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ABSTRACT

The impact of the assimilation of high spatial and temporal resolution atmospheric motion vectors (AMVs)
on tropical cyclone (TC) forecasts has been investigated. The high-resolution AMVs are derived from the full
disk scan of the new generation geostationary satellite Himawari-8. Forecast experiments for three TCs in
2016 in a western North Pacific basin are performed using the National Centers for Environmental Prediction
(NCEP) operational Hurricane Weather Research and Forecasting Model (HWRF). Two different ensemble—
variational hybrid data assimilation configurations (using background error covariance created by global
ensemble forecast and HWRF ensemble forecast), based on the Gridpoint Statistical Interpolation (GSI), are
used for the sensitivity experiments. The results show that the inclusion of high-resolution Himawari-8§ AMVs
(H8AMYV) can benefit the track forecast skill, especially for long-range lead times. The diagnosis of optimal
steering flow indicates that the improved track forecast seems to be attributed to the improvement of initial
steering flow surrounding the TC. However, the assimilation of HSAMYV increases the negative intensity bias
and error, especially for short-range forecast lead times. The investigation of the structural change from
the assimilation of HSAMYV revealed that the following two factors are likely related to this degradation:
1) an increase of inertial stability outside the radius of maximum wind (RMW), which weakens the boundary
layer inflow; and 2) a drying around and outside the RMW. Assimilating HSAMYV using background error
covariance created from HWRF ensemble forecast contributes to a significant reduction in negative intensity
bias and error, and there is a significant benefit to TC size forecast.

1. Introduction mean TC track forecast error has steadily decreased in
the western North Pacific (WPAC) basin since the early
1990s, forecast busts, defined as abnormally large track
forecast errors (Yamaguchi et al. 2017), still occur. The
TC intensity forecast is also a great challenge since the
annual mean intensity errors of the RMSC'’s official
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Tropical cyclone (TC) forecasts are key in preventing
and mitigating their disastrous effects such as torrential
rain, violent wind, and storm surge. Although the annual
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itis essential to improve the numerical weather prediction
(NWP) model for TCs. The Hurricane Weather Research
and Forecasting Model (HWREF; e.g., Tallapragada et al.
2014) developed at NOAA/National Weather Service
(NWS)/National Centers for Environmental Prediction
(NCEP) is one of the state-of-the-art operational TC
models. Real-time TC forecasts for the WPAC using the
HWREF began in 2012 (e.g., Tallapragada et al. 2015,
2016), and many modifications such as an increase of
horizontal resolution (Gopalakrishnan et al. 2012), vortex
initialization (Liu et al. 2012), optimization of vertical
mixing length (Gopalakrishnan et al. 2013; Zhang et al.
2015), and an ocean coupled system (Kim et al. 2014)
have been implemented in the HWREF since then. How-
ever, data assimilation, which has been successfully im-
plemented and used in the HWREF for the North Atlantic
basin (NATL) and the eastern North Pacific (EPAC)
(e.g., Tong et al. 2018), has not been applied in the WPAC
yet. The main reason is that observations around the
TC are sparser in the WPAC compared to the NATL
and EPAC, where aircraft observations such as airborne
Doppler radar and dropsondes are available operation-
ally to some degree.

Data assimilation is one of the key components in TC
models to allow them to accurately estimate the TC
structure and its surrounding environment. While the
assimilation of airborne observations have positive im-
pacts on the track (Aberson and Franklin 1999; Aberson
et al. 2015; Tong et al. 2018), intensity (Torn 2014;
Aberson et al. 2015; Tong et al. 2018), and structure (Pu
et al. 2016; Christophersen et al. 2017; Tong et al. 2018)
forecasts in regional models, these data are limited in the
WPAC. On the other hand, satellite observations or
satellite retrieved products such as atmospheric motion
vectors (AMVs; Velden et al. 2005), which are derived
by tracking clouds or water vapor using consecutive sat-
ellite images, are available globally and over the ocean,
a generally sparse region for observations. Therefore,
AMYV data assimilation is very important for the TC
forecasts in the research and operational hurricane
forecast models.

Previous studies have found that the assimilation of
AMVs into the regional models can improve the ana-
lyzed TC structures and forecast skill of TC track and
intensity. Wu et al. (2014) showed that the initial posi-
tions and the timing of the early intensification of Ty-
phoon Sinlaku (2008) were improved in the WRF with
an ensemble Kalman filter by adding hourly AMVs into
the conventional observations used in the NCEP oper-
ational analysis. When the rapid-scan AMVs (RS-AMVs)
were added, the ensemble forecasts captured the occur-
rence of recurvature. A further investigation by Wu et al.
(2015) using data-denial experiments indicates the AMVs
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in the TC’s interior and upper layers play an important
role in reducing analysis biases and the ensemble spreads
of TC position and intensity. Velden et al. (2017) per-
formed a study on the impact of assimilating the high-
resolution AMVs on three TCs over the NATL using
HWREF. They found that the magnitude of the impact
depends on the availability of RS-AMVs and the degree
to which unbalanced states are allowed to enter the model
analyses through vortex initialization (VI) incorporated
in HWREF, though a modest positive impact on track and
intensity forecasts can be obtained. Zhang et al. (2018)
studied the influence of high-resolution AMVs on the TC
forecast with and without VI, and revealed that the as-
similation of high-resolution AM Vs benefits the track and
intensity forecast both with and without the VI. Also, the
assimilation of high-resolution AMVs can alleviate the
unrealistic vortex modification due to VI, resulting in
improved intensity forecasts. Kim et al. (2017) examined
the impact of high-resolution AMVs assimilation on TC
forecasts using the adjoint-based observation impact
method in a framework of observing system experi-
ments. They demonstrated that the forecast error re-
duction by assimilating the high-resolution AMVs was
larger than that by the operational AMVs.

A new generation geostationary meteorological satel-
lite Himawari-8 became operational at the Japan Mete-
orological Agency (JMA) in July 2015 (Bessho et al.
2016). The Advanced Himawari Imager on Himawari-8
has 16 observation bands taken at an interval of 10 min
for full disk and an interval of 2.5min for targeted re-
gions. Yamashita (2016) confirmed that the assimilation
of Himawari-8 AMVs instead of MTSAT2 AMVs has a
positive impact on precipitation forecasts by the JMA’s
operational regional model and on the TC track fore-
casts by the global model in the framework of OSEs.
Kunii et al. (2016) also demonstrated that by taking
advantage of the availability of high-frequency obser-
vations of targeted regions from Himawari-8, the as-
similation of RS-AMVs from Himawari-8 into JMA’s
operational regional model improved the precipitation
forecast. However, the AMVs derived from full disk
observations are used in this study as a first step, because
the full disk is routinely provided every 10 min without
interruption and can be used to monitor more than two
TCs at the same time, unlike the targeted region ob-
servations. Moreover, the frequency of full disk obser-
vations from Himawari-8 roughly corresponds to that of
the rapid scan mode from the previous generation geo-
stationary satellite.

There are several motivations for this study; 1) to
extend the previous studies on AMV assimilation over
the NATL (Velden et al. 2017; Zhang et al. 2018) to TCs
over the WPAC; 2) to evaluate what impacts the high
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spatial and temporal resolution (or a large number of)
Himawari-8 AMVs have on the track, intensity, and
size of TCs forecasted in HWREF; 3) to explore better
ways to make more effective use of the Himawari-8
AMYVs by changing the background covariance used
for assimilation.

This paper consists of six sections. Section 2 describes
an overview of selected TC cases, the data and meth-
odology used in this study. Section 3 shows statistical
verifications of the numerical experiments. We further
examine the key processes that are responsible for the
different impacts on track and intensity forecasts in
section 4. Finally, the summary and discussion of this
study are provided in section 5.

2. Data and methodology
a. Himawari-8 atmospheric motion vector

The Himawari-8 AMVs used in this study were de-
rived from three consecutive full disk images taken at
10-min intervals. The motion vectors are retrieved from
the tracking of the displacements of clouds in forward
and backward. The height of the motion vectors was
assigned based on maximum likelihood estimation with
observed radiances from Himawari-8 and the first guess
of humidity and temperature profiles from the JMA’s
global atmospheric model. This algorithm searches for
an optimal cloud structure which can explain both the
observed radiances and motion vectors by multiple
bands. The AMVs were assimilated when the quality
indicator (QI; Holmlund 1998) of the AMV data was
greater than 0.7. The details of the Himawari-8§ AMVs
derivation can be found in the document by Shimoji
(2014). The JIMA meteorological satellite center (MSC)
provides Himawari-8 AMVs to users hourly.

This study examines the impact of high-resolution
AMVs against operational AMVs. The operational
Himawari-8 AMVs (hereafter, OPAMYV) are derived
at approximately 0.3° by 0.3° if the target box is trace-
able. The AMYV dataset that is used for assimilation by
the NCEP operational Global Forecast System (GFS)
contains the OPAMYV, meaning that it is possible to as-
similate Himawari-8 AMVs into the operational HWRF
over the WPAC if the assimilation is turned on. As shown
by previous studies (Wu et al. 2014, 2015; Kim et al. 2017,
Velden et al. 2017; Zhang et al. 2018), high-resolution
AMVs have a positive impact on TC forecasts. Therefore,
this study used an experimental dataset of Himawari-8
AMVs derived for grids with approximately 0.2° by 0.2°
resolution at 30min intervals provided by MSC, which
are spatially and temporally higher resolution than was
the OPAMYV at that time. The high-resolution Himawari-8
AMVs are called HSAMYV hereafter. The same value of
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observation error is used for OPAMYV and HSAMYV be-
cause the algorithm for AMV derivation and its config-
uration are the same.

b. HWRF and data assimilation (GSI)

HWREF is an NCEP operational hurricane forecast
system and is a triple-nested, atmosphere—ocean cou-
pled system. HWREF version 3.9 used in this study was
obtained from the HWRF developers’ repository on
1 March 2017. The configuration of HWRF includes the
modified NCEP GFS eddy-diffusivity mass-flux (EDMF)
as a PBL scheme, a modified Geophysical Fluid Dy-
namics Laboratory (GFDL) surface layer scheme based
on Kwon et al. (2010), the Ferrier—Aligo microphysics
parameterization (Ferrier 2005), the scale-aware sim-
plified Arakawa-Schubert scheme (Pan and Wu 1995;
Han et al. 2017), and the Rapid Radiative Transfer
Model for GCMs (RRTMG) longwave and shortwave
radiation scheme (Iacono et al. 2008). The Princeton
Ocean Model (POM) that has been adapted to TCs
(POM-TC; Yablonsky et al. 2015) was the coupled ocean
model employed here, which is different than the Hy-
brid Coordinate Ocean Model (HYCOM) used for the
WPAC in the operational HWRF. The HWRF model
consisted of three nested domains with horizontal res-
olutions of 18, 6, and 2km. The outermost domain is
fixed in time and the two inner nested domains (d02 and
do03) follow the predicted storm center. The domain size
is 24° X 24° for d02 and is 7° X 7° for d03. There were
61 hybrid vertical levels from the surface to 10 hPa. The
details can be found in the HWREF scientific documen-
tation (Biswas et al. 2018).

The atmospheric fields of the outermost model do-
main were initialized from the GFS analysis. For the
nested domains, the fields are derived from 6-h forecasts
from the global data assimilation system (GDAS) with
VI. The vortex-scale fields originated from the previous
6-h forecast of HWRF when available. In the vortex
initialization, vortex intensity and structure are adjusted
based on the observed TC parameters provided by the
NCEP TC-Vitals (Liu et al. 2012). After the VI, data
assimilation using the Gridpoint Statistical Interpo-
lation (GSI) is conducted for the ghost outer and in-
ner nested domains with 6-h cycle to generate a vortex
structure in the same way as EPAC and NATL. The data
assimilation domains are referred to as “‘ghost” domains.!
For the GSI-based ensemble—variational hybrid assim-
ilation, the background error covariance of the hybrid
system is derived from a mixture of flow-dependent and

! The domain sizes of data assimilation are expanded to 28° X 28°
for ghost d02 and 15° X 15° for ghost d03, respectively.
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FIG. 1. (a) Track and (b)-(d) intensity of three TCs chosen in this
study: (b) Nepartak, (c) Meranti, and (d) Megi in 2016. Each line
color indicates storm intensity categories on the Saffir-Simpson
hurricane wind scale.

static sources. The flow-dependent covariance is es-
timated from the GEFS 80-member ensemble or an
HWRF 40-member ensemble. On the other hand, cli-
matological (static) covariance is obtained through the
National Meteorological Center (now NCEP) method
(Parrish and Derber 1992; Wu et al. 2002). In the same
fashion as the NATL and EPAC, the background error
covariance composed from a linear combination is 80%
flow-dependent (ensemble) and of 20% of static. The
ensemble forecasts of HWREF are initialized or warm-
started from the GEFS at each cycle in this study. All
the experiments conducted utilize GSI quality control
with default for the AMYV dataset such as gross error
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TABLE 1. The start and end date of each case used in the

experiment.

Case Cycle period No. of cycles
Nepartak 1800 UTC 2 Jul-0000 UTC 9 Jul 2016 26
Meranti 1200 UTC 8 Sep-1800 UTC 14 Sep 2016 26
Megi 0600 UTC 23 Sep—0600 UTC 28 Sep 2016 21

check and height range check. No thinning and su-
perobbing were done for the experiments with either
OPAMYV or HSAMYV. Other than the AMV dataset,
HWREF assimilates conventional observations (radio-
sondes, aircraft reports, ship, surface observations and
so on) and satellite radiances (SSMIS, MHS, AMSU-A,
and TASI). For those data, the default thinning was
applied in the GSI. GSI default quality control for
observations is applied to all experiments same as
the AMVs.

Data assimilation in HWRF is conducted in 6-h cycles,
although the AMYV datasets are derived at an interval of
1h for OPAMYV and 30 min for HSAMV. The first guess
at appropriate time (FGAT) is used in HWREF to allow
data within the 6-h time window (3-h from analysis time)
to be properly assimilated. In FGAT, observations are
compared with the first guess at the observation time,
which is obtained by interpolating the two closest back-
ground fields in time within GSI. In this study, first guess
are created at three time levels (3-, 6-, and 9-h forecast).

HWREF uses a process referred to as blending to avoid
spindown of strong storms (Biswas et al. 2018; Tong
et al. 2018; Pu et al. 2016). In the blending process, data
assimilation increments are eliminated within a radius
of 150km from the TC center and below 600hPa in
the vertical. The increments are gradually reintroduced
between 150 and 300 km in the radial direction and be-
tween 400 and 600 hPa in the vertical. The blending is
used when the maximum sustained wind speed =65kt
(1kt ~ 0.5144ms'). Even when the blending is turned
on, full increments within 300 km radius are allowed in
the upper levels, which is where the majority of our data
exists. The impact is propagated to the inner core region

TABLE 2. Outline of HWRF experiments.

AMYV assimilated

OPAMY within 1 h from the
analysis time

H8AMYV from 3 h prior to 1h
after the analysis time

OPAMY within 1 h from the
analysis time, same as DAg

H8AMYV from 3 h prior to 1h
after the analysis time, same
as DAgAMV

Assimilation method

DAg GEFS covariance
DAgAMV  GEFS covariance
DAh HWREF covariance

DAhAMV HWREF covariance

Downloaded 07/19/23 06:14 PM UTC
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FIG. 2. Example of (high resolution) Himawari-8 AMVs derived from the IR channel that were assimilated into
the d02 of HWREF for the Meranti case in (a) DAh, and (b) DAhAMYV experiments. Symbols plotted at the center

of each panel indicate the TC center.

during 6-h forecast, which is utilized in the vortex ini-
tialization. The impacts of AMV assimilation is in-
herited through vortex-scale DA cycle.

c. Cases of TCs

To examine the impact of HSAMYV, three TCs over
the WPAC in 2016 are selected with a consideration of

the forecast difficulty with respect to both track and in-
tensity. Figure 1 shows the track and intensity of the three
selected TCs: Nepartak (2016), Meranti (2016), and Megi
(2016). The track and intensity data were obtained from
the Joint Typhoon Warning Center (JTWC) best track.
The start and end date for each TC when HWRF was
run and the number of cycles are listed in Table 1.
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FIG. 4. Statistics of track error with reference to the best track data for (a) Nepartak,
(b) Meranti, and (c) Megi in 2016. Numbers in cyan indicate sample size for each forecast

lead time.

All three TCs have similar tracks, forming as a trop-
ical depression near the island of Guam and moving to
the west-northwest, passing near or over Taiwan, and
making landfall in southeast China. However, the track
errors forecasted by IMA-GSM (RSMC Tokyo-Typhoon
Center 2016) were different among the three; the largest
track error at 78 h was for Nepartak (333.3 km), followed
by Meranti (266.5km), then Megi (136.0km).

The maximum sustained wind speed (Vmax) of
Nepartak and Meranti reached 155 and 170kt, respec-
tively, corresponding to category 5 hurricane intensity.
Both Nepartak and Meranti experienced extreme RI,
with intensification rates of 70ktday . The Vmax of
Megi was 120kt, and the maximum intensification rate
was 30ktday .

d. Experimental design

To investigate the impacts of HSAMV on the TC
forecast in HWREF, four sets of experiments have been
conducted, as shown in Table 2. The initial condition of

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:14 PM UTC

the DAg experiment is obtained from the assimila-
tion of conventional (including OPAMYV) and satellite
radiances observation data using the GSI ensemble—
variational hybrid assimilation method with vortex ini-
tialization. The OPAMYV was used within one hour of the
analysis time. In the DAgAMYV experiment, the forecasts
are initialized from the assimilation of observation data
used in the DAg experiment and from HSAMYV. Note
that the OPAMYV used in the DAg experiment was first
removed from the observation dataset before HSAMV
was added to the dataset. In the DAgAMYV experiment,
the initial condition is the same as in the DAg, except that
the HSAMYV was ingested from three hours prior to one
hour after the analysis time. The asymmetric assimila-
tion window was used to make use of observation data as
much as possible within a constraint of cutoff time. In this
regard, the impacts would arise from not only the high
spatiotemporal resolution but also the larger amount of
AMYV data. The total number of forecast cycles of the
three TCs was 73 in each experiment. Examples of AMVs
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FIG. 5. As in Fig. 3, but for RMSE and skill of Vmax.

DAhAMYV experiment, the observation data used
for creating the initial condition is the same as the
DAgAMYV experiment, except for the use of the
background error covariance created from HWRF
ensemble members. The list of experiments is summa-
rized in Table 2.

assimilated into the HWRF outer nested domain are
shown in Fig. 2. In this case, the number of AMV ob-
servations assimilated into the d02 of HWREF are 5365,
and 49779 in the DAh, and DAhAMYV, respectively. The
AMV data rejected by quality control in this experiment
was 10-20%.

To explore ways of making more effective use of
H8AMYV by changing the background error covariance

. Iy . 3. Numerical results
in GSI, two additional sets of experiments have been

performed. The DAh experiment used the HWRF
40-ensemble members instead of GEFS 80-ensemble
members as the background error covariance. In the

In this section, verification results for track, intensity,
and size are described. The skill or improvement rate
relative to DAg is defined by

Nepartak Ini: 2016.07.06.06UTC Meranti Ini: 2016.09.12.12UTC
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160 O
e JB o 3 )
L—O > 160 : NG
140+ \
2 140
=< 1204
g 120-
g 100 9
= —— DAgAMV 100
801 —— DAR
DAhAMV 80 1
60 1 —e— besttrack /
T T T T T T T 1 0 T T T T L T i B
0 6 12 18 24 30 36 42 48 0 6 12 18 24 30 36 42 48

Forecast lead time (hr)

FIG. 6. Time series of Vmax (left) for Nepartak and (right) for Meranti.
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Skill = 100(EDAg - Emodel)/EDAg , 1)
where Epag and Epoqge are the mean track error or root-
mean-square error (RMSE) of intensity or size from
DAg and a given model, respectively. Note that there
are few statistical significance at the 95% level for the
verification using paired ¢ test between DAg and each
experiment, especially for each case because of the

limitation of sample size.
a. Track forecast

The track forecast verification for all three TCs (Fig. 3)
shows that DAgAMYV is the best for forecast lead times
(FT) of 30-114h (FT = 30-114h) in the four experi-
ments, followed by DAh and DAhAMYV. The improve-
ment rate of DAgAMYV with respect to the DAg ranges
from 4% to 12% beyond FT = 54 h except FT = 84-90 h.
It indicates that assimilating HSAMV with GEFS co-
variance improves the track forecast skill. On the other
hand, the improvement rate of DAhAMYV is smaller than
that of DAgAMYV at most forecast lead times. There
is little net benefit of using HWRF covariance for track

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:14 PM UTC

forecast when HSAMYV is used in this configuration and
in this case at least. This result implies that HWRF co-
variance is suboptimal for the larger scales that control
the track.

The improvement in track forecast skill at longer
forecast lead times is different from the result shown by
Velden et al. (2017), which showed degradation at the
longer forecast lead times (>FT = 96 h). This difference
could arise from several factors such as the different
assimilation scheme, size of assimilation domain, ob-
servation data, model setup, and cases in a different
basin. While understanding the cause of the skill dif-
ference is important, it is beyond the scope of this study.

To examine the case dependency, track verification for
each TC is shown in Figs. 4a—c. The result clearly shows
there is case to case variability; assimilating HSAMV
(DAgAMYV) shows an improvement for Nepartak and
is neutral for Meranti and Megi with regard to the DAg.
On the other hand, DAhAMYV shows an improvement
for Meranti and is neutral for Nepartak and Megi with
regard to the DAg. Note that the track forecast errors
for Meranti and Megi in the DAg were considered quite
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FIG. 8. As in Fig. 4, but for bias of Vmax with reference to the best track data.

low. In other words, the track errors are below the av-
erage of the official track forecast errors (243, 316, and
442km at FT = 3, 4, and 5 days) for 2016 WPAC TCs
(RSMC Tokyo-Typhoon Center 2016). The small track
error implies that the environmental flow is well repre-
sented so that the assimilation has less room for impact.

b. Intensity forecast

The intensity forecast is verified for maximum sus-
tained surface winds or Vmax in this study. Figure 5
shows the RMSE of Vmax for all cases, and the intensity
error (RMSE of Vmax) with DAgAMYV is the largest for
shorter forecast lead times (FT = 6-54h). The intensity
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error is larger in DAhAMYV than DAh up to FT = 12h,
meaning that the HSAMYV assimilation using HWRF
covariance still shows the degradation of intensity fore-
cast skill for shorter forecast lead time compared to the
OPAMYV assimilation.

The intensity degradation is mainly caused by spin-
down, which occurs for strong storms, as remarked by
Tong et al. (2018) and Lu et al. (2017b). Figure 6 shows
the time evolutions of Vmax as an example of spindown
for Nepartak and Meranti case. The forecast lead time
of up to 48 h is shown to focus on the initial forecast. The
intensity in both DAgAMYV and DAhAMYV weakens by
1020kt during the first 6 h. Compared to the experiments
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(a) R34, (b) R50, (c) R64, and (d) RMW. Numbers in cyan indicate sample size for each

forecast lead time.

adding the HSAMYV, the Vmax drop in DAg and DAh is
small or does not occur. The assimilation of inner-core
reconnaissance observation for strong storms leads to
spindown because of the suboptimal error covariance
(Lu et al. 2017b) and the interaction between model bias
and VI (Tong et al. 2018). The similar spindown occurs
when the HSAMYV is assimilated because there is much
more HSAMYV data than OPAMYV data close to the inner
core (Fig. 2). Note that spindown only impact the Vmax
skill up to 36 h (Fig. 5b) and there is some improvement
for longer lead time, consistent with Tong et al. (2018).
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Case-to-case variability in intensity can be found in
the similar way as the track forecast for longer forecast
lead times in Fig. 7. The intensity error in DAhAMV
was larger than thatin DAh at FT = 6-30 h for Nepartak
(Fig. 7a), although it was smaller for Meranti (Fig. 7b).

For the intensity bias for all cases (Fig. 8a), DAg
and DAgAMYV have negative (weak) intensity bias
mainly because of the spindown issue (e.g., Fig. 6), es-
pecially of Nepartak (Fig. 8b) and Meranti (Fig. 8c). For
Meranti, the weak intensity bias for all experiments
reached larger than 25kt, which was 5-20kt larger
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FIG. 10. As in Fig. 9, but for size forecast skill relative to DAg.

than those for Nepartak and Megi. Consistent with the
intensity error, the intensity bias with DAgAMYV was
the larger than those with DAg for shorter forecast
lead times. The weak intensity bias is consistent with
Lim et al. (2019), which showed the HWRF had a
weak bias for strong TCs. The impact on intensity bias
was neutral for Megi, which was a weak bias of 5-10 kt
in all experiments. The result indicates using the
background covariance created from the HWRF en-
semble effectively alleviates the intensity errors and
biases due to spindown arising from using the covari-
ance created from the GEFS ensemble for shorter
forecast lead times and for all three TC cases. The result

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:14 PM UTC

is consistent with the finding by Tong et al. (2018) and
Lu et al. (2017b).

c¢. Size forecast

The RMSE of TCssize (R34, R50, R64, and RMW) and
its skill for all cases are shown in Figs. 9 and 10, respec-
tively. For R34, R50, and R64, averages of the radii over
four different quadrants were taken. A sample was in-
cluded in this size verification if at least three of the
quadrants have a value for the wind radius and this oc-
curs in all four experiments, to homogenize the sample.

From Figs. 9 and 10, it is clear to see that RMW
improvement mainly comes from HWRF covariance
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because both DAh and DAhAMYV are better than DAg
and DAgAMYV, respectively. The improvement rate
for RMW in DAh (DAhAMYV) with respect to DAg
(DAgAMV) reaches 9.7% (7.5%) on average for FT =
0-96. However, there was a degradation for R34 and R50
in DAh (DAhAMV) with respect to DAg (DAgAMYV),
although the impacts are neutral for R64 in DAh
(DAhAMYV) with respect to DAg (DAgAMV). Fur-
thermore, for R34 and R50 improvement, the contribu-
tions are mainly from HSAMYV data because DAgAMV
and DAhAMYV are better at more than half of forecast
lead times than DAg and DA, respectively. The addi-
tion of HSAMYV contributes to a 3.9% (5.5%) and 2.7%
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(10.2%) improvements in R34 and R50, respectively,
on average for FT = 0-96 in DAgAMV (DAhAMYV)
compared to DAg (DAh). This is consistent with the
result documented by Lim et al. (2019), which remarked
that an improvement was achieved when the hourly
AMVs were assimilated. A combined impact of HSAMV
and HWREF covariance shows that the improvement rate
in DAhAMYV with respect to DAg reaches 11.0% on
average for FT = 0-96. The result highlights that there
is a significant benefit of using the HSAMYV with HWRF
covariance in storm size forecast.

The verification of TC size biases shows DA tends to
reduce all the size metrics for forecast lead times of up to
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FT = 96 h compared to DAg. R34 and R50 were smaller
at more than half of forecast lead times in DAhAMV
than in DAgAMYV. HWRF covariance would play a part
in reducing the TC size. The impact of TC size biases
on HSAMYV shows R34, R50, and R64 were larger in
DAhAMYV than DAh (Fig. 11). On the other hand, there
was no systematic difference in all the size metrics
between DAgAMYV and DAg. The impact of adding
H8AMYV is not as obvious as that of HWRF covariance.

The biases of R34 and RMW increase with the forecast
lead time in the all experiments, indicating a systematic
bias in the HWRF physics because the increasing trend
does not depend on the initial condition. It is worth
mentioning that both the size error and bias seem to be
small or comparable to R34, R50, and R64 in the pre-
vious version of HWRF (Tallapragada et al. 2015), de-
spite the challenging cases selected. Note that the vortex
structure is quite modulated by the vortex initialization,
and an additional experiment which has no the vortex
initialization would be needed to extract a clearer im-
pact of the assimilation on TC size.

4. Further comparison and analysis
a. Diagnosis of track error difference

The track verification shows the inclusion of HSAMV
has a positive impact on track forecast (Figs. 3 and 4). To
assess the cause of the reduction in track forecast error, the
track error is separated into along- and cross-track errors
(Neumann and Pelissier 1981). The along-track error
indicates whether the forecasted track is too fast (posi-
tive value) or slow (negative value), and the cross-track
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error shows whether the track is too far to the right
(positive value) or left (negative value). Figure 12 dis-
plays the average along- and cross-track errors for
Meranti for the all cycles in each experiment, which
corresponds to the track error bias in the along- and
cross-track directions. There is a pronounced bias to the
right-of-track (positive cross-track error bias) in all the
experiments and a rather slow track tendency for lon-
ger forecast lead time in all the experiments except
DAhAMV. The right-of-track bias here is almost
equivalent to a north-northeast bias in the geographical
sense because Meranti tracked to the west-northwest
(Fig. 1). A northward bias is found at several NWP cen-
ters in the previous study, especially east of the
Philippines (Yamaguchi et al. 2012). The northward bias
or cross-track error bias was smallest with DAhAMYV,
followed by DAgAMYV. It shows the benefit from as-
similating HSAMYV on the track forecast.

TC motion is affected by both the steering flow sur-
rounding the TC and the TC structure (size) through the
beta gyre effect discussed in previous studies (Chan and
Williams 1987; Fiorino and Elsberry 1989), and the as-
similation of HSAMYV could change both factors. To
diagnose the factors for track error reduction from as-
similating HSAMYV, the optimal steering flow radius and
depth are estimated according to Galarneau and Davis
(2013). The steering flow was defined as the area- and
vertically averaged environmental flow, once the cy-
clonic circulation associated with the TC was removed.
The vertical extent of the steering layer ranged from 50
to 650hPa, with a fixed base at 850hPa, using eight
different radii ranging from 100 to 800 km from the TC
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center. The radius and depth combination that produces
the smallest vector difference between the averaged
steering flow and the actual track motion is chosen as the
optimal steering flow radius and layer at a given time.
The differences in either optimal steering flow radius
(size) or height could be identified if the assimilation
impacts the TC structure. Otherwise, the small steering
flow differences caused by the assimilation at initial time
put TCs on different trajectories. Here, the difference
between DAg and DAhAMYV for Meranti is analyzed
because the difference between the two was the largest.

The estimated optimal steering flow radius and depth
(Fig. 13) are similar in DAg and DAhAMYV. The opti-
mal steering radii (depths) averaged for 0-24 h are 299 km
(376 hPa) and 289 km (386 hPa) in DAg and DAhAMV,
respectively. The small differences in the optimal steering
flow radius between DAg and DAhAMYV are consistent
with the size bias in Fig. 11, which shows there is no
significant difference between the two.

To examine the steering flow difference between the
two as a factor for the track error difference, the time
evolution of the steering flow profile difference is calcu-
lated (Fig. 14). The steering flow is defined using a radius
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of 300km from the TC center for the two experiments.
The value of 300 km was chosen from the average optimal
steering radius. The arrows display the steering flow dif-
ference between DAhAMYV and DAg (DAhAMY minus
DAg). If the steering flow difference arises from the TC
size difference through the beta gyre effect, the persistent
meridional flow difference could be identified at the early
forecast lead times. After FT = 24h or so, the dominant
signal of steering flow difference comes from the TC lo-
cation biases so that the first 24 h is examined.

The differences in initial steering flow between
DAAhAMYV and DAg are consistent with the differences
in track biases (Fig. 12). The easterly component is rel-
atively larger at the middle troposphere (550-350 hPa)
for the first 9h in DAhAMV. The larger easterly com-
ponent alleviates the slow track bias for the early fore-
cast lead times. There is little persistent meridional flow
during FT = 0-24 except at 500 hPa, indicating that the
steering flow difference arising from TC size difference
is negligibly small. Thus, the difference in track forecast
errors between DAg and DAhAMYV seems to be at-
tributed to the initial steering flow difference, not to the
TC size difference.
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b. Factors impacting intensity bias

The intensity bias and error for Meranti case were
the largest with DAgAMYV, as shown in Figs. 8c and
7b, although there are the same track biases among the
experiments at shorter lead times (Fig. 12). The result
indicates the intensity error originates from the inner
core dynamics, not from the environmental factors. To
investigate the cause of the significant weak bias for
Meranti in DAgAMYV, the vertical structure of azimuth-
ally averaged tangential wind speeds for all experiments
are compared (Fig. 15). The analysis was conducted by
interpolating the HWRF output on pressure coordinates
to the height coordinate. The radial structure is normal-
ized by the radius of maximum azimuthally averaged
wind at 2-km altitude based on a previous study (Rogers
et al. 2013) to highlight the difference in essential TC
structure, which is not associated with RMW difference
between each experiment and DAg. The composite is
produced by averaging 18 cycles from cycle 3 to cycle 20,
corresponding to Meranti’s intensification through to
the mature stage. The averaged RMWs at 2-km altitude
were 59.6, 53.5, 60.3, and 63.8km in DAg, DAgAMYV,
DA, and DAhAMYV, respectively.

Assimilating HSAMV with GEFS covariance gener-
ates stronger vortices outside the RMW at the lower
troposphere (Fig. 15b). This pattern corresponds to the
enhancement of inertial stability outside the RMW,
which would reduce the low-level inflow because of high
resistance to radial displacement. In DAhAMYV, the
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low-level tangential flow is not significantly impacted.
Instead, the tangential wind near and outside the RMW
is enhanced above the middle troposphere (above 5-km
height) compared to DAgAMYV. This corresponds with
a taller vortex, which favors intensification.

The radial wind differences, averaged for FT = 0-12h
between each experiment and DAg for the lower tro-
posphere (Fig. 16), show a substantial weakening of the
low-level inflow in DAgAMYV. The maximum inflow
speeds in the boundary layer are 10.5, 9.7, 12.2, and
12.9ms™ ! in DAg, DAgAMV, DAh, and DAhAMYV,
respectively. The inflows are stronger in DAh and
DAhAMY than in DAg and DAgAMV. The weakening
of inflow bring slower intensification due to lower angular
momentum transport in DAgAMYV. This is consistent
with the observational study by Rogers et al. (2013). They
showed that the composite of axisymmetric tangential
wind for intensifying TCs was weaker outside the RMW
than that for steady-state TCs.

The previous studies using numerical simulations
pointed out that TCs with larger intensification had a
strong inflow (Gopalakrishnan et al. 2013; Kanada and
Wada 2015; Chang and Wu 2017), which also supports
the results of this study. The assimilation of HSAMV
using GEFS covariance could degrade the inner core of
the TC, leading to a slower intensification, even though
VI is applied as found by Tong et al. (2018). This deg-
radation of inner core dynamical structure or spindown
issue can be avoidable by applying the covariance cre-
ated from the HWRF ensemble.

Several previous studies pointed out that the RI tends
to occur when the flow structure becomes more axisym-
metric (Miyamoto and Takemi 2013, 2015; Miyamoto
and Nolan 2018), and the storm tends to intensify more
rapidly when the storm structure becomes more axi-
symmetric (Shimada et al. 2017). From this viewpoint,
the axisymmetricity is calculated from the potential
vorticity as defined by Miyamoto and Takemi (2013).
The areal averaged values of axisymmetricity within
the RMW at 2-km altitude and for z = 2-8 km are 0.86,
0.84, 0.88, and 0.81 in DAg, DAgAMYV, DAh, and
DAhAMYV, respectively. The differences in axisymme-
tricity among the experiments seem to be too small to
account for the different intensification rate (not shown).

The importance of initial inner-core moisture in the
TC intensity forecast was found by Emanuel and Zhang
(2017). The inner core region in their study was defined
as a region within 300-km radius from the TC center.
A comparison of azimuthally averaged relative humid-
ity (Fig. 17) shows the initial vortices become moister
around and outside the RMW at the middle troposphere
and become drier inside the RMW above 5-km height
in DAh and DAhAMYV than in DAg and DAgAMV.
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dicates the radius of maximum wind (RMW) at each height level.

The drier air in DAh and DAhAMY is well inside the
RMW, which is consistent with the pattern of strong or
intensifying TC, and also consistent with the stronger
vortices aloft. The moistening around and outside the
RMW when HWRF covariance is used seems to in-
crease the intensification rate. The background error
covariance generated from HWRF ensemble provide
not only the flow-dependent features but also cross-
variable correlations in the TC inner core more reason-
ably than the background error covariance generated
from GEFS ensemble, as found by Lu et al. (2017a).
The upper-level warm core is also considered to relate
to the intensification (Zhang and Chen 2012; Chen and
Zhang 2013). The maximum temperature deviations,
which are defined as the temperature anomaly from the
mean temperature averaged over 550-650km from the
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TC center at the upper-level core, are between 9.1 and
10.0K in all the experiments, and whose differences in
the two experiments are less than one degree. The initial
warm cores were not significantly different from each
other (not shown).

5. Summary and discussion

We investigate the impact of assimilation of high-
resolution AMVs derived from the full disk scan of
the new generation geostationary satellite Himawari-8
(H8AMYV) on TC forecasts in the western North Pacific
basin. Forecast experiments for three TCs in 2016 are
performed using GSI-based ensemble—variational hy-
brid DA with HWREF. The results show that the inclu-
sion of HSAMYV with GEFS covariance can benefit the
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track forecast skill, especially for long-range lead times
(beyond 54h). The optimal steering flow diagnosis in-
dicates that the improved track forecast here seems to
be attributed to an improvement in the initial steering
flow surrounding the TC, not in the representation of
TC structure, such as its size and depth.

The assimilation of HSAMYV with GEFS covariance,
however, increases the negative intensity bias and in-
tensity error, especially for short-range lead times (~24 h).
This is caused by spindown reported by Tong et al. (2018)
and Pu et al. (2016). The investigation of structural
changes from the assimilation of HSAMYV revealed the
following two factors that are likely to relate to this
degradation: 1) an increase of tangential wind speed (in-
ertial stability) outside the RMW, resulting in a weak-
ening of the boundary layer inflow; and 2) a drying
around and outside the RMW. By assimilating HSAMV
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1

using HWREF covariance, the negative intensity bias was
significantly alleviated and there is a significant im-
provement in size forecast skill. Consistent with Lu
etal. (2017b), the intensity bias was improved through
the proper representation of TC inner core structure
by using the flow-dependent estimate of the background
error covariance created from HWRF ensemble, not
GEEFS ensemble.

Although there are promising results in this study,
several caveats exist as well. There is little benefit of
assimilating HSAMYV for track forecast when HWRF
covariance is used. The low benefit implies HWRF co-
variance is suboptimal for the larger scales that control
the track. Several recent studies showed that hourly as-
similation cycles (Lu et al. 2017a) and 10-min assimilation
cycles (Honda et al. 2018) have a potential to improve
the TC forecast, while this study used 6-h DA cycles.
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The assimilation of higher temporal and spatial resolu-
tion AMVs derived from the regional scan of Himawari-8
or rapid-scan AMVs, which improved the forecast of
precipitation events (Kunii et al. 2016), might provide
a better representation of TC structure and the sur-
rounding area, leading to an improvement in forecast
skill. These are reserved for a future study.
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