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Comparing predictions of fisheries bycatch using multiple
spatiotemporal species distribution model frameworks
Brian C. Stock, Eric J. Ward, Tomoharu Eguchi, Jason E. Jannot, James T. Thorson, Blake E. Feist,
and Brice X. Semmens

Abstract: Spatiotemporal predictions of bycatch (i.e., catch of nontargeted species) have shown promise as dynamic ocean
management tools for reducing bycatch. However, which spatiotemporal model framework to use for generating these predic-
tions is unclear. We evaluated a relatively new method, Gaussian Markov random fields (GMRFs), with two other frameworks,
generalized additive models (GAMs) and random forests. We fit geostatistical delta-models to fisheries observer bycatch data for
six species with a broad range of movement patterns (e.g., highly migratory sea turtles versus sedentary rockfish) and bycatch
rates (percentage of observations with nonzero catch, 0.3%–96.2%). Random forests had better interpolation performance than
the GMRF and GAM models for all six species, but random forests performance was more sensitive when predicting data at the
edge of the fishery (i.e., spatial extrapolation). Using random forests to identify and remove the 5% highest bycatch risk fishing
events reduced the bycatch-to-target species catch ratio by 34% on average. All models considerably reduced the bycatch-to-target
ratio, demonstrating the clear potential of species distribution models to support spatial fishery management.

Résumé : Les prédictions spatiotemporelles de prises accessoires (c.-à-d. prises d’espèces non visées) sont prometteuses comme
outils de gestion dynamique des océans pour réduire ces prises. Cependant, la nature du cadre de modélisation spatiotemporelle
à utiliser pour produire ces prédictions n’est pas bien établie. Nous avons évalué une méthode relativement nouvelle, les champs
aléatoires de Markov gaussiens (CAMG), et deux autres cadres, les modèles additifs généralisés (MAG) et les forêts aléatoires. Nous
avons calé des modèles delta géostatistiques à des données d’observateurs des pêches sur les prises accessoires représentatives
d’un vaste éventail de motifs de déplacement (p. ex. de tortues de mer très migratrices à des sébastes sédentaires) et de
fréquences de prises accessoires (pourcentages d’observations de prise non nulle de 0,3 % à 96,2 %). Les forêts aléatoires donnent
de meilleures interpolations que les modèles CAMG et MAG pour les six espèces, mais la performance des forêts aléatoires est
plus sensible quand il s’agit de prédire des données à la limite de la pêche (c.-à-d. pour l’extrapolation spatiale). L’utilisation de
forêts aléatoires pour cerner et retirer les 5 % des évènements de pêche qui présentent le risque le plus élevé de prises accessoires
réduit le rapport des prises accessoires et des prises de l’espèce visée de 34 % en moyenne. Tous les modèles réduisent consi-
dérablement ce rapport, ce qui démontre clairement le potentiel des modèles de distribution d’espèces comme outil pour
appuyer la gestion spatiale des pêches. [Traduit par la Rédaction]

Introduction
Bycatch — catch of nontargeted species — occurs in nearly

every commercial and recreational fishery and in many cases is a
serious environmental and economic problem (Alverson et al.
1994; Davies et al. 2009; NMFS 2016). For high-profile protected
species such as loggerhead sea turtles (Caretta caretta), even ex-
tremely low bycatch rates can result in population impacts and
fisheries closures (Howell et al. 2015). Some species sustain highly
valuable targeted fisheries but are considered bycatch in others,
resulting in litigation and economic losses (e.g., Chinook salmon
(Oncorhynchus tshawytscha) bycatch in the Bering Sea pollock (Gadus
chalcogrammus) fishery; Ianelli and Stram 2015). Bycatch of unde-
sired and unprotected species is also concerning because it re-
duces fishing efficiency and threatens ecosystem biodiversity
(Boyce 1996; FAO 1995; Kelleher 2005). Thus, for a variety of rea-

sons, the fishing community is interested in tools to reduce by-
catch.

One of these tools are maps of relative bycatch risk (e.g., prob-
ability or density) produced by species distribution models (SDMs).
SDMs have seen rapid development in the last decade to meet
critical conservation and resource management needs to under-
stand how species distributions change in time and space
(Parmesan and Yohe 2003; Sumaila et al. 2011; Pinsky et al. 2013).
Accordingly, there is now a wide range of SDMs available to ecol-
ogists and fisheries scientists for fitting data on species presence–
absence and abundance (Phillips et al. 2006; Illian et al. 2013; Conn
et al. 2015; Golding and Purse 2016). SDMs have shown promise as
tools for dynamic ocean management, which adapts to changing
biological, oceanographic, or economic conditions faster than tra-
ditional, static, time, and area closures (Breivik et al. 2016; Dunn
et al. 2016; Hazen et al. 2016; Howell et al. 2008, 2015). It is not
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clear, however, what SDM framework is most appropriate to use
to support such tools. Further, because bycatch species vary from
commonly to rarely caught, bycatch data sets offer a wide range of
occurrence rates and densities. Thus, in addition to providing
guidance for spatial bycatch management, large bycatch data sets
are excellent testbeds for evaluating SDM performance more gen-
erally.

Species distribution models (SDMs)
SDMs can be coarsely divided into parametric, semiparametric,

and nonparametric approaches. Generalized linear models (GLMs)
are one of the simplest parametric approaches used to understand
species distributions and their relationships with biotic and abiotic
covariates (Venables and Dichmont 2004). GLMs predict the re-
sponse variable, Yi (species presence–absence or abundance at
location i), by specifying a probability distribution and link func-
tion:

Yi � distribution with mean �i, g(�i) � �i

with linear predictor

(1) �i � Xi�

where Xi is a vector of covariate values for location i, and � is a
vector of coefficients to be estimated. GLMs can permit nonlinear
relationships between the covariates and response by including
transformations of the covariates (e.g., polynomial terms �i �

�0 � �1X1i � �2X1i
2 � �3X1i

3 � …) or by discretizing continuous covari-
ates and treating them as categorical variables.

Generalized additive models (GAMs) extend the GLM frame-
work by allowing the linear predictor to include smooth functions
of the covariates (Guisan and Thuiller 2005; Wood 2017). GAMs are
often referred to as semiparametric, since the smoothers do not
have a specified functional form but do have associated parame-
ters that are estimated using penalized likelihood (Wood 2011;
Guélat and Kéry 2018). The ability of GAMs to incorporate com-
plex, nonlinear covariate effects, as well as improvements to com-
puting power and software, has led to their wide adoption in
fisheries and ecology in the last decade (Becker et al. 2014;
Leathwick et al. 2006; Li and Pan 2011; Watson et al. 2009). Extend-
ing the linear predictor in eq. 1 to include a two-dimensional
spline, f(), on the geographical coordinates of location i, si, speci-
fies a GAM:

(2) �i � Xi� � f(si)

Equation 2 is estimated by penalized likelihood maximization,
which balances smoothness and fit to the data by penalizing the
curvature (i.e., integral of the squared second derivative) of f(si)
(Wood 2017). Kammann and Wand (2003) refer to eq. 2 as a “geo-
additive” model and have shown that this is mathematically
equivalent to explicitly modeling spatial correlation with random
effects, u (Diggle et al. 1998; Kneib et al. 2008; Péron et al. 2011;
Fahrmeir et al. 2013; Guélat and Kéry 2018):

(3) �i � (X� � Zu)i

When the spatial random effects are assumed to follow a zero-
mean multivariate normal distribution (MVN), eq. 3 can be writ-
ten as

(4) �i � Xi� � �(si), �(s) � MVN(0, �)

where � is a Gaussian field (Kneib et al. 2008). Analogous to how
the curvature of the spline is penalized when estimating the GAM,
the correlation function that defines � acts as a penalized spatial
smoother in the Gaussian field model — nearby locations are
more highly correlated, and thus more smoothed, than distant
locations (Fahrmeir et al. 2013). Gaussian fields are attractive be-
cause they directly model spatial correlation, but applications
have historically been limited to smaller data sets because invert-
ing the covariance matrix � makes them computationally intense
(Lindgren et al. 2011). In summary, both the GAM and Gaussian
field model account for spatial autocorrelation not explained by
environmental covariates, are semiparametric, mathematically
equivalent, and typically fit using penalized likelihood that opti-
mizes spatial smoothing.

Gaussian fields are defined in continuous space but can be ap-
proximated by discrete Gaussian Markov random fields (GMRFs;
Lindgren et al. 2011). GMRFs have increasingly been used to model
species distributions as advances in computing power and soft-
ware implementation have allowed ecologists to apply them to
large data sets. Among other advantages, the GMRF approach can
be implemented by integrated nested Laplace approximation,
which is faster than other methods of Bayesian inference (i.e.,
Markov chain Monte Carlo) and allow GMRF approximations of
Gaussian fields to be computationally feasible (Rue et al. 2009).
GMRF models have shown promise in assessing relationships be-
tween habitat and distribution (Illian et al. 2013), the effects of
interspecific relationships such as density dependence (Thorson
et al. 2015c), as well as the relationships between multiple co-
occurring taxa (Ward et al. 2015). From a quantitative standpoint,
GMRF models have been shown to estimate population abun-
dance trends with greater precision and accuracy compared with
nonspatial models (Thorson et al. 2015b).

Clearly, GMRFs are intimately related to GAMs, since GMRFs
approximate the Gaussian field model (eq. 4), which is an alterna-
tive parameterization of the GAM in eq. 2. The spatial smoothing
terms for both GAMs and GMRFs can be defined on a sphere or
differ according to spatial direction (anisotropy can be included in
GAMs by using tensor product smooths, and � can be both non-
stationary and anisotropic in GMRFs). GAMs and GMRFs differ,
however, in two regards. First, the spatial smoothing term ap-
pears as a mean trend for GAMs and as a covariance matrix for
GMRFs. This distinction may not be important for modeling spe-
cies distributions, and researchers may prefer the method that
reflects their view of how spatial autocorrelation arises in the
problem at hand. For instance, GMRFs would be the more natural
framework if the spatial variation remaining after including en-
vironmental covariates is considered random. Second, and more
importantly, the different parameterizations lead to different es-
timation methods and software implementations. Since spatial
models for large data sets contain many parameters, numerically
efficient implementations are crucial (Fahrmeir et al. 2013). Sev-
eral R packages fit GAMs, the most popular being “mgcv”, which
uses generalized cross-validation to estimate smooth terms by
default (Wood 2017). GMRFs can be fit via “INLA”, which uses a
Bayesian framework and estimates models by integrated nested
Laplace approximation (Lindgren and Rue 2015). In theory,
“mgcv” and “INLA” should be quite similar. In practice, however,
differences in approximation methods, runtime, convergence cri-
teria, ease of use, and default settings may impact model predic-
tions.

Most nonparametric approaches ecologists use to model species
distributions have evolved from machine learning algorithms
(Hastie et al. 2009; Olden et al. 2008). These data-driven ap-
proaches include random forests (RF; Breiman 2001; Cutler et al.
2007), MaxEnt (Phillips et al. 2006; Phillips and Dudík 2008), and
support vector machines (Drake et al. 2006). In this analysis, we
highlight RF because (i) data in our application — fisheries
bycatch — contain true absences, whereas MaxEnt is designed
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for presence-only data, and (ii) RF is widely used and has shown
good predictive performance in SDM testing (Prasad et al. 2006;
Marmion et al. 2009; Scales et al. 2016). The RF algorithm predicts
the response by constructing m regression (or classification) trees
and averaging their predictions (Breiman 2001). Each individual
tree begins with all observations and then iteratively partitions
the data by splitting along one covariate (e.g., depth > 100 m
versus depth ≤ 100 m), choosing the covariate and split point that
minimizes the sums of squares error at each node (where the
predicted response at each node is the mean of observations
within the node; Breiman et al. 1984). The process continues until
each terminal node contains less than a specified number of ob-
servations. Individual trees are simple and computationally cheap
but are also unstable (i.e., sensitive to slight alterations in the
data) and suboptimal at prediction (i.e., they are “weak learners”),
because they only allow rectangular partitions of covariate space.
The RF algorithm increases predictive performance by reducing
the correlation between trees, which is accomplished via two pro-
cesses: (i) fitting each tree to a bootstrap sample of the original
data and (ii) at each split, randomly selecting a subset of covariates
to consider (Kuhn and Johnson 2013). This works because reducing
the correlation between individual trees reduces the correlation
of their errors, which therefore reduces the predictive error of
their average, the RF estimate.

Random forests are popular because they are simple to use (few
parameters to tune and the default values work well in most
cases), robust to the inclusion of many noninformative covariates
generate accurate predictions, designed to not overfit, and seam-
lessly accommodate missing data (Biau and Scornet 2016). Com-
pared with parametric and semiparametric models, RF will often
have better out-of-sample (i.e., cross-validated) prediction perfor-
mance due to their ability to estimate more complex patterns, as
nonlinearity and interactions are inherent in their construction
(Elith and Leathwick 2009). However, this data-driven complexity
does come at the cost of model interpretability, and this is one of
the main factors limiting the adoption of RF — and machine
learning methods more generally — by ecologists (Olden et al.
2008). Three other disadvantages of RF are the difficulty of gener-
ating uncertainty estimates with well-understood properties, an-
alyzing model diagnostics, and specifying constraints on model fit
(e.g., we may wish yearly estimates to be independent, which can
be specified in parametric models).

Study objectives
The primary objective of this paper is to compare the perfor-

mance of GAMs, GMRFs, and RF in a predictive framework using
cross-validation (Kuhn and Johnson 2013; Roberts et al. 2017).
There has been an increased emphasis in ecology on evaluating
and selecting models based on their ability to predict out-of-
sample data (Hooten and Hobbs 2015), and one of the advantages
of this approach is that nonparametric and parametric models
can be compared (Ward et al. 2014). While each of these model
frameworks have individually been applied to understand spatio-
temporal trends in fisheries bycatch (GAMs: Becker et al. 2014;
Hazen et al. 2016; McCracken 2004; Watson et al. 2009; GMRFs:
Breivik et al. 2016, 2017; Cosandey-Godin et al. 2015; RFs: Carretta
et al. 2017; Eguchi et al. 2017; Pons et al. 2009), their predictive
performance has not been tested in a comparative study.

Our next objective is to evaluate the utility of using SDM pre-
dictions of bycatch risk as a tool to reduce bycatch in fisheries.
Beyond abstract performance metrics, we compare the models’
capabilities to reduce the bycatch-to-target species catch ratio,
create spatial bycatch risk maps, and estimate effects of covari-
ates.

The final objective of our analysis is to evaluate model transfer-
ability, the ability to extrapolate or predict beyond the range
of observed data. Traditional cross-validation only measures a
model’s ability to interpolate (i.e., estimate values within the

range of observations), because it randomly chooses data to with-
hold for testing. SDMs that are more data-driven and complex
have been shown to have better interpolation performance but
be worse at spatial extrapolation (Araújo and Rahbek 2006;
Heikkinen et al. 2012; Randin et al. 2006). In other words, one
model may have higher predictive performance in the core fish-
ing area with abundant data, yet underperform other models in
areas with sparse sampling coverage. Since we wish to evaluate
using SDM predictions of bycatch risk as a spatial management
tool, it is important to assess how sensitive the predictions are to
spatial location. Predictions in areas with few data are more sen-
sitive to model misspecification and overfitting, and therefore
caution is especially warranted for complex, nonparametric ap-
proaches such as RF (Merow et al. 2014).

Methods

Fisheries observer data
Collecting reliable bycatch data depends on fisheries observer

programs, where onboard observers enumerate and record the
species caught (as well as fishing location, gear type, time, and
other relevant information). To explore the performance of spe-
cies distribution models across taxa, we used two data sets from
United States fisheries observer programs in the Pacific Ocean
with high observer coverage. The first data set was from the West
Coast Groundfish Observer Program (WCGOP) at the Northwest
Fisheries Science Center (NWFSC) (Bellman et al. 2010). The
WCGOP data set contained records of 42 786 commercial bottom
trawls from 2003 to 2012 off the West Coast of the USA, primarily
targeting groundfish such as Dover sole (Microstomus pacificus),
thornyheads (Sebastolobus spp.), sablefish (Anoplopoma fimbria), and
rockfish (Sebastes spp.; Fig. 1A). Observers recorded haul duration,
location, date, time, depth, gear type, and catch (which includes
at-sea discarded bycatch; for details see NWFSC 2016). Observer
coverage was �20% from 2003 to 2010 under limited access man-
agement, with 100% coverage starting in 2011 with the transition
to an individual fishing quota (IFQ) system. In the pre-IFQ era,
fishermen were not permitted to land rebuilding species (i.e., pop-
ulations declared overfished with management plans to rebuild to
sustainable levels), so we defined bycatch as only at-sea discards.
Under the IFQ system, fishermen can land a low quota of rebuild-
ing species, so we considered bycatch to be the sum of discarded
and retained catch for nontarget species.

The second data set was from the Hawaii longline (HILL) fishery,
monitored by the Pacific Islands Regional Observer Program
(PIROP 2014), which has recorded fishing location, date, time, sea
surface temperature (SST), gear characteristics, and catch of
longline sets from 1994 to 2014. The Hawaii longline fleet is di-
vided into two sectors, one targeting tuna (Thunnus spp.) and the
other swordfish (Xiphias gladius), with distinct gear configurations
and spatiotemporal effort patterns, both of which affect interac-
tion rates with bycatch species (Li and Pan 2011). We modeled
16 714 observations from the shallow-set swordfish fishery in
1994–2001 and 2005–2014 (Fig. 1B), distinguishing between sets
targeting swordfish and tuna by the number of hooks between
surface floats (following Li and Pan 2011). Concerns over bycatch of
protected species, particularly of loggerhead (Caretta caretta) and
leatherback (Dermochelys coriacea) sea turtles, motivated the clo-
sure of the swordfish fishery from 2001 to 2004. This led to two
important differences between the data for 1994–2001 and 2005–
2014. First, sea turtle bycatch rates have been an order of magni-
tude lower in the later period, the result of stricter regulations
and modifying hooks (J to circle hooks) and bait types (squid to
fish; Gilman et al. 2007). Second, observer coverage increased
from roughly 5% to 100% (Howell et al. 2008).

Model performance may be linked to species’ movement pat-
terns, because species that move less (or whose movement pat-
terns do not change in time) may not need a spatiotemporal
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model. Instead, a time-constant spatial model may be adequate.
To ascertain whether differences in SDM performance were re-
lated to movement pattern or bycatch rate (i.e., percent observa-
tions with nonzero catch), we selected three bycatch species from
each data set: blue shark (Prionace glauca), loggerhead sea turtle,
and leatherback sea turtle from the Hawaii longline fishery, and
Pacific halibut (Hippoglossus stenolepis), darkblotched rockfish
(Sebastes crameri), and yelloweye rockfish (Sebastes ruberrimus) from
the West Coast groundfish trawl fishery. These species widely
differ in their bycatch rates (96.2%, 0.7%, 0.3%, 28.9%, 17.9%, and
1.4%, respectively), habitat preferences, and movement patterns.
For instance, rockfish are relatively sedentary and closely associ-
ated with rocky bottom habitat, whereas halibut exhibit seasonal
and long-distance migrations (Skud 1977; Gunderson 1997). In con-
trast with the groundfish, blue sharks and sea turtles inhabit the
open ocean and range much more widely (Benson et al. 2011;
Kobayashi et al. 2008; Nichols et al. 2000).

While both data sets include periods with 100% observer cover-
age, they also span periods with partial coverage. This is relevant
since the models assume that the data represent a random sample
of the studied fishery (i.e., each fishing event has an equal proba-
bility of being observed). For several reasons, it is difficult for
observer programs to achieve random sampling: a list of trips and
their departures often does not exist far in advance, certain ves-
sels may not be able to accommodate observers, observers may
not always be available, and fisher behavior can change when
observers are on board (Hall 1999; Liggins et al. 1997; McCracken
2004). The WCGOP data from years with 20% coverage are likely to
be representative of the fishery, because the WCGOP stratified

sampling by port group, vessel, and 2-month blocks with the goals
of sampling all vessels for 2 months in each year and discouraging
changes to fishing behavior when observers were onboard
(NWFSC 2006). It is less likely that this was true for the 1994–2001
HILL data. Nevertheless, we included data from periods with par-
tial coverage because there were very few observations of nonzero
catch for rarely encountered species in the years with full cover-
age (yelloweye rockfish: 38, loggerhead turtle: 89, leatherback
turtle: 82), and in many cases, bycatch of these “rare-event” spe-
cies are often of highest management concern (Martin et al. 2015).

Environmental covariates
In addition to the locations of observed fishing, we considered

several covariates that may help explain the likelihood of bycatch
events. For the WCGOP data set, we included fishing depth, day of
year, SST anomaly, distance to rocky habitat, size of nearest rocky
patch, predicted occurrence from survey data, and whether the
trawl occurred in or near a Rockfish Conservation Area (RCA).
RCAs are large areas along the US West Coast closed to fishing
designed primarily to reduce bycatch of overfished rockfish,
such as two of the species we considered. RCA boundaries have
changed by and within years and are defined by latitude, date,
and depth (NOAA Fisheries West Coast Region 2015). Trawls
were determined to be inside or outside of an RCA based on the
trawl date, average start and end trawl position, and bottom
depth (calculated via bathymetry from NOAA National Centers
for Environmental Information 2015). We included linear and
quadratic terms for fishing depth and SST anomalies following
Shelton et al. (2014). Depth was recorded by onboard observers,

Fig. 1. Spatial extent of the two fisheries observer data sets. (A) Fishing effort in the West Coast groundfish trawl fishery from 2003 to 2012
(42 786 haul locations). (B) Fishing effort in the shallow-set Hawaii longline swordfish fishery from 1994 to 2014 (16 714 set locations). Bivariate
kernel density estimates of fishing effort were used to smooth the data (“bkde2D” function in R package “KernSmooth”). [Colour online.]
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while SST anomalies were measured via satellite. For each trawl,
we collected daily SST anomalies on a 0.25° grid and used bilinear
interpolation to create SST anomalies corresponding to each trawl
location (http://www.esrl.noaa.gov/psd/; Reynolds et al. 2007).
Rocky habitat data were from NMFS (2013), calculated as per
Shelton et al. (2014). Finally, we used the above covariates to fit a
geostatistical binomial GLMM to fisheries-independent trawl sur-
vey data (Bradburn et al. 2011, modeled as in Shelton et al. 2014)
and applied this model to predict bycatch occurrence at the fish-
ing times and locations in the observer data set. These survey-
predicted occurrence probabilities were included as another
linear covariate. All environmental covariates were centered be-
fore model estimation.

The only available environmental covariate for the HILL data set
was observer-recorded SST, and therefore we fit the HILL models
with covariates of standardized SST, SST2, and day of year.

Statistical models
As is common for species distribution data, five of the six spe-

cies exhibited large proportions of zero catches. We followed the
hurdle or delta-model approach to this complication, which is
commonly applied in ecology and fisheries (Pennington 1983;
Maunder and Punt 2004). Delta-models separate the observed
catches, Yi, into two processes: a “binomial” component for the
probability of nonzero catch, �i, and a “positive” component for
the mean catch density given the catch is nonzero, �i:

(5)
Zi � Bernoulli(�i)
Yi � Zih(�i)

where Zi is a binary variable that equals 1 if the species was caught
and 0 if it was not, and h() is a distribution to be specified (e.g.,
lognormal, gamma). Splitting the modeling into these two com-
ponents can be advantageous because different mechanisms may
affect one component but not the other (e.g., a habitat quality
covariate may be a significant predictor of catch rate, but not
occurrence).

We applied a total of eight delta-models with varying spatial
structure to each of the six species included in our analysis
(Table 1). Bycatch of yelloweye rockfish, loggerhead turtles, and
leatherback turtles were extremely rare events (0.3%–1.4% non-
zero observations), with too few multiple-individual catches to
meaningfully fit the positive component. All analyses were con-
ducted using R version 3.4.1 (R Core Team 2017), with the follow-

ing libraries: “mgcv” was used to implement GLMs and GAMs
(version 1.8-17; Wood 2017); “randomForest” (version 4.6-12; Liaw
and Wiener 2002), “DMwR” (version 0.4.1; Torgo 2010), and “for-
estFloor” (version 1.9.5; Welling et al. 2016) were used to fit RFs;
and “INLA” was used to fit the GMRF models (version 0.0-
1485844051; Lindgren and Rue 2015). We assessed model fit with
plots of covariate-response relationships, predicted versus ob-
served response in out-of-sample data, spatial residual maps, and
spatial correlograms (Moran’s I, package “ncf” version 1.2-5;
Bjørnstad and Falck 2001). Code to fit each of the models is pro-
vided at https://github.com/brianstock/spatial-bycatch.

Our first model was a delta-GLM with linear and quadratic ef-
fects of the environmental covariates (which are intrinsically
spatially correlated), but without any spatial terms — neither
geographic coordinates nor spatial autocorrelation for residual
errors. As in Guélat and Kéry (2018), the delta-GLM served as a
baseline that allowed us to evaluate the value of adding spatial
terms in the subsequent models, which were fit using the same
covariates and only differ in how they include spatial informa-
tion. The delta-GLM fits the observed bycatch in fishing event i, Yi,
as in eqs. 1 and 5, with the binomial component determining the
probability of nonzero bycatch, �i:

(6) Zi � Bernoulli(�i), logit(�i) � Xi�

and positive component for the mean catch density given the
catch is nonzero, �i:

(7) Yi � ZiGamma(�i, k), log(�i) � Xi�

where Xi is a vector of covariate values for location i, � and � are
vectors of coefficients to be estimated, and k is the shape param-
eter of the gamma distribution. The gamma distribution is appro-
priate for positive, right-skewed data and therefore is commonly
used in the positive component of delta-models for fisheries catch
(Lecomte et al. 2013; Stefánsson 1996). While we would not expect
the GLM to outperform the models with explicit spatial terms, it is
possible that the (spatially structured) environmental covariates
could explain most of spatial structure in the response. In that
case, including spatial terms in the model (i.e., a two-dimensional
spline as in eq. 2 or covariance matrix as in eq. 4) would be unnec-
essary.

Table 1. Properties of the considered statistical models and how each model incorporates spatial fishing locations.

Model Parametric?
Computational
intensity R package Inclusion of spatial locations

Generalized linear model (GLM) Parametric
GLM Low mgcv None

Generalized additive model (GAM) Semiparametric
GAM-CONSTANT Low mgcv +s(Lat, Lon, k = 100)
GAM-YEAR Medium mgcv +s(Lat, Lon, k = 100, by = year)

Gaussian Markov random field (GMRF) Semiparametric
GMRF-CONSTANT High INLA +f(i, model = spde)
GMRF-YEAR Very high INLA +f(i, model = spde, group = year,

control.group = list(model = “exchangeable”))
Random forest (RF) Nonparametric

RF-BASE Low randomForest +Lat+Lon
RF-DOWN Low randomForest +Lat+Lon
RF-SMOTE Low caret +Lat+Lon

Note: The GLM model serves as the baseline model — no spatial data included. GAM models fit two-dimensional splines on geographical coordinates (i.e., latitude
and longitude), either constant across years (GAM-CONSTANT) or estimating a different spline for each year (GAM-YEAR). GMRF models incorporate spatial locations
by estimating the covariance between locations as a random field (with stationary Matern covariance function). As for GAMs, we fit GMRFs that estimate one random
field kept constant across years (GMRF-CONSTANT) or estimate a random field for each year (GMRF-YEAR). RF is nonparametric and thus only incorporates spatial
locations by including covariates of latitude and longitude. All models for a given species were fit using the same nonspatial covariates (habitat, depth, SST, etc.). We
used the R packages “mgcv” (GLM and GAM), “INLA” (GMRF), “randomForest” (RF), and “caret” (RF-SMOTE).
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We fit two delta-GAM models that extend eqs. 6 and 7 by adding
a two-dimensional spline, f(), on the geographical coordinates of
location i, si, to both the binomial and positive components, as in
eq. 2:

(8)
Zi � Bernoulli(�i), logit(�i) � Xi� � fZ(si)
Yi � Gamma(�i, k), log(�i) � Xi� � fY(si)

The first, “GAM-CONSTANT”, includes one two-dimensional spline
constant across years, with an offset (fixed effect) for each year.
This allows the mean bycatch probability and density to vary tem-
porally and spatially, but in the same pattern each year. The sec-
ond, “GAM-YEAR”, fits an independent two-dimensional spline for
each year, which allows the spatial pattern to vary between years
(Table 1).

As for the GAMs, we fit two delta-GMRF models that extend
eqs. 6 and 7 by estimating the covariance between observed loca-
tions, si, as in eq. 4:

(9)
Zi � Bernoulli(�i), logit(�i) � Xi� � �Z(si), �Z(s) � MVN�0, Q Z

�1�
Yi � Gamma(�i, k), log(�i) � Xi� � �Y(si), �Y(s) � MVN�0, Q Y

�1�

where both Q Z
�1 and Q Y

�1 are defined to approximate stationary,
isotropic Matérn covariances:

Cov(s1, s2) �
	2

2
�1�(
)
(��s1 � s2�)


K
(��s1 � s2�)

K
 is the modified Bessel function of the second kind and order

 > 0, � is the spatial scale parameter, and �Z() and �Y() represent
the estimated spatial fields using random effects. We used the
default Matérn smoothness, 
 = 1, and priors on parameters as
implemented in R-INLA (Lindgren and Rue 2015). Analogous to the
GAM-CONSTANT and GAM-YEAR models, we fit a “GMRF-
CONSTANT” model with one random field constant across all
years and a “GMRF-YEAR” model with a random field estimated
for each year (Table 1). As for GAM-CONSTANT, the GMRF-
CONSTANT model includes fixed effect terms for each year, which
allow for an increase or decrease in the mean bycatch probability
and density for each year while assuming the spatial pattern is
constant across years. The GMRF-YEAR model uses the simplest
spatiotemporal option in R-INLA, “exchangeable”, which refers to
the spatiotemporal structure — the random fields in all years are
uniformly correlated (as opposed to an autoregressive spatiotem-
poral structure where nearby years are more correlated than dis-
tant years).

To include spatiotemporal effects in RFs, we added year (treated
as a factor), latitude, and longitude as covariates. For the positive
component of the delta-model, we fit only one RF model:
“RF-BASE,” following the original RF algorithm as described by
Breiman (2001) and implemented in the “randomForest” R pack-
age (Liaw and Wiener 2002). For the binomial component, we also
fit two modifications to the original RF algorithm designed to
improve performance on imbalanced class data (i.e., proportions
of 0s and 1s very unequal), because several species showed strong
class imbalance (e.g., yelloweye rockfish had 99.7% tows with zero
catch and only 0.3% tows with nonzero catch). Training an RF on
such severely imbalanced class data tends to produce models that
predict the majority class well but performs poorly on the minor-
ity class (Kuhn and Johnson 2013). The first approach was to down-
sample the majority class observations (e.g., 0s, tows with zero
catch for yelloweye rockfish) when training the RF such that each
tree used a stratified bootstrap sample of the data with equal
numbers of majority and minority (e.g., 1s, tows with nonzero
catch for yelloweye rockfish) class observations. We implemented

down-sampling in the “RF-DOWN” model, setting the sample size
equal to one-sixth the number of minority class observations. The
second approach, “RF-SMOTE” (synthetic minority over-sampling
technique; Chawla et al. 2002), combined down-sampling of the
majority class with over-sampling of the minority class. Simply
over-sampling the minority class with replacement overfits the RF
to the specific observed minority data and typically does not sig-
nificantly improve prediction of the minority class. Instead,
SMOTE creates synthetic minority class samples by generating
random linear combinations of nearby observed minority sam-
ples (i.e., if X1 and X2 are nearest neighbors, with X1 = (SST1, Lat1,
Lon1) and X2 = (SST2, Lat2, Lon2), draw p from Uniform(0, 1) and
create Xsyn = [p(SST1 – SST2) + SST2, p(Lat1 – Lat2) + Lat2, p(Lon1 –
Lon2) + Lon2]).

Performance metrics
We performed fivefold cross-validation repeated 10 times,

which allowed us to evaluate semiparametric and nonparametric
SDMs’ predictive error on new data (Shmueli 2010; Kuhn and
Johnson 2013). We blocked by year (rather than systematically
excluding a given year) to account for temporal structure and
mimic predictive performance for cases where a random subset of
samples in a given year are not observed (Roberts et al. 2017). Thus,
we generated 50 test–train splits, where each selects 20% of the
data from each year to reserve for testing and fits the models on
the remaining 80% training data. After fitting the models to train-
ing data, we used the fitted models to predict bycatch probability
(binomial component of the delta-model) and density (positive
component of the delta-model) at the test locations. This gave us
predicted and observed values to compare parametric and non-
parametric model performance: area under the receiver operat-
ing characteristic curve (AUC) scores for the binomial component
and root-mean-square error (RMSE) for the positive component.
AUC can be interpreted as the expectation that a model ranks a
uniformly drawn random positive (bycatch event) as more likely
than a uniformly drawn random negative (non-bycatch event),
and higher values indicate better performance (Hand 2009). We
tested for significance across and within species using Tukey’s
HSD test.

Use as tools to reduce bycatch
Since AUC and RMSE are abstract metrics of model perfor-

mance, we calculated a more tangible measure: how much each of
the models could possibly reduce the bycatch-to-target species
catch ratio if it were used to identify and remove high-bycatch-
risk fishing events. In other words, what does an AUC perfor-
mance gap of 0.03 mean in terms of bycatch reduction (keeping
catch of the target species constant)? For each species and model
fit, we rank-ordered the bycatch probabilities predicted by the
binomial component, identified the X% of fishing events with the
highest bycatch probabilities (X% from 0% to 10%), removed both
bycatch and target catch from those events, and calculated the
resultant change in bycatch-to-target species catch ratio.

To be useful bycatch management tools, models also need to
generate reasonable spatial predictions and covariate effects and
pass diagnostic checks on spatial autocorrelation and residual
patterns. To investigate spatial predictions and their uncertainty,
we calculated the posterior mean and variance at each point on a
prediction grid, using the R package “mgcv” for GLMs and GAMs
(Wood 2017) and “INLA” for GMRFs (Lindgren and Rue 2015). It is
not possible to calculate posterior distributions for RF, but we
calculated standard errors using the infinitesimal jackknife esti-
mator (“randomForestCI”; Wager et al. 2014). To compare covari-
ate effects, we plotted marginal posterior distributions for GLMs,
GAMs, and GMRFs. To visualize RF covariate effects, we used
feature contributions calculated by the “forestFloor” package
(Welling et al. 2016). Lastly, we investigated the models’ abilities to
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reduce spatial autocorrelation using spline correlograms (“ncf”;
Bjornstad and Falck 2001) and binned residual plots.

Transferability
To evaluate model transferability (i.e., spatial extrapolation per-

formance), we conducted a second cross-validation blocking on
spatial data density. Whereas our first cross-validation procedure
partitioned the data into training and testing sets randomly, here
we constructed test–train splits by ordering fishing locations rel-
ative to data density. We calculated a bivariate kernel density
estimate at each of the observed fishing locations (“bkde2D” func-
tion in “KernSmooth” R package) and sequentially used the lowest

0.5%, 1%, 2%, 5%, 10%, and 20% density locations as test data sets.
We then fit the models using only the core, data-rich area of each
fishery and computed AUC and RMSE for model predictions at the
test locations in sparsely sampled areas.

Results

Performance metrics
Across the six species, RF provided better bycatch predictions

than both GAMs and GMRFs in the binomial (higher AUC; Fig. 2A)
and positive (lower RMSE; Fig. 2B) components of the delta-model.
However, the magnitude of this performance advantage varied by
species, and in some cases the within-species differences were not
significant. GMRFs outperformed GAMs in the binomial compo-
nent for the three species with moderate–high bycatch rates
(p < 0.05, Tukey’s HSD; darkblotched rockfish, Pacific halibut, and
blue shark in Fig. 2A), but differences in AUC were not significant
for the three rarely caught species (p > 0.05, Tukey’s HSD; yellow-
eye rockfish, loggerhead turtle, and leatherback turtle in Fig. 2A).
The variability in model performance among cross-validation
runs was similar within a given species but varied greatly between
species; variability in the binomial component was lowest for
species with moderate bycatch rates (darkblotched rockfish and
Pacific halibut in Fig. 2A), and in the positive component it was
lowest for species with high bycatch rates (blue shark in Fig. 2B).

RF modifications designed for data with imbalanced classes
(i.e., down-sampling and SMOTE) outperformed the original RF
algorithm for the four species with high or low bycatch rates

1Supplementary data are available with the article through the journal Web site athttp://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2018-0281.

Fig. 2. Predictive performance boxplots of the (A) binomial and
(B) positive components of the delta-model on test data from fivefold
cross-validation repeated 10 times: (A) area under the receiver operating
characteristic curve (AUC) for the binomial component and (B) normalized
root-mean-square error (RMSE) for the positive component. Across
species, random forests (RFs) outperformed generalized additive
models (GAMs) and Gaussian Markov random fields (GMRFs) (highest
AUC, lowest RMSE). Significant (p < 0.05, Tukey’s HSD) within-species
performance differences from RF and GMRF are denoted with black
and blue asterisks, respectively. Only the best submodel (e.g., CONSTANT
or YEAR) within each model class for each species is shown here (see
online Supplementary material1). Species abbreviations: DBRK =
darkblotched rockfish, PHLB = Pacific halibut, YEYE = yelloweye
rockfish, LOGG = loggerhead turtle, LEATH = leatherback turtle,
BLUE = blue shark. [Colour online.]

Fig. 3. Bycatch-to-target species catch ratio achieved by using the
binomial component of the delta-model to predict and remove fishing
sets in the test data, relative to the bycatch-to-target ratio with no fishing
sets removed. Lines show median of 50 cross-validation runs for each
model class (fivefold cross-validation repeated 10 times), averaged
across the six species. Shaded areas are bootstrapped 95% confidence
intervals for the median. Random forest (RF) performed the best,
reducing the bycatch-to-target ratio by 34% when removing 5% of
fishing and by 50% when removing 10% of fishing. As in Fig. 2, only the
best submodel within each model class (e.g., CONSTANT or YEAR) for
each species is shown here. [Colour online.]
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(Fig. A1). Of the semiparametric models, GMRF-YEAR that allowed
for time-varying spatial effects performed the best (Figs. 2 and A2),
whereas the binomial GAM-YEAR that estimated two-dimensional
splines by year failed to converge. For rare bycatch species with
few positive occurrences, such as yelloweye rockfish, GMRF mod-
els that allowed for time-varying spatial effects offered no im-
provement over the time-constant spatial models (Fig. A2). For
these species, the estimated GMRF spatial field was less complex
than for species with higher bycatch rates (Fig. A3).

Use as tools to reduce bycatch
When using the models to identify and remove high-bycatch-

risk fishing events, RF also performed best. Averaged across the

six species, RF reduced the bycatch-to-target species catch ratio by
8% when removing 1% of fishing effort, 34% when removing 5% of
fishing effort, and 50% when removing 10% of fishing effort (Fig. 3).
Bycatch predictability as measured by bycatch-to-target ratio re-
duction generally agreed with the traditional performance met-
rics (AUC and RMSE) and varied substantially among the six
species (Fig. A4).

Bycatch risk maps produced by each of the models were similar
in some respects. Taking blue shark bycatch density an example,
all models predicted higher and more variable bycatch in the
northwest area of the fishery and lower bycatch between 25°N–
30°N and 205°E–220°E (Figs. 4A–4D). Maps revealed artifacts of

Fig. 4. Maps of predicted blue shark bycatch density with uncertainty for the Hawaii longline swordfish fishery in 2014. Left panels show the
mean bycatch density, log(number per set), estimated using the four model frameworks: (A) GLM, (B) GAM, (C) GMRF, and (D) RF. Right panels
show the log-variance of bycatch density: (E) GLM, (F) GAM, (G) GMRF, and (H) RF. All models predict higher and more variable bycatch density
in the northwest area of the fishery. Maps created by GMRF and RF show artifacts of their construction; the mesh triangulation is evident in
the GMRF variance map (G), and the sharp gradients in the RF mean (D) and variance (H) maps are a consequence of RF trees splitting on
latitude and longitude. [Colour online.]
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their construction; the mesh triangulation is evident in the GMRF
variance (Fig. 4G), and the sharp gradients in the RF mean (Fig. 4D)
and variance (Fig. 4H) are a consequence of RF trees splitting on
latitude and longitude. As expected, the uncertainty of GMRF pre-
dictions was lower in areas of high data density (compare Figs. 1B
and 4G). Uncertainty in RF predictions did not follow this trend —
RF variance was extremely high above 41.5°N and moderately high
between 30°N and 33°N (Fig. 4H). However, this was consistent
with the data, as there were few observed sets north of 41.5°N, and
these had higher and more variable bycatch (Fig. A5).

All models estimated similar covariate effects, as demonstrated
for darkblotched rockfish (Fig. 5). The main covariate effects were
as expected; probability of bycatch increased with higher survey-
predicted occurrence, increased for tows inside or near RCAs, and
showed an optimal depth range of 100–250 fathoms (1 fathom =
1.8288 m).

For all species, residuals were typically more variable between
cross-validation fits as model complexity increased (RF > GMRF >
GAM > GLM; see online Supplementary material, Figs. S1–S181).
Most models did not exhibit spatial patterns in residuals, al-
though residuals in the positive component of the delta-model
were larger and more variable for blue shark and Pacific halibut
north of 40°N and 47°N, respectively (Figs. S1–S2, S11–S121). GMRFs
and GAMs had similarly lower residual spatial autocorrelation
compared with the baseline GLMs, with one exception where the
GMRF reduced spatial autocorrelation more than the GAM (blue
shark positive model; Fig. A6). RF generally had the lowest spatial
autocorrelation, and it was negative instead of positive at short
distances. The HILL species had greater decorrelation distances
than the West Coast groundfish species (distance at which spatial
autocorrelation goes to zero, 40 versus 5 km; Fig. A6).

Transferability
As expected, all models performed worse at spatial extrapola-

tion compared with interpolation (i.e., worse at predicting loca-
tions outside the core area of the fishery when trained using
observations in areas of highest data density; Fig. 6). GLMs and
GAMs generally performed worse in this test than GMRFs and RFs.
GMRFs had lower RMSE than RFs in the positive component of the
delta-model, but there was no difference in AUC in the binomial
component (Wilcoxon signed-rank test, p = 0.91 for AUCGMRF ≠
AUCRF, p = 0.003 for RMSEGMRF ≠ RMSERF). Compared with GMRFs,
RF performance was also more sensitive to withholding data at
the edge of the fishery (Fig. 6). The degree to which this was true,
however, differed widely between species. For instance, the per-
formance of both models was stable for some species (e.g., dark-
blotched rockfish in binomial component, blue shark in positive
component), indicating that both models captured relevant spa-
tial environment–bycatch relationships in the core area of the
fishery and that these relationships remained valid at the edge of
the fishery.

Discussion
Our results demonstrate the clear potential of species distribu-

tion models to predict fishing activity with higher bycatch rates.
While the models’ performance varied considerably, even the
worst performer (GLM without latitude and longitude) achieved
AUC from 0.68 to 0.86 (Fig. 2) and reduced bycatch-to-target catch
ratios on average by 25% for a 5% reduction in fishing effort
(Fig. 3). Random forests (RFs) performed the best, achieving
cross-validated AUC above 0.89 for all three West Coast ground-

fish species (Fig. 2) and reducing bycatch-to-target ratios by 34%
for a 5% reduction in fishing effort averaged across the six species
(Fig. 3). When extrapolating beyond the geographic range of the
data, however, RFs were more sensitive to which data were with-
held and performed similar to, or worse than, GMRFs (Fig. 6). This
is consistent with previous work documenting that more data-
driven, complex SDMs can have better interpolation performance
but be worse at spatial extrapolation (Heikkinen et al. 2012;
Randin et al. 2006).

Our results beg the question: if RFs are expected to have higher
interpolation accuracy, why ever use GMRFs or GAMs? This is a
decidedly relevant concern given the substantial research invest-
ment in these modeling approaches (Becker et al. 2014; Thorson
and Barnett 2017). RF will generally have better out-of-sample pre-
diction, largely due to its ability to incorporate nonlinear and
interaction effects of covariates inherently (i.e., without user spec-
ification). In addition, RF models are much simpler and quicker to
both write code for and run. Contrary to references describing RFs
as “black boxes” (Prasad et al. 2006; Cutler et al. 2007; Elith and
Leathwick 2009; Evans and Cushman 2009; Kuhn and Johnson
2013), there are methods for investigating RF model structure,
including covariate effects and interactions (Fig. 5; Welling et al.
2016). In a similar vein, it is possible to calculate prediction vari-
ance and confidence intervals for RF (Fig. 4; Meinshausen 2006;
Wager et al. 2014), despite older ecological literature stating oth-
erwise (Cutler et al. 2007; Olden et al. 2008), or using ad hoc
substitutes such as the standard deviation of individual tree pre-
dictions (Smoliński and Radtke 2017). Additionally, promising the-
oretical work may soon widen the ability to use RFs for statistical
inference by developing asymptotically normal, unbiased point
estimates with valid confidence intervals (Mentch and Hooker
2017; Wager and Athey 2017). In many cases, RF’s performance
advantage is probably sufficient to warrant its use over other
semiparametric methods. Yet, there may be several cases where
semiparametric methods are preferred.

Semiparametric frameworks like GMRFs and GAMs have clear
advantages over machine learning algorithms such as RF. First,
they can be derived from probability theory and therefore allow
for traditional statistical inference on their mean response predic-
tions. GMRF estimates full posterior distributions for the response
variable (in this study, probability and (or) expected amount of
bycatch) everywhere in the spatial domain. This enables us, for
instance, to use a GMRF model to identify regions that are above
or below a threshold probability (i.e., risk level) of a defined by-
catch quantity. By contrast, developing statistical inference based
on RF is an active area of research (Biau and Scornet 2016). Thus,
GMRF models may be preferred for applications where estimates
of model uncertainty are decidedly important, such as using mod-
els to produce annual estimates of bycatch (expanded from the
observed to unobserved fleet). Second, GMRFs and GAMs explicitly
estimate covariate effects with uncertainty intervals, facilitating
ecological interpretation of factors significantly affecting the re-
sponse (Fig. 5). Third, GMRF models are particularly well suited to
incorporate spatial ecological processes, such as movement or
spatial variation in mortality, condition, or observation error
(Carson and Flemming 2014; Illian et al. 2013; Thorson et al. 2017).
RFs, on the other hand, are based solely on observations without
taking into consideration the data-generating process. Fourth,
GAMs and GMRFs produce smoothed spatial predictions that are
more likely ecologically plausible, whereas RF spatial predictions
appear rectangular by default due to splits on the geographical

Fig. 5. Covariate effects on the probability of darkblotched rockfish bycatch (binomial component of the delta-model). All models estimate a
positive effect of PredOcc (predicted occurrence from survey data, left column), quadratic effect of Depth (center), and positive effect of
In/near RCA (haul location inside or near rockfish conservation area boundary, right). GLM, GAM, and GMRF covariate effects are marginal
posterior distributions (“mgcv” and “INLA” packages in R), and RF covariate effects are feature contributions (“forestFloor” package in R).
[Colour online.]
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coordinates. This can be mediated, however, by including trans-
formations of the coordinates, fitting a linear model within each
node instead of taking the mean (Quinlan 1992, 1993), or includ-
ing buffer distances as covariates (Hengl et al. 2018). Fifth, RFs can
simultaneously have high interpolation accuracy and lower ex-
trapolation accuracy (Fig. 6B). This matters if SDM predictions of
bycatch risk are to be used as a spatial management tool, where
predictions in areas with sparse or no sampling coverage may be
most important. Finally, GMRFs and GAMs can be easily specified
to produce independent or exchangeable estimates of a given
quantity (e.g., total predicted bycatch in different years), while it is
unclear how to assign a specific dependence structure on factors
in a RF model. This is important when using estimates from a
spatial model as input in a secondary model, for example, where
the secondary model assumes that estimates are independent

among years. In situations where these concerns are inconsequen-
tial, however, RFs are likely the better method for spatial bycatch
prediction — they are faster and have better predictive perfor-
mance than the alternatives. Even when probabilistic conclusions
are required, RF may be useful in an exploratory manner given
their ease of use, speed, and ability to identify nonlinear and
interaction covariate effects for later inclusion in semiparametric
models.

On a more detailed level, the six species differed widely in their
predictability. The West Coast groundfish species were more pre-
dictable than the HILL species, likely because we included several
more relevant environmental covariates (WCGOP: SST, depth,
rocky habitat, in or near RCA, and survey-predicted occurrence;
HILL: SST), and the WCGOP data set had 2.5 times the number of
observations (WCGOP: 42 786; HILL: 16 714). The HILL models’ per-

Fig. 6. Predictive performance of the (A) binomial and (B) positive components of the delta-models at test locations beyond the geographic
data range (i.e., spatial extrapolation). We fit a two-dimensional kernel density estimate at each observed fishing location (“bkde2D” function
in “KernSmooth” R package), then sequentially used the lowest 0.5%, 1%, 2%, 5%, 10%, and 20% density locations as test data sets. Triangles
show median model performance from fivefold cross-validation runs with random test–train splits (Fig. 2). When extrapolating spatially, all
models performed equal to or worse than when interpolating (i.e., points are lower AUC and higher RMSE than triangles at 20% removed).
Compared with GMRF, RF performance was more sensitive to withholding data at the edge of the fishery (i.e., regression lines have steeper
slopes). Missing points and lines indicate the model failed to converge, as for GMRF with yelloweye rockfish. Species abbreviations: DBRK =
darkblotched rockfish, PHLB = Pacific halibut, YEYE = yelloweye rockfish, LOGG = loggerhead turtle, LEATH = leatherback turtle, BLUE = blue
shark. [Colour online.]
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formance could presumably be improved by incorporating more
satellite-based environmental covariates capable of explaining
the species’ distributions, such as chlorophyll and SST-derived
frontal indices (Nieto et al. 2017). Among the West Coast species,
Pacific halibut was more difficult to predict than the two rockfish
species, despite having more positive bycatch occurrences for the
models to fit. One possible explanation is that adult halibut move
more and have less strict habitat associations than rockfish, de-
creasing their predictability (Skud 1977; Gunderson 1997). Among
the HILL species, loggerhead turtles were much easier to predict
than leatherback turtles and blue sharks, perhaps because they
have stronger SST-based habitat preferences where the fishing
occurs (Howell et al. 2015). Indeed, the loggerhead–temperature
association is the basis for TurtleWatch, a decade-long effort to
reduce turtle bycatch by providing fishermen with dynamic rec-
ommendations of high bycatch risk areas to avoid in the Central
Pacific (Howell et al. 2008). Despite plausible life history explana-
tions for some among-species differences in predictability, how-
ever, the advantage of fitting time-varying versus time-constant
models appeared to be primarily driven by the species’ bycatch
rates. In other words, there was little difference in model perfor-
mance for rare bycatch species (yelloweye rockfish, loggerhead
turtle, and leatherback turtle) and greater differences between
models for common bycatch species (darkblotched rockfish, Pa-
cific halibut, and blue shark; Figs. 2A and A3).

Given their good predictive performance overall, SDMs could be
used to support spatial bycatch management, whether static (e.g.,
design habitat closures to be semipermanent, such as the Pacific
Leatherback Conservation Area along the US West Coast; 50 CFR
Part 660) or dynamic in time (e.g., closures change every year,
month, week, etc., such as the Loggerhead Turtle Conservation
Area along the Southern California Bight; 72FR 31756; Fig. 7, as in
Dunn et al. 2016). If so, they should be compared with and inte-
grated with existing tools that aim to reduce bycatch by produc-
ing risk maps; examples include Eguchi et al. (2017), TurtleWatch
(Howell et al. 2008, 2015), and WhaleWatch (Hazen et al. 2016;
Breivik et al. 2016). Both TurtleWatch and WhaleWatch are based
on satellite telemetry observations and known habitat prefer-
ences of sea turtles and blue whales, in contrast with the models
developed here that rely exclusively on fisheries observer data.
Fisheries observer data sets cover many more bycatch species

than those with satellite tagging programs, which means that
SDMs based on fisheries observer data may be more widely appli-
cable than those based solely on satellite telemetry, especially for
species with moderate to high bycatch rates. However, we found
that SDMs were less effective at predicting rare bycatch events
(e.g., yelloweye rockfish, loggerhead turtle, and leatherback turtle
in Fig. 2A). Bycatch occurs when nontarget species and fishing
gear co-occur, both of which are affected by various factors, such
as environmental conditions, economics, and behavior (Soykan
et al. 2014). Consequently, using fishery observer data combined
with animal movement data would provide a comprehensive data
set to develop predictive models of bycatch, and this may be a
prudent approach for species with low bycatch rates.

Future efforts to use spatial models to predict fisheries bycatch
risk should carefully consider the hierarchical structure common
to observer data sets with less than 100% coverage. In the typical
case where observers are placed on vessels on a trip-by-trip basis
and then observe all sets within a trip, the sets are likely not
independent (e.g., sets within the same trip, and trips on the same
vessel may be correlated). As done in this study, including spatio-
temporal correlation structure will account for some of the corre-
lation between sets within a trip because they are presumably
closer together in time and space. One approach is to include the
nested data structure in the model as random effects (Candy 2004;
Thorson et al. 2015b), although this can be more complicated than
it first appears (e.g., captains and crew transfer between vessels in
the HILL fishery, making it unclear whether including a vessel
effect is appropriate). Roberts et al. (2017) make an excellent case
for an alternative approach, using block cross-validation to ac-
count for spatial, temporal, and group dependence structure
when validating and selecting models. A related issue with the
delta-models used here is that they assume two independent pro-
cesses determine the probability and amount of bycatch (i.e., the
binomial and positive components of the delta-model). Thorson
(2018) and Cantoni et al. (2017) both recently demonstrated that
this is unlikely to be true and proposed solutions that include
parameters allowing for dependence between the binomial and
positive components. Another relatively simple approach is to use
the compound Poisson–gamma, or Tweedie distribution, which
outperformed the equivalent delta-GAM in a recent spatial by-

Fig. 7. GMRF-YEAR random field for bycatch probability of darkblotched rockfish from 2008 to 2012. [Colour online.]
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catch analysis (Stock et al. 2019). All of these solutions should
improve spatiotemporal bycatch predictions in the future.

Finally, just as single-species fisheries management paints a
rosier picture than can truly be implemented, the results pre-
sented here are unrealistic in their treatment of multispecies fish-
eries because bycatch prediction cannot be optimized for each
individual species simultaneously. These results are still useful if
fisheries managers are particularly concerned about a single spe-
cies, but less so if reducing bycatch of multiple species is the
objective. Both RF and GMRF models have multivariate extensions
that could fruitfully be applied to multispecies spatial bycatch
prediction, and future work should investigate this possibility
(Thorson et al. 2015a; Ishwaran and Kogalur 2018; Thorson and
Barnett 2017).
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Smoliński, S., and Radtke, K. 2017. Spatial prediction of demersal fish diversity in
the Baltic Sea: comparison of machine learning and regression-based tech-
niques. ICES J. Mar. Sci. 74: 102–111. doi:10.1093/icesjms/fsw136.

Soykan, C.U., Eguchi, T., Kohin, S., and Dewar, H. 2014. Prediction of fishing
effort distributions using boosted regression trees. Ecol. Appl. 24(1): 71–83.
doi:10.1890/12-0826.1. PMID:24640535.

Stefánsson, G. 1996. Analysis of groundfish survey abundance data: combining
the GLM and delta approaches. ICES J. Mar. Sci. 53(3): 577–588. doi:10.1006/
jmsc.1996.0079.

Stock, B.C., Ward, E.J., Thorson, J.T., Jannot, J.E., and Semmens, B.X. 2019. The
utility of spatial model-based estimators of unobserved bycatch. ICES J. Mar.
Sci. 76: 255–267. doi:10.1093/icesjms/fsy153.

Sumaila, U.R., Cheung, W.W.L., Lam, V.W.Y., Pauly, D., and Herrick, S. 2011.
Climate change impacts on the biophysics and economics of world fisheries.
Nat. Clim. Change, 1: 449–456. doi:10.1038/nclimate1301.

Thorson, J.T. 2018. Three problems with the conventional delta-model for bio-
mass sampling data, and a computationally efficient alternative. Can. J. Fish.
Aquat. Sci. 75(9): 1369–1382. doi:10.1139/cjfas-2017-0266.

Thorson, J.T., and Barnett, L.A.K. 2017. Comparing estimates of abundance
trends and distribution shifts using single- and multispecies models of fishes
and biogenic habitat. ICES J. Mar. Sci. 74: 1311–1321. doi:10.1093/icesjms/
fsw193.

Thorson, J.T., Scheuerell, M.D., Shelton, A.O., See, K.E., Skaug, H.J., and
Kristensen, K. 2015a. Spatial factor analysis: a new tool for estimating joint
species distributions and correlations in species range. Methods Ecol. Evol. 6:
627–637. doi:10.1111/2041-210X.12359.

Thorson, J.T., Shelton, A.O., Ward, E.J., and Skaug, H.J. 2015b. Geostatistical
delta-generalized linear mixed models improve precision for estimated
abundance indices for West Coast groundfishes. ICES J. Mar. Sci. 72: 1297–
1310. doi:10.1093/icesjms/fsu243.

Thorson, J.T., Skaug, H.J., Kristensen, K., Shelton, A.O., Ward, E.J., Harms, J.H.,
and Benante, J.A. 2015c. The importance of spatial models for estimating the

strength of density dependence. Ecology, 96: 1202–1212. doi:10.1890/14-0739.
1. PMID:26236835.

Thorson, J.T., Fonner, R., Haltuch, M.A., Ono, K., and Winker, H. 2017. Account-
ing for spatiotemporal variation and fisher targeting when estimating abun-
dance from multispecies fishery data. Can. J. Fish. Aquat. Sci. 74: 1794–1807.
doi:10.1139/cjfas-2015-0598.

Torgo, L. 2010. Data mining with R: Learning with case studies. Chapman and
Hall/CRC, Boca Raton, Fla.

Venables, W.N., and Dichmont, C.M. 2004. GLMs, GAMs and GLMMs: an over-
view of theory for applications in fisheries research. Fish. Res. 70(2): 319–337.
doi:10.1016/j.fishres.2004.08.011.

Wager, S., and Athey, S. 2017. Estimation and inference of heterogeneous treat-
ment effects using random forests. J. Am. Stat. Assoc. 113: 1228–1242. doi:10.
1080/01621459.2017.1319839.

Wager, S., Hastie, T., and Efron, B. 2014. Confidence intervals for random forests:
the jackknife and the infinitesimal jackknife. J. Mach. Learn. Res. 15: 1625–
1651.

Ward, E.J., Holmes, E.E., Thorson, J.T., and Collen, B. 2014. Complexity is costly:
a meta-analysis of parametric and non-parametric methods for short-term
population forecasting. Oikos, 123: 652–661. doi:10.1111/j.1600-0706.2014.00916.x.

Ward, E.J., Jannot, J.E., Lee, Y.W., Ono, K., Shelton, A.O., and Thorson, J.T. 2015.
Using spatiotemporal species distribution models to identify temporally
evolving hotspots of species co-occurrence. Ecol. Appl. 25: 2198–2209. doi:10.
1890/15-0051.1. PMID:26910949.

Watson, J.T., Essington, T.E., Lennert-Cody, C.E., and Hall, M.A. 2009. Trade-offs
in the design of fishery closures: Management of silky shark bycatch in the
Eastern Pacific Ocean Tuna fishery. Conserv. Biol. 23: 626–635. doi:10.1111/j.
1523-1739.2008.01121.x. PMID:19040650.

Welling, S.H., Refsgaard, H.H.F., Brockhoff, P.B., and Clemmensen, L.H. 2016.
Forest floor visualizations of random forests [online]. ArXiv e-prints. http://
arxiv.org/abs/1605.09196.

Wood, S.N. 2011. Fast stable restricted maximum likelihood and marginal like-
lihood estimation of semiparametric generalized linear models. J. R. Stat.
Soc. Ser. B: Stat. Methodol. 73(1): 3–36.

Wood, S.N. 2017. Generalized additive models: An introduction with R (2nd ed.).
Chapman & Hall/CRC, Boca Raton, Fla.

Appendix A
Appendix Figures A1–A6 appear on the following pages.
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Fig. A1. Binomial component predictive performance (AUC) for the
three random forest (RF) submodels for all six species. Modifications
designed for data with severely imbalanced classes, down sampling and
SMOTE, outperformed the default algorithm for the four species with
high or low bycatch rates (BLUE, LOGG, LEATH, and YEYE). Species are
sorted on the x axis by class imbalance (i.e., PHLB has the most
moderate bycatch rate (29%), and YEYE has the most extreme bycatch
rate (0.3%)). For blue sharks, the minority class is negative (sets with
zero bycatch, 3.8%). Species abbreviations: DBRK = darkblotched
rockfish, PHLB = Pacific halibut, YEYE = yelloweye rockfish, LOGG =
loggerhead turtle, LEATH = leatherback turtle, BLUE = blue shark.

Fig. A2. Binomial component predictive performance (AUC) for the
two GMRF models: CONSTANT (white, one random field constant
across years) and YEAR (grey, random field fit for each year). Fitting
random fields for each year (GMRF-YEAR) resulted in better model
performance (higher AUC) for species with moderate to high bycatch
rates (DBRK, PHLB, BLUE), but nearly identical performance for species
with few bycatch occurrences (YEYE, LOGG, LEATH). Species abbreviations:
DBRK = darkblotched rockfish, PHLB = Pacific halibut, YEYE = yelloweye
rockfish, LOGG = loggerhead turtle, LEATH = leatherback turtle, BLUE =
blue shark.
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Fig. A3. GMRF-CONSTANT random field for bycatch probability of the three US West Coast groundfish species (DBRK = darkblotched
rockfish, PHLB = Pacific halibut, and YEYE = yelloweye rockfish). The GMRF-CONSTANT model estimates one spatial field constant across years
from 2003 to 2012. Fitting a complex spatial field is less useful for species with very low bycatch rates (e.g., yelloweye rockfish, right panel,
nonzero bycatch in 143 out of 42 787 tows). In these cases, simply including linear and quadratic effects of latitude and longitude could
achieve nearly the same result. [Colour online.]

Fig. A4. Bycatch-to-target species catch ratio achieved for each species by using the binomial component of each delta-model to predict and
remove fishing sets in the test data, relative to the bycatch-to-target ratio with no fishing sets removed. Lines show median of 50 cross-
validation runs for each model class (fivefold cross-validation repeated 10 times). Lines are noisier for species with few bycatch events (e.g.,
YEYE, LOGG, and LEATH). Species abbreviations: DBRK = darkblotched rockfish, PHLB = Pacific halibut, YEYE = yelloweye rockfish, LOGG =
loggerhead turtle, LEATH = leatherback turtle, BLUE = blue shark. [Colour online.]
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Fig. A5. Distribution of blue shark bycatch by latitude. Above
41.5°N (red line), there were few observed fishing sets (26 out of
16 total), and these resulted in higher and more variable bycatch.
[Colour online.]

Fig. A6. Spatial spline correlograms of residuals from the (A)
binomial and (B) positive components of the delta-models. Positive
and negative values indicate positive and negative spatial
autocorrelation (Moran’s I), respectively, and y = 0 is the expected
value under the null hypothesis of no spatial autocorrelation. The
distance where the autocorrelation intersects (y = 0) is the
decorrelation distance, which is roughly 40 km for the Hawaii
longline species (blue shark = BLUE, loggerhead turtle = LOGG, and
leatherback turtle = LEATH) and 5 km for the West Coast groundfish
species (darkblotched rockfish = DBRK, Pacific halibut = PHLB,
yelloweye rockfish = YEYE). Calculations were made by package
“ncf” version 1.2-5 (Bjornstad and Falck 2001). [Colour online.]
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