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Habitat suitability modeling based on a spatiotemporal model:
an example for cusk in the Gulf of Maine
Jocelyn Runnebaum, Lisha Guan, Jie Cao, Loretta O’Brien, and Yong Chen

Abstract: Habitat use and distribution is a critical aspect in the management and conservation of a species, particularly for those
in decline. Habitat suitability indices (HSI) are a common method of habitat mapping dependent on empirical data that can easily
lead to misunderstanding the spatiotemporal dynamics of marine species experiencing population decline and density-
dependent catchability within surveys. This is especially true when only a single monitoring program with limited spatiotem-
poral coverage is used. A delta-generalized linear mixed model was used to combine trawl and longline surveys to predict density
estimates for cusk (Brosme brosme) in unsampled locations for use in HSIs. Catchability was estimated for longline and trawl gear
without having an estimate of area fished for the longline survey. HSIs performed better using model-based density estimates
from multiple surveys compared with sample-based abundance indices from a single survey. The increased spatial resolution can
better inform the HSIs by providing information where the survey programs did not sample. This study provides a novel
approach for integrating data from different monitoring programs for habitat modeling.

Résumé : L’utilisation et la répartition des habitats sont des aspects d’importance clé pour la gestion et la conservation des
espèces, en particulier les espèces en déclin. Les indices de qualité de l’habitat (IQH) constituent une méthode répandue de
cartographie des habitats qui repose sur de données empiriques pouvant facilement mener à une compréhension erronée de la
dynamique spatiotemporelle d’espèces marines dont les populations sont en déclin et de la capturabilité dépendante de la
densité dans les évaluations. Cela est particulièrement vrai quand une seule campagne de surveillance de couverture spatiotem-
porelle limitée est utilisée. Un modèle de mélange linéaire généralisé delta a été utilisé pour combiner des évaluations au chalut
et à la palangre afin d’établir des estimations prévues de la densité pour le brosme (Brosme brosme) dans des emplacements non
échantillonnés pour utilisation dans des IQH. La capturabilité a été estimée pour les palangres et les chaluts en l’absence
d’estimation de la superficie pêchée pour l’évaluation à la palangre. Les IQH donnent de meilleurs résultats quand des estima-
tions de la densité modélisées basées sur plusieurs évaluations sont utilisées, comparativement à des indices d’abondance basés
sur les échantillons tirés d’une seule évaluation. La résolution spatiale accrue peut être avantageuse pour la détermination des
IQH parce qu’elle fournit de l’information pour les emplacements non échantillonnés lors des campagnes d’évaluation. L'étude
fournit une nouvelle approche d’intégration de données de différentes compagnes de surveillance pour la modélisation des
habitats. [Traduit par la Rédaction]

Introduction
Habitat use and distribution is a critical aspect in the manage-

ment and conservation of a species, particularly for those in de-
cline. Habitat suitability indices (HSIs) are a method of assessing
relative habitat quality for a species based on abundance at asso-
ciated environmental conditions for a given location (Brooks 1997;
Chen et al. 2009). The HSI can be projected spatially and tempo-
rally, providing valuable representation of changes in habitat
quality over space and time and potential locations of a species’
critical habitat (Chen et al. 2009). Such information is critical
for implementing spatially explicit conservation management
(Brooks 1997), evaluating shifts in habitat quality over time (Guan
et al. 2017; Tanaka and Chen 2016), or understanding the impact of
climate variability on suitable habitat distribution (Yu et al. 2016).
Recent efforts have been made to improve the predictive capabil-
ities of spatially projected HSIs (Tanaka and Chen 2015, 2016).
However, these efforts do not address two critical shortcomings of
conventional HSIs: (i) the abundance indices from survey catch

data typically incorporated in these models do not account for
changes in catchability over a time series; and (ii) the commonly
used abundance indices, and therefore HSIs, are unable to incor-
porate surveys from multiple gear types that sample different
segments of the population and likely cover different types of
habitat. These issues need to be addressed to produce an unbiased
evaluation of spatiotemporal changes in habitat quality for a spe-
cies over its distributional range.

Conventional HSIs have been extensively applied to aquatic
species by utilizing abundance indices derived from survey catch
data (e.g., catch per unit effort, CPUE; Terrell 1984; Terrell and
Carpenter 1997; Morris and Ball 2006). HSIs assume that high
density of a species indicates high-quality habitat and that the
absence or low density of a species indicates habitat of low value
to the species. The use of catch data as a proxy for density assumes
that sampled catches truly reflect the density or absence of a
species at a given location and are not confounded by stock status,
sampling inefficiency, and bias. This assumption may be reason-
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able for species that have relatively constant and high survey
catchability over space and time. However, for less-abundant spe-
cies that are poorly sampled (e.g., low survey catchability or reside
in habitat that is not well covered by the survey program) or for
which survey catchability has changed over time, conventional
HSIs may perform poorly or even produce biased results.

Conventional HSIs use available data from sampled locations,
hereinafter referred to as sample-based HSIs, which are often re-
stricted to the locations of occurrence and are typically processed
to assume that the samples are representative (i.e., the species is
effectively sampled) and are comparable through time (i.e., no
changes in sampling distribution and efficiency). Therefore, the
sample-based HSIs might not be appropriate in at least the follow-
ing two situations: (i) the survey misses a major portion or type of
the species’ habitat; and (ii) sampling efficiency (i.e., catchability)
changes over space and (or) through time due to density-
dependent processes. Density-dependent habitat selection is a
likely process for species in decline (MacCall 1990). When a species
population is high, individuals move into previously marginal
habitat because high-quality habitat is saturated; thus, the overall
suitability of all occupied habitat declines on average (MacCall
1990). Conversely, as populations decline, individuals retreat to
the highest suitable habitat as it becomes less densely occupied
and available (MacCall 1990; Hare et al. 2012).

Another limitation of sample-based HSIs arise when data from
multiple surveys are available for a species. Attempts to combine
data from multiple surveys face serious difficulties, including
quantifying the relative differences of catchability among differ-
ent sampling gear (i.e., trawl and longline). Such complications
often result in discarding data by trimming the survey data to
common surveyed areas and time periods with consistent survey
methods, utilizing probability of presence (Grüss et al. 2017;
Brotons et al. 2004) or utilizing only one data set when multiples
are available (Tanaka and Chen 2016). This is often unsatisfactory
due to losses in spatial coverage given that different surveys of
different gear types usually sample different areas or habitats. For
example, trawl surveys likely do not sample rocky habitat as well
as longline surveys. If rocky bottom is one of a species’ preferred
habitat types, using only trawl surveys for developing HSIs could
bias the results.

Cusk (Brosme brosme) in the Gulf of Maine (GOM) is one species
where assessment is difficult using conventional HSIs. It is a data-
limited species, with low abundance and low catchability. Catch-
ability of cusk is believed to have declined in the Northeast
Fisheries Science Center (NEFSC) spring and fall bottom trawl
surveys (BTS), presumably due to declines in stock abundance
(Davies and Jonsen 2011; Hare et al. 2012), resulting in density-
dependent catchability within the BTS. Additionally, changes to
the survey protocols over the time series could influence the
catchability of cusk in the BTS. In 2009, the BTS changed the
sampling vessel, net type, and tow duration (Politis et al. 2014).
The protocol changes in 2009 required the estimation of conver-
sion coefficients for all species to allow for the data to be com-
bined into a continuous time series (Miller et al. 2010). However,
low catch numbers and low frequency of occurrence of cusk dur-
ing the calibration study prevented conversion coefficients to be
estimated for cusk (Miller et al. 2010). An operational stock assess-
ment review in 2009 rejected the proposed analytical assessment
and determined that a more representative index of abundance is
needed for cusk (NEFSC 2013).

Declines in catch of cusk, and similar groundfish species, within
the BTS prompted the development of the Northeast Fisheries Sci-
ence Center (NEFSC) cooperative research bottom longline survey
(LLS) in the western GOM to enhance monitoring efforts for data-
poor and depleted stocks residing in rocky habitat to develop a
more representative index of abundance (Hoey et al. 2013). The
cusk population is now monitored by these two multispecies sur-
vey programs. These two survey programs differ in sampling effi-

ciency, spatial coverage, and duration. Rocky, complex habitat,
thought to be utilized by cusk (Collette and Klein-MacPhee 2002;
Hare et al. 2012), is not well sampled by the BTS. However, the LLS
is designed to sample rocky, complex bottom types more effec-
tively than the BTS covering the same region, due to the nature of
the gear. Both survey programs are stratified by depth and overlap
in the western GOM.

In the case of cusk, the BTS would likely not provide a realistic
evaluation of habitat quality because of catch declines over the
time series and poor sampling in rocky habitat. Conventional
habitat modeling based on either BTS or LLS would likely produce
biased results. This study proposes a modeling framework for use
with data-limited species such as cusk by combining the BTS and
the bottom LLS data to derive model-based density estimates to
improve spatial resolution of data for use in HSIs. The results from
the model-based HSI are contrasted with those derived from
sample-based HSI to test the hypothesis that HSI performance
would improve with the use of higher resolution spatial informa-
tion from combining multiple surveys and imputing values for
unsampled locations.

Methods

Survey and environmental data
Data on cusk abundance are available from the NEFSC spring

and fall BTS (1980–2015) and the NEFSC spring and fall bottom LLS
(2014–2015). The BTS is a demersal, multispecies, depth-stratified
random survey synoptic of the GOM and Georges Bank (GB)
(Politis et al. 2014). The NEFSC developed a depth-stratified ran-
dom LLS in the western and central GOM to better sample species
that primarily reside in complex habitat (Hoey et al. 2013). Six
survey strata were selected for the LLS from ten offshore and four
inshore strata from the BTS. This survey also samples in the spring
and fall to coincide with the BTS and randomly samples hard
bottom sites within each stratum (Hoey et al. 2013). The LLS fol-
lows the tidal cycle, with gear deployed 1 h before slack tide and
fished for 2 h. The longline gear is one nautical mile long (1 n.m. =
1.852 km), with 1000 semicircle hooks baited with squid set within
a three-nautical mile grid (Hoey et al. 2013).

Environmental variables known to impact cusk habitat are
depth, temperature, and sediment type (Hare et al. 2012). Cusk
have been documented between 18 and 1000 m and are thought to
tolerate temperatures between 0 and 14 °C, with the majority of
cusk occurring between 6 and 10 °C in the GOM (Cohen et al. 1990;
Collette and Klein-MacPhee 2002). Cusk are hypothesized to pre-
fer rock, gravel, or pebble sediment, but are known to inhabit
mud areas in the GOM, excluding smooth sand (Cohen et al. 1990;
Collette and Klein-MacPhee 2002). These three environmental
variables were used to develop HSIs for the GOM and GB regions.

Simulated bottom temperature data (1980–2013) were obtained
from the Northeast Coastal Ocean Forecast System (NECOFS) inte-
grated atmosphere–ocean model forecast system for the GOM,
GB, and New England Shelf regions. The simulated temperature
data were generated from an unstructured Finite-Volume Com-
munity Ocean Model grid for these regions (Beardsley et al. 2013;
NECOFS 2013) and averaged over the primary 2 months when the
surveys were conducted.

For sample-based HSIs, depth data from the BTS were used. For
model-based HSIs, depth was extracted from the General Bathy-
metric Chart of the Oceans (GEBCO 2014) 30 arc-second interval
grid. Sediment data were extracted from the United States Geo-
logical Survey (USGS) East-Coast Sediment Texture Database
(Poppe et al. 2014) using geographic information system (GIS). In
situ temperature data are not available for the model-based den-
sity estimates used in the HSI, since these come from model pro-
jections. To compare design-based and model-based HSIs, the
same temperature data were used in both analyses to not con-
found results by developing HSIs from different types of tem-
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perature data (i.e., observed versus simulated). Additionally, a
seasonal average can represent the environmental conditions a
species would encounter during a season relative to an instanta-
neous temperature.

The study area was divided into 5710 cells (0.05° × 0.05°) for
predicting grid-based densities, which were then used to develop
model-based HSIs by season. Simulated environmental variables
were assigned to the beginning of the trawl survey location for
sample-based HSIs and to the center of 0.05° × 0.05° grid cells for
model-based HSIs.

Spatial–temporal model for predicting species density
A spatiotemporal delta-generalized linear mixed model (delta-

GLMM) initially developed by Thorson et al. (2015) was applied
(using the VAST package in R; Thorson and Barnett 2017) to data
collected from both NEFSC BTS and LLS to estimate cusk density
for each season (i.e., spring and fall) from 1980 to 2015 to match
the timing of simulated temperature data. This is a two-stage
model that ultimately infers population density throughout the
study area. Survey data are fit in two stages by: (1) estimating the
probability of encountering and catching cusk (i.e., presence–
absence) and then (2) estimating catches (C) when cusk are present
(Thorson et al. 2015).

The first model component estimates the probability (p) of
catching at least one of the target species:

(1) Pr[C � 0] � p

The second stage of the model approximates positive catches (c):

(2) Pr[C � c | C � 0] � Gamma(c, ��2, ��2)

The probability density function Gamma(c, x, y) is evaluated at c
given a gamma distribution, where � is the expected catch if
encountered, and � is the coefficient of variation for positive
catches (Thorson and Ward 2014; Thorson et al. 2015).

Spatial autocorrelation is incorporated into the model as a ran-
dom effect to account for the spatial dependence of species den-
sity. Two Gaussian Markov random fields are included in both
stages of the model as a random effect to account for spatial (�)
and spatiotemporal (�) autocorrelation (Thorson et al. 2015). The
random fields are approximated at 250 prespecified knots that are
generated based on the proportional density of survey data over
the defined domain (i.e., the 0.05° × 0.05° grid; Thorson et al. 2015).
The spatial (�) and spatotemporal (�) random effects were used in
both spring and fall density estimates.

Encounter probability p and positive catch rates � are approxi-
mated using linear predictors (Thorson et al. 2015):

(3) pi � logit�1�dT(i)

(p) 	 Q i
(p) 	 �J(i)

(p) 	 �J(i),T(i)

(p) �
(4) �i � wi exp�dT(i)

(�) 	 Q i
(�) 	 �J(i)

(�) 	 �J(i),T(i)

(�) �

where pi and �i are the expected probabilities of an occupied
habitat and positive catches, respectively, given occupied habitat
for sample i at a given location; dT�i�

is the mean reference density
(encounters/positive catch rates) in year T(i); Q i is catchability for
each survey; wi is the area swept for sample i; Ji is the nearest knot
to sample i; �J�i�

is a random field accounting for spatially corre-
lated variability at knot Ji that is persistent among years; and �J�i�,T�i�
is the random field accounting for spatiotemporal correlation at
knot Ji in year T(i) (Thorson et al. 2015). Spatial and spatial–temporal
random fields were used in all models for both seasons.

A design matrix with indicator variables for each survey is used
to estimate Q i. This study assumes the need to estimate three

catchability parameters due to the BTS protocol changes in 2009
and the inclusion of the LLS. A three-column design matrix was
built using ThorsonUtilities with as many rows as observations
and reduced to a two-column matrix for identifiability. The 2009
protocol changes cause the intercepts of Q i and dT�i�

to be collinear
due to a lack of variance in Q i in a given year as a result of two
nonoverlapping time blocks in the BTS. To resolve this issue, year
effect was modeled via a temporal autocorrelation structure:

(5) 
1(t 	 1) � Normal��
1
(t), �
1

2 �
(6) 
2(t 	 1) � Normal��
2

(t), �
2

2 �

where �
1
and �
2

are defined as a random walk as specified in the
model (Thorson 2017). Catchability is then removed from the
model, and the underlying species density is predicted at each
knot. Grid cells are assigned the density of the nearest knot based
on closest Euclidean distance calculated using the Voronoi tool in
the PBSmapping package in R (Schnute et al. 2015). Density fields
are then extracted for each grid cell to use within the HSIs.

Within the delta-GLMM, catch rate was estimated as catch num-
ber by area swept (Thorson et al. 2015). Area swept for the BTS tows
in the GOM has been standardized as 0.024 km2 for the Bigelow
and 0.038 km2 for the Albatross IV and the Delaware II (NEFSC
2013). The area fished (Ai,y km2) for the LLS is calculated as the
distance between the beginning location of the longline and the
end of the longline set (in km; L) times an estimated bait plume (b)
along the length of the longline for each sample site (i) in a given
year (y):

(8) Ai,y � Li,yb

The bait plume (b) is assumed to be a fixed constant (0.28 km) for
all years and all locations. Evaluation of the impact of varying bait
plume sizes on density estimates can be found in Appendix A.

Habitat suitability indices
HSIs quantify the overall habitat quality for a species by evalu-

ating species density associated with each selected environmental
variable. Suitability indices (SIs) quantify the relationship be-
tween an environmental variable and species abundance at a
given location (Terrell 1984; Terrell and Carpenter 1997; Morris
and Ball 2006). SIs are then combined either through a geometric
mean (GMM) or an arithmetic mean (AMM) to derive an overall
HSI to quantify habitat quality from relatively good (1) to relatively
bad (0) (Chen et al. 2009; Tanaka and Chen 2016). HSIs assume that
locations with the highest abundance have the highest quality
habitat for that organism.

Season-specific HSIs were developed for 1980–2013 mean condi-
tions using two different types of abundance indices to compare
the performance of model-based HSIs relative to sample-based
HSIs. CPUE (i.e., catch number per area swept) from the BTS was
used as the abundance index for the sample-based HSIs. Model-
based density estimates derived from both the BTS and LLS were
extracted for each cell and used in the model-based HSIs. All abun-
dance indices were calculated separately for spring (i.e., April–
May) and fall (i.e., October–November). The time series for cusk
used in this study is from 1980 to 2015; however, simulated
monthly mean temperature data were only available up to 2013 at
the time of writing. All data (i.e., observed CPUE and model-based
density) were trimmed to 1980–2013 and averaged for the entire
time series. NECOFS-simulated bottom temperatures (Chen et al.
2006) were averaged by season for the time series. Mean environ-
mental data (i.e., bottom temperature, depth, and sediment type)
were extracted for the beginning latitude and longitude for each
trawl haul and for each grid center using GIS.
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Fisher natural breaks were used to bin the continuous environ-
mental variables of depth and bottom temperature (Bivand 2013;
Tanaka and Chen 2016). Sensitivity analyses were conducted to
determine both the most appropriate number of bins for each
model and the minimum bin size (five to eight bins). Categorical
sediment data were extracted from the USGS sediment layer, and
the nine defined sediment types were used as bins (Poppe et al.
2014).

For the sample-based HSIs, CPUE for cusk was calculated as
catch number at station (i), in season (s), and year (y) per area swept
for each vessel (v) (Chang et al. 2012; Tanaka and Chen 2015, 2016):

(9) CPUEisy �
Catch Numberisy

Area Sweptv

where catch number is the total number of cusk caught per tow,
and area swept is standardized for each of the three vessels used in
the BTS (NEFSC 2013). For model-based HSIs, mean abundances
estimated from the spatiotemporal model were used for each
0.05° × 0.05° grid cell. The SI for bin (b) of environmental variable
(k), SIb,k, was calculated on a 0.0 to 1.0 scale (Chang et al. 2012;
Tanaka and Chen 2015, 2016):

(10) SIb,k �
CPUEb,k
¯ � CPUĒk,min

CPUĒk,max � CPUĒk,min

where CPUEb,k
¯ is the mean CPUE over all sampled stations within

bin b for each environmental variable k (Tanaka and Chen 2015,
2016). These SI values were then averaged by an arithmetic mean
(AMM) and a geometric mean (GMM):

(11) HSIAMM �
�i�1

n
SIk

n

(12) HSIGMM � �i�1

n
SIk

1/n

where all SIk represent equally weighted SI values for the kth
environmental variable, and n is the number of environmental
variables included.

The sample- and model-based HSIs were based on empirical
data from the BTS and modeled density estimates, respectively.
Owing to the limitation of sample-based HSI, the CPUE used was
restricted to only the spring and fall BTS. However, model-based
HSIs incorporated density estimates derived from both the BTS
and LLS. Density estimates are extrapolated over the grid cells
based on the abundance estimates for the nearest knot. The
0.05° × 0.05° grid size was used to increase spatial resolution for
environmental variables over the entire survey area.

Results

Spatial–temporal model for predicting species density
Varying estimates of area fished for the LLS were also tested to

evaluate the relative impact of bait plumes on abundance esti-
mates. The tested values of b to estimate area fished (i.e., 0.28,
0.56, 1.12 km) had no impact on density estimates and annual
indices of abundance because the catchability coefficient could
account for differences in catch rate (Appendix A). This makes it
possible to combine two different gear types without needing to
know the size of the bait plume for the LLS.

Density plots for annual species distribution indicate that the
cusk population is densest in the central GOM, with annual vari-
ability (Fig. 1). Cusk density has constricted over the time period,
with lower densities predicted inshore in both seasons later in the

time series (Fig. 1). Cusk density is highest from 1980 to 1993 in the
time series, with a slight decrease in density particularly in the
offshore (yellow and red regions, Fig. 1). Cusk population density
from 1994 to 2007 remains relatively constant in the spring and
the fall. Starting in 2008 to the end of the time series, low density
levels prevail, particularly in the inshore regions. Over the entire
time series, density around GB (i.e., the southernmost extent of
the plots) shows a steady decline in cusk abundance, predomi-
nately in the spring and somewhat in the fall (Fig. 1). Pearson
residual plots suggest there is no significant spatiotemporal pat-
tern in the residuals (Fig. 1).

HSI models

Sample-based HSI
Sample-based HSIs were derived from observed CPUE from the

BTS using simulated temperature and sediment data and ob-
served mean depths. Simulated seasonal mean bottom temper-
atures were compared with observed instantaneous bottom
temperatures from the BTS when available (Fig. 2). The instanta-
neous observed temperatures were more variable (spring: 1.35 to
12.30 °C; fall: 4.47 to 19.20 °C) compared with simulated tempera-
tures (spring: 4.29 to 7.64 °C; fall: 6.66 to 14.09 °C; Fig. 2). Observed
mean depths were used to build sediment sample-based SIs. Ob-
served depths were compared with simulated depths at the loca-
tion of sampling and were more variable at deeper depths than at
shallower depths but were well correlated (Fig. 3).

Assuming the simulated temperature represents mean condi-
tions that cusk would experience during each season, the pre-
ferred mean temperatures for cusk were between 7.05 and 7.63 °C
in the spring and 8.14 and 8.72 °C in the fall (Fig. 4). Cusk preferred
depths between 189 and 224 m in the spring and 192 and 227 m in
the fall (Fig. 4). Bedrock was the most preferred sediment type,
followed by a combination of sand, silt, and clay in the spring
sample-based HSI (Fig. 4) and combinations of clay, silt, and sand
in the fall sample-based HSI (Fig. 4).

HSIs assume that habitat quality increases with density. A sim-
ple linear regression between abundance and HSI was used to test
this assumption. Sample-based HSIs for the spring and fall did not
show a clear relationship between density and habitat quality
(Table 1). Linear regressions between CPUE and sample-based HSIs
in the spring showed a significant relationship (p < 0.01), but the
models failed to fit the data well (e.g., spring AMM, CPUE
R2 < 0.072; fall AMM, CPUE R2 < 0.05; Table 1).

Model-based HSI
Model-based HSIs were derived from density field estimates

from the delta-GLMM (spring and fall, b = 0.28 km). Model-based
bottom temperature SI curves found 6.87 to 7.25 °C as the most
suitable temperatures in the spring and 8.07 to 8.68 °C in the fall
(Fig. 4). SI depth curves for abundance indices derived from both
data sets showed that 161 to 208 m was the most preferred depth
range in both the spring and fall. For all spring and fall model-
based HSI models, the most preferred sediment type was a com-
bination of sand, silt, and clay in both the spring and fall (Fig. 4).

Comparison between sample- and model-based HSIs
The model-based SI and sample-based SI curves are similar in

both the spring and the fall, with the exception of sediment. Both
the model-based and sampled-based bottom temperature SI
curves indicate cusk were caught in slightly warmer waters in the
fall but prefer temperatures around 7 °C in the spring and 8 °C in
the fall (Fig. 4). The model-based depth SI curves showed cusk
were associated with depth ranges between 2 and 877 m in the
spring and fall compared to BTS observed depth ranges of 22 to
368 m in the spring and 20 to 412 m in the fall. Both model-based
depth SI curves showed 161 to 208 m as the most preferred depth
ranges in the spring and fall (Fig. 4). These preferred depth ranges
are shallower than the preferred depth ranges estimated (189 to
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Fig. 1. (Upper panels) Density field plots from the delta-generalized spatiotemporal model. Red indicates areas of higher abundance; blue
indicates areas of lower abundance. (Lower panels) Pearson residual plots of the density field estimates from the delta-generalized
spatiotemporal model. [Colour online.]
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224 m in the spring and 192 to 227 m in the fall) by the sample-
based depth SI, but show the same pattern of preferring deeper
depths in the spring and shallower depths in the fall (Fig. 4).
Pearson correlations (r) indicate temperature and depth were pos-
itively correlated in the spring for both model-based (r = 0.61) and
sample-based (r = 0.28) HSIs and negatively correlated in the fall
for model-based (r = −0.71) and sample-based HSIs (r = −0.31).

The model-based GMM HSIs had higher coefficient of determi-
nation (R2) and correlation coefficients for both seasons in all
models except in the fall sample-based HSI (Table 1). Model-based
HSIs derived only from the BTS were statistically significant
(p < 0.001) with an R2 of 0.3836 (AMM) and 0.4366 (GMM) for the
spring and 0.2927 (AMM) and 0.3041 (GMM) for the fall (Table 1,
modeled BTS only). Model-based HSIs predicted habitat quality
well relative to survey catch rates (Fig. 5).

The preferred range of each environmental variable for sample-
based HSIs is limited by the sampling locations. The model-based
sediment SI histograms derived for both the spring and fall indi-
cated a mixture of sand, silt, and clay to be the most preferred
sediment (Fig. 4). Most of the cusk catches in both the spring and
fall BTS were in these sediment types (Fig. 6). For sample-based

sediment, SI histograms indicated that bedrock was the most im-
portant sediment type in the spring and gravel the third most
important for the fall (Fig. 4). However, for the entire time series
(1980–2013), one cusk was caught in bedrock and two in gravel in
the spring, and in the fall zero were caught in bedrock and six
were caught in gravel (Fig. 6). Similarly, sample-based HSIs de-
picted a narrower depth range and preferred depth relative to
model-based HSIs (Fig. 4). The NEFSC trawl survey sampling loca-
tions were shallower (e.g., 22–388 m in the spring and 20 to 516 m
in the fall; Fig. 7) relative to simulated depths available to the
model-based HSIs (i.e., 2 to 877 m).

The SI for each variable was removed to determine the relative
importance of that variable to the overall HSI, the bigger the
decrease in R2 the more important that variable is to habitat suit-
ability. For sample-based HSIs, temperature was the biggest driver
in habitat suitability in the spring, while sediment was the biggest
driver in the fall (Table 1). However, for the fall sample-based GMM
HSI, the R2 increased when depth was removed, indicating this
variable is not important within that model potentially due to the
negative correlation with temperature. For model-based HSIs,
temperature was the biggest driver in the spring, and depth was
the biggest driver in the fall (Table 1).

Discussion
Comparisons between model-based and sampled-based HSIs in-

dicate that fully utilizing all available survey data changed the
perception of depth and sediment preferences of cusk because of
the imputed estimates for unsampled locations. Thus, model-
based density estimates that incorporated data from multiple
gear types can overcome the sampling bias of trawl surveys for
species that associate with complex habitats. HSIs were better
able to predict an increase in habitat quality with increasing den-
sity with the use of model-based abundance estimates (Table 1).

Spatial–temporal model for predicting species density
Bottom trawl surveys are likely to produce biased estimates of

abundance if the species’ spatial distribution has changed over
time and if gear performance varies by the habitat that the target
species associates with over time (Thorson et al. 2013; Kotwicki
et al. 2014). The decline in the cusk population likely reduced
catchability in the BTS due to the population constricting to rocky
habitat not accessible to the BTS (Davies and Jonsen 2011; Hare
et al. 2012), resulting in a decreased probability of successful sam-
pling. Annual density field estimates and subsequent abundance
indices (Appendix A) based only on the BTS are therefore likely
biased due to density-dependent and time-varying catchability.

The LLS was incorporated into the model-based abundance es-
timates to compensate for density-dependent processes within

Fig. 2. Linear regression of simulated and observed mean seasonal bottom temperature (BT). Northeast Coastal Ocean Forecast System
(NECOFS) simulated seasonal mean temperatures (x axis) are compared with instantaneous observed BT from the Northeast Fisheries Science
Center (NEFSC) bottom trawl survey (BTS) (y axis), when recorded on the survey.

Fig. 3. Linear regression of simulated and observed mean depths.
General Bathymetric Chart of the Oceans (GEBCO) simulated depths
(x axis) are compared with mean observed bottom depths from the
NEFSC BTS (y axis) recorded on the survey.
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the BTS. Density-dependent processes cause systematic biases in
BTS indices of abundance, which can lead to large errors in esti-
mating species’ spatial distribution (Thorson et al. 2013; Kotwicki
et al. 2014). Density fields derived from both surveys have similar
patterns in spatial distribution (i.e., high density versus low den-
sity) as those derived from the BTS only (Appendix A). However,
there are finer resolution changes throughout the time series
when the LLS is incorporated, particularly in fall. This qualita-
tively supports the hypothesis that cusk catches in the BTS have
experienced density-dependent catchability. The LLS is thought to
be a better method of sampling groundfish species that are not
well sampled by mobile bottom tending gear (Hoey et al. 2013).
Biases in predicting a species’ spatial distribution can be ad-
dressed through the incorporation of data from surveys that sam-
ple habitats differently.

Accounting for differences in catchability has been shown to
produce abundance estimates with reduced variability when mul-
tiple vessels are involved (Thorson and Ward 2014). The delta-
GLMM (Thorson et al. 2015) estimated catchability for the LLS as
well as before and after the 2009 protocol changes by considering
these two time blocks to be surveys with separate catchability
parameters. To test the sensitivity of the model to catchability
estimates for the LLS, three different values of b were used to
estimate area fished (i.e., 0.28, 0.56, 1.12 km; Appendix A). Varying
values of area fished had no impact on the density estimates, and
estimated catchability in the model accounted for differences in
area fished (Appendix A). Finer temporal changes in catchability

(e.g., year-specific changes) were not considered but may be useful
to incorporate in the future or for species with similar circum-
stances. However, a random year effect was included to account
for time-varying catchability for the BTS before and after 2009 and
for the LLS.

Including the LLS when deriving density estimates changes the
abundance estimates in the most recent years (Appendix A). As
the LLS time series increases, the perceived systematic bias in
abundance estimates from the BTS can be tested and addressed.
The LLS would need to be conducted at the same locations as the
BTS tows to compare catch rates from the two surveys to fully
understand the consequences of spatially varying catchability
(Thorson et al. 2013). As species decline and are more likely dis-
tributed in areas with a complex bottom, they become less acces-
sible to trawl gear. Longline surveys can sample these areas to
provide additional data complementary to the data derived in
mobile trawl surveys. This study shows how data from longline
and trawl gear can be combined within a modeling framework
and how the HSI benefits from doing so.

HSI models
Overall, the model-based HSIs could better capture variance in

abundance at different levels of habitat quality compared with
sample-based HSIs. The increased spatial resolution of density
estimates (Fig. 1) can provide information for a species’ use of
habitat without perfect sampling coverage or low catch rates.
Utilizing model-based abundance indices changes the perception

Fig. 4. Comparing model-based and sample-based suitability index (SI) curves for cusk. For these comparisons, (a) all model-based abundance
SIs were derived from both bottom trawl surveys (BTS) and longline surveys (LLS); and (b) sample-based abundance SIs were derived from the
BTS. Sediment types include bedrock (br), gravel (gr), gravelly sediment (gr-sd), sand (sd), 33% sand, silt, and clay (sd/st/cl), 25%–50% sand with
clay and silt (sd-cl/st), >75% sand with silt and clay (sd-st/cl), 50%–75% clay with silt with sand (cl-st/sd), and clay (cl) (Poppe et al. 2014). Bottom
temperature (BT) is measured in degrees Celsius.
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of habitat use through two mechanisms. First, inclusion of the LLS
provides data for the model outside of where the BTS sampled.
The use of two gear types within the model-based density esti-
mates provides increased data on habitat use because of the abil-
ity to sample in different sediment types. By utilizing all available
data, the subsequent HSIs were better informed than both the
sample-based HSIs and model-based HSIs that only used the BTS to
predict abundance. Second, the estimated density fields by grid
provides information where the LLS and (or) BTS did not sample.
Increasing the spatial resolution of density estimates and the in-
teraction with environmental variables is believed to be the pri-
mary driver in improving the HSIs.

Conventional sample-based HSIs are likely influenced by the
availability of sampled data, as evidenced by the poor perfor-
mance of sample-based HSIs relative to model-based HSIs (Table 1).
The sampled depth ranges in spring (22–368 m) and fall (20–412 m)
BTS limit what data are informing the HSI. Additionally, sampling
frequency at various depths (Fig. 7) and sediment types (Fig. 6)
influences the performance of HSIs. The limited data available for
sample-based HSIs prompted the need for improving the spatial
resolution of species’ density estimates and environmental vari-
ables over a study area. The improved spatial resolution of envi-
ronmental variables (i.e., per grid cell) overcomes the limitations
of empirical data availability at a sampled location by providing
finer-scale resolution of a species’ interaction with these environ-
mental variables. The improvements in spatial resolution also
provide the ability to compare the overlap in habitat distribution
of two species using the same spatial grid, a critical aspect of
bycatch mitigation and species conservation.

However, the frequency of observations at each range within
the environmental variables is influential on the HSI outcome.
This was most notable for evaluating sediment type SIs. Sediment
SIs for sample-based HSIs indicated bedrock to be the most impor-
tant sediment type in the spring and a mixture of sand, clay, and
silt in the fall (Fig. 4). A mixture of sand, silt, and clay was the most
important sediment type for the spring and fall model-based HSIs,
and bedrock was among the lowest (Fig. 4). The sample-based SI
sediment curves are likely biased due to low catch rates in more
complex sediment types (Fig. 6). Few cusk were caught in bedrock
in the BTS (one in spring, zero in fall) and in gravel (two in spring
and six in fall) between 1980 and 2013 (Fig. 6). The model-based
HSIs provide abundance estimates for areas not directly observed
in the survey, allowing for a different understanding of how cusk
might be utilizing different sediment types. Model-based abun-
dance estimates associated cusk with bedrock (20 times in the
spring, 21 times in the fall) and gravel (95 times in the spring,
88 times in the fall). Cusk are thought to predominately reside on
hard bottom (i.e., bedrock and gravel; Collette and Klein-MacPhee
2002), making the model-based abundance estimates associated
with hard bottom more realistic with regard to presumed cusk
behavior. The LLS could provide catch data for sediment types that
the BTS cannot provide consistent data for, which provides more
data for spatially explicit density estimates over the time series
(Fig. 1). Model-based abundance estimates that incorporate the LLS
are thought to improve data quality for use in habitat mapping by
better informing the model in areas not well sampled by the BTS.
However, the frequency of observations for both the sample-
based and model-based HSIs are likely influencing the results.

Table 1. Habitat suitability indices (HSIs) model comparisons, showing linear re-
gression results between abundance and arithmetic mean (AMM) and geometric
mean (GMM) HSI results and Pearson’s correlation coefficient (estimated in R).

Model R2

Correlation
coefficient (r)

p value of
t test for slope
coefficient

Spring AMM, model-based HSI 0.384 0.619 <0.01
Without bottom temperature 0.266 0.516 <0.01
Without depth 0.362 0.602 <0.01
Without sediment 0.359 0.599 <0.01

Spring GMM, model-based HSI 0.437 0.661 <0.01
Without bottom temperature 0.280 0.529 <0.01
Without depth 0.419 0.647 <0.01
Without sediment 0.406 0.637 <0.01

Spring AMM, sample-based HSI 0.073 0.270 <0.01
Without bottom temperature 0.054 0.232 <0.01
Without depth 0.070 0.264 <0.01
Without sediment 0.060 0.245 <0.01

Spring GMM, sample-based HSI 0.085 0.291 <0.01
Without bottom temperature 0.058 0.241 <0.01
Without depth 0.083 0.288 <0.01
Without sediment 0.067 0.259 <0.01

Fall AMM, model-based HSI 0.293 0.541 <0.01
Without bottom temperature 0.262 0.512 <0.01
Without depth 0.219 0.468 <0.01
Without sediment 0.280 0.529 <0.01

Fall GMM, model-based HSI 0.304 0.551 <0.01
Without bottom temperature 0.280 0.529 <0.01
Without depth 0.222 0.471 <0.01
Without sediment 0.293 0.542 <0.01

Fall AMM, sample-based HSI 0.044 0.211 <0.01
Without bottom temperature 0.041 0.204 <0.01
Without depth 0.042 0.205 <0.01
Without sediment 0.032 0.179 <0.01

Fall GMM, sample-based HSI 0.039 0.199 <0.01
Without bottom temperature 0.038 0.194 <0.01
Without depth 0.043 0.208 <0.01
Without sediment 0.030 0.173 <0.01
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This study includes the three most important variables for this
species reported in the literature (Collette and Klein-MacPhee
2002; Hare et al. 2012), reasonably capturing variability in habitat
distribution with only three variables in the model-based HSIs.
Temperature, depth, and sediment were equally weighted within
the sample-based and model-based HSIs, and preliminary analyses
indicated that SI weighting did not improve the HSIs. However,
the relative contribution of each variable is likely not equal
(Table 1). For model-based HSIs, temperature was the most influ-
ential variable in defining habitat suitability in spring while depth
was the most influential in fall (Table 1). Temperature is hypoth-
esized to be an important contributor to habitat suitability for
cusk (Hare et al. 2012), but this evaluation indicates that variable
importance may shift between seasons. However, mean seasonal
temperatures and depth are positively correlated in the spring
and negatively correlated in the fall, making it difficult to sepa-
rate the relative influence of each variable. Even though depth
and temperature are correlated, both variables contribute to de-
fining habitat suitability (Table 1). Cusk spawn in the spring
(Collette and Klein-MacPhee 2002) and may be seeking preferred
temperatures in shallower waters during spawning events, while
moving to deeper waters in the fall seeking colder temperatures.

Model limitations
HSI models are a relative index traditionally built from empir-

ical data. These models cannot account for uncertainty in their
estimates. Using model output as model input can incorporate
unaccounted uncertainty that can be magnified within the second
model (Brooks and Deroba 2015). However, the HSI model used in
this study is not able to account for uncertainty no matter
whether modeled or empirical data are used. Pearson residual
plots indicate the incorporation of the LLS increased uncertainty
due to the large differences in catch numbers between the two
survey programs. HSIs assume that habitat suitability increases
linearly with abundance. With limited data for sample-based
HSIs, linear regressions were the most reliable method of testing
model performance. Future research should focus on (1) building
model-based HSIs with part of the data and using the remaining
data to develop HSIs (Tanaka and Chen 2016); (2) using the delta-
GLMM to evaluate habitat preference; and (or) (3) using model-
based abundance estimates that have an associated uncertainty in
abundance to account for uncertainty within habitat modeling.

This study did not assume that cusks’ preferences for sediment,
depth, and temperature change on an annual basis. The relation-
ship between mean abundance and each of these variables was

Fig. 5. Habitat suitability index (HSI) maps for cusk. These HSI maps were derived from the model-based density estimates using data from
both the bottom trawl survey (BTS) and longline survey (LLS). High habitat quality (red) is mostly offshore for both the spring and fall, and
lower habitat quality (dark blue) is mostly inshore and around Georges Bank. Positive catch rates from the BTS (circles) and the LLS (triangles)
are used to validate model predictions of cusk habitat quality. The size of the circle or triangle indicates catch rates, with smaller
circles–triangles indicating lower catch rates compared with the larger circles–triangles. [Colour online.]
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assumed to be constant during 1980 to 2013. HSI models are typi-
cally used for understanding a species’ response to changes in
habitat (Terrell and Carpenter 1997). Many HSI models assume
that an organism’s habitat preference does not change on an an-
nual basis; distribution might, but the underlying relationship

does not (Chen et al. 2011; Tanaka and Chen 2015; Guan et al. 2017).
For the HSI models in this study to provide such insight, annual
predictions would need to be made.

This study does not evaluate age- or size-dependent processes in
habitat selection. Cusk caught in the LLS (2014–2015) have a simi-

Fig. 6. Spring and fall BTS positive catches of cusk by sediment type. Low catch rates of cusk at complex sediment types is likely to lead to
biased sediment suitability index (SI) estimates. Sediment histograms are ordered from coarsest sediment (bedrock) to the finest sediment
(clay). Sediment types include bedrock (br), gravel (gr), gravelly sediment (gr-sd), sand (sd), 33% sand, silt, and clay (sd/st/cl), 25%–50% sand with
clay and silt (sd-cl/st), >75% sand with silt and clay (sd-st/cl), 50%–75% clay with silt with sand (cl-st/sd), and clay (cl) (Poppe et al. 2014).

Fig. 7. Sampling frequency of depths in the NEFSC spring and fall bottom trawl surveys.
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lar median size (57 cm) but narrower length range (30–84 cm)
compared with cusk caught in the spring and fall BTS, which had
a much wider length range (11–94 cm) but similar median size
(58 cm). Cusk caught from 2014 to 2015 in the BTS have a smaller
median size (50 cm) than cusk caught over the included time
series (1980–2015) and in the LLS (Fig. 8). These size differences are
expected given the two gear types have different selectivities;
however, there are only 69 cusk caught in the BTS in 2014 and
2015. The mean size at maturity for cusk in the Scotian Shelf area
is 50 cm for males and females combined (COSEWIC 2003). These
two gear types catch predominantly mature individuals; a quarter
of the catch is below 40 cm. Based on these size distributions, it is
assumed that the habitat suitability indices represent adult habi-
tat.

Annual density estimates can be used to build annual HSI mod-
els to evaluate how habitat quality has changed over a time series.
The impacts of a changing climate can be better understood and
predicted for the future by understanding the ideal range of each
environmental variable. Currently, the delta-GLMM cannot pre-
dict potential or realized habitat (Grüss et al. 2017) as it can be
from the HSI. However, several environmental factors influence a
species’ habitat use that might not be fully captured by the envi-
ronmental variables used within an HSI. Even if all known envi-
ronmental drivers were incorporated, there would likely be
unaccounted for stochasticity within habitat distribution and spe-
cies abundance. The spatiotemporal delta-GLMM captures spatial
and spatial–temporal variability of species density through the
random effects in the model (Thorson et al. 2015). The stochastic-
ity of species distribution that is unlikely to be captured by any
given variable or set of variables in the HSI is presumed to be
captured by first predicting species density within the delta-
GLMM. Environmental covariates incorporated into the delta-
GLMM to predict species density could be used to evaluate the
suitable range of environmental variables to understand species’
habitat preferences as this model progresses.

Conclusion
The delta-GLMM provided a means of generating modeled abun-

dance that reflects spatial heterogeneity in species density and
utilizes all available survey data. The incorporation of different

gear types to estimate abundance can, in part, overcome system-
atic density-dependent sampling biases that are seen in trawl sur-
veys when a species’ abundance contracts to habitat that is not
effectively sampled by the survey. Spatially explicit abundance
estimates provide a means of evaluating the habitat suitability by
providing estimates in areas that were not directly sampled by the
survey. The increased spatial resolution of abundance data im-
proved the habitat suitability models in this study. A delta-GLMM
offers a method of providing abundance information for areas not
sampled by survey programs and for species caught in low num-
bers.
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Appendix A. Developing density estimates and
abundance indices utilizing multiple gear types

This study, in part, set out to determine if data from two differ-
ent gear types could be combined to develop indices of abundance
for data-limited species using the delta-GLMM. Positive catch rates
in the model are a function of area swept. However, this study
combined two types of surveys with two different concepts of
“area swept”. The bottom trawl survey (BTS) area swept is consid-
ered a standardized volume that is a function of the width of the
doors and trawl speed. Longline surveys (LLSs) do not have a stan-
dardized area fished.

The delta-GLMM first estimates the probability of presence,
then estimates positive catch rates in the second stage. The first
and second stages of the model are fit using the survey data. The
first stage of the model is fit as a function of annual mean density,
catchability, and spatial and spatial temporal random effects es-
timated from the nearest knot. The second stage of the model is fit
given all of the same parameters as a function of area swept.
Catchability is then removed, and the underlying species density
is predicted at each knot. Total abundance across the domain is
calculated as follows:

(A.1) b̂t � �j�1

nj
aj logit�1�dT(i)

(p) 	 �J(i)
(p) 	 �J(i),T(i)

(p) �
× exp�dT(i)

(�) 	 �J(i)
(�) 	 �J(i),T(i)

(�) �

Full model details can be found in Thorson et al. (2015).
To test if catchability within the delta-GLMM was capable of

accounting for differences of gear types, different estimates of
area fished were evaluated for the LLS. The distance between the
beginning and end of a longline set were known, but the bait
plume around the longline was not known. Bait plume is a func-
tion of current speed and direction, bait type, and soak duration,
which sets the range over which the bait can be detected, as well
as factors influencing the range over which fish will respond to
detected bait; the fish response factors include length of food
deprivation (i.e., hunger), fish size, and swimming speed (Løkkeborg
et al. 1995; Zhou et al. 2014). These specifics are not known in
fisheries surveys, and feeding response to bait plumes has not
been measured for cusk. Without knowing the details necessary
to estimate the bait plume, three values of b were tested based on
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the estimates for moderate food deprivation in Løkkeborg et al.
(1995). A minimum, medium, and maximum value of b (0.28, 0.56,
and 1.12 km, respectively) were used to test the sensitivity of abun-
dance estimates to longline area fished.

A total of six model-based density fields with different configu-
rations of values for b were estimated for spring and fall. Each
season had three models that incorporated both the BTS and LLS
using the three values of b (i.e., 0.28, 0.56, and 1.12 km). The result-
ing estimates for area fished varied by an order of magnitude (less
than 0.5 km2 when b = 0.28 km and up to 2.0 km2 when b =
1.121 km). Three catchability parameters were estimated to ac-
count for the 2009 protocol changes in the BTS. The estimated
abundance index for the three models in the spring and three in
the fall were unchanged with changes in the value of b. Akaike
information criteria values (AICs) for all three values of b were
unchanged for the different model runs in both the spring (3837)
and the fall (3676).

Four model-based abundance indices were derived using only
the spring and fall BTS then combining the BTS and the spring and
fall LLS. Two catchability coefficients were defined for before and
after the 2009 protocol changes to the BTS, treating the survey as
two surveys within each season with no temporal overlap. There-

fore, models with data from both survey programs estimated
three catchability parameters, and models that included only the
BTS estimated two parameters. The resulting abundance esti-
mates do not vary in relative trend from the abundance estimates
using the combined surveys (Fig. A1). Abundance was high in
1980–1981, with a decline to persistent low levels since 2005
(Fig. A1). However, there is a slight difference in trends for the two
most recent years of the time series (2014–2015) when the longline
survey is added (Fig. A1). All model-based abundance indices show
a decrease in cusk abundance over the time series (1980–2015) for
both seasons. Pearson residual plots suggest there is no significant
spatiotemporal pattern in the residuals (Fig. A2).

When catchability was not estimated for the LLS, the annual
abundance index was inconsistent and highly variable during the
exploratory phase of this study (results not shown). The delta-
GLMM could account for differences in catchability between the
LLS and BTS, indicating this is an effective method of incorporat-
ing multiple surveys with different gear types to estimate abun-
dance indices, even without accurate bait plume measures for a
longline survey.

Fig. A1. Brosme brosme model-based abundance indices, derived from the both the NEFSC bottom trawl survey and longline survey combined
and the NEFSC bottom trawl survey only. The spring and fall model-based abundance indices accounted for spatial and spatiotemporal
randomness. Error bars are standard deviations from the annual mean. [Colour online.]
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Fig. A2. (Upper panels) Density field plots from the delta-generalized spatiotemporal model. Red indicates areas of higher abundance;
blue indicates areas of lower abundance. (Lower panels) Pearson residual plots of the density field estimates from the delta-generalized
spatiotemporal model. [Colour online.]
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