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ABSTRACT

The impact of the assimilation of high spatial and temporal resolution atmospheric motion vectors (AMVs)

on tropical cyclone (TC) forecasts has been investigated. The high-resolution AMVs are derived from the full

disk scan of the new generation geostationary satellite Himawari-8. Forecast experiments for three TCs in

2016 in a western North Pacific basin are performed using the National Centers for Environmental Prediction

(NCEP) operational Hurricane Weather Research and Forecasting Model (HWRF). Two different ensemble–

variational hybrid data assimilation configurations (using background error covariance created by global

ensemble forecast andHWRF ensemble forecast), based on the Gridpoint Statistical Interpolation (GSI), are

used for the sensitivity experiments. The results show that the inclusion of high-resolutionHimawari-8AMVs

(H8AMV) can benefit the track forecast skill, especially for long-range lead times. The diagnosis of optimal

steering flow indicates that the improved track forecast seems to be attributed to the improvement of initial

steering flow surrounding the TC. However, the assimilation of H8AMV increases the negative intensity bias

and error, especially for short-range forecast lead times. The investigation of the structural change from

the assimilation of H8AMV revealed that the following two factors are likely related to this degradation:

1) an increase of inertial stability outside the radius of maximum wind (RMW), which weakens the boundary

layer inflow; and 2) a drying around and outside the RMW. Assimilating H8AMV using background error

covariance created fromHWRF ensemble forecast contributes to a significant reduction in negative intensity

bias and error, and there is a significant benefit to TC size forecast.

1. Introduction

Tropical cyclone (TC) forecasts are key in preventing

and mitigating their disastrous effects such as torrential

rain, violent wind, and storm surge. Although the annual

mean TC track forecast error has steadily decreased in

the western North Pacific (WPAC) basin since the early

1990s, forecast busts, defined as abnormally large track

forecast errors (Yamaguchi et al. 2017), still occur. The

TC intensity forecast is also a great challenge since the

annual mean intensity errors of the RMSC’s official

forecast forWPAChas not decreased (e.g., Ito 2016). To

improve both the track and the intensity forecast of TCs,
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it is essential to improve the numericalweather prediction

(NWP)model for TCs. TheHurricaneWeatherResearch

and Forecasting Model (HWRF; e.g., Tallapragada et al.

2014) developed at NOAA/National Weather Service

(NWS)/National Centers for Environmental Prediction

(NCEP) is one of the state-of-the-art operational TC

models. Real-time TC forecasts for the WPAC using the

HWRF began in 2012 (e.g., Tallapragada et al. 2015,

2016), and many modifications such as an increase of

horizontal resolution (Gopalakrishnan et al. 2012), vortex

initialization (Liu et al. 2012), optimization of vertical

mixing length (Gopalakrishnan et al. 2013; Zhang et al.

2015), and an ocean coupled system (Kim et al. 2014)

have been implemented in the HWRF since then. How-

ever, data assimilation, which has been successfully im-

plemented and used in the HWRF for the North Atlantic

basin (NATL) and the eastern North Pacific (EPAC)

(e.g., Tong et al. 2018), has not been applied in theWPAC

yet. The main reason is that observations around the

TC are sparser in the WPAC compared to the NATL

and EPAC, where aircraft observations such as airborne

Doppler radar and dropsondes are available operation-

ally to some degree.

Data assimilation is one of the key components in TC

models to allow them to accurately estimate the TC

structure and its surrounding environment. While the

assimilation of airborne observations have positive im-

pacts on the track (Aberson and Franklin 1999; Aberson

et al. 2015; Tong et al. 2018), intensity (Torn 2014;

Aberson et al. 2015; Tong et al. 2018), and structure (Pu

et al. 2016; Christophersen et al. 2017; Tong et al. 2018)

forecasts in regionalmodels, these data are limited in the

WPAC. On the other hand, satellite observations or

satellite retrieved products such as atmospheric motion

vectors (AMVs; Velden et al. 2005), which are derived

by tracking clouds or water vapor using consecutive sat-

ellite images, are available globally and over the ocean,

a generally sparse region for observations. Therefore,

AMV data assimilation is very important for the TC

forecasts in the research and operational hurricane

forecast models.

Previous studies have found that the assimilation of

AMVs into the regional models can improve the ana-

lyzed TC structures and forecast skill of TC track and

intensity. Wu et al. (2014) showed that the initial posi-

tions and the timing of the early intensification of Ty-

phoon Sinlaku (2008) were improved in the WRF with

an ensemble Kalman filter by adding hourly AMVs into

the conventional observations used in the NCEP oper-

ational analysis.When the rapid-scanAMVs (RS-AMVs)

were added, the ensemble forecasts captured the occur-

rence of recurvature. A further investigation byWu et al.

(2015) using data-denial experiments indicates theAMVs

in the TC’s interior and upper layers play an important

role in reducing analysis biases and the ensemble spreads

of TC position and intensity. Velden et al. (2017) per-

formed a study on the impact of assimilating the high-

resolution AMVs on three TCs over the NATL using

HWRF. They found that the magnitude of the impact

depends on the availability of RS-AMVs and the degree

towhich unbalanced states are allowed to enter themodel

analyses through vortex initialization (VI) incorporated

in HWRF, though a modest positive impact on track and

intensity forecasts can be obtained. Zhang et al. (2018)

studied the influence of high-resolution AMVs on the TC

forecast with and without VI, and revealed that the as-

similation of high-resolutionAMVs benefits the track and

intensity forecast both with and without the VI. Also, the

assimilation of high-resolution AMVs can alleviate the

unrealistic vortex modification due to VI, resulting in

improved intensity forecasts. Kim et al. (2017) examined

the impact of high-resolution AMVs assimilation on TC

forecasts using the adjoint-based observation impact

method in a framework of observing system experi-

ments. They demonstrated that the forecast error re-

duction by assimilating the high-resolution AMVs was

larger than that by the operational AMVs.

A new generation geostationary meteorological satel-

lite Himawari-8 became operational at the Japan Mete-

orological Agency (JMA) in July 2015 (Bessho et al.

2016). The Advanced Himawari Imager on Himawari-8

has 16 observation bands taken at an interval of 10min

for full disk and an interval of 2.5min for targeted re-

gions. Yamashita (2016) confirmed that the assimilation

ofHimawari-8AMVs instead of MTSAT2 AMVs has a

positive impact on precipitation forecasts by the JMA’s

operational regional model and on the TC track fore-

casts by the global model in the framework of OSEs.

Kunii et al. (2016) also demonstrated that by taking

advantage of the availability of high-frequency obser-

vations of targeted regions from Himawari-8, the as-

similation of RS-AMVs from Himawari-8 into JMA’s

operational regional model improved the precipitation

forecast. However, the AMVs derived from full disk

observations are used in this study as a first step, because

the full disk is routinely provided every 10min without

interruption and can be used to monitor more than two

TCs at the same time, unlike the targeted region ob-

servations. Moreover, the frequency of full disk obser-

vations fromHimawari-8 roughly corresponds to that of

the rapid scan mode from the previous generation geo-

stationary satellite.

There are several motivations for this study; 1) to

extend the previous studies on AMV assimilation over

the NATL (Velden et al. 2017; Zhang et al. 2018) to TCs

over the WPAC; 2) to evaluate what impacts the high
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spatial and temporal resolution (or a large number of)

Himawari-8 AMVs have on the track, intensity, and

size of TCs forecasted in HWRF; 3) to explore better

ways to make more effective use of the Himawari-8

AMVs by changing the background covariance used

for assimilation.

This paper consists of six sections. Section 2 describes

an overview of selected TC cases, the data and meth-

odology used in this study. Section 3 shows statistical

verifications of the numerical experiments. We further

examine the key processes that are responsible for the

different impacts on track and intensity forecasts in

section 4. Finally, the summary and discussion of this

study are provided in section 5.

2. Data and methodology

a. Himawari-8 atmospheric motion vector

The Himawari-8 AMVs used in this study were de-

rived from three consecutive full disk images taken at

10-min intervals. The motion vectors are retrieved from

the tracking of the displacements of clouds in forward

and backward. The height of the motion vectors was

assigned based on maximum likelihood estimation with

observed radiances from Himawari-8 and the first guess

of humidity and temperature profiles from the JMA’s

global atmospheric model. This algorithm searches for

an optimal cloud structure which can explain both the

observed radiances and motion vectors by multiple

bands. The AMVs were assimilated when the quality

indicator (QI; Holmlund 1998) of the AMV data was

greater than 0.7. The details of theHimawari-8AMVs

derivation can be found in the document by Shimoji

(2014). The JMAmeteorological satellite center (MSC)

provides Himawari-8 AMVs to users hourly.

This study examines the impact of high-resolution

AMVs against operational AMVs. The operational

Himawari-8 AMVs (hereafter, OPAMV) are derived

at approximately 0.38 by 0.38 if the target box is trace-

able. The AMV dataset that is used for assimilation by

the NCEP operational Global Forecast System (GFS)

contains the OPAMV, meaning that it is possible to as-

similate Himawari-8 AMVs into the operational HWRF

over theWPAC if the assimilation is turned on.As shown

by previous studies (Wu et al. 2014, 2015; Kim et al. 2017;

Velden et al. 2017; Zhang et al. 2018), high-resolution

AMVshave a positive impact onTC forecasts. Therefore,

this study used an experimental dataset of Himawari-8

AMVs derived for grids with approximately 0.28 by 0.28
resolution at 30min intervals provided by MSC, which

are spatially and temporally higher resolution than was

theOPAMVat that time. The high-resolutionHimawari-8

AMVs are called H8AMV hereafter. The same value of

observation error is used for OPAMV and H8AMV be-

cause the algorithm for AMV derivation and its config-

uration are the same.

b. HWRF and data assimilation (GSI)

HWRF is an NCEP operational hurricane forecast

system and is a triple-nested, atmosphere–ocean cou-

pled system. HWRF version 3.9 used in this study was

obtained from the HWRF developers’ repository on

1March 2017. The configuration of HWRF includes the

modified NCEPGFS eddy-diffusivity mass-flux (EDMF)

as a PBL scheme, a modified Geophysical Fluid Dy-

namics Laboratory (GFDL) surface layer scheme based

on Kwon et al. (2010), the Ferrier–Aligo microphysics

parameterization (Ferrier 2005), the scale-aware sim-

plified Arakawa–Schubert scheme (Pan and Wu 1995;

Han et al. 2017), and the Rapid Radiative Transfer

Model for GCMs (RRTMG) longwave and shortwave

radiation scheme (Iacono et al. 2008). The Princeton

Ocean Model (POM) that has been adapted to TCs

(POM-TC; Yablonsky et al. 2015) was the coupled ocean

model employed here, which is different than the Hy-

brid Coordinate Ocean Model (HYCOM) used for the

WPAC in the operational HWRF. The HWRF model

consisted of three nested domains with horizontal res-

olutions of 18, 6, and 2km. The outermost domain is

fixed in time and the two inner nested domains (d02 and

d03) follow the predicted storm center. The domain size

is 248 3 248 for d02 and is 78 3 78 for d03. There were

61 hybrid vertical levels from the surface to 10hPa. The

details can be found in the HWRF scientific documen-

tation (Biswas et al. 2018).

The atmospheric fields of the outermost model do-

main were initialized from the GFS analysis. For the

nested domains, the fields are derived from 6-h forecasts

from the global data assimilation system (GDAS) with

VI. The vortex-scale fields originated from the previous

6-h forecast of HWRF when available. In the vortex

initialization, vortex intensity and structure are adjusted

based on the observed TC parameters provided by the

NCEP TC-Vitals (Liu et al. 2012). After the VI, data

assimilation using the Gridpoint Statistical Interpo-

lation (GSI) is conducted for the ghost outer and in-

ner nested domains with 6-h cycle to generate a vortex

structure in the sameway asEPAC andNATL. The data

assimilation domains are referred to as ‘‘ghost’’ domains.1

For the GSI-based ensemble–variational hybrid assim-

ilation, the background error covariance of the hybrid

system is derived from a mixture of flow-dependent and

1 The domain sizes of data assimilation are expanded to 288 3 288
for ghost d02 and 158 3 158 for ghost d03, respectively.
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static sources. The flow-dependent covariance is es-

timated from the GEFS 80-member ensemble or an

HWRF 40-member ensemble. On the other hand, cli-

matological (static) covariance is obtained through the

National Meteorological Center (now NCEP) method

(Parrish and Derber 1992; Wu et al. 2002). In the same

fashion as the NATL and EPAC, the background error

covariance composed from a linear combination is 80%

flow-dependent (ensemble) and of 20% of static. The

ensemble forecasts of HWRF are initialized or warm-

started from the GEFS at each cycle in this study. All

the experiments conducted utilize GSI quality control

with default for the AMV dataset such as gross error

check and height range check. No thinning and su-

perobbing were done for the experiments with either

OPAMV or H8AMV. Other than the AMV dataset,

HWRF assimilates conventional observations (radio-

sondes, aircraft reports, ship, surface observations and

so on) and satellite radiances (SSMIS, MHS, AMSU-A,

and IASI). For those data, the default thinning was

applied in the GSI. GSI default quality control for

observations is applied to all experiments same as

the AMVs.

Data assimilation inHWRF is conducted in 6-h cycles,

although the AMV datasets are derived at an interval of

1 h for OPAMV and 30min for H8AMV. The first guess

at appropriate time (FGAT) is used in HWRF to allow

data within the 6-h time window (3-h from analysis time)

to be properly assimilated. In FGAT, observations are

compared with the first guess at the observation time,

which is obtained by interpolating the two closest back-

ground fields in time within GSI. In this study, first guess

are created at three time levels (3-, 6-, and 9-h forecast).

HWRF uses a process referred to as blending to avoid

spindown of strong storms (Biswas et al. 2018; Tong

et al. 2018; Pu et al. 2016). In the blending process, data

assimilation increments are eliminated within a radius

of 150 km from the TC center and below 600hPa in

the vertical. The increments are gradually reintroduced

between 150 and 300 km in the radial direction and be-

tween 400 and 600 hPa in the vertical. The blending is

used when the maximum sustained wind speed $65kt

(1 kt ’ 0.5144ms21). Even when the blending is turned

on, full increments within 300km radius are allowed in

the upper levels, which is where the majority of our data

exists. The impact is propagated to the inner core region

FIG. 1. (a) Track and (b)–(d) intensity of three TCs chosen in this

study: (b) Nepartak, (c) Meranti, and (d) Megi in 2016. Each line

color indicates storm intensity categories on the Saffir–Simpson

hurricane wind scale.

TABLE 1. The start and end date of each case used in the

experiment.

Case Cycle period No. of cycles

Nepartak 1800 UTC 2 Jul–0000 UTC 9 Jul 2016 26

Meranti 1200 UTC 8 Sep–1800 UTC 14 Sep 2016 26

Megi 0600UTC 23 Sep–0600UTC 28 Sep 2016 21

TABLE 2. Outline of HWRF experiments.

Assimilation method AMV assimilated

DAg GEFS covariance OPAMV within 1 h from the

analysis time

DAgAMV GEFS covariance H8AMV from 3 h prior to 1 h

after the analysis time

DAh HWRF covariance OPAMV within 1 h from the

analysis time, same as DAg

DAhAMV HWRF covariance H8AMV from 3 h prior to 1 h

after the analysis time, same

as DAgAMV
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during 6-h forecast, which is utilized in the vortex ini-

tialization. The impacts of AMV assimilation is in-

herited through vortex-scale DA cycle.

c. Cases of TCs

To examine the impact of H8AMV, three TCs over

the WPAC in 2016 are selected with a consideration of

the forecast difficulty with respect to both track and in-

tensity. Figure 1 shows the track and intensity of the three

selected TCs: Nepartak (2016), Meranti (2016), andMegi

(2016). The track and intensity data were obtained from

the Joint Typhoon Warning Center (JTWC) best track.

The start and end date for each TC when HWRF was

run and the number of cycles are listed in Table 1.

FIG. 2. Example of (high resolution)Himawari-8AMVs derived from the IR channel that were assimilated into

the d02 of HWRF for the Meranti case in (a) DAh, and (b) DAhAMV experiments. Symbols plotted at the center

of each panel indicate the TC center.

FIG. 3. Statistics of (a) track error with reference to the best track data and (b) track forecast

skill relative to DAg for all cases. Numbers in cyan indicate sample size for each forecast

lead time.
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All three TCs have similar tracks, forming as a trop-

ical depression near the island of Guam and moving to

the west-northwest, passing near or over Taiwan, and

making landfall in southeast China. However, the track

errors forecasted by JMA-GSM (RSMCTokyo-Typhoon

Center 2016) were different among the three; the largest

track error at 78h was for Nepartak (333.3km), followed

by Meranti (266.5km), then Megi (136.0km).

The maximum sustained wind speed (Vmax) of

Nepartak and Meranti reached 155 and 170kt, respec-

tively, corresponding to category 5 hurricane intensity.

Both Nepartak and Meranti experienced extreme RI,

with intensification rates of 70 kt day21. The Vmax of

Megi was 120kt, and the maximum intensification rate

was 30kt day21.

d. Experimental design

To investigate the impacts of H8AMV on the TC

forecast in HWRF, four sets of experiments have been

conducted, as shown in Table 2. The initial condition of

the DAg experiment is obtained from the assimila-

tion of conventional (including OPAMV) and satellite

radiances observation data using the GSI ensemble–

variational hybrid assimilation method with vortex ini-

tialization. TheOPAMVwas used within one hour of the

analysis time. In theDAgAMV experiment, the forecasts

are initialized from the assimilation of observation data

used in the DAg experiment and from H8AMV. Note

that the OPAMV used in the DAg experiment was first

removed from the observation dataset before H8AMV

was added to the dataset. In the DAgAMV experiment,

the initial condition is the same as in theDAg, except that

the H8AMV was ingested from three hours prior to one

hour after the analysis time. The asymmetric assimila-

tion window was used to make use of observation data as

much as possible within a constraint of cutoff time. In this

regard, the impacts would arise from not only the high

spatiotemporal resolution but also the larger amount of

AMV data. The total number of forecast cycles of the

three TCswas 73 in each experiment. Examples ofAMVs

FIG. 4. Statistics of track error with reference to the best track data for (a) Nepartak,

(b) Meranti, and (c) Megi in 2016. Numbers in cyan indicate sample size for each forecast

lead time.
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assimilated into the HWRF outer nested domain are

shown in Fig. 2. In this case, the number of AMV ob-

servations assimilated into the d02 of HWRF are 5365,

and 49779 in the DAh, and DAhAMV, respectively. The

AMV data rejected by quality control in this experiment

was 10–20%.

To explore ways of making more effective use of

H8AMVby changing the background error covariance

in GSI, two additional sets of experiments have been

performed. The DAh experiment used the HWRF

40-ensemble members instead of GEFS 80-ensemble

members as the background error covariance. In the

DAhAMV experiment, the observation data used

for creating the initial condition is the same as the

DAgAMV experiment, except for the use of the

background error covariance created from HWRF

ensemble members. The list of experiments is summa-

rized in Table 2.

3. Numerical results

In this section, verification results for track, intensity,

and size are described. The skill or improvement rate

relative to DAg is defined by

FIG. 5. As in Fig. 3, but for RMSE and skill of Vmax.

FIG. 6. Time series of Vmax (left) for Nepartak and (right) for Meranti.
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Skill5 100(E
DAg

2E
model

)/E
DAg

, (1)

whereEDAg andEmodel are themean track error or root-

mean-square error (RMSE) of intensity or size from

DAg and a given model, respectively. Note that there

are few statistical significance at the 95% level for the

verification using paired t test between DAg and each

experiment, especially for each case because of the

limitation of sample size.

a. Track forecast

The track forecast verification for all three TCs (Fig. 3)

shows that DAgAMV is the best for forecast lead times

(FT) of 30–114h (FT 5 30–114h) in the four experi-

ments, followed by DAh and DAhAMV. The improve-

ment rate of DAgAMV with respect to the DAg ranges

from 4% to 12% beyond FT5 54h except FT5 84–90h.

It indicates that assimilating H8AMV with GEFS co-

variance improves the track forecast skill. On the other

hand, the improvement rate of DAhAMV is smaller than

that of DAgAMV at most forecast lead times. There

is little net benefit of using HWRF covariance for track

forecast when H8AMV is used in this configuration and

in this case at least. This result implies that HWRF co-

variance is suboptimal for the larger scales that control

the track.

The improvement in track forecast skill at longer

forecast lead times is different from the result shown by

Velden et al. (2017), which showed degradation at the

longer forecast lead times (.FT5 96 h). This difference

could arise from several factors such as the different

assimilation scheme, size of assimilation domain, ob-

servation data, model setup, and cases in a different

basin. While understanding the cause of the skill dif-

ference is important, it is beyond the scope of this study.

To examine the case dependency, track verification for

each TC is shown in Figs. 4a–c. The result clearly shows

there is case to case variability; assimilating H8AMV

(DAgAMV) shows an improvement for Nepartak and

is neutral for Meranti and Megi with regard to the DAg.

On the other hand, DAhAMV shows an improvement

for Meranti and is neutral for Nepartak and Megi with

regard to the DAg. Note that the track forecast errors

for Meranti andMegi in the DAg were considered quite

FIG. 7. As in Fig. 4, but for RMSE of Vmax.
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low. In other words, the track errors are below the av-

erage of the official track forecast errors (243, 316, and

442km at FT 5 3, 4, and 5 days) for 2016 WPAC TCs

(RSMC Tokyo-Typhoon Center 2016). The small track

error implies that the environmental flow is well repre-

sented so that the assimilation has less room for impact.

b. Intensity forecast

The intensity forecast is verified for maximum sus-

tained surface winds or Vmax in this study. Figure 5

shows the RMSE of Vmax for all cases, and the intensity

error (RMSE ofVmax) withDAgAMV is the largest for

shorter forecast lead times (FT 5 6–54h). The intensity

error is larger in DAhAMV than DAh up to FT5 12h,

meaning that the H8AMV assimilation using HWRF

covariance still shows the degradation of intensity fore-

cast skill for shorter forecast lead time compared to the

OPAMV assimilation.

The intensity degradation is mainly caused by spin-

down, which occurs for strong storms, as remarked by

Tong et al. (2018) and Lu et al. (2017b). Figure 6 shows

the time evolutions of Vmax as an example of spindown

for Nepartak and Meranti case. The forecast lead time

of up to 48h is shown to focus on the initial forecast. The

intensity in both DAgAMV and DAhAMVweakens by

10–20kt during the first 6h. Compared to the experiments

FIG. 8. As in Fig. 4, but for bias of Vmax with reference to the best track data.
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adding the H8AMV, the Vmax drop in DAg and DAh is

small or does not occur. The assimilation of inner-core

reconnaissance observation for strong storms leads to

spindown because of the suboptimal error covariance

(Lu et al. 2017b) and the interaction betweenmodel bias

and VI (Tong et al. 2018). The similar spindown occurs

when the H8AMV is assimilated because there is much

moreH8AMVdata thanOPAMVdata close to the inner

core (Fig. 2). Note that spindown only impact the Vmax

skill up to 36h (Fig. 5b) and there is some improvement

for longer lead time, consistent with Tong et al. (2018).

Case-to-case variability in intensity can be found in

the similar way as the track forecast for longer forecast

lead times in Fig. 7. The intensity error in DAhAMV

was larger than that inDAh at FT5 6–30h for Nepartak

(Fig. 7a), although it was smaller for Meranti (Fig. 7b).

For the intensity bias for all cases (Fig. 8a), DAg

and DAgAMV have negative (weak) intensity bias

mainly because of the spindown issue (e.g., Fig. 6), es-

pecially of Nepartak (Fig. 8b) andMeranti (Fig. 8c). For

Meranti, the weak intensity bias for all experiments

reached larger than 25 kt, which was 5–20 kt larger

FIG. 9. Statistics of RMSE of TC size with reference to the best track data for all cases.

(a) R34, (b) R50, (c) R64, and (d) RMW. Numbers in cyan indicate sample size for each

forecast lead time.
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than those for Nepartak andMegi. Consistent with the

intensity error, the intensity bias with DAgAMV was

the larger than those with DAg for shorter forecast

lead times. The weak intensity bias is consistent with

Lim et al. (2019), which showed the HWRF had a

weak bias for strong TCs. The impact on intensity bias

was neutral for Megi, which was a weak bias of 5–10 kt

in all experiments. The result indicates using the

background covariance created from the HWRF en-

semble effectively alleviates the intensity errors and

biases due to spindown arising from using the covari-

ance created from the GEFS ensemble for shorter

forecast lead times and for all three TC cases. The result

is consistent with the finding by Tong et al. (2018) and

Lu et al. (2017b).

c. Size forecast

TheRMSEof TC size (R34, R50, R64, and RMW) and

its skill for all cases are shown in Figs. 9 and 10, respec-

tively. For R34, R50, and R64, averages of the radii over

four different quadrants were taken. A sample was in-

cluded in this size verification if at least three of the

quadrants have a value for the wind radius and this oc-

curs in all four experiments, to homogenize the sample.

From Figs. 9 and 10, it is clear to see that RMW

improvement mainly comes from HWRF covariance

FIG. 10. As in Fig. 9, but for size forecast skill relative to DAg.
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because both DAh and DAhAMV are better than DAg

and DAgAMV, respectively. The improvement rate

for RMW in DAh (DAhAMV) with respect to DAg

(DAgAMV) reaches 9.7% (7.5%) on average for FT 5
0–96. However, there was a degradation for R34 and R50

in DAh (DAhAMV) with respect to DAg (DAgAMV),

although the impacts are neutral for R64 in DAh

(DAhAMV) with respect to DAg (DAgAMV). Fur-

thermore, for R34 and R50 improvement, the contribu-

tions are mainly from H8AMV data because DAgAMV

and DAhAMV are better at more than half of forecast

lead times than DAg and DAh, respectively. The addi-

tion of H8AMV contributes to a 3.9% (5.5%) and 2.7%

(10.2%) improvements in R34 and R50, respectively,

on average for FT 5 0–96 in DAgAMV (DAhAMV)

compared to DAg (DAh). This is consistent with the

result documented by Lim et al. (2019), which remarked

that an improvement was achieved when the hourly

AMVs were assimilated. A combined impact of H8AMV

andHWRF covariance shows that the improvement rate

in DAhAMV with respect to DAg reaches 11.0% on

average for FT 5 0–96. The result highlights that there

is a significant benefit of using the H8AMVwith HWRF

covariance in storm size forecast.

The verification of TC size biases shows DAh tends to

reduce all the sizemetrics for forecast lead times of up to

FIG. 11. As in Fig. 9, but for bias of TC size.
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FT5 96h compared to DAg. R34 and R50 were smaller

at more than half of forecast lead times in DAhAMV

than in DAgAMV.HWRF covariance would play a part

in reducing the TC size. The impact of TC size biases

on H8AMV shows R34, R50, and R64 were larger in

DAhAMV thanDAh (Fig. 11). On the other hand, there

was no systematic difference in all the size metrics

between DAgAMV and DAg. The impact of adding

H8AMV is not as obvious as that of HWRF covariance.

The biases of R34 and RMW increase with the forecast

lead time in the all experiments, indicating a systematic

bias in the HWRF physics because the increasing trend

does not depend on the initial condition. It is worth

mentioning that both the size error and bias seem to be

small or comparable to R34, R50, and R64 in the pre-

vious version of HWRF (Tallapragada et al. 2015), de-

spite the challenging cases selected. Note that the vortex

structure is quite modulated by the vortex initialization,

and an additional experiment which has no the vortex

initialization would be needed to extract a clearer im-

pact of the assimilation on TC size.

4. Further comparison and analysis

a. Diagnosis of track error difference

The track verification shows the inclusion of H8AMV

has a positive impact on track forecast (Figs. 3 and 4). To

assess the cause of the reduction in track forecast error, the

track error is separated into along- and cross-track errors

(Neumann and Pelissier 1981). The along-track error

indicates whether the forecasted track is too fast (posi-

tive value) or slow (negative value), and the cross-track

error shows whether the track is too far to the right

(positive value) or left (negative value). Figure 12 dis-

plays the average along- and cross-track errors for

Meranti for the all cycles in each experiment, which

corresponds to the track error bias in the along- and

cross-track directions. There is a pronounced bias to the

right-of-track (positive cross-track error bias) in all the

experiments and a rather slow track tendency for lon-

ger forecast lead time in all the experiments except

DAhAMV. The right-of-track bias here is almost

equivalent to a north-northeast bias in the geographical

sense because Meranti tracked to the west-northwest

(Fig. 1). A northward bias is found at several NWP cen-

ters in the previous study, especially east of the

Philippines (Yamaguchi et al. 2012). The northward bias

or cross-track error bias was smallest with DAhAMV,

followed by DAgAMV. It shows the benefit from as-

similating H8AMV on the track forecast.

TC motion is affected by both the steering flow sur-

rounding the TC and the TC structure (size) through the

beta gyre effect discussed in previous studies (Chan and

Williams 1987; Fiorino and Elsberry 1989), and the as-

similation of H8AMV could change both factors. To

diagnose the factors for track error reduction from as-

similating H8AMV, the optimal steering flow radius and

depth are estimated according to Galarneau and Davis

(2013). The steering flow was defined as the area- and

vertically averaged environmental flow, once the cy-

clonic circulation associated with the TC was removed.

The vertical extent of the steering layer ranged from 50

to 650 hPa, with a fixed base at 850 hPa, using eight

different radii ranging from 100 to 800 km from the TC

FIG. 12. Mean along- (y axis) and cross-track (x axis) errors at each forecast lead time and for

each experiment. Each plot shows the track error averaged forMeranti case and for all forecast

cycles. The positive value in the along-track error indicates the forecasted track is too fast, and

the positive value of the cross-track error means the track is too far to the right. Numbers on

each line indicate the forecast lead times.
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center. The radius and depth combination that produces

the smallest vector difference between the averaged

steering flow and the actual trackmotion is chosen as the

optimal steering flow radius and layer at a given time.

The differences in either optimal steering flow radius

(size) or height could be identified if the assimilation

impacts the TC structure. Otherwise, the small steering

flow differences caused by the assimilation at initial time

put TCs on different trajectories. Here, the difference

between DAg and DAhAMV for Meranti is analyzed

because the difference between the two was the largest.

The estimated optimal steering flow radius and depth

(Fig. 13) are similar in DAg and DAhAMV. The opti-

mal steering radii (depths) averaged for 0–24h are 299km

(376hPa) and 289km (386hPa) in DAg and DAhAMV,

respectively. The small differences in the optimal steering

flow radius between DAg and DAhAMV are consistent

with the size bias in Fig. 11, which shows there is no

significant difference between the two.

To examine the steering flow difference between the

two as a factor for the track error difference, the time

evolution of the steering flow profile difference is calcu-

lated (Fig. 14). The steering flow is defined using a radius

of 300km from the TC center for the two experiments.

The value of 300kmwas chosen from the average optimal

steering radius. The arrows display the steering flow dif-

ference betweenDAhAMVandDAg (DAhAMVminus

DAg). If the steering flow difference arises from the TC

size difference through the beta gyre effect, the persistent

meridional flow difference could be identified at the early

forecast lead times. After FT 5 24h or so, the dominant

signal of steering flow difference comes from the TC lo-

cation biases so that the first 24h is examined.

The differences in initial steering flow between

DAhAMV and DAg are consistent with the differences

in track biases (Fig. 12). The easterly component is rel-

atively larger at the middle troposphere (550–350 hPa)

for the first 9 h in DAhAMV. The larger easterly com-

ponent alleviates the slow track bias for the early fore-

cast lead times. There is little persistent meridional flow

during FT 5 0–24 except at 500hPa, indicating that the

steering flow difference arising from TC size difference

is negligibly small. Thus, the difference in track forecast

errors between DAg and DAhAMV seems to be at-

tributed to the initial steering flow difference, not to the

TC size difference.

FIG. 13. (a) Radius and (b) depth of the optimal steering flow for the Meranti case. Values are

averaged for 26 cycles.
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b. Factors impacting intensity bias

The intensity bias and error for Meranti case were

the largest with DAgAMV, as shown in Figs. 8c and

7b, although there are the same track biases among the

experiments at shorter lead times (Fig. 12). The result

indicates the intensity error originates from the inner

core dynamics, not from the environmental factors. To

investigate the cause of the significant weak bias for

Meranti in DAgAMV, the vertical structure of azimuth-

ally averaged tangential wind speeds for all experiments

are compared (Fig. 15). The analysis was conducted by

interpolating the HWRF output on pressure coordinates

to the height coordinate. The radial structure is normal-

ized by the radius of maximum azimuthally averaged

wind at 2-km altitude based on a previous study (Rogers

et al. 2013) to highlight the difference in essential TC

structure, which is not associated with RMW difference

between each experiment and DAg. The composite is

produced by averaging 18 cycles from cycle 3 to cycle 20,

corresponding to Meranti’s intensification through to

the mature stage. The averaged RMWs at 2-km altitude

were 59.6, 53.5, 60.3, and 63.8 km in DAg, DAgAMV,

DAh, and DAhAMV, respectively.

Assimilating H8AMV with GEFS covariance gener-

ates stronger vortices outside the RMW at the lower

troposphere (Fig. 15b). This pattern corresponds to the

enhancement of inertial stability outside the RMW,

which would reduce the low-level inflow because of high

resistance to radial displacement. In DAhAMV, the

low-level tangential flow is not significantly impacted.

Instead, the tangential wind near and outside the RMW

is enhanced above the middle troposphere (above 5-km

height) compared to DAgAMV. This corresponds with

a taller vortex, which favors intensification.

The radial wind differences, averaged for FT5 0–12h

between each experiment and DAg for the lower tro-

posphere (Fig. 16), show a substantial weakening of the

low-level inflow in DAgAMV. The maximum inflow

speeds in the boundary layer are 10.5, 9.7, 12.2, and

12.9m s21 in DAg, DAgAMV, DAh, and DAhAMV,

respectively. The inflows are stronger in DAh and

DAhAMV than in DAg and DAgAMV. The weakening

of inflow bring slower intensification due to lower angular

momentum transport in DAgAMV. This is consistent

with the observational study byRogers et al. (2013). They

showed that the composite of axisymmetric tangential

wind for intensifying TCs was weaker outside the RMW

than that for steady-state TCs.

The previous studies using numerical simulations

pointed out that TCs with larger intensification had a

strong inflow (Gopalakrishnan et al. 2013; Kanada and

Wada 2015; Chang and Wu 2017), which also supports

the results of this study. The assimilation of H8AMV

using GEFS covariance could degrade the inner core of

the TC, leading to a slower intensification, even though

VI is applied as found by Tong et al. (2018). This deg-

radation of inner core dynamical structure or spindown

issue can be avoidable by applying the covariance cre-

ated from the HWRF ensemble.

Several previous studies pointed out that the RI tends

to occur when the flow structure becomes more axisym-

metric (Miyamoto and Takemi 2013, 2015; Miyamoto

and Nolan 2018), and the storm tends to intensify more

rapidly when the storm structure becomes more axi-

symmetric (Shimada et al. 2017). From this viewpoint,

the axisymmetricity is calculated from the potential

vorticity as defined by Miyamoto and Takemi (2013).

The areal averaged values of axisymmetricity within

the RMW at 2-km altitude and for z5 2–8 km are 0.86,

0.84, 0.88, and 0.81 in DAg, DAgAMV, DAh, and

DAhAMV, respectively. The differences in axisymme-

tricity among the experiments seem to be too small to

account for the different intensification rate (not shown).

The importance of initial inner-core moisture in the

TC intensity forecast was found by Emanuel and Zhang

(2017). The inner core region in their study was defined

as a region within 300-km radius from the TC center.

A comparison of azimuthally averaged relative humid-

ity (Fig. 17) shows the initial vortices become moister

around and outside the RMWat themiddle troposphere

and become drier inside the RMW above 5-km height

in DAh and DAhAMV than in DAg and DAgAMV.

FIG. 14. Time–height cross section of steering flow differ-

ences between DAhAMV and the DAg (DAhAMVminus DAg).

The differences are averaged over 26 cycles for the Meranti case.

The x axis is forecast lead time. An arrow displays difference in the

areal average of steering vectors within the 300-km radius from

the TC center at each forecast lead time. Color displays magnitude

of difference in steering vectors.
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The drier air in DAh and DAhAMV is well inside the

RMW, which is consistent with the pattern of strong or

intensifying TC, and also consistent with the stronger

vortices aloft. The moistening around and outside the

RMW when HWRF covariance is used seems to in-

crease the intensification rate. The background error

covariance generated from HWRF ensemble provide

not only the flow-dependent features but also cross-

variable correlations in the TC inner core more reason-

ably than the background error covariance generated

from GEFS ensemble, as found by Lu et al. (2017a).

The upper-level warm core is also considered to relate

to the intensification (Zhang and Chen 2012; Chen and

Zhang 2013). The maximum temperature deviations,

which are defined as the temperature anomaly from the

mean temperature averaged over 550–650km from the

TC center at the upper-level core, are between 9.1 and

10.0K in all the experiments, and whose differences in

the two experiments are less than one degree. The initial

warm cores were not significantly different from each

other (not shown).

5. Summary and discussion

We investigate the impact of assimilation of high-

resolution AMVs derived from the full disk scan of

the new generation geostationary satelliteHimawari-8

(H8AMV) on TC forecasts in the western North Pacific

basin. Forecast experiments for three TCs in 2016 are

performed using GSI-based ensemble–variational hy-

brid DA with HWRF. The results show that the inclu-

sion of H8AMV with GEFS covariance can benefit the

FIG. 15. Radial–height cross section of azimuthally averaged tangential wind for Meranti. A

contour displays azimuthally averaged tangential wind. Color shading displays the difference in

azimuthally averaged tangential wind (each experiment minus DAg). Green thick line in-

dicates the radius of maximum wind (RMW) at each height level.
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track forecast skill, especially for long-range lead times

(beyond 54h). The optimal steering flow diagnosis in-

dicates that the improved track forecast here seems to

be attributed to an improvement in the initial steering

flow surrounding the TC, not in the representation of

TC structure, such as its size and depth.

The assimilation of H8AMV with GEFS covariance,

however, increases the negative intensity bias and in-

tensity error, especially for short-range lead times (;24h).

This is caused by spindown reported by Tong et al. (2018)

and Pu et al. (2016). The investigation of structural

changes from the assimilation of H8AMV revealed the

following two factors that are likely to relate to this

degradation: 1) an increase of tangential wind speed (in-

ertial stability) outside the RMW, resulting in a weak-

ening of the boundary layer inflow; and 2) a drying

around and outside the RMW. By assimilating H8AMV

using HWRF covariance, the negative intensity bias was

significantly alleviated and there is a significant im-

provement in size forecast skill. Consistent with Lu

et al. (2017b), the intensity bias was improved through

the proper representation of TC inner core structure

by using the flow-dependent estimate of the background

error covariance created from HWRF ensemble, not

GEFS ensemble.

Although there are promising results in this study,

several caveats exist as well. There is little benefit of

assimilating H8AMV for track forecast when HWRF

covariance is used. The low benefit implies HWRF co-

variance is suboptimal for the larger scales that control

the track. Several recent studies showed that hourly as-

similation cycles (Lu et al. 2017a) and 10-min assimilation

cycles (Honda et al. 2018) have a potential to improve

the TC forecast, while this study used 6-h DA cycles.

FIG. 16. As in Fig. 15, but for azimuthally and temporally averaged radial wind. Color shading

displays the difference in azimuthally radial wind averaged for 0–12 h (each experiment minus

DAg). A dashed contour displays negative radial wind or inflow. Contour interval is 2 m s21.
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The assimilation of higher temporal and spatial resolu-

tionAMVs derived from the regional scan ofHimawari-8

or rapid-scan AMVs, which improved the forecast of

precipitation events (Kunii et al. 2016), might provide

a better representation of TC structure and the sur-

rounding area, leading to an improvement in forecast

skill. These are reserved for a future study.
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