Sutherland  et  al. (2016) for a full 
description.

With the scrFrame and the ssDF created, we can 
move to model fitting (step 2, Table 1). The main fitting 
function in oSCR is oSCR.fit(). The fitting function 
requires, at minimum, an scrFrame, an ssDF, and a 
model list that specifies the model structure in standard R 
model formula syntax for each of the three model compo-
nents (Table 1). The list contains, in this order, a model 
formula for density (D~), baseline detection (p~), and the 
spatial scale of detection (sig~). An example of three RBS 
models is shown in Snippet 2. The base model has constant 
density and space use, and, based on what we know about 
RBS activity patterns, a detection model with a quadratic 
effect of day of year and a behavioural response. The full 
model has session-specific density, session- and sex-specific 
space use, and, in addition to a quadratic effect and behav-
ioural response, detection varying by session and sex. For 
the remainder of this example, we use the model with the 

Figure 1. Visualization of the spatially explicit individual encounter histories for the four session salamander SCR data. Each filled circle 
represents the spatial average of all detections of an individual and lines join average locations to the traps in which individuals were cap-
tured. Each unique color (circle and lines) is a unique individual. Crosses (+) are trap locations, and circles without lines are individuals that 
were detected at only a single location.
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lowest AIC as the top model (Supplementary vignette 
Appendix 1).

The function oSCR.fit() has many other arguments 
that can be used to control the nature of the model fitting 
routine including, but not limited to: a choice of binomial 
(encmod="B"), Poisson (encmod="P") or multinomial 
(encmod="M") encounter models (Royle et al. 2014); asym-
metric space use models (Royle et al. 2013b, Sutherland et al. 
2014); resource selection functions (Royle et al. 2013a); inte-
gration of telemetry data (Tenan et  al. 2017, Linden et  al. 
2018); and ‘local-to-capture’ likelihood evaluation 
(Milleret et al. 2018).

It is common in observational studies in ecology to develop 
and compare multiple competing models, typically using 
AIC. This is possible in oSCR in what we call the ‘model 
selection‘ stage of the workflow. In order to formally com-
pare models, a list of fitted models must be created using the 
function fitList.oSCR(). Ranked AIC model tables can 
be produced by passing the fitList.oSCR object to the 
modSel.oSCR() function. The model selection function 
returns three objects of interest: a model table ranked by AIC 
(lowest first), a model × parameter matrix of maximum likeli-
hood estimates, and a model × parameter matrix of standard 
errors. While the model table is perhaps of most interest, the 
coefficient and standard error matrices are useful for model 
averaging. Currently there is no helper function for generat-
ing model averaged predictions, model averaged coefficients 
can be computed using ma.coef().

Finally, making predictions from specific models can be 
done using get.real(), a function that is similar to the 
predict() functions used on unmarked or glm model 
objects. The function takes the model object, an argument 
identifying which model component to predict from, e.g. 
density (type = ‘dens’), detection (type = ‘det’), 
or sigma (type = ‘sig’), and a newdata object that 
is a data frame used for making predictions. The newdata 
object should contain columns for all covariates in the model 
component, including a sex column if sex is included in the 
scrFrame. Figure 3 shows the predicted relationships for 
detection (top), density (middle row), and space use (bottom 
row) based on the ‘top’ RBS model (Supplementary vignette 
Appendix 1).

oSCR’s place in the software landscape

In this software note, we have outlined the main features 
and functionality of the R package oSCR. We emphasize the 
accessible and intuitive nature of the code base and work-
flow and hope this stimulates active participation in further 
technical developments. We do, however, note that oSCR 
represents one of several options for analyzing various classes 
of spatial capture–recapture models, each offering unique 
capabilities. For example: secr, a comprehensive general 
purpose package for fitting SCR models (Efford 2019); 
ascr, a package for analyzing spatial encounters generated 
from acoustic data (Stevenson 2018); openpopscr, a 
package for fitting open population SCR models by maxi-
mum likelihood (Glennie et al. 2019); and its Bayesian ana-
logue OPenPopSCR (Augustine 2019). We have attempted, 
as much as possible, to maintain consistency in data 
formatting and terminology with the suite of available soft-
ware options to avoid confusion, and importantly, to ensure 
complementarity.
oSCR therefore represents an accessible and intuitive 

framework, and accompanying workflow, for analyzing spa-
tial encounter history data that places a specific focus the 
inherent structure that exists both within populations (e.g. 
sex, or any other binary class) and between populations that 

Figure 2. Visualization of the prescribed state spaces for the the four 
salamander sites. Blue squares are the locations of the artificial cover 
objects (ACOs) and grey points are the pixel centroids which are the 
discrete representation of sampling area. Here, ACOs are 1 m apart, 
the state space resolution is 0.5 m, and the buffer is 4 m.

Snippet 1. Summary statistics for the RBS scrFrame.
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Snippet 2. Calls to oSCR.fit() for three competing RBS models.

Figure 3. Predicted relationship between the probability of first detection and a quadratic effect of relative day of the year (top), session- and 
sex-specific density, and session- and sex-specific sigma.
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have some level of spatial or temporal independence (e.g. 
session). Importantly, oSCR is set up naturally to quan-
tify the importance of such structure while simultaneously 
estimating density, detection and space use.
oSCR is free and open source, available on GitHub 

(<https://github.com/jaroyle/oSCR>). To cite oSCR or 
acknowledge its use, cite this software note including the 
appropriate version number:
Sutherland, C., Royle, J. A. and Linden, D. W. 2019. ‘oSCR’.  

– Ecography 42: 1459–1469 (ver. X.X).
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