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ABSTRACT

Aim Ecological niche modelling can provide valuable insight into species’ envi-
ronmental preferences and aid the identification of key habitats for populations
of conservation concern. Here, we integrate biologging, satellite remote-sensing
and ensemble ecological niche models (EENMs) to identify predictable foraging
habitats for a globally important population of the grey-headed albatross
(GHA) Thalassarche chrysostoma.

Location Bird Island, South Georgia; Southern Atlantic Ocean.

Methods GPS and geolocation-immersion loggers were used to track at-sea
movements and activity patterns of GHA over two breeding seasons (n = 55;
brood-guard). Immersion frequency (landings per 10-min interval) was used to
define foraging events. EENM combining Generalized Additive Models (GAM),
MaxEnt, Random Forest (RF) and Boosted Regression Trees (BRT) identified
the biophysical conditions characterizing the locations of foraging events, using
time-matched oceanographic predictors (Sea Surface Temperature, SST; chloro-
phyll a, chl-a; thermal front frequency, TFreq; depth). Model performance was
assessed through iterative cross-validation and extrapolative performance
through cross-validation among years.

Results Predictable foraging habitats identified by EENM spanned neritic
(<500 m), shelf break and oceanic waters, coinciding with a set of persistent
biophysical conditions characterized by particular thermal ranges (3-8 °C, 12—
13 °C), elevated primary productivity (chl-a > 0.5 mg m ) and frequent man-
ifestation of mesoscale thermal fronts. Our results confirm previous indications
that GHA exploit enhanced foraging opportunities associated with frontal sys-
tems and objectively identify the APFZ as a region of high foraging habitat
suitability. Moreover, at the spatial and temporal scales investigated here, the
performance of multi-model ensembles was superior to that of single-algorithm
models, and cross-validation among years indicated reasonable extrapolative
performance.

Main conclusions EENM techniques are useful for integrating the predictions
of several single-algorithm models, reducing potential bias and increasing confi-
dence in predictions. Our analysis highlights the value of EENM for use with
movement data in identifying at-sea habitats of wide-ranging marine predators,
with clear implications for conservation and management.

Keywords
albatross, biologging, Boosted Regression Trees, front map, generalized addi-
tive models, habitat model, Random Forest, satellite remote sensing.

DOI: 10.1111/ddi.12389
212 http://wileyonlinelibrary.com/journal/ddi © 2015 John Wiley & Sons Ltd



INTRODUCTION

Ecological niche modelling (also referred to as species-habitat,
predictive habitat, habitat-based and species distribution mod-
elling) provides a framework for understanding species’ dis-
tributions as a function of their environmental preferences.
Understanding the mechanisms that underlie environmental
preference is particularly challenging for wide-ranging species
with complex life histories, especially in the marine realm
where conditions are highly dynamic. Recent efforts to inte-
grate animal tracking (‘biologging’), satellite remote-sensing
and ecological niche modelling have generated valuable
insights into the interactions between wide-ranging marine
species and their oceanic environment (e.g. Howell et al.,
2015; Raymond et al., 2015; Torres et al., 2015). However,
most studies utilize a single modelling framework with its
specific biases, reducing the comparability of results and
potentially limiting predictive capacity. An alternative is to
adopt an ensemble ecological niche modelling approach
(EENM; Aratjo & New, 2007), which combines the output
of multiple algorithms into one predictive surface and has
been used successfully for identifying key habitats of marine
predators, including sea turtles (Pikesley et al., 2013) and
seabirds (Oppel et al., 2012).

Predicting the locations of suitable foraging habitats for
wide-ranging pelagic species such as procellariiform seabirds
(albatrosses, petrels and shearwaters) is non-trivial, given the
complex and scale-dependent interactions between oceano-
graphic processes and prey field dynamics, and the diverse
aspects of bird physiology, energetics, reproductive and other
constraints that govern foraging behaviour. The spatial ecol-
ogy of pelagic seabirds appears to be influenced by processes
both extrinsic and intrinsic to each individual. For example,
habitat preferences of Southern Ocean seabirds vary among
species (Commins et al., 2014), populations (Nel et al., 2001;
Louzao et al., 2011; Joiris & Dochy, 2013) and individuals
(Phillips et al., 2006; Patrick & Weimerskirch, 2014);
between sexes (Phillips et al., 2004); between life history
stages (Phillips et al., 2005); through the annual cycle (Phil-
lips et al., 2006; Wakefield et al., 2011); and in response to
changes in oceanographic conditions (Xavier et al, 2013).
Ecological niche modelling must be conducted with an
awareness of the multifaceted influences on habitat selection
if it is to be informative for identifying and managing prior-
ity areas for conservation (Lascelles et al., 2012).

The energetic demands of reproduction are known to
strongly influence habitat selection by pelagic seabirds during
breeding phases. The constraints of incubation and chick
provisioning impose a central place foraging mode, as trips
are restricted to waters within an accessible range of the col-
ony (Weimerskirch et al, 1993). Individuals face trade-offs
between the costs of flight and the necessity for reliable
acquisition of prey of sufficient quality to meet the demands
of chick provisioning in addition to their own energetic
requirements, including for self-maintenance (Weimerskirch
et al., 1997). These constraints are particularly pronounced

Diversity and Distributions, 22, 212-224, © 2015 John Wiley & Sons Ltd

Ensemble models of habitat suitability

during the brood-guard period, when chicks require contin-
ual attendance by a parent to avoid chilling, are at their most
vulnerable to predation and have a small stomach volume so
they require frequent meals (Weimerskirch et al, 1988;
Xavier et al., 2003; Wakefield et al., 2011).

Breeding success is therefore conditional upon the abilities
of each bird to predict the locations of suitable foraging
habitats within a commutable distance of the colony. The
oceanic seascapes over which pelagic seabirds search for food
are highly heterogeneous (Fauchald et al., 2000; Weimer-
skirch, 2007). Suitable foraging habitats that include prey of
sufficient number and quality accessible within the diving
capabilities of the species are formed by stochastic biophysi-
cal processes; hence, the locations of exploitable prey aggre-
gations are usually unpredictable at fine spatial scales (Hazen
et al., 2013). However, there is evidence to suggest that some
species, particularly albatrosses, may target or track regions
in which the availability of prey resources is related to persis-
tent oceanographic conditions and hence predictable over
broad- to mesoscales, thus optimizing foraging success (Piatt
et al., 2006; Weimerskirch, 2007; Kappes et al., 2010; Louzao
et al., 2011).

Grey-headed albatrosses (GHA) Thalassarche chrysostoma,
in common with many Southern Ocean predators, have been
shown to exploit predictable foraging opportunities gener-
ated through biophysical coupling along ocean fronts — phys-
ical interfaces between contrasting water masses (Belkin
et al., 2009; Bost et al., 2009). The Antarctic Polar Frontal
Zone (APFZ), an extensive, dynamic region that marks the
northern boundary of the Antarctic Circumpolar Current
(ACCQ), is known to be an important feature for seabirds and
marine mammals in this sector of the Southern Ocean (Catry
et al., 2004; Wakefield ef al., 2011; Schefter et al., 2012).
Within the broadscale APFZ, intense oceanographic dynam-
ics lead to the generation of chaotic eddies and the manifes-
tation of mesoscale (10s-100s of kilometres) or submesoscale
(~1 km) thermohaline fronts. Aggregations of prey, such as
the mesopelagic fish and cephalopods often targeted by
GHA, can be concentrated within this zone, both through
processes of mechanical entrainment and bottom-up forcing
(Rodhouse & White, 1995; Reid et al., 1996; Catry et al.,
2004; Rodhouse & Boyle, 2010). Areas of frequent or persis-
tent frontal activity, such as the APFZ, may therefore consti-
tute predictable foraging habitats for regional populations of
wide-ranging predators.

Here, a novel application of EENM is developed, using
high-resolution data tracking the movements and activity
patterns of GHA from the largest global colony, to identify
persistent oceanographic conditions that characterize forag-
ing habitats within the area accessible to breeding birds. We
use a suite of remotely sensed oceanographic data, including
the first regional application of a thermal front frequency
index, in an iterative presence—availability model framework,
with the following aims: (i) to identify the biophysical condi-
tions that characterize the locations of observed foraging
events; (ii) to model the spatial distribution of predictable
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foraging habitats, (iii) to explore the comparative utility of
EENM and single-algorithm models in the context of using
movement data to define foraging habitats of wide-ranging
species over broad- to mesoscales and (iv) to evaluate the
extrapolative performance of EENM through time.

METHODS

Device deployment

Birds were tracked from Colony B at Bird Island, South
Georgia (54°00'S 38°03'W) over December—January of two
austral breeding seasons, during the brood-guard phase (total
n =55 birds; n =25 in 2009/2010; n = 30 in 2011/2012;
Fig. 1). GPS loggers used were i-gotU (MobileAction Tech-
nology; http://www.i-gotu.com; 25 g mass), earth & Ocean
Technology (e&O-Tec) MiniGPSlog (25 ¢g) or e&O-Tec
MicroGPSlog (10 g) and were attached using Tesa® marine
cloth tape (total 5 g) to mantle feathers. Devices were pro-
grammed to record fixes at 10- or 15-min intervals and were
recovered after one complete foraging trip. Birds were also
loggers  (British
Antarctic Survey; Mk 13; ~1.5 g mass), attached to a stan-

equipped with geolocation-immersion

dard British Trust for Ornithology metal or plastic ring.
Birds were restrained on the nest only during device deploy-
ment, and handling time during deployment and retrieval
was minimized (5-10 min).

Behavioural classification

Landing rate (number of landings per 10-min interval)
derived from the immersion data was used to identify forag-
ing bouts (following Dias et al., 2011). Take-off from the
water surface is energetically costly for albatrosses, so we

assumed that immersion events indicated prey capture
attempts (following Wakefield et al., 2011). Empirical evi-
dence from previous work on this population shows that
birds frequently catch prey in rapid directed flight without
any obvious area-restricted search (ARS) behaviour (Catry
et al., 2004), so we used landing rate in preference to identi-
fying ARS.

Locations of immersion events were derived through tem-
poral matching of GPS and immersion data. As birds rest on
the water surface overnight (Catry et al., 2004), only locations
recorded in daylight hours were used (bounded by civil dawn
and dusk; solar zenith of —6°). All locations within a 50 km
radius of the colony were excluded from analysis to remove
rafting behaviour. GPS tracks were interpolated to regular 10-
min intervals. Landing rate was derived using a sliding window
that summed the immersion events in the 10-min preceding
each GPS location. Interpolated point locations along each
track were then classified as either foraging — associated with at
least one immersion event— or transit.

The study area was defined as the region enclosed by a
radius corresponding to the whole data set absolute maxi-
mum displacement from the colony (1185 km). To resolve
the spatial distribution of foraging events, a two-dimensional
regular grid of the study area (71°S to 32°S; 55°W to 21°W)
was created at 0.5° resolution. Grid cells in which foraging
events were recorded were designated as 1, and grid cells
that contained transit locations, or no bird presence, were
designated as 0. All analyses were conducted in R version
3.1.

Oceanographic data

Remotely sensed oceanographic data were obtained for a
matching time span (late December—end January) for each

(b)
45°S — —
50°S — —
55°8 — —
60°S — —
0 100200 km
I I I I I I I
45°W 40°W 35°W 50°W 45°W 40°W 35°W

Figure 1 GPS tracking of grey-headed albatrosses (GHA) from Bird Island, South Georgia. Trips used to identify the spatial
distribution of foraging events during the (a) 2009/2010 (n = 25) and (b) 2011/2012 (n = 30) breeding seasons (brood-guard phase).
Birds for which sexes are known are highlighted in orange for female (n = 3, 2009/2010, n = 2, 2011/2012) and green for male (n = 5,

2009/2010; n = 3, 2011/2012).
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tracking period (2009/2010; 2011/2012). Daily NASA Multi-
Sensor Merged Ultra-High Resolution (MUR) Sea Surface
Temperature (SST) imagery was downloaded via OpenDAP,
and daily chlorophyll-a (chl-a) imagery was processed from
MODIS-Aqua data; both were mapped to the study area in
geographic projection at 1.2-km resolution. Daily images
were used to generate monthly median SST and chl-a (log
scaling) composites. Bathymetric data were obtained for a
matching spatial extent from the General Bathymetric
Chart of the Oceans (GEBCO_08 grid; http://www/gebco.net)
and used to derive depth at 30 arc second resolution.
Thermal composite front maps (Miller, 2009) were
generated from MUR SST data, over rolling 7-day periods

Ensemble models of habitat suitability

spanning the tracking period. Thermal fronts were detected
in each MUR SST scene using single-image edge detection
(SIED; Cayula & Cornillon, 1992; front detection thresh-
old = 0.4 °C). Successive 7-day composites were used to pre-
pare monthly front frequency (TFreq) layers, which quantify
the frequency with which a front is detected in each pixel as
a ratio of the number of positive detections to the number
of cloud-free observations. All environmental data layers
were standardized at 0.5 degree resolution through bilinear
interpolation (‘raster’ package for R; Hijmans & Etten, 2012;
Fig. 2). Oceanographic data layers were selected on the basis
of availability, coverage and previously demonstrated
influence on habitat selection by GHA and sympatric seabird

Figure 2 Environmental data layers for

brood-guard period (end December—end
January). Dynamic variables, (a) Sea
Surface Temperature (SST, °C; monthly
median composite) for 2009/2010, (b)
chlorophyll-a (chl-a, mg m ™~ monthly
median composite; log transformed), for
2009/2010 and (c) thermal front
frequency (TFreq, % time; 0.4°C front
detection threshold; monthly synoptic
composite) for 2009/2010. (d—f) Dynamic
variables for 2011/2012. (g) GEBCO
Depth (30 arc-second resolution).

Diversity and Distributions, 22, 212-224, © 2015 John Wiley & Sons Ltd

8000

7000

6000

5000

4000

3000

2000

1000

o

215


http://www/gebco.net

K. L. Scales et al.

species (e.g. Xavier et al., 2003; Phillips et al., 2006; Wake-
field et al., 2011; Ballard et al., 2012).

Ensemble ecological niche modelling (EENM)

Previous work concluded that an ensemble approach is
preferable to the use of single-algorithm models for predict-
ing seabird habitat affinities (Oppel et al., 2012). However,
the technique has not, to our knowledge, yet been used to
identify predictable foraging habitats using movement data.
We used EENM with movement data to identify the bio-
physical conditions characterizing the locations of foraging
events. Ecological niche models were fitted using the
Generalized Additive Models (GAM), Maximum Entropy
(MaxEnt), Random Forest (RF) and Boosted Regression Tree
(BRT) algorithms within the biomod2 package for R
(Thuiller et al., 2009, 2014).

The package ‘biomod2’ uses a presence—availability frame-
work to model habitat suitability. As grid cells in which
no foraging events were detected cannot be classified as true
absences, control locations (pseudo-absences) were iteratively
resampled from within the study area. Five iterations of
1000 randomly selected control locations were used over
successive model runs (Barbet-Massin, 2012). Each model
run involved 10-fold cross-validation, with data randomly
apportioned to a 75%/25% split for model calibration and
testing phases.

Relative importance of environmental variables was deter-
mined using the built-in method in biomod2, which over-
comes difficulties associated with comparing model-specific
outcomes through a randomization procedure (Thuiller
et al., 2009, 2014). This protocol fits a Pearson correlation
between fitted values and predictions, where each variable
has been randomly permutated. If the two are correlated, the
variable is considered of little importance. This procedure
was repeated 10 times for each variable within each model
run. The relative importance of each environmental variable
(relative importance of the contribution to the model coeffi-
cients, RICC) was then scaled by subtracting the mean corre-
lation coefficient from 1. The overall explanatory power of
the environmental variables was derived using the mean-of-
means of standardized variable importance over all iterations
per algorithm (Table S1).

Outputs of each single-algorithm model were evaluated
over both model calibration and testing data sets for each
model iteration. A triad of performance metrics (AUC, TSS
and Boyce Index) was generated for each iteration per algo-
rithm, and we calculated the mean of each metric over each
iteration of control locations and mean of each metric over
all models fit per algorithm (n = 50; 10-fold cross-validation
for each of 5 iterations of control locations; Tables S3 and
S4). Only those with a True Skill Statistic (TSS) equal to or
greater than 0.7 were included in the final ensemble. Ensem-
ble projections were created using a weighted average across
all single-algorithm models, based on TSS, and accounting
for differences in algorithm performance. EENM projections
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were based on a habitat suitability index (HSI), scaled
between 0 and 1, where 1 represents greatest suitability.

Resultant EENMs were then evaluated, using AUC, TSS
and Boyce Index (Boyce et al., 2002; Hirzel et al., 2006). We
calculated all performance metrics for each EENM fitted to
the full data set from each year. AUC and TSS were calcu-
lated using in-built biomod2 functionality. Boyce Index was
calculated through projection of each model on to the full
data set for each year (‘ecospat’ package for R; Broenniman
et al., 2014) to obtain a value comparing model predictions
of HSI with the input presence data set in each case.

EENM extrapolative performance

EENM extrapolative performance was assessed through
cross-validation between the two years for which we had
data. We projected each model on to the combined synoptic
environmental data surfaces for the contrasting year to that
upon which the model was constructed. Performance metrics
(AUC, TSS and Boyce Index) were calculated for each of
these projected models. Spatial concordance between predic-
tions of models extrapolated across time and year-specific
models was quantitatively compared using Mantel tests (ade4
package for R; Dray & Dufour, 2007).

RESULTS

Foraging trips

Maximum displacement from the colony ranged between
153 km and 1185 km, with a mean =+ SD of 744 4+ 249 km.
Trip duration ranged between 0.6 and 6.1 days, with a mean
of 2.9 &+ 1.3 days. All trips involved at least one foraging
event (based on landing rate derived from the immersion
data), with a mean of 6.1 £ 3.7 foraging events per trip
(range 2-17). Sex was available for a small subsample of
tracked birds (n = 8, 2009/2010; n = 5, 2011/2012), in which
no differences in foraging trips between sexes were detected
(Fig. 1). Given the small sample of known sex, sex effects
were not included in further population-level analyses.

Predictable foraging habitats

Median SST and chl-a concentration were important con-
tributory variables to EENMs constructed for both years of
the study, suggesting these biophysical variables influence
albatross foraging habitat selection over the scales investi-
gated by our models (Table 1). However, the overall
explanatory contribution of chl-a to the 2011/2012 EENM
(RICC = 0.150) was lower than its contribution to the 2009/
2010 EENM (RICC = 0.585), and the inverse was observed
for the contribution of SST to each EENM (RICC, 2009/
2010 = 0.577; RICC, 2011/2012 = 0.744). The relative contri-
butions of water depth and the frequency of mesoscale ther-
mal front manifestation (TFreq) to the explanatory
capabilities of the EENM were lower than that of SST and

Diversity and Distributions, 22, 212-224, © 2015 John Wiley & Sons Ltd
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Table 1 Variable importance (mean over all model sets per algorithm), scaled as relative importance of contribution to model
coefficients (RICC), from 0 to 1. Variable importance rankings in brackets

Variable importance, 2009/2010

Variable importance, 2011/2012

SST Chl-a TFreq Depth SST Chl-a TFreq Depth
GAM 0.61396 (1) 0.4570 (2) 0.06512 (4) 0.17284 (3) 0.92174 (1) 0.09860 (3) 0.07752 (4) 0.16574 (2)
MaxEnt 0.45498 (2) 0.48992 (1) 0.06060 (4) 0.12338 (3) 0.55658 (1) 0.21478 (3) 0.31830 (2) 0.18928 (4)
RE 0.46120 (2) 0.52012 (1) 0.08466 (4) 0.16598 (3) 0.51792 (1) 0.27812 (2) 0.24914 (3) 0.20358 (4)
BRT 0.5644 (1) 0.56014 (2) 0.01672 (4) 0.05316 (3) 0.59350 (1) 0.29776 (2) 0.22872 (3) 0.0805 (4)
EENM 0.577 (2) 0.585 (1) 0.037 (4) 0.086 (3) 0.744 (1) 0.150 (3) 0.155 (2) 0.100 (4)
1.0
40°8
45°8
Figure 3 Spatial predictions of 5008
ensemble ecological niche models 5505 _|
(EENMs) and cross-validation among
years. Spatial predictions of final EENM 60°S —
(weighted mean, removal of MaxEnt o5
predictions) for (a) 2009/2010 and (b) ’
2011/2012. Cross-validation of (c) 2009/
2010 EENM onto 2011/2012
environmental conditions and (d) 2011/
2012 EENM onto 2009/2010
environmental conditions. Spatial
predictions displayed as habitat
suitability index (HSI) per grid cell,
scaled from 0 to 1. Greater similarity
between (a, b) and (¢, d) indicates better Zank T T T —-0.0
50°W  40°W  30°W

EENM transferability among years.

chl-a across both years, although TFreq and depth were more
important to the 2011/2012 model set (RICC, TFreq = 0.155,
RICC, depth =0.100) than for 2009/2010 (RICC,
TFreq = 0.037; RICC depth = 0.086).

Spatial predictions of EENMs identified suitable foraging
conditions across neritic (<500 m depth), shelf break and
oceanic regions, reflecting the variety of foraging locations
used by birds tracked in both breeding seasons (Fig. 3).
EENM-derived spatial predictions of habitat suitability were
similar in extent, distribution and scaling among years
(Fig. 3a,b). Regions of high habitat suitability were associated
with particular SST ranges (3-8 °C, 12-13 °C) and productive
regions (median chl-a > 0.5 mg m~>). The APFZ (Fig. 2e,f)
was also identified as an area highly suitable for foraging in
both years (Fig. 3), although this zone lies at the extremes of
the area accessible to birds during brood-guard (Fig. 1).

EENM vs. single-algorithm models

Model predictions

The ranking of environmental variables (mean over 50 runs
per algorithm) was broadly comparable among single-algo-

rithm models, although some variability was evident

Diversity and Distributions, 22, 212-224, © 2015 John Wiley & Sons Ltd

(Table 1). For example, ranking of variable importance was
similar among GAM, RF and BRT models in both years, but
notably different for MaxEnt models. EENM rankings
smoothed over the algorithm-specific variability. However,
explanatory contributions of environmental variables were
ranked differently by year-specific EENMs (Table 1).

Model response curves for each variable were comparable
among algorithms. GAM, RF and BRT in particular gener-
ated model sets with very similar response curves for SST,
TFreq and depth, although less consistency among algorithms
is evident in chl-a response curves (Fig. 4). MaxEnt models
were subject to greater inconsistency in predicted responses
(Figs S1-S3).

Similarly, spatial predictions of models fitted using the
GAM, RF and BRT algorithms were comparable in the extent
and distribution of predicted high suitability habitats, and in
the scaling of the habitat suitability index (HSI) in these
regions (Fig. 5). MaxEnt models, however, generated more
spatially restricted predictions with overall lower HSI
throughout the accessible area. For these reasons, we did not
include MaxEnt in the final EENMs. The distribution, extent
and scaling of suitable habitats identified in EENM predic-
tions integrated the predictions of GAM, RF and BRT,
smoothing over algorithm-specific variation (Fig. 3). EENM
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Probability of observing foraging event at location

T T T T
min max min max

Figure 4 Model Response Curves for SST in 2011/2012 model
sets, per algorithm, (a) GAM, (b) RF, (c) BRT, (d) MaxEnt.

predictions showed a strong spatial concordance in the loca-
tion and extent of suitable habitats identified in each year
(Fig. 3; HSI, Mantel r = 0.9599).

Model performance

EENMs were highlighted by AUC and Boyce Index as the
best performing models in comparison with all single-algo-
rithm models, in both years. However, the True Skill Statistic
(TSS) selected Random Forest (RF) as the best performing in
both years (Table 2).

Evaluation metrics indicated similar performance of
single-algorithm models across model sets (variance,
AUC = 0.0002; TSS = 0.001; Boyce Index = 0.002; Table 2)
and for each of these single-algorithm models among years
(correlation, AUC r = 0.999; TSS = 0.935; Boyce
Index = 0.884; Table 2). AUC and TSS ranked single-algo-
rithm models in a similar order in both years (e.g.
AUC = RF, BRT, GAM, MaxEnt; Table 2), but there was lit-
tle concordance between rankings of single-algorithm models
among the three performance metrics used (AUC, TSS and
Boyce Index). The weighted mean EENM including predic-
tions of GAM, RF and BRT models was retained as the final
model for each year.

EENM extrapolative performance

EENMs extrapolated across years to predict suitable foraging
habitats over contrasting mesoscale oceanographic conditions
performed well according to AUC and Boyce Index scores.
All model performance metrics (AUC, TSS and Boyce Index)
reveal the extrapolative performance of the 2011/2012 EENM
to be superior to that of the 2009/2010 EENM.
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Spatial predictions of EENMs extrapolated across years
were broadly comparable to the predictions of each year-spe-
cific EENM, highlighting the suitable foraging conditions
located to the north and west of the colony. Extrapolation of
the 2011/2012 EENM to the 2009/2010 combined environ-
mental data surface exhibited strong similarity with the
2009/2010 EENM (HSI, Mantel r = 0.9437), but extrapola-
tion of the 2009/2010 EENM on to 2011/2012 conditions
predicted more spatially restricted regions of high habitat
suitability than those predicted by the year-specific model
(HSI, Mantel r = 0.8740; Fig. 3). The proportion of the area
accessible to the population during this breeding phase in
which suitable foraging habitats were predicted to occur was
comparable among years (Fig. 6).

DISCUSSION

Predictable foraging habitats for the grey-headed albatross
population breeding at Bird Island, South Georgia, appear to
coincide with a set of persistent biophysical conditions. Over
the spatial and temporal scales investigated by our models,
EENM performed better than single-algorithm models in
predicting the distribution of observed foraging events. These
insights highlight the potential of EENM as a tool for use
with movement data in identifying at-sea habitats of marine
predator populations of conservation concern and for guid-
ing mitigation of spatially explicit anthropogenic threats in
high suitability habitats.

Predictable foraging habitats

Our ensemble ecological niche models (EENMs) highlight
SST and median surface chl-a concentration (monthly synop-
tic fields) as important determinants of habitat suitability for
foraging grey-headed albatrosses during brood-guard. SST has
been found to be a useful predictor of habitat preference for
other albatross species at South Georgia and elsewhere (Awk-
erman et al., 2005; Kappes et al., 2010; Wakefield et al., 2011;
Deppe et al., 2014). GHA also appeared to respond to the fre-
quency of mesoscale thermal front manifestation (TFreq),
which characterized the APFZ, and to water depth, although
these predictors had a lesser influence in models.

SST is a proxy for the spatial structuring of biophysical
conditions over the vast ranges utilized by these ocean-wan-
dering seabirds. Different foraging guilds of pelagic predators
exploit prey types that associate with particular temperature
regimes (Commins et al., 2014). GHA are known to seize
prey from the ocean surface (<2-3 m depth; Huin & Prince,
1997) and to feed predominantly on ommastrephid squid,
including Martialia hyadesi, crustaceans, including Antarctic
krill Euphausia superba and, less commonly, lamprey Geotria
australis, mesopelagic fish and gelatinous zooplankton (Rod-
house et al., 1990; Reid et al., 1996; Xavier et al., 2003; Catry
et al., 2004). Although the diet of tracked birds was not deter-
mined, their distribution was broadly comparable with previ-
ous years when all these prey types were recorded (Xavier

Diversity and Distributions, 22, 212-224, © 2015 John Wiley & Sons Ltd



Figure 5 Spatial predictions of
ecological niche models per algorithm,
(a) Generalized Additive Models, GAM,
2009-2010 (b) GAM, 2011/2012; (c)
Maximum Entropy, MaxEnt, 2009/2010,
(d) 2011/2012; (e) Random Forest, 2009/
2010, (f) 2011/2012; (g) Boosted
Regression Trees, 2009/2010, (h) 2011/
2012. Spatial predictions displayed as
habitat suitability index (HSI) per grid
cell, scaled from 0 to 1 (mean over all
model runs, n = 50 per algorithm).

Ensemble models of habitat suitability

1.0

(a) GAM

0.5
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50°W
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Table 2 Model performance metrics (mean over all model sets per algorithm). Area under receiver operating characteristic curve
(AUCQ) scaled 0 to 1; True Skill Statistic (TSS) scaled 0 to 1; and Boyce Index scaled —1 to +1. Highest scoring model for each
performance metric highlighted in bold. EENM rows have metrics for final EENM, without MaxEnt (black), and EENM with MaxEnt
(grey). Performance rankings per metric in brackets

Model evaluation, 2009/2010

Model evaluation, 2011/2012

Model Set AUC TSS Boyce index AUC TSS Boyce index
GAM 0.9421 (3) 0.8237 (2) 0.9213 (2) 0.9372 (3) 0.7835 (3) 0.8943 (3)
MaxEnt 0.9276 (4) 0.7740 (4) 0.9300 (1) 0.9101 (4) 0.7184 (4) 0.9051 (1)
RE 0.9523 (1) 0.8277 (1) 0.8329 (3) 0.9563 (1) 0.8283 (1) 0.8998 (2)
BRT 0.9444 (2) 0.8176 (3) 0.7130 (4) 0.9418 (2) 0.7843 (2) 0.8615 (4)
EENM 0.9547 0.7914 0.9512 0.9610 0.7871 0.9656
0.9479 0.7514 0.8990 0.9591 0.7791 0.9626
EENM extrapolation 0.9107 0.5194 0.8536 0.9281 0.6630 0.9358
0.9038 0.5188 0.7138 0.9267 0.6208 0.9540
Diversity and Distributions, 22, 212-224, © 2015 John Wiley & Sons Ltd 219
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Figure 6 Percentage of area accessible during brood-guard phase
(estimated using whole data set maximum displacement from
colony) containing oceanographic conditions suitable for foraging
against EENM-predicted habitat suitability index (HSI). 2009/
2010 EENM (weighted mean) as black line; 2011/2012 in grey.

et al., 2003; Catry et al., 2004). This suggests that the environ-
mental conditions identified through this modelling proce-
dure reflect the key habitats and main prey that are targeted
by grey-headed albatrosses at South Georgia, which represent
c. 50% of the global breeding population (ACAP, 2009).

Chl-a was also identified as a predictor of the spatial dis-
tribution of foraging events. Overall, foraging activity was
more likely in productive regions. Chl-a concentrations
(monthly median) were highest on-shelf, with peak values
recorded to the south-west of the colony. The APFZ was not
characterized by elevated productivity over the spatial and
temporal scales investigated in this model. Birds foraging in
productive shelf waters around South Georgia are likely to
be targeting Antarctic krill and icefish Champsocephalus gun-
nari, which are more closely tied to bottom-up forcing
mechanisms than the squid and mesopelagic fish found in
the APFZ (Wakefield et al., 2012).

High TFreq values and narrow SST contours characterize
the APFZ, which was identified by the EENM as a region of
high habitat suitability for GHA. Plunge-diving GHA have
been observed in association with large aggregations of M.
hyadesi at the ocean surface within the APFZ (Rodhouse &
Boyle, 2010). Although few foraging events were observed in
the APFZ during the tracking period, it is likely that those
birds foraging in the APFZ were targeting ommastrephid
squid. The APFZ lies at the northernmost extreme of the
observed foraging range during brood-guard, which might
suggest that reproductive constraints influenced the strength
of the association with this region. Regardless, the high spa-
tial overlap between the APFZ and the distribution of GHA
during other breeding stages and in the non-breeding period
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(Phillips et al., 2004; Croxall et al., 2005) suggest it is a key
foraging area for this species, year-round.

In previous studies in the region, the spatial extent of the
APFZ has been estimated using historical or averaged data,
which did not match the temporal resolution of animal
movement data. For example, Xavier et al. (2003) used the
position of the polar front (PF) derived from survey data in
1997 to investigate habitat preference of birds tracked in
2000. However, the APFZ is a highly dynamic feature, char-
acterized by intense mesoscale variability, and the PF can
vary in position by as much as 100 km in 10 days (Trathan
et al., 1997). Detecting fronts in a temporally averaged SST
composite can also mask the dynamic nature of these fea-
tures. The TFreq index, used here for the first time in the
Southern Ocean, is an objective, synoptic product that
enables incorporation of mesoscale oceanographic dynamics
in broad-scale ecological niche models (Scales et al., 2014).

In addition to the selection of environmental data layers,
analytical scale is a key aspect of the construction of ecologi-
cal niche models. Matching the spatial resolution of remotely
sensed data sets with the scales over which animals locate
key foraging areas remains a major challenge in habitat mod-
elling (Storch, 2002; Luoto et al., 2007), particularly in the
marine realm (Aratjo & Guisan, 2006; Hirzel et al., 2006).
In our study, environmental data layers were interpolated to
a standard 0.5 degree grid resolution, which was deemed
appropriate given the extent of the area over which tracked
birds roamed. To ensure scale match of the research ques-
tion, response and environmental data sets, we also restricted
temporal averaging of environmental data layers to one
month, matching the duration of the brood-guard phase for
the focal population.

EENM vs. single-algorithm models

Model predictions

Single-algorithm ecological niche models fitted on the same
data set can perform differently and generate contrasting pre-
dictions (Guisan & Zimmerman, 2000; Thibaud et al., 2014).

Single-algorithm models used here ranked the relative
importance of environmental variables differently in both
years, yet overall concordance was observed in estimated
variable importance between algorithms. Relative variable
importance in final EENMs for each year broadly echoes the
consensus in variable ranking among GAM, RF and BRT
model sets. Year-specific EENMs conflicted in the ranking of
environmental variable importance. SST, TFreq and Depth
were ascribed greater importance in the 2011/2012 ensemble,
whereas the importance of chl-a dropped from 2009/2010 to
2011/2012. This could be attributable to non-stationary pro-
cesses that govern the responses of grey-headed albatrosses to
oceanographic conditions (Jenouvrier et al., 2005), or indica-
tive of the need for additional environmental data to
enhance the capacity of our models to capture the mecha-
nisms underlying foraging habitat selection.
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Concordance in model response curves per environmental
variable from single-algorithm models increases confidence
in the capacity of these models to detect responses to envi-
ronmental conditions. We observed strong concordance
between model response curves resulting from GAM, RF and
BRT across all environmental variables in both years and so
included these model sets in final EENMs. EENM predictions
integrating outputs of several single-algorithm models pre-
dicting broadly similar responses could be regarded as prefer-
able to any single-model output in terms of confidence in
predictions. Similarly, broadly matching spatial predictions,
such as those predicted by GAM, RF and BRT in our analy-
sis, increase confidence in these single-algorithm model out-
puts and in the spatial predictions of the final EENMs. This
is a key aspect of the utility of the EENM process in enabling
the construction of more reliable predictive habitat-based
models.

Model performance

We observed notable differences in model performance rank-
ings using alternative metrics (i.e. AUC, TSS and Boyce
Index). There is, to our knowledge, no current consensus on
which metric is preferable in this context, although the relia-
bility of AUC has been heavily criticized (Boyce et al., 2002;
Lobo et al., 2008). The TSS is independent of sample size
(prevalence; Allouche et al., 2006), so we chose this metric
over AUC for model selection. We also implemented the
Boyce Index as a comparative measure of model performance
(Boyce et al., 2002; Hirzel et al., 2006). As with all move-
ment data sets, our response variable is strictly presence-only,
and so a presence-only model evaluation metric is likely the
most appropriate. However, we note that the use of multiple
performance metrics in EENM construction and evaluation
is clearly preferable to any single metric (Allouche et al.,
2006; Jiménez-Valverde, 2012; Thibaud et al., 2014). EENMs
were selected as the best performing models in both years
using the Boyce Index and AUC methods, confirming that
averaging the outputs of several single-algorithm models into
an ensemble improved predictive capacity in our test case.
Our exploration of the utility of EENM in this context
highlights the capacity of the technique for comparing among
the predictions of single-algorithm models and selecting the
best performing models on a case-by-case basis. For example,
taking a conservative approach, we excluded MaxEnt from
final EENMs, improving performance and increasing confi-
dence in predictions. EENM is useful for excluding strong
bias and smoothing over weaker biases in different model pre-
dictions. Our results exemplify the potential of EENM for use
with movement data in identifying predictable foraging habi-
tats for wide-ranging marine vertebrates over broad scales.

EENM extrapolative performance

Ecological niche models constructed and validated over the
same extent can show limited transferability in space and
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time (Randin et al., 2006; Torres et al., 2015). While we did
not have sufficient data to investigate transferability through
space, the extrapolative performance of our EENMs across
the two years of this study was good, although the 2011/
2012 ensemble performed considerably better than that
constructed for 2009/2010 (2009/2010, AUC = 0.9107,
TSS = 0.5194, Boyce Index = 0.8536; 2011/2012, AUC =
0.9281, TSS = 0.6630, Boyce Index = 0.9348). Changes in the
performance of ensembles extrapolated across years are
indicative of poor transferability through time, because of
variation in animal-environment interactions or, more prob-
ably, the failure of models to fully capture the drivers of
these interactions.

Further tests of EENM extrapolative performance, for
example to other populations of the same species (e.g. Torres
et al., 2015), or through multiple years in the same region,
are necessary to ascertain true extrapolative capabilities.
Moreover, the multiscale periodicity of oceanographic vari-
ability in the region (e.g. decadal-scale Southern Ocean
Oscillation Index) is likely to influence extrapolative capabil-
ity (e.g. Jenouvrier et al., 2005). Some key questions remain:
for example, After how many years is the extrapolative per-
formance of a year-specific model likely to fade? How do
predictable habitats over short-term time-scales align with
predictable habitats on interannual or decadal time-scales?
Future work should investigate variability in oceanographic
conditions within and among years if these techniques are to
prove useful for predicting population-level responses to cli-
mate-mediated ecosystem change.

Nevertheless, multi-model ensembles can increase confi-
dence in model predictions, where they are implemented
with awareness of technical limitations (Marmion et al.,
2009; Oppel et al,, 2012). By better incorporating uncer-
tainty, the output of EENMs provides a robust basis for rec-
ommendations relating to the management of threats to
marine vertebrate populations of conservation concern.
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Figure S1 Model Response Curves for Chl-a in 2011/12
model sets, per algorithm, (a) GAM, (b) RF, (¢) BRT, (d)
MaxEnt.

Figure S2 Model Response Curves for TFreq in 2011/12
model sets, per algorithm, (a) GAM, (b) RF, (¢) BRT, (d)
MaxEnt.
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model sets, per algorithm, (a) GAM, (b) RF, (¢) BRT, (d)
MaxEnt.
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