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 39 

Relative abundance of many shark species in the Atlantic is assessed by compiling data from 40 

several independently conducted, but somewhat spatially limited surveys.  Although these localized 41 

surveys annually sample the same populations, resulting trends in yearly indices often conflict with 42 

one another, thereby hindering interpretation of abundance patterns at broad spatial scales. We 43 

used delta-lognormal generalized linear models (GLMs) to generate indices of abundance for seven 44 

Atlantic coastal shark species from six fishery-independent surveys along the U.S. east coast and 45 

Gulf of Mexico from 1975 to 2014. These indices were further analysed using dynamic factor 46 

analysis (DFA) to produce simplified, broad-scale common trends in relative abundance over the 47 

entire sampled distribution. Effects of drivers including the North Atlantic Oscillation index, the 48 

Atlantic Multidecadal Oscillation index, annually averaged sea surface temperature, and species 49 

landings were evaluated within the DFA model. The two decadal oscillations and species landings 50 

were shown to affect shark distribution along southeast U.S. coast. Estimated common trends of 51 

relative abundance for all large coastal shark species showed similar decreasing patterns into the 52 

early 1990s, periods of sustained low index values thereafter, and recent indications of recovery. 53 

Small coastal shark species exhibited more regional variability in their estimated common trends, 54 

such that two common trends were required to adequately describe patterns in relative abundance 55 

throughout the Gulf of Mexico and Atlantic. Overall, all species’ (except the Gulf of Mexico blacktip 56 

shark) time series concluded with an increasing trend, suggestive of initial recovery from past 57 

exploitation. 58 
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: Coastal sharks; data conflict; dynamic factor analysis; index of abundance; generalized 60 

linear models  61 

 62 

 63 

Abstract ..........................................................................................................................................................................................   64 

Table of contents ........................................................................................................................................................................   65 

Introduction..................................................................................................................................................................................   66 

Methods ..........................................................................................................................................................................................   67 

Data sources.............................................................................................................................................................................   68 

Indices of abundance............................................................................................................................................................   69 

Dynamic factor analysis ......................................................................................................................................................   70 

Results.............................................................................................................................................................................................   71 

Indices of abundance............................................................................................................................................................   72 

Dynamic factor analysis ......................................................................................................................................................   73 

Discussion......................................................................................................................................................................................   74 

Indices of abundance............................................................................................................................................................   75 

Large coastal abundance ....................................................................................................................................................   76 

Small coastal abundance.....................................................................................................................................................   77 

Dynamic factor analysis drivers ......................................................................................................................................   78 

Climatic indices..................................................................................................................................................................   79 

Landings ...............................................................................................................................................................................   80 

Dynamic factor analysis modelling ................................................................................................................................   81 

Acknowledgements ...................................................................................................................................................................   82 

References .....................................................................................................................................................................................   83 

Tables and Figures .....................................................................................................................................................................   84 

Supporting Information...........................................................................................................................................................   85 

 86 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

 87 

While it is generally agreed upon within the scientific community that shark stocks rapidly 88 

declined in abundance along the U.S. east coast beginning in the mid-1970s through the early 1990s 89 

(Stevens et al. 2000; Cortés et al. 2002; Dulvy et al. 2014; Grubbs et al. 2016), the extent of that 90 

decline has been contentiously debated in the scientific literature with varyingly pessimistic 91 

outlooks. Studies quantifying population declines have largely been restricted to modelling effects 92 

in a localized area from a single fishery-independent survey (e.g., Musick et al. 1993; Musick et al. 93 

2000; Myers et al. 2007) or at a broader scale using fishery-dependent data (e.g., Baum et al. 2003; 94 

Myers and Worm 2003; Baum and Myers 2004; Baum et al. 2005; Burgess et al. 2005a; b; Myers et 95 

al. 2007; Baum and Blanchard 2010). In particular, substantial declines as reported by Baum et al. 96 

(2003) and Baum and Myers (2004) were rebutted by Burgess et al. (2005a), resulting in additional 97 

exchanges (Baum et al. 2005; Burgess et al. 2005b; see Field et al. 2009 for more extensive review). 98 

These declines may hold economic and ecosystem-wide implications as effects of altered apex 99 

predator abundance propagate down the food web via direct and indirect trophic cascades, where 100 

sharks likely facilitate natural selection of their prey (Stevens et al. 2000; Scheffer et al. 2005; Baum 101 

and Worm 2009; Ferretti et al. 2010; Heupel et al. 2014). 102 

Shark exploitation along the southeast coast of the U.S. began in the mid-1970s coincident 103 

with declining stock abundances of other commercially important species, and since sharks were 104 

deemed an underutilized natural resource at that time, fishers were encouraged to focus on sharks 105 

for commercial harvest (Musick et al. 1993; McCandless et al. 2014). Simultaneously, directed 106 

recreational shark fisheries rapidly developed in response to public excitement stemming from the 107 

release of the movie “Jaws” in 1975 (Musick et al. 1993; Cortés et al. 2006). Yet, many sharks are 108 

inherently susceptible to fishing pressure due to their K-selected life history strategy (Musick et al. 109 

2000; Stevens et al. 2000; Au et al. 2015). Large-bodied, coastal shark species were likely most 110 

affected by the development of targeted fisheries due to their high meat content, large fin sizes, and 111 

close proximity to land (Dulvy et al. 2014). Contrary to larger species, small coastal sharks in the 112 

northwest Atlantic, which generally are not considered apex predators, have experienced less 113 

dramatic declines in abundance (SEDAR 2007). These smaller species have comparably higher 114 

intrinsic population growth rates, and consequently are less susceptible to fishing pressure (Au et 115 

al. 2015).  116 

As a result of declines in large coastal shark stocks within the U.S., a shark fishery 117 

management plan (FMP) was established by the National Marine Fishery Service (NMFS) in 1993, 118 

which initiated the enactment of several commercial and recreational regulations in federal Atlantic 119 
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waters (SEDAR 2011). Prior to the implementation of management measures, shark population 120 

dynamics were not the focus of extensive scientific investigation. The FMP noted a lack of species-121 

specific data required to conduct individual stock assessments, which stimulated numerous life 122 

history studies of shark stocks within the southeast U.S., and several state and federal agencies 123 

began collecting relative abundance information either through directed surveys or as bycatch of 124 

existing surveys (NMFS 1993). However, due to their sex- and size-specific migratory patterns and 125 

the expansive spatial distributions of Atlantic coastal sharks, developing stock-wide 126 

characterizations of relative abundance is challenging (Kohler et al. 1998; Castro 2011; 127 

Simpfendorfer and Heupel 2012). At present, inferences about shark abundance in the Atlantic are 128 

largely based on catch-per-unit-effort (CPUE) data obtained from several relatively spatially limited 129 

surveys. When multiple independent surveys each sample a small or incomplete portion of a stock’s 130 

migratory range, it is not uncommon for the resulting trends in CPUE to be in conflict, which creates 131 

uncertainty about true population trends (SEDAR 2013). Thus, developing representative 132 

characterizations of stock-wide dynamics and patterns in relative abundance for sharks in the 133 

Atlantic involves reconciling discrete, and often contradictory, fragments of information.  134 

The objectives of the study were two-fold: i) develop simplified broad-scale trends of 135 

relative abundance for seven Atlantic shark species by integrating data from multiple fishery-136 

independent survey programs performed at differing spatial scales, and ii) investigate the effects of 137 

hypothesized drivers (climatic, environmental, anthropogenic) on resultant broad-scale temporal 138 

patterns of relative abundance. We acquired raw data from six fishery-independent surveys and 139 

used those data to generate indices of relative abundance for seven species, including four large 140 

coastal species (LCS; sandbar shark, Carcharhinus plumbeus, Carcharhinidae; blacktip shark, C. 141 

limbatus, Carcharhinidae; spinner shark, C. brevipinna, Carcharhinidae; tiger shark, Galeocerdo 142 

cuvier, Carcharhinidae) and three small coastal sharks (SCS; Atlantic sharpnose shark, 143 

Rhizoprionodon terraenovae, Carcharhinidae; blacknose shark, C. acronotus, Carcharhinidae; 144 

bonnethead, Sphyrna tiburo, Sphyrnidae). Large and small coastal shark designations distinguish 145 

management units along the Atlantic coast of the U.S. as defined by NMFS (1993). The relative 146 

abundance indices were jointly analysed for underlying common trends in abundance using 147 

dynamic factor analysis (DFA), a multivariate dimension reduction approach for time series. We 148 

subsequently examined the effects that broad-scale environmental and anthropogenic drivers had 149 

on these species-specific relative abundances.  150 
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 151 

Data sources 152 

Catch and effort data from six fishery independent shark surveys ranging from 1975-2014 153 

were the basis for this study: the Virginia Institute of Marine Science Longline (VIMS LL), SouthEast 154 

Area Monitoring and Assessment Program-South Atlantic Coastal Trawl Survey (SEAMAP-SA 155 

Trawl), South Carolina Coastal Longline Survey (SC LL), Georgia Red Drum Longline Survey (GA LL), 156 

Southeast Fisheries Science Centre Longline Survey (SEFSC LL), Gulf of Mexico Shark Pupping and 157 

Nursery Gillnet Survey (GULFSPAN GN; Fig. 1; Table S1).  Data for the SEAMAP-SA Trawl, SC LL, and 158 

GA LL can be accessed from www.seamap.org (SEAMAP-SA Data Management Work Group). A 159 

minimum of three independent survey-based indices of abundance were required for a given 160 

species to be considered for analysis (with the exception of the tiger shark). Data from seven shark 161 

species were analysed (Table S2).  162 

Indices of abundance 163 

Generalized linear models (GLMs; McCullaugh and Nelder 1989) were used to standardize 164 

species-specific CPUE data from each survey program and provide estimated annual indices of 165 

relative abundance. Preliminary explorations of each survey dataset revealed high frequencies of 166 

zero observations, which were expected given the fishery-independent nature of the surveys and 167 

low overall abundance of the focal species. Consequently, delta-lognormal GLMs were used to 168 

generate species-specific relative abundance indices from each survey (Lo et al. 1992; Maunder and 169 

Punt 2004; Cortés et al. 2006), where the survey observations were defined as number of sharks 170 

captured per hook-hours, per net area-hours, or per area swept for longline, gillnet, and trawl 171 

gears, respectively. For the purposes of the current study, we assumed that gear selectivity was 172 

principally constant over time.  173 

Delta-lognormal models contain two components (Pennington 1983). The binomial 174 

submodel is fitted to presence/absence data, where presence is defined as sampling events in 175 

which at least one target species was captured, and estimates the probability of encountering the 176 

target species. The lognormal submodel, fitted to the log-transformed nonzero observations, is used 177 

to estimate the mean CPUE.  The general form of a delta-lognormal GLM is:  178 �����(��) = ���� + ��,   where �� ~ �(0,��2) ����� = ���������� + �����,   where ����� ~ �(0,�����2 )                                                        (1) 179 

where πB represents the probability that each observation (i.e., sampling event) is non-zero, μ  is 180 

the log-transformed CPUE, and in both submodels, X is the design matrix, β is the vector of 181 
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estimated parameters, and ε is the associated observation error. Predicted indices of relative 182 

abundance were generated using estimated marginal means (Searle et al. 1980), and back 183 

transformed bias correction followed Lo et al. (1992). The resulting predictions over years from 184 

both submodels were multiplied to generate a final annual index of relative abundance.  185 

Uncertainty estimates for the annual indices were generated from 1000 nonparametric 186 

bootstrapped samples (Efron and Tibshirani 1993). All analyses of survey data were performed 187 

with the software package R (version 3.1.1, R Core Development Team 2014).  188 

Akaike’s Information Criterion (AIC, Akaike 1973, Burnham and Anderson 2002) was used 189 

to discriminate among model parameterizations containing different combinations of covariates. 190 

The covariates examined varied by survey (Table S1), while year was included in all models to 191 

ensure estimation of annual abundance indices. Year, month/season, and station/area were treated 192 

as categorical variables, and levels of those categorical variables were excluded from analyses if the 193 

species of interest was not present during at least two sampling events. Latitude, longitude, and 194 

depth were standardized and treated as continuous variables. Scatter plot matrices and variance 195 

inflation factors (VIFs) were used to assess correlation and collinearity of covariates. Covariates 196 

with correlation coefficient of large magnitudes (≳0.7) or that produced large VIFs (> 10) were not 197 

mutually included in any model. Graphical residual analysis, deviance explained, and dispersion 198 

analysis were used to assess model fit. Resulting indices of abundance were standardized (Z-199 

scored) prior to implementation into the dynamic factor analysis model.  200 

Dynamic factor analysis 201 

Dynamic factor analysis is a multivariate dimension reduction technique designed for 202 

relatively short, non-stationary time series data. The approach involves fitting a specialized, 203 

multivariate, autoregressive state-space model to identify a set of underlying trends that explain 204 

temporal variation in a collection of short time series (Zuur et al. 2003a; b; Holmes et al. 2014). The 205 

general form of a DFA model can be written: 206 �� =  ��� + ��� +  �� , where ��~ ���(0,�) 207 �� =  ��−1 +  �� , where ��~���(0,�)                                                                                                (2) 208 

where the top equation represents the observation component, and the second equation represents 209 

the process or state component. The (n×1) vector yt is comprised of abundance indices at time t, αt 210 

is the vector (m×1) of common trends (m<n) that are modelled as stochastic random walks, Γ is the 211 

matrix (n×m) of estimated factor loadings on the common trend(s), xt is the vector (k×1) of drivers, 212 

D holds the corresponding coefficients (n×k), and H and Q denote the variance-covariance matrices 213 

associated with the observation error vector εt (n×1) and process error vector ηt (m×1), 214 
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respectively (Zuur et al. 2003a; b; Holmes et al. 2014). The process component of DFA fits 215 

autocorrelated common trends to accommodate the time series nature of the indices and resulting 216 

trends (Stachura et al. 2014). Factor loadings (elements of the Γ matrix) indicate the strength of the 217 

influence of each survey index on the resulting common trend. Values higher in magnitude (≳0 .2) 218 

denote a stronger effect of the given survey on the corresponding common trend. Since the indices 219 

were Z-scored, the resulting factor loadings, common trends, and fitted values were unitless (Zuur 220 

et al. 2003b). Significance of factor loadings and drivers were defined as 95% confidence intervals 221 

(CIs) that did not overlap zero.  222 

To ensure that the model was identifiable, Q was set to the identity matrix (I) and H, which 223 

specifies the variance-covariance structure between the n time series, was allowed to take on four 224 

forms: diagonal with equal variance and zero covariance, diagonal with unequal variance and zero 225 

covariance, nondiagonal with equal variance and equal covariance, and unconstrained with unique 226 

variances and covariances (Holmes et al. 2014). Model implementation occurred using the state-227 

space multivariate autoregressive modelling package ‘MARSS’ (Holmes et al. 2013) in R (version 228 

3.1.1).  229 

Models were fitted in two-steps (Supplement 1). First, all combinations of one, two, or three 230 

common trends and the four covariance matrix structures were explored in the absence of drivers, 231 

and corrected Akaike’s Information Criterion (AICc) for low sample sizes was used for model 232 

selection (Holmes et al. 2014), along with graphical evaluation. An additional quantitative measure 233 

of model fit, which was calculated as the sum of the squared residuals (r) of the fitted trend divided 234 

by the sum of the squared observations (∑��2/ ∑��� 2) for each survey, was also used to compare 235 

models. Lower quantities (defined as ≲0.6) were interpreted as indicative of  better model fit, while 236 

higher values indicated that all or several years were poorly estimated by the resulting fitted trend 237 

(Zuur et al. 2003b). For comparative purposes, these values were averaged for all surveys of a given 238 

species. Second, the effect of broad-scale drivers were investigated in the most supported model 239 

from the first step. The mean fit value, combined with AICc and graphical analyses that assessed 240 

agreement between the fitted trend and raw indices of abundance, were collectively used to select 241 

the most parsimonious model that best described the indices of relative abundance. 242 

Four drivers were examined: (1) the North Atlantic Oscillation (NAO) index, (2) the Atlantic 243 

Multidecadal Oscillation (AMO) index, (3) global, annually averaged sea surface temperature (SST) 244 

between latitudes 24°N and 44°N (data provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, 245 

http://www.esrl.noaa.gov/psd/data/climateindices/list/; GISTEMP Team 2016; Fig. 2a), and (4) 246 

species landings (provided by E. Cortés, NMFS, Panama City, FL; Fig. 2b). The NAO, which is a 247 
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measure of pressure difference over the North Atlantic Ocean, and AMO, which encompasses basin-248 

wide sea surface temperature, circulation patterns, and sea level pressure, were selected as 249 

environmental drivers because they directly impact climate patterns and have been shown to affect 250 

fish survival and ecosystem organization through bottom-up control in the southeast U.S. Atlantic 251 

coast and Gulf of Mexico (Stenseth et al. 2002 and references therein; Collie et al. 2008; Nye et al. 252 

2009; Nye et al. 2014; Karnauskas et al. 2015). Annually averaged SST was included because 253 

several studies have shown that shark movement is influenced by temperature patterns (e.g., 254 

Merson and Pratt 2001; McCandless et al. 2005; Castro 2011). Since AMO and SST were highly 255 

positively correlated by definition (correlation coefficient = 0.85), they were not mutually included 256 

in any DFA model. Lastly, species-specific landings, pooled across the Atlantic and Gulf of Mexico, 257 

were included to examine the effect of top-down pressure on species relative abundance. Drivers 258 

were limited to broad-scale processes, as the corresponding effect should encompass the spatial 259 

range employed by all surveys. Landings were prepared following procedures routinely applied in 260 

shark stock assessments (E. Cortés, personal communication). Dynamic factor analysis requires 261 

complete time series of drivers, and landings time series did not encompass the temporal span of 262 

the index data for the blacktip shark and tiger shark (first five years had no landings data for each 263 

species). Hence, hindcasting over missing years was performed by calculating an average catch 264 

from the first five years of observed landings data.  265 

 266 

Indices of abundance 267 

Delta-lognormal GLMs provided acceptable fits to raw survey data as determined by 268 

graphical residual analysis, variance inflation factors, dispersion analysis, and estimated parameter 269 

values and standard errors. Location and month were the covariates that were most frequently 270 

included in the most supported GLMs for each species when generating indices of abundance, 271 

followed by depth, when available (Table S3). For all species, superimposed standardized indices of 272 

relative abundance display obvious data conflict (Fig. 3), such that visual interpretation of broad-273 

scale patterns in species relative abundances is challenging.  274 

Dynamic factor analysis 275 

 Time series of relative abundance were well-fitted by the DFA models for all species, with 276 

the exception of spinner shark (Tables 1, S4, S5; Figs. S1 and S2). Similarly, either one or two 277 

common trends were identified for each species. A diagonal covariance structure was empirically 278 

supported for all species, suggesting that no covariance exists between survey indices for the focal 279 
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species. Furthermore, DFA models were optimally fitted when variances for each survey index 280 

within the covariance matrices were assumed to be equal for each species, except for Atlantic 281 

sharpnose shark, where a unique variance was estimated for each survey and no covariance was 282 

included in the model.  283 

The DFA results for the large coastal sharks showed consistent trends in relative abundance 284 

across species. For example, the sandbar shark common trend (Fig. 4a) indicated that relative 285 

abundance peaked in the early 1980s, decreased until the early 1990s, remained low for several 286 

years, and exhibited a modest recovery in the late 2000s. This common trend was well supported 287 

by the VIMS LL, SEFSC LL, and GA LL, as indicated by statistically significant factor loadings, with a 288 

negative loading by the SC LL (Fig. 4b), such that the SC LL showed a generally decreasing trend 289 

from 2007-2014 (Fig. S1). The NAO, which was included in the optimal DFA model for sandbar 290 

shark, had a significantly negative effect on the VIMS LL and a positive effect on the GA LL indices of 291 

abundance for the sandbar shark (Table S5). 292 

The blacktip shark showed a similar common trend to sandbar shark, although the initial 293 

recovery began sooner in the time series (Fig. 4c). The trend was significantly and positively driven 294 

by the VIMS LL, SEAMAP-SA Trawl, and SEFSC LL surveys, while the GULFSPAN GN and SC LL 295 

negatively loaded on the blacktip shark trend (Fig. 4d), suggesting that the latter indices were 296 

following an opposing signal of relative abundance as compared to the estimated common trend 297 

(Fig. S1). The GULFSPAN GN primarily captured immature blacktip shark, such that the Gulf of 298 

Mexico juvenile trend was decreasing. The short SC LL and GA LL indices of relative abundance 299 

(2007–2014) showed generally increasing patterns whereas the common trend showed a minimal 300 

decline during those years (Fig. S1), explaining the negative factor loadings. The AMO was included 301 

in the optimal DFA model for the blacktip shark and had a significantly negative effect on the VIMS 302 

LL index of abundance and a positive effect on the GULFSPAN GN and SC LL indices (Table S5).  303 

The tiger shark trend also showed a decrease in abundance into the early 1990s, followed 304 

by a period of low relative abundance (Fig. 4e). However, in the early 2000s, the relative abundance 305 

of tiger shark began to increase much more rapidly than the other large coastal species. Factor 306 

loadings indicated that the VIMS LL and SEFSC LL both significantly positively influenced the 307 

common trend (Fig. 4f). The optimal DFA model for the tiger shark included the NAO index, which 308 

had a significantly negative effect on the SEFSC LL index, and landings, which showed a significantly 309 

positive effect on the SEFSC LL index (Table S5).  310 

The spinner shark time series was much shorter (Fig. 4g), and raw indices of abundance 311 

showed little contrast in relative abundance across years, resulting in low and insignificant factor 312 
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loadings (Fig. 4h). Nevertheless, the common trend was positively driven by the VIMS LL and 313 

negatively driven by the GULFSPAN GN indices of relative abundance (85% CIs excluded zero). The 314 

resulting trend reflected an increase of relative abundance from the late-1990s to 2014. 315 

The small coastal complex showed more regionally distinctive trends in relative abundance, 316 

as all species exhibited two common trends or opposing factor loadings (Table 1; Fig. 5). The first 317 

Atlantic sharpnose shark trend showed moderately stable relative abundances until the mid-2000s, 318 

followed by a subsequent increase (Fig. 5a). This first trend was primarily driven by the SEFSC LL, 319 

which principally samples the Gulf of Mexico. However, it was also significantly driven by sampling 320 

off the coast of Virginia by the VIMS LL (Fig. 5b). The secondary trend was largely uninformed prior 321 

to the late 1980s, showed a steady increase in abundance into the mid-2000s, and a moderate 322 

decline to 2014. This second trend was significantly driven by the SEAMAP-SA Trawl and SC LL, 323 

which both sample in the Atlantic.  324 

Although the optimal blacknose DFA model produced a single trend that showed a clear 325 

decrease in abundance from the mid-1990s into the 2010s (Fig. 5c), the factor loadings indicated 326 

opposing trends in relative abundance based on region (Fig. 5d). The common trend was 327 

significantly positively influenced by the SEFSC LL and GULFSPAN GN, indicating that the common 328 

trend was representative of a decline in blacknose shark abundance within the Gulf of Mexico. 329 

Contrarily, the SEAMAP-SA Trawl had a significantly negative factor loading, suggesting that 330 

blacknose shark sampled along the Atlantic coast underwent an increase in relative abundance (Fig. 331 

S2). The NAO index was included in the optimal blacknose shark model, and had a significantly 332 

negative effect on the GULFSPAN GN index and a positive effect on the SC LL index (Table S5).  333 

Despite the two common trends estimated for the bonnethead (Fig. 5e), only the primary 334 

trend was indicative of the pattern of abundance of bonnethead in the Atlantic. The second common 335 

trend was included to better accommodate the increase in SC and GA LL survey indices (Fig. S2), 336 

explaining the broad uncertainty prior to 2007. Since the GULFSPAN GN showed low and 337 

insignificant factor loadings (Fig. 5f), it is difficult to draw inferences about patterns in relative 338 

abundance of bonnethead within Gulf of Mexico. 339 

 340 

Indices of abundance 341 

Spatial and temporal covariates were important explanatory variables of local shark 342 

relative abundance for all species examined. Considering the broad seasonal migratory patterns of 343 

several shark species (Speed 2010 and references therein), it is expected that CPUE of the surveys 344 

in this study will change with month/season. Similarly, as sampling areas (or other measures of 345 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

spatial sampling distribution) represent environmental variability, their importance in explaining 346 

CPUE patterns is not surprising since target species will distribute according to preferred habitat 347 

types. Additionally, depth also reflects habitat suitability, and when this covariate was available, it 348 

too was important in explaining changing CPUE of sampled species. Results from the delta-349 

lognormal GLMs collectively showed that CPUE was variable across space, season, and depth, even 350 

within the relatively small areas covered by the surveys. Consequently, obtaining conflicting 351 

patterns in indices is likely, which motivates the need for data reconciliation to develop a robust 352 

understanding of relative abundance. 353 

Large coastal abundance  354 

The drastic decline in LCS stocks has been extensively debated (i.e. Baum et al. 2003; Baum 355 

and Myers 2004; Baum et al. 2005; Burgess et al. 2005a; b; Grubbs et al. 2016). Postulated declines 356 

of 60-99% relative to virgin conditions have been suggested for several coastal shark species into 357 

the 1990s and 2000s (Musick et al. 1993; Baum et al. 2003; Baum and Myers 2004; SEDAR 2006; 358 

Myers et al. 2007; SEDAR 2007; Baum and Blanchard 2010; SEDAR 2011; 2012). However, the 359 

patterns of relative abundance described in the current study provide a more optimistic outlook 360 

and more closely align with results presented by Carlson et al. (2012), where spinner shark and 361 

tiger shark, among other species, were shown to have increased in abundance by 14% and 3%, 362 

respectively, following enactment of the shark FMP. Those results showed preliminary recovery 363 

and stabilization of some LCS stocks by 2009 within the commercial bottom longline fishery 364 

(Carlson et al. 2012). 365 

Thus far, studies estimating LCS stock declines have relied on independent and fragmented 366 

information, typically only analysing data from a single survey, where changes in regional 367 

distribution may be interpreted as changes in abundance. Indices of abundance from disparate 368 

surveys frequently result in conflicting information due to high levels of uncertainty and the 369 

variable timing of sampling relative to environmentally driven shark migrations (Grubbs 2010). 370 

Additionally, complex life cycles, which include size- and sex-specific habitat and movement 371 

patterns, result in indices of relative abundance that may only be representative of a portion of the 372 

species’ life cycle (Kohler et al. 1998; Castro 2011; Simpfendorfer and Heupel 2012). For example, 373 

sandbar sharks mate within the coastal waters of Florida during June and July (Portnoy et al. 2007; 374 

Baremore and Hale 2012). A year later, gravid females migrate northward along the Atlantic coast 375 

to pup in bays and estuaries during late spring and early summer, after which they migrate back 376 

offshore (Grubbs et al. 2007; McCandless et al. 2005, Baremore and Hale 2012). Neonates remain in 377 

these nurseries throughout the summer (McCandless et al. 2005; Conrath and Musick 2010), and 378 
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overwinter off the coast of North Carolina (Grubbs et al. 2007; McCandless et al. 2005; Conrath and 379 

Musick 2008). These juveniles return to their natal nursery for the next five to 16 years (Merson 380 

and Pratt 2001; Grubbs et al. 2007; McCandless et al. 2005), before migrating offshore and into the 381 

Gulf of Mexico (Casey et al. 1985; Conrath and Musick 2008). Adult male sandbar sharks reside 382 

primarily offshore and only move inshore to mate (Casey et al. 1985; Portnoy et al. 2007; Conrath 383 

and Musick 2008).  384 

In the current study, CPUE data from several surveys were analysed outside the context of a 385 

stock assessment model to reconcile data conflict and provide representative trends of broad-scale 386 

relative abundance, where increased abundance suggests preliminary recovery of LCS species. All 387 

LCS species followed similar trends in relative abundance, with high levels at the beginning of the 388 

time series, followed by a decline until the early 1990s, and signs of recovery in the mid-2000s. 389 

Given the low intrinsic population growth rates of many shark species (Au et al. 2015), it is 390 

reasonable to assume that efficacy of management regulations would not immediately translate 391 

into stock recovery (Musick et al. 2000). The results of the current study support that reasoning 392 

since relative abundance trends of all large coastal species remained depressed following 393 

implementation of the 1993 shark FMP. The duration of low relative abundance varied by species 394 

however, and relative abundances of those with younger ages-at-maturity (Table S2) showed 395 

quicker recoveries than those with older ages at first reproduction.   396 

The sandbar shark period of extended low abundance may have also been related to state-397 

wide fisheries targeting young and late juvenile animals, since state and federal management was 398 

not formally linked until 2009 (Grubbs 2010). Within Atlantic state waters, sandbar shark utilize 399 

large estuaries as nursery areas along the coast (Merson and Pratt 2001; Grubbs et al. 2007; 400 

McCandless et al. 2005), facilitating survival to maturity (Heupel and Hueter 2002; Heupel et al. 401 

2007). Hence, given the critical role that state waters play in the lifespan of several shark species, it 402 

is necessary to consider the synergistic effects of federal and state management regulations. 403 

The recent increase in the blacktip shark trend was gradual and showed a great deal of 404 

variability, which could be attributed to various management measures, such as the staggered 405 

mandatory implementation of bycatch reduction devices (BRDs) within the shrimp trawl fishery 406 

(SEDAR 2013; mandated in 1997 in the southeast Atlantic coast, 1998 in the western Gulf of 407 

Mexico, and 2004 in the eastern Gulf of Mexico; Scott-Denton et al. 2012). Despite surveys sampling 408 

two genetically distinct stocks of blacktip shark (Keeney et al. 2005), a single common trend was 409 

selected to encompass abundance patterns in both the Atlantic and the Gulf of Mexico, potentially 410 

indicating that sufficient data were not available within either or both stocks to distinguish 411 
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alternative relative abundance patterns, or that both stocks were following a similar trend in 412 

relative abundance. The tiger shark recovery was extremely large in magnitude, likely reflective of 413 

the relatively high fecundity of these sharks, in which females produce an average of 41 pups every 414 

two years in the Atlantic (Castro 2011) or three years in the Pacific Ocean (Whitney and Crow 415 

2007). While the spinner shark common trend was shorter due to the limited length of each time 416 

series included, the modest increase in relative abundance corresponds with that of the other large 417 

coastal species, despite larger uncertainty in the resulting estimated trend.  418 

Small coastal abundance 419 

Due to a higher capacity to recover (Au et al. 2015), SCS species underwent declines of 420 

generally smaller magnitudes than LCS species. Stock assessments have suggested declines of 35-421 

55% relative to virgin abundance for Atlantic sharpnose shark and bonnethead (SEDAR 2007; 422 

2013), compared to an estimated 80-85% decline in Atlantic and Gulf of Mexico blacknose shark 423 

(SEDAR 2011). In contrast, Myers et al. (2007) suggested seemingly exponential increases in 424 

mesopredator abundances, particularly Atlantic sharpnose shark, coinciding with declining LCS 425 

abundances. In the current study, with the exception of the Gulf of Mexico blacknose shark, relative 426 

population declines were minimal and followed by substantial increases that were much smaller in 427 

magnitude than those predicted by Myers et al. (2007).  428 

While the large coastal species typically undergo extensive migrations between the Atlantic 429 

Ocean and the Gulf of Mexico, it is likely that gene flow around the Florida peninsula is restricted in 430 

small coastal species due to comparatively localized movement patterns (Kohler et al. 1998). Both 431 

the Gulf of Mexico stocks of blacknose shark and bonnethead are considered genetically separate 432 

stocks (Portnoy et al. 2014). Bonnethead have been shown to exhibit variation in life history 433 

parameters on a much smaller spatial scale along the Atlantic coast (Frazier et al. 2013) and within 434 

the Gulf of Mexico (Lombardi-Carlson et al. 2003). Ultimately, while Atlantic sharpnose shark 435 

within the southeast U.S. coast and within the Gulf of Mexico represent a single genetic stock 436 

(SEDAR 2013), it has been suggested that migrations between the U.S. east coast and Gulf of Mexico 437 

are rare for the species (Kohler et al. 1998). It is not surprising to note that there appears to be 438 

more localized variability in small coastal shark abundance as demonstrated by the increased 439 

number of common trends estimated for the Atlantic sharpnose shark and conflicting factor 440 

loadings in the blacknose shark.  441 

Regional increases in the Atlantic sharpnose shark, blacknose shark, and bonnethead 442 

common trends also correspond with localized management implementation such as BRDs. For 443 

example, following the 1998 BRD mandate in the southeast Atlantic coast (Scott-Denton et al. 444 
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2012), abundance of the Atlantic stocks of Atlantic sharpnose shark, blacknose shark, and 445 

bonnethead, all significantly driven by the SEAMAP-SA Trawl, increased. Similarly, the Atlantic 446 

sharpnose shark trend in the Gulf of Mexico showed an abrupt increase following the mandatory 447 

implementation of BRDs in the eastern Gulf in 2004 (Scott-Denton et al. 2012). All small coastal 448 

shark stocks showed overall increased abundance into the 2010s except the Gulf of Mexico 449 

blacknose shark, which are known to be largely susceptible to bycatch within the shrimp trawl 450 

fishery and likely further depleted than the Atlantic stock (SEDAR 2011). Additional survey data 451 

within the Gulf of Mexico will greatly aid interpretations of coast-wide patterns of relative 452 

abundance in the bonnethead.  453 

Dynamic factor analysis drivers 454 

Although several studies have linked small- and meso-scale shark distributions to climatic 455 

indices (Carlson 1999; Cotton et al. 2005; Brodziak and Walsh 2013; Hoffmayer et al. 2014; Mitchell 456 

et al. 2014; Báez 2015), studies have rarely examined whether broad-scale relative stock 457 

abundance is affected by multidecadal oscillations. Although Perry et al. (2005) noted that slower 458 

growing species (like sharks) are less likely to undergo distributional shifts due to changing 459 

environmental conditions and are thus, more susceptible to changes in climate, conclusions from 460 

the current study suggest that when immediate environmental conditions are unfavourable, the 461 

coastal shark species examined may redistribute to more suitable conditions. For instance, although 462 

blacknose sharks rarely migrate northward into Virginia waters and instead reside off the coast of 463 

North and South Carolina during summer (Castro 2011 and references therein, Ulrich et al. 2007), 464 

due to extremely warm water temperatures in the southeastern U.S. coast in the summer of 2015 465 

(positive AMO and NAO indices), the VIMS LL captured 16 blacknose sharks compared to only eight 466 

specimens previously recorded between 1973 and 2014. Similar accounts of distributional shifts in 467 

sharks due to unfavourable environmental conditions have been documented (Wiley and 468 

Simpfendorfer 2007; Nye et al. 2009; Sunday et al. 2012). Last et al. (2011) investigated the change 469 

in species composition along the coast of Tasmania, Australia, an area subjected to extreme 470 

temperature increases over the past 60 years, and found that five out of 10 elasmobranch species 471 

examined exhibited distributional changes.  472 

In the current study, during years when the AMO index was in its warm phase, reflective of 473 

increased rainfall in Florida and heightened hurricane activity in the Atlantic Ocean, relative 474 

abundance of blacktip shark was below average off the coast of Virginia and above average off 475 

South Carolina. Blacktip sharks may therefore restrict their northward migration and reside in 476 

more southerly areas due to unfavourable environmental conditions associated with above average 477 
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AMO index values. Additionally, the GULFSPAN GN, a latitudinally constant juvenile survey within 478 

which 95% of blacktip shark captured were of neonatal or juvenile life stage, showed a positive 479 

association with the AMO, suggesting better recruitment years and potentially higher nursery 480 

habitation in the Gulf of Mexico in years when the AMO index is positive.  481 

Positive NAO index values also result in increased temperatures and rainfall off the 482 

southeast coast of the United States, and such environmental conditions corresponded with below 483 

average sandbar shark relative abundance off Virginia and above average relative abundance off 484 

Georgia. As such, environmental conditions associated with positive NAO values may lead to 485 

restricted northward migration of the sandbar shark. A similar explanation likely underlies climate 486 

induced distributional changes of the blacknose shark, in which relative abundance is higher off 487 

South Carolina and nursery utilization and recruitment was inhibited within the Gulf of Mexico 488 

during years with above average NAO values. Because the tiger shark range is so large and vast 489 

migrations are common (Kohler et al. 1998; Lea et al. 2015), the data in this study are likely still 490 

representative of localized relative abundance, such that tiger shark distribution patterns may shift 491 

from the Gulf of Mexico to areas outside of those sampled by surveys when the NAO index is low. 492 

Further empirical research will be necessary to fully understand the underlying physiological 493 

linkages governing the species-specific responses to these climatic drivers.  494 

Given the functionally equivalent patterns of common trends generated from models with 495 

and without climatic drivers, it is reasonable to conclude that the overall abundance of coastal 496 

shark stocks was not altered by environmental and anthropogenic drivers, as similarly noted by 497 

Bigelow et al. (1999) in a pelagic shark. Rather, effects of climatic drivers within the optimal DFA 498 

models were survey-specific and likely indicative of localized distributional reorganization, while 499 

the estimated DFA trends reflect underlying patterns in relative abundance over broad geographic 500 

scales. These regional distributional changes due to climatic forcing may be the mechanism 501 

underlying local ecosystem reorganization noted by several studies (Stenseth et al. 2002 and 502 

references therein; Collie et al. 2008; Nye et al. 2009; 2014; Karnauskas et al. 2015). 503 

While it is expected that any substantial top-down forcing would affect shark stock 504 

abundance, the estimated harvest effects differed by survey or location when included in the 505 

optimal DFA model. For example, overall tiger shark landings did not significantly affect CPUE off 506 

the coast of Virginia but were positively related to the SEFSC LL relative abundance in the Gulf of 507 

Mexico. Landings from the Atlantic and Gulf of Mexico were necessarily pooled for analysis. Lack of 508 

spatially resolved harvest information, potential changes in the distribution of tiger shark fishing 509 

and bycatch over the 40-year span of the current study, a lack of information regarding differential 510 
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habitat use, and vast migratory patterns (Lea et al. 2015) creates uncertainty in understanding true 511 

impacts of tiger shark landings along the southeast U.S. coast. In years when tiger shark abundance 512 

along the southeast U.S. was high, they were more available to both survey gear and commercial 513 

fishermen, reflective of the close correlation between the DFA common trend and tiger shark 514 

landings.  515 

Dynamic factor analysis modelling 516 

Resulting broad-scale trends in relative abundance were successfully generated for the 517 

species examined, as indicated by model diagnostics and the alignment between the common 518 

trends, species’ life history parameters, and historical management measures. Marine ecological 519 

applications of DFA models have indeed increased in recent years (Chen et al. 2006; Azevedo et al. 520 

2008; Katara et al. 2011; Tam et al. 2013; Colton et al. 2014; Stachura et al. 2014; Thorson et al. 521 

2015; Buchheister et al. 2016) which signifies the general applicability of the method. Dynamic 522 

factor analysis models provide the necessary flexibility for fisheries time series data, 523 

accommodating for temporal autocorrelation short and nonstationary time series, as well as time 524 

series with missing values. 525 

Despite the appealing flexibility of DFA modelling, we note that the application in the 526 

current study was limited. Although several coastal species are known to represent genetically 527 

distinct stocks in the Atlantic and within the Gulf of Mexico (e.g., Portnoy et al. 2014), we chose to 528 

include all survey indices in the same DFA model, regardless of location. We assumed that if the two 529 

stocks showed differences in relative abundance trends over time, model selection would favour 530 

estimation of two common trends, as in the Atlantic sharpnose shark. Since sharks represent 531 

relatively “data limited” species, we did not have sufficient positive observations to build age- or 532 

size-structure into analyses. As such, limited size ranges were likely disproportionately represented 533 

in the common trend, depending on the gear configurations and sampling domains of surveys that 534 

most contributed to the resulting trend. Likewise, gear-selectivity was not accounted for within the 535 

DFA models. Although it can be beneficial to include multiple gear types within an analysis to 536 

ensure that each species was adequately represented (e.g. bonnethead; Ulrich et al. 2007), 537 

aggregating data from gears with different selectivities implies that resulting trends of relative 538 

abundance may not explicitly represent the true patterns in length-frequency of the stock. A similar 539 

argument can be made regarding potential incongruence among the estimated common trends and 540 

the cumulative age composition of each stock. Representative selectivity functions for each DFA 541 

common trend may be calculated by averaging the selectivity functions of each gear implemented 542 

(if known), where the relative contribution of the selectivity function for each survey is weighted by 543 
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the corresponding factor loading. However, when size and age classes are pooled and if we assume 544 

that gear selectivity and length-distribution of the catch has been largely constant over time (or 545 

varies randomly), then the effect of correcting CPUE from a single survey based on the 546 

corresponding gear selectivity would effectively scale the predicted estimate of relative abundance. 547 

By standardizing (z-scoring) indices of relative abundance prior to DFA modelling, the effect of 548 

scaling the indices to account for gear selectivity is essentially removed. Standardization also 549 

removes the effect of scaling differences due to gear-specific catchability (q), where catchability is 550 

the proportionality constant relating CPUE to total abundance (N; CPUE = qN; Quinn and Deriso 551 

1999). Without known selectivity functions or catchability estimates for each survey, these 552 

methods represent a best attempt to handle available data.  Furthermore, a hierarchical model also 553 

designed to reconcile conflicting indices of abundance was shown to be largely insensitive to 554 

variability in gear selectivity (Conn 2010). Given additional data, DFA models may be run on 555 

separate age- or size-classes or comparable gear types.  556 

Conclusions 557 

Availability of fisheries-independent data for shark species within the U.S. appears to be 558 

much greater than comparable data available elsewhere in the world. Largely, global magnitudes of 559 

shark stock declines in open ocean areas and other regions of the world are based on estimated 560 

fisheries catch (i.e., Stevens et al. 2000; Clarke et al. 2006; Worm et al. 2013; Dulvey et al. 2014; 561 

Davidson et al. 2016) or density-dependent data (i.e., Baum et al. 2003; Baum and Myers 2004; 562 

Baum and Blanchard 2010), and vulnerability is assessed by life history information as opposed to 563 

quantitative assessments of stock abundance (e.g., Field et al. 2009; Worm et al. 2013; Dulvy et al. 564 

2014). The global status of these stocks is further complicated by the presence of illegal, 565 

unreported, and unregulated fishing (Clarke et al. 2006), which is concentrated in the Indo-West 566 

Pacific region where management is generally absent (Stevens et al. 2000; Field et al. 2009; Lam 567 

and de Mitcheson 2011). Consequently, the currently available analyses of global shark stocks are 568 

generally accompanied by operational challenges (e.g., lack of accurate landings and discard 569 

information, unknown alterations in fishery-dependent fishing procedures, reliance on a single 570 

index of relative abundance) and fail to provide comprehensive quantitative evidence supporting 571 

claims of stock status and abundance trends. As a result, population dynamics information on 572 

sharks is relatively limited (Field et al. 2009). A recent study by Worm et al. (2013) created a global 573 

compilation of estimated values of fishing mortality for 21 assessed shark stocks (representing 17 574 

species). Out of the 13 coastal stocks included, 11 observations of exploitation rate were obtained 575 

from stocks within the U.S., emphasizing the scarcity of such information elsewhere.  576 
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Despite the general paucity of fisheries-independent shark survey data worldwide, a few 577 

investigations of coastal shark trends in relative abundance have been made, indicating the regional 578 

specificity in shark abundance trends over time. Protective beach nets in Australia and South Africa 579 

have produced a relatively long time series of survey information (Dudley and Simpfendorfer 2006; 580 

Reid et al. 2011). In southeast Australia, significant declines between 1950 and 2010 were reported 581 

for four taxonomic shark groups, including Carcharhinid sharks that were pooled due to a lack of 582 

species specific reporting prior to 1998. Three groups, including tiger shark, showed no significant 583 

change in relative abundance, and one group showed a significant increase in relative abundance 584 

(Reid et al. 2011). In South Africa, out of the 14 pelagic and coastal species for which indices of 585 

relative abundance could be generated, only three showed significant declines in relative 586 

abundance from 1978 to 2003, and one species, the tiger shark, showed a statistically significant 587 

increase in relative abundance (Dudley and Simpfendorfer 2006). A compilation of opportunistic 588 

data from the Mediterranean Sea showed large declines in abundance for five species comprising 589 

four families, such that authors considered these large shark species to be functionally extinct 590 

(Ferretti et al. 2008). 591 

Management implementation is improving across the globe, as the International Plan of 592 

Action for Sharks (IPOA-Sharks), a voluntary call for shark management from independent states, 593 

was established in 1999. However, the IPOA-Sharks program currently does not include formal 594 

enforcement of accountability and adoption of the program has been slow (Davis and Worm 2013). 595 

Global shark landings have decreased in recent years, although further investigation revealed that 596 

decreasing catch was reflective of reduced shark abundance as opposed to implementation of 597 

conservative harvest policies (Davidson et al. 2016). 598 

In conjunction with declines in the eastern U.S., global declines in shark catch and bycatch 599 

have been reported into the early 2000s (e.g., Stevens et al. 2000; Dulvy et al. 2014). The method 600 

presented in the current study does not enable us to estimate the magnitude of stock decline for the 601 

species examined from 1975 to the early 1990s. Nevertheless, after a relatively protracted period of 602 

low abundances following management implementation, common trends produced for the four 603 

large coastal species presented show increases in abundance, indicative of preliminary signs of 604 

recovery in U.S. Atlantic coastal shark stocks.  605 
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 874 

Table 1. The optimal dynamic factor analysis (DFA) models fitted to indices of abundance derived from delta-875 

lognormal GLMs for each species. The number of common trends is denoted by m. Covariance matrix 876 

structure refers to the H covariance matrix which specifies observation error. Mean Fit is a relative measure 877 

of model fit calculated by summing the squared residuals of the fitted DFA common trends and dividing by 878 

the sum of the squared observations (delta-lognormal indices) for each survey, and averaging the values for 879 

each species. Larger values (≳0.6) indicate poor overall fit (Zuur et al. 2003b). Survey abbreviations as 880 

follows: Virginia Institute of Marine Science Longline Survey (VIMS LL), South Carolina Coastal Longline 881 

Survey (SC LL), Georgia Red Drum Longline Survey (GA LL), SouthEast Area Monitoring and Assessment 882 

Program-South Atlantic Coastal Trawl Survey (SEAMAP-SA Trawl), SouthEast Fishery Science Centre 883 

Longline Survey (SEFSC LL), Gulf of Mexico Shark Pupping and Nursery Gillnet Survey (GULFSPAN GN). 884 

 
m H Drivers Surveys ΔAICc Mean Fit 

Sandbar 

shark 

1 diagonal 

and equal 

NAO VIMS LL 

SEFSC LL 

SC LL 

GA LL 

0.000 0.1856 

Blacktip 
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GULFSPAN GN 

SC LL 

GA LL 

2.3613 0.3736 

Spinner 
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1 diagonal 
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SC LL 

GA LL 

Blacknose 

shark 

2 diagonal 

and equal 

NAO SEAMAP Trawl 

SEFSC LL 

GULFSPAN GN 

SC LL 

GA LL 

2.7372 0.5522 

Bonnethead 2 diagonal 

and equal 

none SEAMAP Trawl 

GULFSPAN GN 

SC LL 

GA LL 

7.1341 0.5238 

Figure 1. Map of representative stations/sites sampled (for the 2012 sampling year) within each survey: 885 

Virginia Institute of Marine Science Longline Survey (VIMS LL), South Carolina Coastal Longline Survey (SC 886 

LL), Georgia Red Drum Longline Survey (GA LL), SouthEast Area Monitoring and Assessment Program-South 887 

Atlantic Coastal Trawl Survey (SEAMAP-SA Trawl), SouthEast Fishery Science Centre Longline Survey (SEFSC 888 

LL), Gulf of Mexico Shark Pupping and Nursery Gillnet Survey (GULFSPAN GN).  Map generated using the 889 

rworldmap package in R (South 2011). Note that the SEFSC LL sampling has excluded the southeast coast 890 

during the years 2001, 2003, and 2007. 891 

Figure 2. Standardized (Z-scored) drivers examined within the dynamic factor analysis (DFA) models from 892 

1975-2014. a) Environmental drivers include North Atlantic Oscillation index (NAO), Atlantic Multidecadal 893 

Oscillation (AMO), and annually averaged sea surface temperature (SST), while b) anthropogenic drivers 894 

included species-specific landings.  895 

Figure 3. Standardized indices of abundance for a) sandbar shark, b) blacktip shark, c) tiger shark, d) spinner 896 

shark, e) Atlantic sharpnose shark, f) blacknose shark, and g) bonnethead, representative of data conflict. 897 

Survey abbreviations are as follows: Virginia Institute of Marine Science Longline Survey (VIMS LL), 898 

SouthEast Area Monitoring and Assessment Program-South Atlantic Coastal Trawl Survey (SEAMAP-SA 899 

Trawl), SouthEast Fishery Science Centre Longline Survey (SEFSC LL), Gulf of Mexico Shark Pupping and 900 

Nursery Gillnet Survey (GULFSPAN GN), South Carolina Coastal Longline Survey (SC LL), Georgia Red Drum 901 

Longline Survey (GA LL).   902 

Figure 4. Common trends produced from dynamic factor analysis (DFA) using delta-lognormally derived 903 

indices of relative abundance for the large coastal shark (LCS) complex. Trends (solid lines) and 95% 904 

confidence intervals (shaded regions) are displayed for a) sandbar shark, c) blacktip shark, e) tiger shark, and 905 

g) spinner shark, and factor loadings for b) sandbar shark, d) blacktip shark, f) tiger shark, and h) spinner 906 
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shark are shown. Factor loadings greater than 0.2 correspond to indices that had a relatively strong influence 907 

on the resulting common trend, and negative factor loadings denote indices that follow an opposite trend to 908 

the DFA common trend. 909 

Figure 5. Common trends produced from dynamic factor analysis (DFA) using delta-lognormally derived 910 

indices of relative abundance for the small coastal shark (SCS) complex. Trends (solid lines) and 95% 911 

confidence intervals (shaded regions) are displayed for the a) Atlantic sharpnose shark, c) blacknose shark, 912 

and e) bonnethead, and factor loadings for the b) Atlantic sharpnose shark, d) blacknose shark, and f) 913 

bonnethead are shown. Factor loadings greater than 0.2 correspond to indices that had a relatively strong 914 

influence on the resulting common trend, and negative factor loadings denote indices that follow an opposite 915 

trend to the DFA common trend. 916 

 917 

Supporting information legend 918 

Supplement 1: dynamic factor analysis model fitting 919 

Table S1. Summary of surveys included in the analyses. 921 

Supplement 2: additional tables and figures 920 

Table S2. Life history information for shark species included in analyses. 922 

Table S3. Covariates included in optimal delta-lognormal generalized linear model used to calculate indices of 923 

abundance for each species-survey combination.  924 

Figure S1. Fitted dynamic factor analysis trends superimposed on survey-based delta-lognormally generated 925 

indices of relative abundance for large coastal shark species.  926 

Figure S2. Fitted dynamic factor analysis trends superimposed on survey-based delta-lognormally generated 927 

indices of relative abundance for small coastal shark species.  928 

Table S4. Dynamic factor analysis model fitting for each species. 929 

Table S5. Dynamic factor analysis model results for each species. 930 
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