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Abstract

The problem of clustering climate data observation sites and grouping them by their

climate types is considered. Machine learning based clustering algorithms are used in

analyzing climate data time series from more than 3000 climate observation sites in the

United States, with the objective of classifying climate type for regions across the U.S.

Understanding the climate type of a region has applications in public health, environment,

actuarial science, insurance, agriculture and engineering.

In this study, daily climate data measurements for temperature and precipitation

from the time period 1946-2015 have been used. The daily data observations were grouped

into three derived datasets: a monthly dataset (daily data aggregated by month), annual

dataset (daily data aggregated by year), and a threshold exceeding frequency (TEF)

dataset (TEF provides frequency of occurrence of certain climate extremes). Three existing

clustering algorithms from literature: k-means, DBSCAN and BIRCH were each applied to

cluster each of the datasets and the resulting clusters were assessed using standardized

clustering indices. The results from these unsupervised learning techniques revealed the

suitability and applicability of these algorithms in the climate domain. The clusters

identified by these techniques were also compared with existing climate classification types

such as the Köppen classification system. Additionally, the work also developed an

interactive web and map-based data visualization system that uses efficient Big Data

management techniques to provide clustering solutions in real-time and to display the

results of the clustering analysis.

Keywords: computational geosciences, climate data, machine learning, Big Data,

This article is protected by copyright. All rights reserved.



PREDICTING CLIMATE CLASSIFICATION TYPES 3

clustering
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Predicting Climate Types For The Continental U.S. Using Unsupervised Clustering

Techniques

Introduction

Data analytics and data-driven machine learning techniques are important for the

discovery of valuable insights from large high-dimensional datasets. Data mining

techniques such as Clustering algorithms (Duda et al., 2012; Jain et al., 1999) help in

discovering clusters that may have gone undetected. The clusters can offer important clues

on similarities, correlations and relationships within a large dataset. It can also help in

outlier detection.

Climate is a critical component of the Earth’s ecosystem and is an important aspect

of people’s daily lives, industrial production and agricultural output. Climate is defined as

long-term averages and variations in weather measured over a period of several decades

(Melillo et al., 2014). The Continental U.S. has the advantage of a having a rich source of

voluminous climate data observations. The daily climate data records go back about a

hundred years. These large climate data repositories are housed in national, operational

data centers such as the NOAA Regional Climate Centers (the NOAA Southern Regional

Climate Center (http://www.srcc.lsu.edu) is housed at Louisiana State University

(LSU)) and the National Center for Environmental Information

(http://www.ncei.noaa.gov). The programatic access to these large, distributed data

repositories is made available using enterprise grade web-services and an applications

programming interface (API, http://www.rcc-acis.org, (DeGaetano et al., 2015)) that

was developed by IT staff at the Regional Climate Centers. Recently, a new dataset, the
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Threshold Exceeding Frequency (TEF) (Huang et al., 2017) was created from such

observational data archives. Using historical climate data measurements at individual sites,

climate scientists have developed more generic, broader, region-based climate classification

types. The rich climate data source is a good foundation for the application of clustering

algorithms to derive unsupervised learning based climate types or clusters.

Background

Clustering analysis is an unsupervised learning technique that finds applications in

several fields including: pattern recognition, machine learning, image processing and

information retrieval. Clustering is the unsupervised classification of patterns

(observations, data items, or feature vectors) into groups (Jain et al., 1999). Clustering

does not need prior knowledge about the dataset. Clustering techniques partition a dataset

into clusters so that objects in the same cluster are more similar to each other than objects

in different clusters. These objects are also referred to as data points or points. A

commonly used clustering algorithm is the k-means clustering method (MacQueen et al.,

1967) that tries to minimize a squared error criterion (Jain et al., 1999). Nonparametric

methods for density-based clustering have also been developed (Jain et al., 1999). A widely

used density based clustering method is the DBSCAN (Density Based Spatial Clustering of

Applications with Noise) (Ester et al., 1996) which groups dense and nearby points to form

clusters. BIRCH (Zhang et al., 1996) is another hierarchical clustering technique. This

study evaluates the performance of 3 clustering algorithms - k-means, DBSCAN and

BIRCH - in grouping climate measurement sites into climate types or clusters.

In climate science, the Köppen classification (KC) is used to spatially group regions

This article is protected by copyright. All rights reserved.
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based on the predominant climate of that region. The spatial distribution of this

classification is shown in Figure 1. Using empirical observations, Köppen (Köppen and

Geiger, 1930) pioneered and established a climate classification system which uses monthly

air temperature and rainfall to define boundaries (clusters) of different climate types

around the world (Chen and Chen, 2013).

In this work, unsupervised, predictive learning techniques are used to predict climate

classification types and each of the clustering solutions are evaluated using the KC system.

Prior work in climate classification include work such as (Fovell and Fovell, 1993) that used

principal component analysis to generate climate zones. Work such as (Zscheischler et al.,

2012) have explored the use of unsupervised clustering techniques such as k-means to

explore the feasibility of such techniques as compared to empirical rule based KC system.

Some differentiating factors between (Zscheischler et al., 2012) and our work were that the

former used gridded datasets and remotely sensed vegetation indices as compared to this

work that uses actual ground truth data from climate observation sites. The time period

studied was also a shorter time span from 2001-2007, whereas this work spans a 70 year

window from 1946-2015. Gridded datasets are typically derived using interpolation

processes and hence can be prone to inaccurate estimations due to lack of accounting for

topographical climate variations (Mourtzinis et al., 2017) (such as in mountainous regions)

or approximating in areas that have a poor coverage of measurement sensors. Since this

work uses observational datasets, the data being fed to the clustering algorithms is of

better quality and void of any inaccurate estimations or approximations. Some of the

challenges involved in this work included the extensive data pre-processing and

management of the Big Data sets (processing nearly 50 million points of information) and

This article is protected by copyright. All rights reserved.
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the ability to derive clusters in real-time as new observations come in.

Recent work such as (Netzel and Stepinski, 2016) have used similar clustering

approaches to derive climate classification types on a global scale. Again, in this case,

gridded datasets were used as compared to actual climate station measurements as in this

work. There was difference also in the clustering algorithms deployed to generate the

climate type classes and the area of focus (this work focussed on continental US as

compared to the global study by (Netzel and Stepinski, 2016)). A similarity between work

by (Netzel and Stepinski, 2016) and our work is that the proposed clustering will not

predict KC types but instead alternative climate type classifications are provided. The

reason for this is that unsupervised clustering techniques are initiated using a random seed

and the clusters obtained do not have a cluster type label. Our map-based visualization

system, described later, provides a spatial mapping of the clusters that enables the effective

inferring of clusters. These predicted climate classifications can also be used as a more

dynamic representation of a climate type in a changing climate scenario as compared to the

rule based, empirical KC technique. The visualization system developed also provides the

ability for a spatial comparison between the predicted clusters and KC types. Work by

(Zhang and Yan, 2014) highlights the importance of cluster analysis in classifying climate

types in the context of climate change especially when KC is less able to reflect variations

in climate classifications. The work by (Zhang and Yan, 2014) also used a global gridded

dataset and only the k-means algorithm to derive climate types. The focus was to look for

temporal and geographical shifts in climate types. In (Liss et al., 2014), machine learning

techniques were used to define climate regions but the focus was solely in the context of

public health. Work by Mahlstein and Knutti (2010) involved using cluster analysis to look

This article is protected by copyright. All rights reserved.
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at regional climate change patterns but the analysis did not involve comparing the clusters

with KC types.

Figure 1 . A screenshot of Köppen Climate Classification from goo.gl/2mU2qr

The KC classification consists of five major climate type groups and a number of

climate type sub-types under each major group, as listed in Table 1. The continental US,

which is our study area, has 4 main types. The tropical climate type A is determined when

the monthly mean temperature for every month is equal to or higher than 18◦C and the

four sub-types under A are determined based on their annual and monthly mean

precipitation values. The dry climate type B is defined by very low precipitation. The

monthly mean temperature of the coldest month lies between -3◦C and 18◦C for mild

temperate C type and the different seasonal precipitations result in 4 sub-types. The

continental climate D has at least one month with temperatures equal or lower than -3◦C,

and the sub-types are decided according to the seasonal precipitation. Finally the polar

climate E, is for regions that have their warmest monthly mean temperature of any month

to be equal or lower than 10◦C (Chen and Chen, 2013).

This article is protected by copyright. All rights reserved.
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Table 1

As provided from (Chen and Chen, 2013): Main characteristic of Köppen climate major

groups and sub-types

Major group Sub-types
A: Tropical Tropical rain forest: Af

Tropical monsoon: Am
Tropical wet and dry savanna: Aw or As

B: Dry Desert (arid): BWh, BWk
Steppe (semi-arid): BSh, BSk

C: Mild temperate Mediterranean: Csa, Csb, Csc
Humid subtropical: Cfa, Cwa
Oceanic: Cfb, Cfc, Cwb, Cwc

D: Snow Humid: Dfa, Dwa, Dfb, Dwb, Dsa, Dsb
Subarctic: Dfc, Dwc, Dfd, Dwd, Dsc, Dsd

E: Polar Tundra: ET
Ice cap: EF

This climate classification system has been widely used by geographers and

climatologists around the world. The system is powerful in linking climate and natural

vegetation (Bailey, 2009) and to evaluate climate change impacts (Fovell and Fovell, 1993;

Kottek et al., 2006; Liss et al., 2014; Diaz and Eischeid, 2007).

This work uses machine learning based clustering algorithms to generate clusters or

climate classification types. These clusters are evaluated using standardized metrics for

clustering algorithms and also compares the classification types revealed by the empirical,

deterministic KC technique.

The work is structured as follows: First, information regarding sources for the daily

climate data and metadata for the 3000 climate stations in the continental U.S. is

provided. The data preprocessing routines used to transform raw climate data observations

into derived annual, monthly, and TEF datasets (Huang et al., 2017) are explained and

how machine learning techniques are applied to generate clusters. Secondly, a real-time

This article is protected by copyright. All rights reserved.
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data visualization system and a user-interface to visualize the clustered solutions is

described. Lastly, computational results and analysis are provided.

Problem Description

Figure 2 . Flowchart for data processing

Figure 2 depicts a flowchart for the data processing involved. First, the daily climate

datasets from 1946 to 2015 are obtained from ACIS. The data are then grouped by month

or year to generate the annual climate dataset, monthly climate dataset and threshold

exceeding frequency (TEF) climate dataset. The 3 derived time series (annual, monthly

and TEF) are stored in a memory-based cache (Redis, http://redis.io) for fast access

and analysis. Then, these three climate time-series datasets are utilized for unsupervised

learning. 3 unsupervised learning based clustering algorithms: k-means, DBSCAN, and

BIRCH are used to derive clusters. The clusters formed (9 sets of clusters) are evaluated

using clustering metrics and also compared with existing KC types.

This article is protected by copyright. All rights reserved.
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Data Sources

The study used the daily climate data from the Applied Climate Information System

(ACIS) (DeGaetano et al., 2015), an Internet-based system designed to facilitate the

generation and dissemination of climate data products to users. ACIS is developed by the

NOAA Regional Climate Centers (RCCs) (DeGaetano et al., 2010) to manage the complex

flow of information from climate data collectors to end users of climate data information.

ACIS accepts and returns climate information in JavaScript Object Notation (JSON),

which uses structures that are similar to those used in many coding languages, including C,

C++, Java, JavaScript, Perl, and Python. For each call, users specify a set of parameter to

describe the data being requested. After passing these parameters to the server and

accessing these climate data, a climate data product is returned to users.

For vegetation and ecosystems, climate of a region involves the following elements:

temperature, precipitation, humidity, wind and radiation. But most climate analyses use

near-surface air temperature and precipitation as the two major variables (Kottek et al.,

2006; Fovell and Fovell, 1993; Liss et al., 2014). In this study the climate elements used

were: maximum temperature, minimum temperature and precipitation.

There are more than 26000 GHCN climate data measurement sites. However not all

span the entire time period of 1946-2015. Additional criteria used for this data analysis

included the following: allow for less than 10% missing values for a station per year and

every climate division should have at least 3 climate measurement sites. Once these criteria

were applied, the number of valid stations that fit these rules reduced to 3210, as shown in

Figure 3. These 3210 stations were well-distributed and covered most parts of the

This article is protected by copyright. All rights reserved.
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Figure 3 . Spatial distribution of climate data observing stations

continental United States.

Dataset Generation

Data from ACIS is on a daily time scale. Data was processed to derive 3 datasets.

The 3 datasets derived were annual, monthly and the Threshold Exceeding Frequency

(TEF) dataset.

Annual and monthly climate datasets were derived by grouping and averaging by

year and month respectively. The TEF provides frequency of occurrence of extreme climate

events. To establish the TEF dataset, some climate extremes thresholds were chosen.

Generation of the TEF dataset was first described in (Huang et al., 2017). The thresholds

used in generating the dataset were based on a combination of thresholds used in the

CLIMDEX - Datasets for Indices of Climate Extremes (Donat, 2013) and the Southeast

chapter of the US National Climate Assessment document, released in 2014 (Melillo et al.,

2014).The chosen extremes are provided in Table 2.

This article is protected by copyright. All rights reserved.
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Table 2

Threshold values to generate TEF dataset

Element Thresholds
Maximum Temperature (in ◦F(◦C)) ≥105(41), ≥100(38) ,

≥95(35), ≥85(29)
Minimum Temperature (in ◦F(◦C)) ≥80(27), ≥75(24), ≥70(21),

≥65(18), ≤36(2), ≤32(0),
≤28(-2), ≤24(-4), ≤15(-9),
≤10(-12), ≤5(-15), ≤0 (-18)

Precipitation (in inches(mm)) ≥2 (50mm), ≥4 (100mm)

The TEF dataset was generated by using the defined thresholds and the daily climate

dataset to estimate the annual frequency of days that either exceeded or fell below a

certain threshold. This was carried out for each climate measurement site. As an example,

for threshold Minimum Temperature ≤ 75, the number of occurrences where the minimum

temperature was less than or equal to 75 was tallied by year and calculated for each of the

years in the time period, 1946-2015. This process was repeated for all 3210 climate

measurement sites and for each of the thresholds to obtain the derived TEF dataset. This

threshold based dataset provides a representation of climate extremes at each site and is a

useful application resource for clustering sites that experience similar climate trends and

extremes.

The input data structure for the clustering algorithm is described in Figure 4. The

input data of any climate measurement site is divided into three arrays: maximum

temperature array, minimum temperature array, and precipitation array (each array

comprising of data from 1946-2015). Each row corresponds to a climate measurement site

and all rows correspond to all the climate measurement sites. In addition, to ensure a

serially complete dataset, climate stations had no more than 10% missing values per year

This article is protected by copyright. All rights reserved.
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Figure 4 . Input data structure after preprocessing

or month. A climate observation site that contained more than 10% missing values was

removed from the analysis. In cases where missing values were less than 10%, missing data

was imputed using an average value of nearby climate measurement sites. Also to eliminate

the effects of different units between precipitation, maximum temperature and minimum

temperature, the pertinent data columns were normalized as follows: X ′ = (X − E) /σ,

where X is the original value, E is the mean of the data column and σ is the standard

deviation of the data column.

Clustering Algorithms and Metrics Used

k-means. k-means clustering algorithm (MacQueen et al., 1967), is a commonly

used clustering algorithm and comes under the category of partitioning-based clustering

techniques. In k-means, an a priori knowledge of number of clusters is important. The

k-means algorithm can be applied over continuous data as noted in (Fukunaga, 2013) and

(Duda et al., 1973). k-means algorithm calculates its centers iteratively. A detailed survey

of data clustering algorithms - particularly k-means - can be found in (Jain, 2010). The

This article is protected by copyright. All rights reserved.
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formation of clusters using this methodology can be mathematically defined as: Given a

dataset D = {d1, ..., dN} with N points that need to be clustered into say K clusters.

Clusters can be considered as C = c1, c2, ..., cK . k-means algorithms forms clusters such

that a clustering criterion is optimized. A commonly used clustering criterion is the sum of

squared Euclidean distances between each data point dN and the centroid mK (cluster

center) of the subset cK which contains dN . This criterion is called clustering error E and

depends on the cluster centers m1, ...,mM (this corresponds to a priori defined number of

clusters). The error for each cluster cK can be denoted as: E(cK) = ∑
dN∈cK

||di −mK ||2.

The goal is to minimize the sum of the squared errors across all clusters. The

k-means algorithm is a locally optimal algorithm. It is an iterative algorithm that initially

selects arbitrary cluster centers and a set of clusters around each center. It then iteratively

reassigns cluster centers to make the sum of squared errors minimal. The main

disadvantage of the method lies in its sensitivity to initial starting positions of the cluster

centers. Therefore, in order to obtain near optimal solutions using the k-means algorithm,

several runs of the algorithm are conducted by varying the initial positions of the cluster

centers.

DBSCAN. DBSCAN (Density-Based Spatial Clustering of Applications with

Noise) is a density based clustering technique (Ester et al., 1996) that can identify clusters

of arbitrary shapes. Density-based clustering techniques define a cluster as a region

comprised of high density objects. A cluster is described as a linked region that exceeds a

given density threshold (Biçici and Yuret, 2007). DBSCAN uses 2 predefined parameter

values: the size of the neighborhood denoted as ε and the minimum number of points in a

cluster as Nmin. In DBSCAN, a random point x is chosen and it finds all the points that

This article is protected by copyright. All rights reserved.
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are density-reachable from x while ensuring that the minimum points criteria of Nmin is

met. If x is a core point, then the formation of a cluster is completed with respect to ε and

Nmin. If x is a border point, then no points are density-reachable from x. DBSCAN then

begins with an unclassified point to repeat the same process. The two parameters, ε and

Nmin, direct the operation of DBSCAN and ensure the quality of clusters. The 2

parameters are adopted universally in functioning of DBSCAN. In most cases, DBSCAN

explores each point of the database multiple times.

BIRCH. BIRCH (stands for a Balanced Iterative Reducing and Clustering using

Hierarchies) algorithm was introduced by Zhang et al. (Zhang et al., 1996). As compared

to DBSCAN (density-based clustering) and k-means (a partition-based clustering), BIRCH

is a hierarchical clustering algorithm that scans the data once and develops an in-memory

tree representation for clusters. 2 key features in BIRCH include a data structure for each

cluster called Clustering Feature (CF) and an in-memory tree representation denoted as

CF-tree.

The CF is a compact data structure that allows for easy merging of sub-clusters. A

CF is a tuple that summarizes information about the cluster. Given N d-dimensional data

points in a cluster, { ~Xi} where i = 1, 2, ..., N , CF is defined as a triple: CF = (N, ~LS, ~SS)

where N is the number of data points in the cluster, ~LS is the sum of the N data points

and ~SS is the square sum of the N data points. A CF-tree has two additional parameters:

branching factor B for non-leaf nodes in the tree and threshold T for the leaf nodes.

This article is protected by copyright. All rights reserved.



PREDICTING CLIMATE CLASSIFICATION TYPES 17

Homogeneity and V-Measure

The notion of Homogeneity and V-Measure were first introduced by (Rosenberg and

Hirschberg, 2007), with the objective that any clusters formed will have 2 properties -

Homogeneity and Completeness. Homogeneity, H is an objective that the cluster contains

only members of a single class and the score is value between 0 and 1, with higher values

(closer to 1) representing higher Homogeneity. Completeness, C is the notion that all

members of a given class are assigned to the same cluster. V-Measure is then defined as:

2× H∗C
H+C

. V-Measure also yields scores in between 0 and 1, with higher scores indicating

greater completeness.

Data Visualization

To demonstrate the computational analysis, a data visualization system was

developed. The data visualization system contains a low latency database, a real-time

interactive machine learning system for generating clusters and an interactive user interface

for map-based visualizations and setting clustering parameters. The visualization system

provides a web-based visual interface to compare predicted clusters (from k-means,

DBSCAN and BIRCH) with the classification types of the KC system. The site is hosted

at http://climext.srcc.lsu.edu. The technologies used in this study include

Scikit-learn (Pedregosa et al., 2011) (a Python module for machine learning, particularly

clustering and classification), Tornado (a Python web framework and asynchronous

networking library), Redis (an in-memory database cache), Pandas (a data analysis

toolkit for Python), React (a JavaScript library for building user interfaces), GraphQL (a

query language for APIs), WebGL (a JavaScript library for rendering 2D and 3D

This article is protected by copyright. All rights reserved.
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graphics) and D3 (a JavaScript visualization library).

Computational Results and Analysis

The computational analysis involves evaluating the performance of the 3 clustering

algorithms on the 3 climate time series datasets (annual, monthly and TEF). The

evaluation used the above outlined metrics, Homogeneity and V-measure (Rosenberg and

Hirschberg, 2007), to evaluate the quality of the clusters formed. A diagnostic explanation

between KC and the derived clusters is also provided. It is important to note that the

predicted clusters cannot be directly compared with KC types (as outlined in Table 1).

Clustering algorithms generate clusters in a random order and provide cluster labels that

are numeric. However, when the climate measurement sites along with their predicted

cluster labels are plotted on a map, the spatial visualization provides specific groupings or

polygons that closely resemble the spatial distribution of the KC system. These visual

groupings provide a strong case for the use of unsupervised clustering models that rely on

purely climate data and are computationally nimble as compared to KC that rely on

additional vegetation and remotely sensed data to derive climate types.

Analyzing Clusters Formed by k-means

The k-means method worked well when applied to all 3 datasets. Table 3 provides

Homogeneity and V-Measure scores for varying cluster sizes (ranging from 4 to 12). One

can observe from Table 3 that the Homogeneity Scores for the TEF dataset are higher than

those of monthly and annual datasets. Secondly, as the number of clusters increase, the

Homogeneity Scores show an increasing trend.

This article is protected by copyright. All rights reserved.
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Table 3

Homogeneity and V-Measure Scores of k-means for different number of clusters and the 3

datasets (higher score is better)

Homogeneity V-Measure
# of Clusters Annual Monthly TEF Annual Monthly TEF
4 0.202 0.231 0.315 0.180 0.211 0.279
5 0.201 0.274 0.306 0.180 0.228 0.250
6 0.207 0.277 0.344 0.184 0.217 0.265
7 0.240 0.326 0.425 0.201 0.244 0.310
8 0.217 0.379 0.464 0.180 0.270 0.325
9 0.266 0.382 0.433 0.208 0.262 0.293
10 0.269 0.422 0.476 0.219 0.281 0.311
11 0.235 0.425 0.533 0.185 0.274 0.340
12 0.328 0.432 0.574 0.232 0.274 0.357

(a) Clustering Using k-means on An-
nual Time Series

(b) Clustering Using k-means on
Monthly Time Series

Figure 5 . k-means on Annual and Monthly time series

(a) Clustering Using k-means on TEF
Dataset

(b) Köppen classification types or la-
bels

Figure 6 . k-means on TEF and Spatial distribution using Koppen Classification Labels

This article is protected by copyright. All rights reserved.
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(a) Clustering using DBSCAN with pa-
rameters ε = 21 and Nmin = 2

(b) Clustering using BIRCH on
monthly dataset

Figure 7 . Clustering Result using BIRCH and DBSCAN on monthly dataset

Figure 5(a), Figure 5(b),and Figure 6(a) display 8 predicted clusters after applying

k-means clustering on annual, monthly and TEF datasets, respectively. In the map, the

different colors of points represent different clusters. Figure 6(b) displays spatial

distribution for Köppen classification.

Analyzing Clusters formed with DBSCAN

When DBSCAN was applied to each of the 3 datasets, degenerative results emerged,

such as all climate sites were merged into 1 or 2 clusters. After a gridded search of optimal

parameters, the parameters used in DBSCAN were: ε = 21 and the minimum points in a

cluster set, Nmin set to 2. Only one example of such a degenerative solution is provided as

Figure 7(a), when DBSCAN was applied on the TEF dataset. The grey points represent

the noisy samples.

Analyzing clusters formed with BIRCH

Table 4 depicts Homogeneity and V-Measure scores for BIRCH.

BIRCH has approximately the same results as k-means, and most of Homogeneity

and V-Measure scores of BIRCH are slightly lower than k-means.

This article is protected by copyright. All rights reserved.
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(a) Clustering using BIRCH on Annual (b) Clustering using BIRCH on TEF
dataset

Figure 8 . Clustering Result using BIRCH on annual and TEF dataset

Figures 7(b), 8(a) and 8(b) shows the spatial distribution of 8 predicted clusters using

BIRCH clustering on monthly, annual and TEF datasets respectively. The parameters used

were a threshold of 1 and a branching factor of 50.

Summary of Analysis

The clustering results from k-means and BIRCH is compared with KC types using

the climate stations that are part of each cluster. (Results using DBSCAN were not

reported due to its poor performance in producing degenerative clusters). Since clustering

algorithms are unsupervised by nature they yield clusters in a random order. They also do

not predict the KC types. So a new approach is explored by grouping the climate stations

by KC types (using inherent spatial information such as latitude and longitude) and then

comparing the groups to the clusters generated. Percentages of stations that are part of a

generated cluster will provide clues on the similarities of the cluster and a KC type. For 8

cluster solution, a summary comparison has been provided in Table 5. To interpret the

table, 8 KC types are represented in rows and the columns represent combinations of the 3

datasets and 2 clustering algorithms. Along each row, each value represents the percentage
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Table 4

Homogeneity and V-Measure Scores using BIRCH with different number of clusters and

datasets (BIRCH parameters: threshold of 1 and branching factor of 50) (higher scores are

better)

Homogeneity V-Measure
# of Clusters Annual Monthly TEF Annual Monthly TEF
4 0.099 0.187 0.264 0.107 0.174 0.234
5 0.142 0.236 0.289 0.133 0.201 0.238
6 0.142 0.241 0.384 0.133 0.197 0.298
7 0.142 0.246 0.438 0.133 0.192 0.323
8 0.193 0.324 0.460 0.168 0.233 0.324
9 0.194 0.342 0.471 0.168 0.235 0.322
10 0.242 0.384 0.492 0.191 0.257 0.328
11 0.242 0.388 0.542 0.191 0.252 0.350
12 0.242 0.409 0.544 0.191 0.261 0.337

of climate stations that are part of a cluster as compared to the number of stations that

are part of a KC category.

From table 5, we can infer that k-means and BIRCH provide dissimilar or alternative

climate types as compared to the KC system. There are a few observations with high

similarities, such as: for classification type Dfb and BIRCH on TEF yielding a 90% match

rate, Dfb and k-means on TEF yielding a 72.8% rate, Csb and k-means on TEF yielding a

match rate of 70.2%, and Dfa on BIRCH and monthly yielding a match rate of 84.4%.

However, most match percentage numbers in table 5 hover below 50%. On the whole, the

TEF and Monthly datasets yielded more similar clusters to the KC clusters. The level of

dissimilarity also suggests value in considering alternative classification types that may be

more pertinent to climate data records as compared to the empirical KC types.
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Table 5

Comparing Clustering Results with Köppen Classification (KC)

k-means BIRCH
Köppen (KC) Type Annual Monthly TEF Annual Monthly TEF
Cfa 37% 52.8% 39.2% 45.5% 35.3% 47.8%
BSk 54.1% 38.8% 34.8% 45.9% 31.5% 10.0%
Dfb 42.0% 67.4% 72.8% 42% 31.3% 90.0%
Dfa 32.8% 65.3% 50% 36.7% 84.4% 72.7%
Csb 19.3% 58.3% 70.2% 26.3% 59.0% 70.2%
Cfb 9.5% 4.5% 5% 4.7% 29.5% 5.3%
Dsb 20% 48.7% 33.3% 20% 48.7% 44.4%
Csa 5% 43.2% 66.7% 38.9% 15.4% 66.7%

Conclusions and Future Work

Overall, by analyzing the climate data from more than 3000 climate stations in the

continental U.S. between 1946 and 2015, k-means and BIRCH offered better clustering

solutions as compared to DBSCAN. This conclusion was formed after evaluating clusters

using standardized metrics for clustering such as V-measure and Homogeneity Scores and

by comparing the cluster compositions (climate stations) with the original KC types.

k-means and BIRCH had approximately similar results. DBSCAN failed to provide

effective clusters partly due to its known difficulties of scaling to high-dimensional

databases (Gan et al., 2007). The derived dataset, TEF (Huang et al., 2017), provided

similar clustering solutions to the KC system as compared to the monthly and annual

climate datasets. A possible reason for this is that the empirical KC technique (used for

evaluation) is designed around extreme climate data values and hence the TEF dataset,

which is a climate extremes based dataset, fits that description. On the whole, a new

clustering based approach based on actual climate station data has been proposed and

implemented and the clusters generated provided for alternative climate type
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configurations. A intuitive, dynamic climate clustering web-based tool has also been

created to interactively generate climate clusters for the Continental U.S. and to visually

compare the clustering solution with that proposed by the KC system. In addition, a

number of possible directions for future research can be stated. One can apply the same

clustering algorithms to evaluate how the climate classification types are changing over

time and space. This can help geographers and meteorologists evaluate and assess a

changing climate using machine learning algorithms. One can also extend the area of study

beyond the continental U.S. to North America and to the entire World. This will enable

comparisons on a large scale between machine learning derived clusters and those derived

from empirical climatology based classification techniques. The work can be extended to

incorporate future climate model scenarios spanning the time period 2020-2070 and

evaluate how clusters and climate classification types change over time.
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