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Abstract. Recovering small, endangered populations is challenging, especially if the drivers of declines
are not well understood. While infrequent births and deaths may be important to the outlook of endan-
gered populations, small sample sizes confound studies seeking the mechanisms underlying demographic
fluctuations. Individual metrics of health, such as nutritive condition, can provide a rich data source on
population status and may translate into population trends. We examined interannual changes in body
condition metrics of endangered Southern Resident killer whales (SRKW) collected using helicopters and
remotely operated drones. We imaged and measured the condition of the majority of all three social pods
(J, K, and L) in each of seven years between 2008 and 2019. We used Bayesian multi-state transition models
to identify relationships between body condition changes and both tributary-specific and area-based
indices of Chinook salmon abundance, and K-fold cross-validation to compare the predictive power of can-
didate salmon covariates. We found that Fraser River (tributary-specific) and Salish Sea (area-based) Chi-
nook salmon abundances had the greatest predictive power for ] Pod body condition changes, as well as
the strongest relationships between any salmon covariates and SRKW condition across pods. Puget Sound
(tributary-specific) Chinook salmon abundance had the greatest predictive power for L Pod body condition
changes, but a weaker relationship than Fraser River or Salish Sea abundance had with ] Pod body condi-
tion. The best-fit model for K Pod included no Chinook covariates. In addition, we found elevated mortal-
ity probabilities in SRKW exhibiting poor body condition (reflecting depleted fat reserves), 2-3 times
higher than whales in more robust condition. Collectively, these findings demonstrate that (1) fluctuations
in SRKW body condition can in some cases be linked to Chinook salmon abundance; (2) the three SRKW
pods appear to have distinct patterns of body condition fluctuations, suggesting different foraging pat-
terns; and (3) aerial photogrammetry is a useful early-warning system that can identify SRKW at higher
risk of mortality in the near future.

Key words: adaptive management; body condition; drones; foraging ecology; multi-state modeling; Orcinus orca;
photogrammetry; resident killer whale.
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INTRODUCTION

Endangered species with small population
sizes approaching extinction or local extirpation
present a diversity of management challenges
(Soulé 1987, Dennis 1989). When the causes of
population declines are not well established, it is
difficult to identify management strategies that
will prevent declines and promote recovery.
Studies of small populations by definition suffer
from sample size limitations (Walsh 2000, Brosi
and Biber 2009), complicating efforts to identify
stressors that may be influencing population
trends (Schonbrodt and Perugini 2013). For
example, infrequent births or deaths may have
dramatic impacts on population trends, but may
be too sparse to identify mechanisms. In these
cases, non-invasive metrics of individual health
can help identify drivers of population trends
and allow for management strategies that pre-
empt demographic casualties that impact popu-
lation viability, such as the loss of reproductive
females.

Nutritive condition in long-lived vertebrates
can provide a sensitive signal of short-term indi-
vidual or population health. Changes in condi-
tion may reflect changes in the environment or
foraging success, and persistent variation may
translate into population trends (Berger 2012,
Boulanger et al. 2013, Vindenes et al. 2014). Aer-
ial imaging technology has provided one exam-
ple of such non-invasive individual health
metrics (Perryman and Lynn 2002). Photogram-
metry with remotely controlled drones has been
used increasingly over the past 5-10 yr as drones
have become cheaper, safer, and more efficient
compared with traditional photogrammetry
using crewed aircraft (Durban et al. 2015). These
methods have been widely applied to both ter-
restrial and marine species (Goebel et al. 2015,
Hu et al. 2020). Working with marine or other
aquatic organisms is particularly challenging, as
individuals are highly mobile and may spend lit-
tle time near the surface where they can be
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imaged. Nevertheless, aerial photogrammetry
has been used to collect individual measure-
ments of marine mammal species including
investigations of life-history characteristics
(Christiansen et al. 2016, Groskreutz et al. 2019)
and nutritive condition (Christiansen et al. 2018,
Fearnbach et al. 2018, 2020). A strength of aerial
photogrammetry is that it can non-invasively
provide quantitative metrics of body condition at
the individual level (Durban et al. 2015, Fearn-
bach et al. 2018), which can be used to evaluate
the health or status of a large portion of a popu-
lation in near real time. These high-resolution
measures of condition and fitness may in turn
contribute to an understanding of the mecha-
nisms underlying demographic variability, for
example, by linking condition to reproductive
success (Christiansen et al. 2016) or mortality
(Christiansen et al. 2020).

Collecting individual health data from wild
populations may be challenging, particularly if
individuals cannot be identified or the popula-
tion is not censused. Killer whales (Orcinus orca)
represent an ideal case for relating individual
health metrics to the environment, as population
sizes are typically small, and individuals are
readily identifiable. One of the smallest popula-
tions of killer whales, the Southern Resident
killer whale (SRKW) population, is censused
annually and demographic characteristics (age,
sex) have been recorded for the entire population
since the mid-1970s (Center for Whale Research
2020). This small (n = 73) population of fish-
eating killer whales is found in the eastern north
Pacific (Ford et al. 1998) with a range including
coastal waters from central California to South-
eastern Alaska, and core summer habitat in the
Salish Sea between Puget Sound and Southern
Vancouver Island (National Marine Fisheries Ser-
vice 2019). Because of its small size and a decline
in abundance of approximately 25% since 1995,
the SRKW population is listed as endangered
under the Endangered Species Act (ESA) in the
United States and the Species-at-Risk Act (SARA)
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in Canada. The diet of SRKWs comprises primar-
ily Chinook salmon (Oncorhynchus tshawytscha),
although other species such as Coho salmon
(Oncorhynchus  kisutch), chum salmon (Oncor-
hynchus keta), halibut (Hippoglossus stenolepis),
and groundfish have also been identified in their
diets (Hanson et al. 2010, Ford et al. 2016). Three
main stressors are thought to be responsible for
SRKW population declines: (1) elevated levels of
environmental pollutants in their core habitat
range that could impact survivorship and repro-
ductive success (Krahn et al. 2009); (2) increasing
vessel noise and disturbance in the Salish Sea
which could interfere with communication and
foraging efficiency (Lusseau et al. 2009); and (3)
declining Chinook salmon populations and
therefore prey scarcity (Ford et al. 2010), which
in addition to direct effects could compound the
other stressors (e.g., Lundin et al. 2016).

Several studies have supported the hypothesis
that prey limitation is a primary threat to the
SRKW population, linking aggregates of Chi-
nook salmon abundance to both fecundity and
mortality (Ward et al. 2009, Ford et al. 2010,
Vélez-Espino et al. 2014, Wasser et al. 2017) as
well as to declines in adult body size (Fearnbach
et al. 2011, Groskreutz et al. 2019). However, the
range of both SRKWs and their salmon prey is
enormous, encompassing over 3000 km of coast-
line, and identifying the prey populations that
are most important for SRKWs is challenging.
Chinook salmon face a complex suite of stressors
including habitat modification and degradation
(Greene and Beechie 2004), restricted access to
spawning tributaries (Sheer and Steel 2006), fish-
eries pressure (Ruckelshaus et al. 2002),
increased natural mortality due to recovering
marine mammal populations (Chasco et al.
2017), variable at-sea survival (Losee et al. 2019,
Welch et al. 2021), and climate impacts (Crozier
et al. 2008). Chinook populations from four tribu-
taries within the SRKW range are themselves
listed as endangered in the United States or
Canada, with several others listed as threatened.
To date, no studies have been able to identify
relationships between specific salmon popula-
tions and SRKW survivorship or population
health (Pacific Fishery Management Council
2020).

Aerial photogrammetry can provide a precise
measure of individual killer whales’ nutritive
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condition by quantifying the relative amount of
adipose fat stored behind the cranium; as indi-
viduals decline in nutritive condition, they
metabolize adipose fat in addition to blubber
stores (Fearnbach et al. 2020). As such, pho-
togrammetry datasets potentially provide more
power to evaluate relationships between prey
abundance and population status compared with
efforts to link prey to infrequent births and
deaths. In this study, we used aerial photogram-
metry images of individually recognizable
SRKWs collected in 7 September field efforts
across 12 yr (2008-2019) to evaluate how
changes in body condition might be related to
the abundance of different Chinook salmon pop-
ulations. The SRKW population is composed of
three distinct collections of matrilineal family
units (hereafter referred to as J, K, and L pods;
Parsons et al. 2009), and we considered each pod
separately in our analyses based on previously
described differences in range and movement
patterns (National Marine Fisheries Service 2019,
Riera et al. 2019).

METHODS

Data collection

Aerial images of Southern Resident Kkiller
whales were collected in the Salish Sea near the
San Juan Islands, WA (Fearnbach et al. 2011, Gro-
skreutz et al. 2019) in the month of September in
each of seven years. Images were collected from
a manned helicopter in 2008 and 2013 (Fearnbach
et al. 2011, 2018) and using a drone in 2015-2019
(Durban et al. 2015, Fearnbach et al. 2020).
Briefly, vertical images were collected using a
digital camera at altitudes of 230460 m by heli-
copter and 25-45 m by drone. Despite changes in
aircraft platforms, all images were obtained with
a Normal lens to ensure a flat image with no
wide-angle distortion, with the specific camera
and lens chosen based on aircraft altitude to
achieve a water-level pixel resolution of 1-2 cm
(Durban et al. 2015). Research activities were per-
mitted by the National Marine Fisheries service
in the U.S. and the Department of Fisheries and
Oceans in Canada, and aerial photogrammetry
was approved as an observational (non-invasive)
method by the Institution Animal Care and Use
Committee of the NOAA Southwest Fisheries
Science Center Marine Mammal and Turtle
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Division. Individual whales can be identified by
unique markings that are visible from aerial
images, allowing measurements to be linked to
individual whales of known age and sex (Fearn-
bach et al. 2011, 2020, Durban et al. 2015). As a
quantitative metric of body condition, we used
the eye patch ratio (EPR), which is the ratio of
the pixel distance between the inside of the white
eye patch pigmentation at their anterior end rela-
tive to their distance at 75% of the eye patch
length, described in Fearnbach et al. (2020;
Fig. 1). The eye patch ratio is a sensitive metric of
nutritive condition as it measures the relative
amount of adipose fat stored behind the cra-
nium. As killer whales become nutritionally
stressed, they lose this adipose tissue along with
blubber fat reserves, resulting in lower EPRs, and
as such, this is a more sensitive metric of nutri-
tive condition in killer whales compared to other
commonly used metrics such as head width to
body length ratios (Fearnbach et al. 2020). Multi-
ple measurement-quality images were available
of a single whale on a given day and within
years, and we used the mean EPR for each whale
in each year because EPR calculations had very
low variability (e.g., typical coefficients of varia-
tion of 0.003-0.008 for within-year variability of a
given whale; Fearnbach et al. 2020).

Accounting for age and sex

To prepare the raw eye patch ratio data for
analysis, we first fit a generalized additive model
to the EPRs using the mgcv package (Wood
2006) in R (R Core Team 2016) to account for
expected variability in nutritive condition and
EPRs by age and sex. Age and sex data were
available from long-term demographic modeling
efforts (Center for Whale Research 2020). We fit
separate smooth terms to male and female EPRs
from whales aged 0-60 (Fig. 1). We used the raw
residuals (observed EPR minus mean EPR esti-
mated by the spline fit) as the basis for defining
body condition classes. Ages of a few mature
Southern Resident killer whale females that were
reproductive when monitoring began in the
1970s are not known precisely, so we calculated
residuals for those whales by subtracting
observed EPRs from the mean EPR of whales age
60+. We aggregated the residuals of all EPR
measurements from all pods across all years and
split that distribution into five equal quantiles,
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representing the age- and sex-normalized body
condition classes to be used in the multi-state
model, with body condition class 1 (BC1) being
the lowest 20% quantile and BC5 being the high-
est 20% quantile. Finally, we created a matrix of
individuals’ body condition classes by year,
including unsampled years 2009-2012 and 2014.
In unsampled years, and in years where a whale
was not photographed despite survey effort,
individual condition was logged as NA. Known
deaths from the annual census (Center for Whale
Research 2020) were also included in the matrix
to facilitate estimation of both age/sex- and
body condition-specific mortality probabilities.
Because photogrammetry data were collected in
September of each year, we considered deaths
that occurred between October and the following
September to belong to the following survey
year. For example, if a whale was measured in
September 2016 and died in November 2016, we
logged that death in the following time step of
the condition matrix, 2017, to allow the model to
account for the transition from the condition
measured in September 2016 to death. Two
known anthropogenic-related deaths were not
included in the model: whale ]34 died of blunt
force trauma in 2016 (Raverty et al. 2020) and
was measured in body condition class 5 the same
year; L95 died in 2016 of a fungal infection that
may have been associated with a satellite tag
attachment (Huggins et al. 2020) and was mea-
sured in body condition class 1 the previous year.
The condition matrix for those whales was left as
unknown (NA) after their last measurements, to
prevent them from influencing mortality proba-
bilities for their respective body condition classes
prior to death.

Statistical model

We developed a Bayesian multi-state modeling
framework to evaluate changes in body condi-
tion between years and the probability of mortal-
ity of different condition classes, after accounting
for differences in mortality by age and sex. All
modeling was performed in JAGS via R (Plum-
mer 2003) and built upon previous multi-state
modeling approaches (Kery and Schaub 2012).
The model estimated annual transition probabili-
ties between body condition classes, as well as
transitions from each body condition class to
death, which are the condition-specific mortality
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Fig. 1. Eye patch ratios by age and sex for Southern Resident killer whale individuals from all three pods dur-
ing the study period. The top panel shows the measured eye patch ratio by age for males (blue) and females (or-
ange). The spline fits for males (blue) and females (orange) were used to define body condition classes based on
residuals, while a mean eye patch ratio was used to calculate residuals for females aged 60+ that did not have
reliable age estimates (see Methods). Vertical dashed lines delineate the age and sex classes used to estimate age-
and sex-specific mortality probabilities. The series of images tracks the eye patch ratio (EPR) and body condition
class (BC) of adult female J17 from 2015 to 2018, demonstrating the observed decline in condition preceding her
death in summer 2019. The progression of J17’s eye patch ratios is highlighted in the top panel in larger, dark
orange circles connected by lines. The orange horizontal lines in the far-left image show how the eye patch ratio
is calculated (EP bottom divided by EP top), providing a metric of adipose fat behind the cranium as a proxy for
nutritive condition.

A decrease of one condition class was considered
decline (D), and decreases of two of more condi-

probabilities. An increase of one condition class
(e.g., BC 1-BC 2; BC 3-BC 4) was considered

growth (G). Increases of two or more condition
classes were considered multiple single Growth
steps, and their probabilities were therefore
exponentiated (e.g.,, BC 1-BC 3 = G BC 1-BC
4 = G%). Remaining in the same condition class
in two sequential years was considered stable (5).
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tion classes were exponentiated as with growth
transitions. The advantages of using power func-
tions for the G and D elements are that the num-
ber of parameters is reduced relative to an
unconstrained matrix, and transitioning across
multiple steps is constrained to be less likely than
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transitioning a single step. In order to make
population-level inferences from individual
changes in condition, all animals transitioning in
the same direction and magnitude contributed to
the same transition probabilities, regardless of
their starting condition class:

BC1 BC2 BC3 BC4 BC5 Dead

BCl S G Gf G G M,
BC2 Di S G G G My,
BC3 D} Di S G G M,
BC4 D} D! D S G My,
BC5 Df D} Di D; S Ms,

Dead 0 0 0 0 0 1

where rows are the condition class in year ¢ — 1,
columns are the condition class in year t, and the
matrix is populated by transition probabilities
for year t. To make the sum of each row equal to
1, we normalized each row by dividing each ele-
ment by its row sum (e.g., Cobb and Chen 2003,
Liu et al. 2008). Mortality probabilities M were
dependent on an individual whale’s age, sex, and
body condition. As a result, differences in mor-
tality probability based on age, sex, and body
condition slightly affected transition probabilities
during row normalization. This can be inter-
preted as making transition probabilities
between condition classes conditional upon a
whale surviving.

Mortality probability was estimated in two
steps: first based on the age and sex of a whale
and then based on the condition class of that
whale. We assigned an age class to each whale at
each time step in the model, following previous
classifications used for SRKW demographic
modeling (Ward et al. 2013). Both males and
females age 0-2 were defined as calves and 2-10
as juveniles. Females age 1044 were defined as
young females and 45+ as old females. Males age
10-22 were defined as young males and 23+ as
old males (Fig. 1). The baseline mortality proba-
bility for whales in each age class was defined as:

MBase,, ~ N[logit(MBase)/ 5]

]/V\IBase ~ u[or 1]

where Mg, is the baseline mortality probability
for a whale in age class a (of the 6 age/sex classes
defined above), which is normally distributed
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around the overall mean mortality probability,
Mpase, With variance o in logit space. We then
added a random effect of body condition such
that the mortality probability of a whale at a
given time step was calculated as:

M,‘,t = inv.logit(MBasei/f JrMbCM)

Mpe ~ N[0, o]

where M is the mortality probability (in propor-
tional space) for whale i at time t, Mgy is the
age-specific baseline mortality probability (in
logit space) for whale 7 given its age and sex class
at time ¢, and My, is the condition-specific effect
(in logit space) on baseline mortality for whale i
given its body condition class bc at time t. My,
for body condition class bc (1-5) is normally dis-
tributed around zero with variance ¢ in logit
space. After applying the random effect of body
condition to the whale’s baseline mortality prob-
ability, that sum is converted to proportional
space using the inverse logit transformation.

To incorporate salmon abundance covariates
into the model, we used a cumulative logit trans-
formation to allow covariates to have independent
relationships to growth and decline transition
probabilities while remaining bounded by [0, 1] in
proportional space. For growth and decline transi-
tions, we used the following equation:

Transitionc p= einterceptc+slopec xcovariate;+& ¢

where Transition is the uncorrected transition
probability in cumulative logit space of transition
type ¢ (i.e., G or D) at time f, intercept and slope
are the linear relationship terms for each transi-
tion type ¢, covariate is the salmon index at time
t, and ¢ is the residual error around the linear fit
for transition type c at time ¢, with

Ect ™~ N[O, G]

where the ¢ terms for each transition type c are
normally distributed around zero with variance
c. In the cumulative logit transformation, one
parameter must be fixed at 1 for identifiability,
which we applied to the probability of stable
condition (S):

Transitiong; =1

The uncorrected transition probabilities are
then transformed to proportional space so that
they are bounded by [0, 1]:
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Transition,;

Prob.;=———F"—
© Y Transition;

where Prob is the corrected probability for each

transition type c (G, D, and S) at time ¢.

Missing values of condition classes (included
as NA in the condition matrix) were estimated
by the model as part of the joint posterior distri-
bution and were treated as an unknown model
parameter or latent state. As the number of con-
secutive missing values for an individual whale
increases, the uncertainty in the posterior esti-
mates of those condition classes is also expected
to increase, as there will be more plausible condi-
tion sequences to link the observed conditions on
either side of the missing values. Because the
model requires condition classes in two consecu-
tive years in order to estimate a transition proba-
bility, this approach allowed us to include data
from whales with incomplete measurement his-
tories (and span the field sampling gap from
2009 to 2012) by using the model to probabilisti-
cally assign missing condition classes based on
estimated covariate relationships and condition
data before and after missing values.

Salmon covariates

We evaluated seven different Chinook salmon
abundance indices to identify potential relation-
ships between SRKW body condition and prey
availability. We only considered Chinook salmon
given the reported importance of Chinook to
SRKW life history and reproductive success
(Ward et al. 2009, Ford et al. 2010). We used esti-
mates of Chinook salmon abundance from a
model used to manage salmon harvest (Fishery
Regulation Assessment Model; FRAM; Pacific
Fishery Management Council 2008). The FRAM
model estimates the abundance of multiple west
coast salmon populations (or stocks) available to
fisheries, and its outputs were recently synthe-
sized with Chinook spatiotemporal distribution
models to generate indices of Chinook available
to killer whales by area, year, and season (Pacific
Fishery Management Council 2020).

We used three tributary-specific and four area-
specific Chinook indices (Pacific Fishery Manage-
ment Council 2020). In this framework, estimates
of Chinook are generated by season, correspond-
ing to the seasons in the FRAM model (October—
April, May-June, July-September). For all
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analyses, we used estimated starting abundances
on July 1st of each year, representing abundance
at the beginning of the summer season. SRKW
are imaged in September each year, so this sum-
mer index of abundance provides the closest
match to the true prey availability experienced
by whales prior to condition measurements. Fur-
thermore, condition at the time of measurement
is unlikely to represent the availability of prey
more than a few months prior, as SRKW condi-
tion is known to fluctuate seasonally, presumably
in response to foraging opportunities (Fearnbach
et al. 2020). We focused on three of the larger
tributary-specific indices (Fraser River, Columbia
River, and Puget Sound) and included all mod-
eled stock abundances originating from those
tributaries (Appendix S1: Table S1). We note that
there is no spatial component to the tributary-
specific indices. The four area-specific indices we
used were North of Cape Falcon (NOF), Oregon
(OR), the Salish Sea (Salish), and Southwest Van-
couver Island (SWVI) (Pacific Fishery Manage-
ment Council 2020). These area-specific indices
summed the model estimated abundances of all
Chinook salmon from all index stocks that were
estimated to be present.

Transition probabilities within the model were
related to the salmon index of the year that the
whales were transitioning into. For example, the
probability of growth (G) from condition class in
September 2014 to condition class in September
2015 was linked to estimated Chinook abun-
dance in the summer season (starting July 1st) of
2015. Given the observed differences in body
condition trends between SRKW pods, we ran J,
K, and L pods through the model separately,
each with the same seven candidate covariates to
identify potential relationships between each
pod and various salmon indices. To determine
whether there was support for the inclusion of
covariates on transition probabilities, we also
considered a null model (condition transition
probabilities fixed across all years) and a time-
only model (condition transition probabilities
estimated independently each year with no
covariate). Given the relatively small number of
deaths that occurred during the study period,
and previous studies that have assumed shared
mortality probabilities across pods (Ward et al.
2013), we also ran null and time-only models for
all pods combined to estimate population-wide
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mortality probabilities with body condition
effects. For each model, we ran three chains of
100,000 iterations each, with a burn-in of 50,000
iterations and thinning of 50 for a total of 3000
samples from the posterior distribution. We used
non-informative uniform priors for all parame-
ters (Mitchell and Beauchamp 1988) and con-
firmed model convergence using potential scale
reduction factors (Gelman and Rubin 1992; all
parameters PSRF < 1.05) and visual inspection
of chain convergence.

Model selection

To identify which (if any) Chinook salmon
covariates best predicted SRKW body condition
transitions, we used a K-fold cross-validation
approach (Vehtari et al. 2017). There are many
different ways to split training and test data sets
for cross-validation, depending on the goals of
inference. Because our focus is on the temporal
aspect, and in developing tools for making short-
term future predictions of body condition, we
treated data from each year iteratively as a fold.
For each pod and covariate combination, we ran
the multi-state condition transition model once
with each year of observed condition data held
out (n=7yr), using the remaining years of
observed condition data to fit the estimated con-
dition transition probabilities and covariate rela-
tionships. We then calculated the expected log
pointwise predictive density (ELPD) across all
held out years of observed body conditions
based on the conditions in the previous year and
the model-estimated transition probabilities, fol-
lowing (Vehtari et al. 2017). We performed K-fold
cross-validation for each of the pod and covariate
combinations, as well as for each pod with the
null and time-only models described above. In
addition to the computing the ELPD for each
model (models with the highest ELPD receive
the highest data support), we calculated the stan-
dard error, which is useful in quantifying the
uncertainty associated with model selection
(Vehtari et al. 2017).

ResuLTs
In the seven sampled years between 2008 and
2019, a total of 473 measurements of body condi-

tion were collected from 99 whales, which were
used in our analyses. We recorded a median of
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5 yr of body condition measurements for each
whale (range 1-7). A total of 47 deaths and 33
births were documented in SRKWs between 2008
and 2019, while a total of 29 deaths and 15 births
were documented in SRKWs during the same
7 yr as the aerial photogrammetry sampling
(Center for Whale Research 2020).

In general, K-fold cross-validation from our
Bayesian models suggested that killer whale
body condition is better predicted when salmon
covariates are included, relative to models with-
out salmon (J and L pods, Appendix SI:
Table S2). For models with salmon included, the
standard errors of the ELPD values exceeded the
difference in ELPD values among candidate
models, which makes it challenging to confi-
dently select one best-fit model. The high stan-
dard errors are likely due to having only seven
years of condition data with which to calculate
ELPDs, given that we considered an entire year
of condition data to be a fold. Consequently, we
also report the second best-fit model for each
pod (Appendix S1: Figs. S1-S3). Due to the com-
plexities of our model and the number of param-
eters, we present both the raw estimated
transition probabilities and aggregated Stable
and Growth transition probabilities. This group-
ing represents a positive transition group that
may be more useful for managers targeted at
preventing condition declines and maintaining
stable or increasing condition.

Fraser River Chinook was the best predictor of
J pod condition transitions (Fig. 2, Appendix S1:
Table S1), although the ELPD value of the Salish
Sea area-based Chinook abundance model fit
(which includes a large proportion of the Fraser
River stock) was almost identical. ] Pod had a
significant negative relationship between Fraser
River Chinook abundance and the probability of
declining condition (Decline), with 95.3% of pos-
terior draws for the slope term in the cumulative
logit regression < 0. There was no clear relation-
ship between Fraser River Chinook abundance
and the probability of increasing condition
(growth; 38.5% of posterior draws > 0), and
while the probability of stable condition appears
to have a positive relationship with Fraser River
Chinook, a slope term for S is not explicitly calcu-
lated in the cumulative logit regression. How-
ever, as the sum of the probabilities of growth
and stable condition is equal to 1 minus the
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probability of decline, we can infer that there is a
positive relationship between Fraser River Chi-
nook and positive condition transitions (growth
or stable condition; Fig. 2). When Fraser River
Chinook salmon abundance was above 750,000
fish, ] pod whales had a >0.86 median probabil-
ity of stable or increasing condition. That proba-
bility decreased at lower Fraser River Chinook
abundance, to a minimum 0.37 median probabil-
ity of increasing or stable condition when Fraser
River Chinook abundance fell to 347,000 fish.

The best-fit model for L pod included Chinook
Salmon from Puget Sound, and nearly all models
with salmon included outperformed the null
models (Appendix S1: Table S1). There was mod-
erate support for a negative relationship between
Puget Sound Chinook abundance and the proba-
bility of declining condition, with 88% of poste-
rior draws for the slope < 0. Similar to the
results for ] pod, there was no clear relationship
between this index of salmon abundance and the
probability of increasing condition (56.9% of pos-
terior draws > 0). Nevertheless, when Puget
Sound Chinook abundance was above 399,000
fish during the study period, L pod whales had a
0.82-0.89 median probability of stable or increas-
ing condition. At the second-lowest Puget Sound
Chinook abundance during the study period,
235,000 fish in 2015, L pod whales had a 0.32
median probability of stable or increasing condi-
tion. The major deviation from the positive linear
relationship between Puget Sound Chinook
abundance and condition transitions occurred in
2014, when Puget Sound Chinook was at its low-
est point during the study period (208,000 fish),
but L pod whales had a 0.60 median probability
of stable or increasing condition. Apart from
Puget Sound Chinook, all other models for L pod
that included salmon covariates (both tributary-
specific and area-based abundance) produced
potentially spurious results, where higher sal-
mon abundance was associated with declining
condition (e.g., Appendix S1: Fig. S3).

Unlike ] and L pods, the best-fit model for K
pod did not include salmon as a covariate, and
transition probabilities were held constant across
years. In this null model, the median fixed proba-
bility of increasing condition (growth) was 0.40
(95% highest posterior density intervals [HPDIs]:
0.33-0.47). The median probability of decline
was 0.31 (0.25-0.37), and the median probability
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of stable condition was 0.29 (0.21-0.38). The sec-
ond best-fit model for K pod included Puget
Sound Chinook abundance, although we note
that this covariate relationship produced rela-
tively constant condition transitions across years
(Appendix S1: Fig. S2). Nevertheless, there was a
significant positive relationship between Puget
Sound Chinook abundance and the probability
of increasing condition, with 94.93% of posterior
draws for the slope > 0. There was no clear rela-
tionship between Puget Sound Chinook abun-
dance and the probability of declining condition
(22.6% of draws <0), and the probability of stable
condition decreased with increasing Chinook
abundance (Appendix S1: Fig. S2). When Puget
Sound Chinook abundance was above 399,000
fish, K pod whales had a median 0.43-0.50 prob-
ability of increasing condition. In contrast, when
Puget Sound Chinook abundance was at a low of
208,000, K pod whales had a median 0.14 proba-
bility of increasing condition. However, the prob-
ability of the management-relevant combined
growth and stable condition remained relatively
constant across the study period (median 0.68-
0.78 probability; Appendix S1: Fig. S2).

While observations of body condition pro-
vided a relatively large sample size for estimat-
ing transition probabilities, deaths were
relatively uncommon during the 12-year study
period. Consequently, we estimated the effects of
age, sex, and body condition on mortality proba-
bilities by pooling all pods together and running
models without covariates (null and time-only).
There were 25 total deaths of whales that also
had measurements of body condition in at least
one year during the study period (12 in J pod, 3
in K pod, and 10 in L pod). 15 of those deaths
occurred in the time step immediately following
a body condition measurement. With data from
all pods combined, the null model had a higher
ELPD score than the time only model (Appendix
S1: Table S1) and was therefore used for esti-
mates of mortality probability. The median
expected mortality probabilities for whales in
each age/sex and body condition class are
reported in Table 1. The estimated mortality
probability of whales in body condition class 1
was 2-3 times higher than other body condition
classes (Fig. 3, Table 1). Mortality probability
decreased in condition class 2, was lowest in con-
dition classes 3 and 4, and increased slightly in
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Fig. 2. Body condition transition probabilities for Southern Resident killer whale J (a-d) and L (e-h) pods with
best-fit Chinook salmon covariates (Fraser River a-d and Puget Sound e-h). The best-fit model for K pod did not
include a covariate (see Results). Panels show the model-estimated relationships between Chinook salmon abun-
dance and the probability of a Decline in body condition (a, e), and the combined probability of Growth or Stable
body condition (b, f). The probability of Growth or Stable condition shown in b and f is the sum of the posterior
distributions for the probability of Growth (c, g) and the probability of Stable condition (d, h). Put simply,
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(Fig. 2. Continued)

b =c+ dandf = g + h. Points and vertical bars represent the median estimated transition probability with 95%
Highest Posterior Density Intervals. White circles indicate years with no photogrammetry measurements when
condition classes were estimated by the model. The light and dark shading represent the 95% and 50% HPDIs,
respectively, of the model-estimated relationship between salmon covariates and transition probabilities, along
with the median estimate of this fit (black line).

Table 1. Model-estimated mortality probabilities by body condition (BC) and age/sex class for Southern Resident

killer whales.

Age/sex class BC1 BC2 BC3 BC4 BC5
Calf 0.04 0.02 0.01 0.01 0.02
(0.004-0.177) (0.001-0.085) (0.001-0.066) (0.001-0.069) (0.002-0.105)
Juvenile 0.02 0.01 0.01 0.01 0.01
(0.003-0.060) (0.001-0.030) (0.000-0.025) (0.000-0.025) (0.002-0.037)
Young female 0.03 0.01 0.01 0.01 0.02
(0.009-0.081) (0.003-0.043) (0.001-0.033) (0.001-0.033) (0.005-0.048)
Old female 0.23 0.12 0.08 0.09 0.14
(0.069-0.595) (0.026-0.348) (0.010-0.261) (0.011-0.274) (0.042-0.406)
Young male 0.03 0.01 0.01 0.01 0.02
(0.006-0.105) (0.002-0.052) (0.001-0.039) (0.001-0.041) (0.003-0.062)
Old male 0.16 0.08 0.05 0.06 0.09
(0.047-0.432) (0.018-0.231) (0.006-0.171) (0.007-0.173) (0.026-0.267)

Note: Reported values are median estimates of the probability of mortality in a one-year time step, with 95% highest poste-

rior density intervals in parentheses.

condition class 5 to levels similar to condition
class 2. For example, based on the model esti-
mates, a Young Female whale has expected mor-
tality probabilities of: BC1 0.03 (0.009-0.081);
BC2 0.014 (0.003-0.043); BC3 0.009 (0.001-0.033);
BC4 0.01 (0.001-0.033); BC5 0.017 (0.005-0.048).
Of the whales that died during the study period,
condition class 1 whales died soonest after their
final condition measurement (mean 169 days),
while the time between measurement and esti-
mated death roughly increased with condition
class: mean 456, 790, 572, and 905 days for
classes 2-5, respectively (Fig. 4).

DiscussioN

The Southern Resident killer whale population
offers a unique study opportunity for individual-
based body condition monitoring, providing a
robust framework that can be extended to other
marine and terrestrial populations. Due to the
small population size, intensive demographic
monitoring, and known fates of virtually every
individual, paired with annual photogrammetry
measurements of most of the population, we
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were able to make direct estimates of the rela-
tionship between individual salmon stocks and
SRKW condition, and relate condition to survival
probability. While small demographic fluctua-
tions limit statistical power for identifying the
influence of covariates such as prey abundance,
aerial photogrammetry allows for more individ-
uals to be sampled in each year and repeatedly
sampled across years, increasing power to evalu-
ate changes in body condition against possible
drivers. In this case, we obtained more than ten
times as many observations of body condition as
observations of births and deaths in the seven
years of data collection. While our time series of
condition measurements was relatively short, we
posit that with continued annual monitoring this
method will provide sufficient statistical power
for even finer scale investigations of prey avail-
ability and population status (e.g., at the individ-
ual stock level rather than tributary-level
aggregates). Evaluating changes in body condi-
tion over time likely provides more insights into
drivers of population health than simply com-
paring single measures of condition (e.g., annual
population mean and variance) to potential

August 2021 ** Volume 12(8) *%* Article e03660



COASTAL AND MARINE ECOLOGY STEWART ET AL.

0.0
=
E
@
e}
e
m H
> 25
s
S
=
c
o
3 H
b -5.0
Calf Juvenile Young Female  Old Female Young Male Old Male
Age & Sex Class
4
2

Effect on Mortality Probability

([}
{ 1]
L 1]

2

BCH1 BC2 BC3 BC4 BC5
Body Condition Class

Fig. 3. Age/sex class- and condition-specific mortality probabilities for Southern Resident killer whales (all
pods combined). Calf and Juvenile age classes include both sexes. Violin plots represent the posterior distribu-
tions of the baseline age- and sex-specific mortality probabilities (top) and the effects of body condition class on
mortality probability (bottom). Inset boxplots represent the median (black horizontal bar), 50% HPDI (white
box), and 95% HPDI (vertical black lines). Note that the effects are estimated (and represented here) in logit space
before transformation to proportional space. See Table 2 for estimated mortality probabilities of each age/sex and
body condition class combination.
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when a whale was last measured and when it died, broken out by the condition class (BC1-5) that whales were
last recorded as before death. Points represent the time between final measurement and death for individual
whales, color coded by pod and jittered randomly on the y-axis.

covariates, given the ability of long-lived animals
such as killer whales to live through bottlenecks
in resource availability. In addition, there may be
inherent differences in baseline condition
between individuals, so evaluating individual
changes between years rather than raw condition
further accounts for individual variability.

Our cross-validation analyses suggest that, in
the case of ] and L pods, models including sal-
mon covariates better predicted held-out years of
body condition data than models without sal-
mon covariates. Given that salmon managers use
the FRAM model to generate pre-season esti-
mates of Chinook abundance by stock, the mod-
eling framework we present here could be used
to generate predictions of fall SRKW body condi-
tion based on those salmon abundance estimates,
quantify short-term risks to the population, and
identify potential management interventions.
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Our model results suggest the strongest correla-
tion between killer whale body condition and
prey is between the SRKW | pod and Chinook
salmon returning to the Fraser River. The Salish
Sea area-based Chinook index was essentially
tied for the best-fit ] pod model, which is unsur-
prising considering the Salish Sea index is typi-
cally made up of 40-50% Fraser-origin Chinook.
Over the last decade, when Fraser River Chinook
abundance was above 750,000 (estimated FRAM
Chinook model abundance on July 1st), ] pod
whales had a low chance (<14%) of declining
body condition. Such a target could be used in a
management setting to define thresholds sup-
porting the stability and recovery of this popula-
tion segment. For example, management actions
focused on habitat restoration that ensures effec-
tive anadromous migration and productivity of
Fraser River Chinook stocks could lead to gains
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in the nutritive condition of ] pod whales. In the
long-term, increasing urbanization of watersheds
(Greene and Beechie 2004), increasing abundance
of competing predators (Chasco et al. 2017),
interspecific competition with other salmon
stocks (Losee et al. 2019, Kendall et al. 2020), and
climate change (Crozier et al. 2008) all present
substantial threats to Fraser River Chinook abun-
dance.

The only positive, ecologically plausible rela-
tionship we found for L pod body condition was
with the Puget Sound tributary-specific abun-
dance index. This is surprising, given that L pod
is rarely in Puget Sound in the summer and
spends less time in adjacent inland waters during
the summer months than J or K pods (Riera et al.
2019), and Puget Sound origin Chinook are gen-
erally smaller and less numerically dominant
than other stocks (O’'Neill et al. 2014, Pacific Fish-
ery Management Council 2020). However, L pod
spends more time during the summer months in
the western strait of Juan de Fuca than ] or K
pods (Riera et al. 2019) and may be targeting
Puget Sound Chinook as they migrate from their
open ocean phase toward spawning tributaries.
The somewhat unique oceanic distribution of
Puget Sound Chinook along the west coast of
Vancouver Island (Weitkamp 2010, Shelton et al.
2019) may provide a reliable prey base in areas
or times when more dominant stocks (Columbia
and Fraser rivers) are less abundant. The rela-
tionship between L pod body condition transi-
tions and Puget Sound Chinook abundance was
weaker than the relationship between ] pod and
Fraser River Chinook. It is possible that L pod
targets Chinook from a variety of stocks as they
enter the strait of Juan de Fuca, which could
obscure the signal of the Puget Sound Chinook’s
influence on L pod body condition. However, L
pod body condition was negatively correlated
with all other tributary-specific and area-based
indices, including all Chinook salmon present in
the Southwest Vancouver Island region, which
presumably would be a better representation of
Chinook availability at the mouth of the strait of
Juan de Fuca. Previous analyses examining the
influence of specific Chinook stocks on SRKW
demographic rates found a significant relation-
ship between SRKW fecundity and both Puget
Sound and Fraser River Chinook abundance
(Vélez-Espino et al. 2014, Wasser et al. 2017),
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which further indicates the potential importance
of these stocks to the SRKW population.

We focused our modeling efforts on Chinook
salmon given their majority representation in
SRKW diets during the summer months prior to
our September condition measurements, but we
note that other salmon species such as Coho may
also be important to SRKW condition at other
times of the year (Hanson et al. 2010, Ford et al.
2016). As photogrammetry measurements
become available over a longer time period and
throughout the year, it may be possible to extend
this approach to evaluate the importance of other
prey species and stocks on SRKW condition,
including seasonal fluctuations in condition
between late summer and spring (Fearnbach
et al. 2020). Pink salmon have also been pro-
posed as a possible driver of a reported biennial
pattern of births and mortality in the SRKW pop-
ulation (Ruggerone et al. 2019). While pink sal-
mon are not a known prey species for SRKW, the
authors hypothesized that high densities of pink
salmon returning in odd years could interfere
with the ability of SRKW to target lower density
Chinook, potentially explaining reduced fecun-
dity and increased mortality in even years. There
is some evidence of declines in SRKW condition
in odd years, particularly in L pod (Appendix S1:
Fig. 56), which may lend support to the foraging
interference hypothesis and should be further
explored as more data become available.

The best-fit model for K pod had fixed body
condition transition probabilities across time and
included no salmon covariate. While the abun-
dance of K pod is lower than J or L pods, the pro-
portion of K pod with condition measurements
each year was high (Table 2), and we therefore
do not consider small sample size to be a likely
explanation for the absence of covariates in the
best-fit model. K pod may forage on a diverse
assemblage of prey that is not easily captured in
either tributary-specific or area-based indices of
Chinook abundance. However, the second best-
fit model for K pod included Puget Sound Chi-
nook and suggested a positive relationship
between Chinook abundance and the probability
of increasing body condition. Additional studies
of the fine scale distribution of Puget Sound Chi-
nook along Vancouver Island and the Washing-
ton coast, and their representation in the diets of
L and K pod whales during summer months
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Table 2. Number of Southern Resident killer whales
measured using aerial photogrammetry in Septem-
ber of each study year, and the percentage of each
pod imaged in parentheses.

Year J pod K pod L pod

2008 23 (92.0) 18 (94.7) 19 (46.3)
2013 25 (96.2) 18 (94.7) 25 (67.6)
2015 27 (100) 19 (100) 26 (74.3)
2016 28 (96.6) 19 (100) 35 (100)
2017 22 (91.7) 9 (50.0) 30 (85.7)
2018 23 (100) 18 (100) 29 (85.3)
2019 22 (100) 17 (100) 21 (61.8)

could improve our understanding of the impor-
tance of this stock to SRKW population health.
The major caveat to our findings is that body
condition is known to fluctuate over a period of
several months (Fearnbach et al. 2020). The three
SRKW pods forage on other salmon stocks in
winter and spring months (Hanson et al. 2010),
but the September body condition metrics, and
therefore the results of our analyses, most likely
reflect the effects of the summer foraging period
in the Salish Sea. Given the previously recorded
increase in body condition from May to Septem-
ber and decline from September to May (Fearn-
bach et al. 2020), we posit that SRKW may have
limited foraging opportunities over the winter
and spring months, and that summer foraging in
the Salish Sea may be the greatest driver of inter-
annual body condition changes. However,
SRKW may experience acute nutritional stress
during winter and early spring when prey avail-
ability is restricted. Extending photogrammetry
data collection throughout the year will help
identify seasonal patterns in body condition fluc-
tuations and may allow for comparative studies
on the importance of winter/spring versus sum-
mer prey availability to SRKW health, survivor-
ship, and reproductive success.

In addition to demonstrating the link between
salmon abundance and body condition of killer
whales, our model results show that whales in
poor condition are more likely to die. Our esti-
mated baseline mortality rates of whales in dif-
ferent age and sex classes are generally in line
with previous findings (Ward et al. 2013), with
old males and females experiencing the highest
mortality probabilities, and calves experienc-
ing slightly elevated mortality probabilities
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compared to juveniles and young whales. Our
model estimated somewhat higher mortality
probabilities for old females, and lower for old
males, calves, and juveniles than previous analy-
ses (Ward et al. 2013). These small differences are
most likely due to the shorter time series of
deaths included in our study (2008-2019 vs.
1979-2010) and the exclusion of whales that did
not have body condition measurements,
although we cannot rule out changes in mortality
probability by age and sex class in recent years.
Whales in condition class 1 had a mortality prob-
ability roughly 2-3 times higher than whales in
condition classes 2-5. Interestingly, condition
class 5 whales had a slightly elevated mortality
probability similar to condition class 2 whales.
The two whales that were observed in condition
class 5 at the time step immediately prior to
death died 317 (L53) and 349 (J14) days after
being imaged and may have experienced a sub-
stantial, unrecorded decline in condition during
that almost year-long period. Furthermore, while
we did account for age and sex effects on mortal-
ity probability, there are other factors aside from
age, sex, and nutritive condition that may con-
tribute to mortality probabilities, such as the
presence or condition of other whales in a matri-
line (Foster et al. 2012, Nattrass et al. 2019). The
majority of whales that died shortly after being
imaged were in condition class 1 (very poor con-
dition), while deaths of higher condition class
whales typically occurred longer after their last
measurement (Fig. 4). During the study period,
six whales in our photogrammetry dataset (J17,
J28, J50, ]J52, ]J54, and L67) were also recorded
from boat-based observations with a peanut
head appearance, exhibiting severely depleted
post-cranial fat stores (Fearnbach et al. 2018). All
six of these whales were categorized as condition
class 1 based on aerial photogrammetry mea-
surements, and all of them died within one year
of measurement (most within two months). This
suggests agreement between these two indicators
of terminal condition in killer whales. However,
three additional condition class 1 whales died
within a year after measurement and were not
recorded as peanut heads (K25, J§, and L92). Aer-
ial photogrammetry provides a quantitative—
rather than subjective—and potentially more
sensitive metric that can detect declines in condi-
tion and identify at-risk whales prior to the
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terminal peanut head phase that is detectable
from boat-based observations.

Interestingly, changes in condition for animals
from J and L pod were best explained by Chi-
nook indices that are asynchronous (Fraser River
and Puget Sound; Appendix S1: Fig. S4), while K
pod condition was best explained by constant
transition probabilities (or possibly Puget Sound
Chinook, similar to L pod). Our findings suggest
that the three pods behave differently in terms of
body condition fluctuations, which may be dri-
ven by independent foraging strategies. Recent
analyses of SRKW demographic data attempted
to relate births and deaths to a wide range of
Chinook salmon area-based indices (including
several of the area-based indices used in this
study), but found no significant relationships
(Pacific Fishery Management Council 2020). Our
results indicate that it may be advantageous for
similar future analyses of demographic fluctua-
tions to consider the three SRKW pods sepa-
rately. Furthermore, given the differences in
important prey indices reported here, it may be
more effective for management strategies to treat
the population of SRKWs as multiple manage-
ment units, as the most effective management
actions may be different for each pod based on
our findings.

In addition to identifying target prey abun-
dance levels to support SRKW recovery, aerial
photogrammetry can provide an early-warning
system that has the potential to serve as the basis
for dynamic and adaptive management strate-
gies. In an endangered population that had only
73 remaining individuals as of 2019, demo-
graphic casualties such as the death of a repro-
ductive female or a year with no successful births
can potentially have catastrophic consequences
for population viability. Management actions
that respond to these demographic casualties, as
opposed to preventing them, may be insufficient
to support population recovery. Our findings
show that aerial photogrammetry can be used to
identify at-risk individual whales, as well as to
collect an overall metric of population health
prior to mortality events that could be used to
inform management actions. For example, if a
large portion of the population is recorded in
body condition class 1 during September (e.g.,
more than 20% of the population, or some
threshold decided upon by managers), then
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fishery actions could be considered to increase
prey availability for SRKW pods over the next
year. Assessments of condition could be done in
near-real time with a lag of <3 months, rapidly
informing upcoming management strategies or
allowing for interventions at the individual level.
Short-term actions that may result in an increase
in Fraser Chinook abundance and accessibility
include spatiotemporal closures in areas of high
Fraser Chinook encounter rates or mark-selective
regulations, as a high proportion of the Fraser
stock aggregate is unmarked; and regulations
such as vessel noise caps and revised vessel traf-
fic regulations to reduce underwater noise and
improve SRKW foraging success (Joy et al
2019). Longer term proactive strategies to
increase Chinook abundance could include habi-
tat restoration and increased hatchery produc-
tion (Greene and Beechie 2004, Crozier et al.
2008).

In addition to influencing survivorship, body
condition is likely also tied to fecundity in killer
whales (Ward et al. 2009, Wasser et al. 2017).
Future work should examine the relationship
between reproductive success in the SRKW pop-
ulation and observed body condition, which
would allow for a full evaluation of the influence
of individual condition on overall population
viability and support further modeling and pro-
jection efforts to weigh the efficacy of candidate
management strategies. In addition, monitoring
body condition in other seasons could provide
insights into prey populations that may be
important to the SRKW population in winter and
spring months. As the time series of condition
measurements grows, it may be possible to eval-
uate the relationship between SRKW condition
and finer scale Chinook stock groupings and
other prey species.

It may not be possible to apply the approach
used in this study to larger, more widely ranging
populations of marine mammals where repeated
measurements of individuals and samples from
a large portion of the population are not feasible.
Instead, the average body condition of a random
sample of the population may be achievable and,
based on our findings, can likely serve as a proxy
for short-term, relative population health. In
addition, we posit that rapid changes in average
body condition within a population can be used
as an early-warning indicator of upcoming
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demographic fluctuations, given our findings
that individuals in poor condition have higher
mortality probabilities. The use of body condi-
tion as an indicator of population health shows
promise for use in cetacean populations that
have long-term photogrammetry datasets and
experience substantial population fluctuations,
such as eastern north Pacific gray whales (Perry-
man and Lynn 2002, Christiansen et al. 2020),
which may help validate its use as a preceding
signal of demographic impacts and support the
development of adaptive management strategies.
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Data and code to run multi-state models can be found at: https://github.com/stewart6/SRKW-MultiState
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