
1.  Introduction
Riverine floods are a major cause of destruction of property and loss of life each year across the world 
(Tanoue et al., 2016; Wallemacq & House, 2018). This is the case in India, where floods occur mostly dur-
ing the summer monsoon season of June–September, when the country receives more than 80% of annual 
rainfall. Extensive damages to life and property occur annually during the monsoon season floods in India. 
The deaths caused by flood events substantially increased in the 21st century (EM-DAT) with an aver-
age death toll of 1,500 per year (The Data Centre of Central Water Commission), and associated damages 
worth 18 billion INR (CAG, 2017). The extreme rainfall events in the summer monsoon season result from 
synoptic-scale cyclonic depressions (Hunt & Fletcher, 2019; Hunt et al., 2016). Climate change is project-
ed to enhance the frequency and intensity of extreme precipitation events (Ali & Mishra, 2018; Goswami 
et al., 2006; Papalexiou & Montanari, 2019; Wasko & Sharma, 2017) and damages caused by floods will 
further increase. This highlights the importance of accurate flood forecasting. India has achieved signifi-
cant progress in predicting extreme precipitation events using Numerical Weather Prediction models and 
Ensemble Prediction systems (Pattanaik et al., 2019; Sridevi et al., 2020). While precipitation forecasts are 
increasingly becoming skillful, forecasts of streamflow and specifically of floods remain less so with wide 
variation in skill across River Basins and events.

For daily streamflow forecasting, physically based and statistical models are two broad categories of widely 
used approaches (e.g., Yuan et al., 2015; Zhang et al., 2018). Physically based models consider different hy-
drological processes and their interactions and model them with deterministic equations. Statistical models 
focus on an identification of the empirical relationship between the current day's streamflow with input 
forcings such as precipitation, antecedent streamflow, and soil moisture, and so on, using historical observa-
tions, that index key hydrologic processes. Here we consider a statistical model. A brief survey of statistical 
models used in this context is provided below.
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Typical statistical models used for rainfall-runoff are largely regression based using linear, non-linear, and 
machine learning techniques. Multiple linear regression (MLR; Gaume & Gosset, 2003; Kişi, 2008; Papacha-
ralampous & Tyralis,  2018), autoregressive (AR; Kişi,  2004,  2008; Sivakumar,  2016), and autoregressive 
moving average models (ARMA; Can et al., 2012; T. J. Chang et al., 1987; Sivakumar, 2016) are reported. 
The streamflow on a day is modeled as a function of streamflow and precipitation from preceding days. 
Precipitation from the current day is included to incorporate daily precipitation forecasts when available. 
Such models have been applied for daily streamflow forecasting in Europe (Can et  al.,  2012; Gaume & 
Gosset, 2003; Kişi, 2004, 2008), United States (T. J. Chang et al., 1987; Papacharalampous & Tyralis, 2018), 
and China (Y. Sun et al., 2019). To address non-linearity, machine learning techniques such as artificial 
neural network (ANN; Abdollahi et al., 2017; Govindaraju, 2000; Isik et al., 2013), adaptive neuro-fuzzy 
inference system (ANFIS; F. J. Chang & Chen, 2001; Jang et al., 1997; Li et al., 2018; Zounemat-Kermani & 
Teshnehlab, 2008) and, support vector machines (SVM; Ghorbani et al., 2016; Karimi et al., 2018; Londhe & 
Gavraskar, 2015), are gaining prominence. These models have been applied in Europe (Firat, 2008; Gaume 
& Gosset, 2003; Hadi & Tombul, 2018), Asia (F. J. Chang & Chen, 2001; Pramanik & Panda, 2009; Shiau & 
Hsu, 2016), United States and Canada (Isik et al., 2013; Moradkhani et al., 2004; Vafakhah, 2012). Studies 
have also found machine learning models to be more skillful than linear models (Firat, 2008; Hadi & Tom-
bul, 2018; Vafakhah, 2012). However, they have been found to be uninterpretable (”black box”), prone to 
overfitting, and usually do not quantify uncertainty in the parameters and model estimates.

Traditional statistical models as mentioned above assume stationarity of the daily streamflow process and 
are typically implemented at single sites individually. However, to capture spatial correlation such as daily 
streamflows on a river network, multivariate versions are needed, which are not easy to develop in the tra-
ditional approaches. Lastly, the uncertainties in parameters and model estimates are not formally modeled, 
consequently, underestimating of extremes is common. In order to model and mitigate flooding on a river 
network, forecasts are required at all the sites simultaneously capturing their space-time correlation struc-
ture along with all the attendant uncertainties.

Bayesian hierarchical modeling frameworks are emerging as attractive alternatives for nonstationary anal-
ysis of hydroclimate fields in space and time. We call out few relevant applications here. Spatial models 
for precipitation extremes to obtain stationary return levels have been developed and applied to western 
United States and other parts of the world (Bracken et al., 2016; Dyrrdal et al., 2015; Renard, 2011; Yan 
& Moradkhani, 2015). Extensions to nonstationary extremes of spatial rainfall and streamflow extremes 
have been developed in other studies (Bracken et al., 2018; Hanel et al., 2009; Ossandón et al., 2021; X. Sun 
et al., 2014). The Bayesian hierarchical framework has been used in stochastic generation of precipitation 
and temperature (e.g., Lima & Lall, 2009; Verdin et al., 2019). Applications to streamflow extremes to obtain 
return levels for flood mitigation have been the early motivation of these methods (e.g., Kwon et al., 2008; 
Lima & Lall, 2010; Lima et al., 2016; Luke et al., 2017; Sampaio & Costa, 2021). However, multi-site stream-
flow modeling on a river network is limited and more so for modeling daily streamflow. Ravindranath 
et al. (2019) offer one of the early applications of Bayesian modeling framework for multi-site flow on a 
river basin exploiting the network structure to capture spatial dependence. In this, streamflow processes are 
modeled as spatial Markov process, thus, the dependence structure is captured by the covariates considered 
on the network. They applied this for paleo-reconstruction of annual flows in the Upper Missouri River 
Basin.

Our research in this paper is motivated by the need for a daily streamflow modeling framework on a river 
network for potential use in real-time forecasting, that can capture the space-time dependence structure, 
and robust estimation of uncertainties. To this end, we develop a novel Bayesian Hierarchical Network 
Model (BHNM) inspired by the framework proposed in Ravindranath et al. (2019). We demonstrate this 
framework by its application to model and predict daily summer monsoon (July–August) streamflow at 
three gauges in the Narmada River Basin network in central India. The manuscript is organized as follows. 
In Section 2, the framework, in general, is described. The application set up for the Narmada basin network 
is then described, followed by the specific form of the model structure and model cross-validation procedure 
in Section 3. The results are described in Section 4, and Section 5 presents a summary and discussion of the 
results.
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2.  Proposed Framework
The proposed BHNM for daily streamflow has two components: the general model structure and calcula-
tion of the likelihood function and specification of priors.

2.1.  General Model Structure

In order to model the daily streamflow at n-2 locations simultaneously, the model structure takes advantage 
of the feature of the river network by treating the streamflow processes as a spatial Markov process (Ravin-
dranath et al., 2019). Flow at a downstream gauge, i, on day t is dependent on: flow at the most immediate 
(i+1) or second most immediate (i+2) upstream feeder gauge at day t−k with  0E k  (k represents the lead 
time of the forecast); precipitation and other hydrometeorological variables that represent local inputs to the 
streamflow between the streamflow gauges. Note that the approach does not model the headwater gauge since 
there are no feeder gauges available as predictors for it. The ability to capture the timing of high flow events in 
advance resides in feeder gauges. Thus, in a Bayesian framework, assuming conditional distributions at each 
location as independent, the joint conditional probability density of streamflow at the gages on the network 
on day t, conditioned on the suite of covariates (flow and hydrometeorological variables from upstream) as:
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Where E X denotes the set of hydrometeorological covariates, ( )iE θ  corresponds to the vector of regression 
coefficients of the distribution parameters at the gauge i, and ( )E iJ  to an index vector of length n with only 
zeros except for the position of the feeders which contain ones (e.g., for ( 2)E nJ  , only its n and n-1 elements 

Figure 1.  Conceptual sketch of Bayesian Hierarchical Network Model. n streamflow gauges and n−2 
hydrometeorological covariates vectors are shown in the graph for illustrating the concept of the graphical network model. 
Physically informed modeling structure using regional hydrometeorological covariates and feeder streamflow gauges is 
explored using factorization into lower-dimensional conditional probability distributions as shown in the directed graph. 
The conditional distributions generated at each stage of the chart serve as statistical interpretations of the modeling 
structure and provide the basis for converting the graphical model into a set of equations for estimating the parameters of 
the streamflow network's likelihood function for n−2 gauges (nodes, blue circles) in the network simultaneously using a 
Bayesian estimation scheme.    

( ) ( ) ( ),i i i
t t tE θ β  denotes the vector of distribution parameters at the gauge i and day t.
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are non-zero values, see Figure 1). The right-hand side of Equation 1 is the mathematical factorization of 
the joint conditional density as a product of individual conditional densities using the fundamental Bayes 
rule (Jensen & Nielsen, 2007). This factorization is consistent with the assumption of independent marginal 
distributions and the physical dependencies between streamflow gauges and their feeder gauges and hydro-
meteorological variables. We hypothesize that the spatial dependence of the flows will be captured by the 
covariates. A conceptual sketch of the BHNM for daily streamflow is shown in Figure 1.

The daily streamflow at each gauge is conditionally assumed to follow a probability density function E f  with 
parameters that can vary with time through a multi-level specification in terms of other predictors. Thus, 
daily streamflow at each gauge i at the day t is expressed as:
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Under the nonstationary assumption,  ( )i
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stream feeder gauges depending on travel time, and m hydrometeorological variables at day t−k. Since 
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t kE P  , can be considered as a hydrometeorological covariate, for avoiding fitting issues due to 

there are days with zero rainfall (e.g., the log transformation of the covariates is required for a lognormal 
distribution), we considered a step function for the mean and standard deviation which yields the following 
expressions
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where  1
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not rainfall on the day t−k. For days when rainfall on the day t−k is not zero,  3
iE  and  ( )

3
iE  are the intercept 

terms for  ( )i
tE  and   i

tE  ;  
4
iE β  and  ( )

4
iE  are regression coefficients related to the feeder site (vector with more 

than one component when there are more than one feeder) for  ( )i
tE  and   i

tE  ;  i
xE β  and  ( )i

xE  are 1E m vector of 
regression coefficients related to hydrometeorological variables for  ( )i

tE  and   i
tE  ; 

( )i
t kE X  is a 1E m  vector of hy-

drometeorological variables on the day t−k; and  


( )j i
t kE Q J  corresponds to the flow at the feeder site at the day 

t−k (vector with more than one component if the index vector ( )E iJ  has more than one non-zero component). 
All of the model covariates change with time to help capture nonstationarity. For days with zero rainfall, 
we only consider streamflow at the feeder site as covariate. Also, modeling the standard deviation,  ( )i

tE  , as 
nonstationary allow addressing the heteroscedasticity—that is, forecast uncertainty typically increases with 
the magnitude of the predictand—usually present in forecast models (Scheuerer & Hamill,  2015; Zhao 
et al., 2015).

2.2.  Likelihood and Priors

The posterior distributions of the regression coefficients,    ,E θ β  , given the data (observed daily stream-
flow at each gauge and values of hydrometeorological variables) and considering a record length of E T  days 
by Bayes' rule, is
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verse-Wishart distribution to ensure a positive definite covariance matrix

    ( ) ( ), ; , ;i iInv wishart A Inv wishart BΣ I Σ Iβ� (8)

where E  corresponds to the degrees of freedom (m+5), E I is an   ( 4) ( 4)E m m  identity matrix, and E A and E B 
are scalars properly set for ( )iE Σβ  and 

( )iE Σ  , respectively. ( )iE β  and  ( )iE  were restricted to be greater or equal than 
zero in order to ensure positive shape and rate parameters. The model parameters, as can be seen, are mod-
eled jointly to capture their inter-correlations.

3.  Application to Narmada River Basin, India
We demonstrate the BHNM with application to Narmada River Basin in west-central India. The study ba-
sin, data, potential covariates, implementation and model fitting, and the cross-validation procedure are 
described below.

3.1.  The Study Basin

The Narmada River basin (Figure 2), with 97,882 2kmE  (Narmada basin organization, 2019), originates in the 
Amarkantak hills of central India and is the largest river that drains into the Arabian Sea in the West. It is 
a narrow and elongated basin that stretches in the East-West direction (Figure 2). It is an important source 
of water resources for the populous States of Madhya Pradesh and Gujarat. The basin receives an average 
rainfall of 1,120 mm, with most of it arriving during the summer monsoon season of June–September. The 
upper parts of the basin at higher elevations receive higher precipitation relative to the lower basin (Baner-
jee, 2009). The flooding in the basin mostly occurs during July–August, the focus of our application. The 
basin and the key streamflow gauges are shown in Figure 2.

3.2.  Data

Observed daily streamflow during the peak monsoon season (July–August) at four gauge stations in the 
Narmada basin: Sandiya, Handia, Hoshangabad, and Mandleshwar were obtained from India Water Re-
source Information System (IWRIS) (Figure 2 and Table 1) for the period 1978–2014. Garudeshwar gauge 
station was not considered in this study since it had long missing periods (summers of 1988, 1989, and 
1995). The four gauges have drainage areas between 32,494.8 and 71,738.6  2kmE  , elevations between 141 and 
301 m, mean streamflow, mean seasonal (July–August) streamflow, and max seasonal streamflow seasonal 
(July–August) streamflow range from 481 to 997 3 1m sE  , from 1,410 to 2,938 3 1m sE  , and from 19,700 to 46,398 

3 1m sE  , respectively. Reservoirs inflow and release were not considered since they are not available or have 
long periods of missing values.
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For the hydrometeorological variable, we used daily gridded precipitation data from the India Meteorology 
Department (IMD) for 1978–2014. The gridded precipitation data was prepared using the inverse distance 
weighted scheme based on observations from 6,995 meteorological stations across India (Pai et al., 2014) 
and is available at 0.25E  spatial resolution from 1951 to 2018. The gridded daily precipitation captures the 
key features such as high seasonal rainfall over the core monsoon region and orographic rainfall in the 
Western Ghats and foothills of Himalaya (Pai et al., 2014). Previous studies have widely used the IMD pre-
cipitation for hydrometeorological studies (Ali et al., 2019; Shah & Mishra, 2016).

3.3.  Potential Covariates

As potential covariates for the monsoon season (July–August), we considered antecedent daily streamflow 
from an upstream (feeder) gauge j,  


( )

1
j i

tE Q J  ( ( )E iJ  only have one non-zero component), and s-days accumulat-
ed spatial average precipitation from the area between the station gauges i and i+1, 

( )
, 1

i
sd tE P  . The covariates are 

considered until the previous day (lag-1 day), that is, we have a 1-day lead time for the streamflow forecast. 
The antecedent streamflow and precipitation capture the hydrologic basin characteristics and forcing input 
before the streamflow signal on any given day. We did not model the headwater station (Sandiya) since there 
is not any feeder gauge for it. For the spatial average precipitation, we considered durations of 1, 2, and 

Figure 2.  Map of the Narmada basin boundary in India showing the digital elevation model of the basin (SRTM 
DEM); the locations of five sub-basin outlets: Sandiya, Hoshangabad, Handia, Mandleshwar, and Garudeshwar; and 
some of the major dams in the basin are marked: Bargi, Tawa, Indirasagar, Jobat, and Sardar Sarovar (from upstream to 
downstream direction).

Gauge Area ( 2kmE  ) Elevation (m) Mean Streamflow ( 3 1m sE  ) Mean seasonal Streamflow ( 3 1m sE  )
Max seasonal 

Streamflow ( 3 1m sE  )

Mandleshwar 71,739 141 997 2938 46,398

Handia 51,115 260 785 2487 31,880

Hoshangabad 44,487 292 676 2092 28,600

Sandiya 32,495 301 481 1,410 19,700

Table 1 
Basic Data Corresponding to the Streamflow Gauges in the Narmada River Basin Considered in This Study
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3-days, for example, the 2-days accumulated spatial average precipitation corresponds to the cumulative 
spatial average precipitation of days t−1 and t−2. Due to the presence of dams for Mandleshwar, the spatial 
average precipitation was obtained from the area between the station gauge and the upstream dam. Also, 
for Mandleshwar, we considered the second most immediate gauge (Hoshangabad) as its feeder since the 
Handia gauges cannot record the peaks of high flow events at least 1 day in advance to Mandleshwar. This, 
we surmise is due to the operations of the reservoir downstream of Handia.

As initial exploratory analysis, we assessed the strength of the relationship between the covariates and daily 
streamflow at each gauge by computing the Spearman's rank correlations (see Figure S1). It can be seen that 
all the covariates showed significant correlation with the predictands.

At all gauges for days when  ( )
, 1 0i

sd tE P  , we considered  


( )
1

j i
tE Q J  as the covariate. The high lag 1 correlation at 

each gauge was verified (see Figure S2).

3.4.  Implementation and Model Fitting

We fitted various candidate BHNM, each one with different combination of covariates presented in the 
previous section (streamflow at feeder gauges and different l-days accumulated spatial average precipitation 
from the previous day) and potential distribution choice for the marginal—Gamma and Lognormal. For 
the Gamma distribution, rate and shape parameters were parametrized in terms of the mean and variance 
(Wilks, 2011). For Lognormal, the log transformation was applied to the predictands and covariates, and the 
standard deviation was set stationary because of its positive restriction (  0E  ). We considered the deviance 
information criterion (DIC; Spiegelhalter et al., 2002) as metric for selecting the best model. The DIC corre-
sponds to a hierarchical modeling generalization of the Akaike information criterion (AIC; Akaike, 2011) 
and facilitates Bayesian model selection. The DIC was computed for each candidate BHNM and the candi-
date with the minimum DIC was selected as the best model.

Candidates BHNM were implemented in R (R Core, 2017) using the program STAN (Stan Development 
Team, 2014) and the R package RStan (Stan Development Team, 2020) which provides an interface from 
R to the STAN library for Bayesian data analysis. Posterior distributions of the parameters and predictive 
posterior distributions of the streamflows (ensembles) for all days were estimated using the No-U-Turn 
Sampler (Hoffman & Gelman, 2014) for the Markov Chain Monte Carlo method (Gelman & Hill, 2006; 
Robert & Casella, 2011) based on the priors assigned. We ran three parallel chains with different initial 
values, and each simulation was performed for 8,000 iterations with a burn-in size value of 4,000 to en-
sure convergence. To reduce the sample dependence (autocorrelation), we chose a thinning factor of 4. 
The scale reduction factor ˆE R (Gelman & Rubin, 1992) was used to check the model convergence in that 
ˆE R values less than the critical value of 1.1 suggests good convergence of the model. In all of our runs the 
ˆE R values were less than 1.1 at 3,000 samples, indicating model convergence. Consequently, the posterior 
distributions of the parameters and the predictive posterior distribution of daily streamflows consists of 
3,000 ensembles for each candidate BHNM. Also, for each candidate we checked that its regression coeffi-
cients were significant (posterior PDFs do not contain zero in the 95% credible interval). For the priors of 
the covariance matrix according to Equation 8, for each gauge, we considered weakly informative priors 
with   6E  ,  10E A  , and  10E B  .

3.5.  Model Cross-Validation

To assess the out-of-sample predictability of the best model, we performed leave-1-year-out cross-validation 
for the period 1978–2014 (37 years). There is a total of  37 62 2294E  days of data. The observations in a 
year are selected as validation data (62 days), the data from the remaining 36 years (2232 days), as training 
data. The trained BHNM is applied to provide estimates for the one validation year. This cross-validation 
procedure was repeated 37 times.

We used a generalized linear model (GLM; Dobson & Barnett, 1992; Dunn & Smyth, 2018) with a Gamma 
distribution and the covariates selected from the DIC above, as the equivalent non-Bayesian alternative 
considered as the reference forecast. Since in Markov model the prediction at any gauge depends only on the 
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immediately gauge, a comparison with a GLM is valid. The GLM model was fitted at each station separately 
via the Maximum Likelihood (ML) method.

To evaluate the forecast accuracy we considered traditional deterministic metrics such as the correlation 
(R), the Nash-Sutcliffe efficiency (NSE; Nash & Sutcliffe, 1970), and the relative bias (BIAS) in percent, 
which are computed for the ensembles mean. In addition, to evaluate the probabilistic skill and reliability of 
the forecast, three verification metrics were computed: rank histograms, the continuous ranked probability 
skill score (CRPSS), and the energy skill score (ESS).

Rank histograms indicate the level of uniform distribution of observations throughout the ensemble fore-
cast and, thus, its reliability. A rank histogram is computed from the rank or position of the observed value 
relative to the ensemble members over a number of cases (the length of the validation records; Hamill, 2001; 
Mendoza et al., 2015). If the ensemble at a given point is reliable, the resulting rank histogram should be 
uniform (flat rank histogram). Overpopulation of the lowest or highest ranks is a sign of positive or negative 
biases in the ensemble forecast. A lack of variability in the ensemble will show up as a U-shaped, or con-
cave, rank population. Overpopulation of the middle ranks means an excess of dispersion (overdispersion). 
It should be noted that a flat rank histogram is a necessary but not sufficient condition for determining that 
the ensemble is reliable (Hamill, 2001).

Along with the rank histogram, we also consider a discrepancy index (DI) to quantify the departure of the 
histogram from uniformity (Delle Monache et al., 2006; Mendoza et al., 2015). It is computed as follows:




 


1

1

1DI 100
1

M
i

i

count
T M� (9)

where E M is the number of ensemble forecast members (so  1E M  is the number of bins in the rank histo-
gram), iE count  is the number of times the observed event falls into the ith bin, and E T  is the sample size. Lower 
DI means that the ensemble better achieves the condition of reliability.

The continuous rank probability score (CRPS) provides an integrated evaluation of the forecast accuracy 
and reliability of the forecast ensemble spread by estimating the area between the cumulative distribu-
tion functions of the forecasted streamflow and the observed streamflow (Gneiting & Raftery, 2007; Hers-
bach, 2000). For a station gauge on a specific day, it is defined as

   

    

2
CRPS oF Q H Q Q dQ� (10)

 
    

0
0
1

o

o

Q Q
H Q Q Q Q� (11)

where  E F Q  is the CDF associated with the forecast, oE Q  is the observed streamflow, and   0E H Q Q  is the 
well-known Heaviside function. The CRPSS is then defined accordingly:

CRPSS
CRPS

CRPS

fcst

ref

 1� (12)

where CRPSfcst is the average CRPS of the forecast model, CRPSref is the average CRPS of the reference 
forecast. The CRPSS ranges from  to 1. CRPSS 0E  indicates that the reference forecast has higher skill 
than the forecast model, CRPSS 0E  implies equal skill, and CRPSS 0E  implies that the forecast model has 
a higher skill, with CRPSS 1E  being a perfect score. For a deterministic forecast, such as GLM, CRPS corre-
sponds to the mean absolute error (MAE; Zhao et al., 2015).

The energy score (ES) assesses the multivariate (jointly across the gauges) accuracy and reliability of the 
forecasts ensemble spread (Gneiting & Raftery, 2007; Gneiting et al., 2008):

ES    
  
 

1 1

21
2

1 1M
j

M
o

j

M

i

M

i j

j

M

  Q Q Q Q� (13)
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where E M is the number of ensemble forecast members, jE Q  is the 1E n  vector of the jth ensemble forecast 
at day t , oE Q  is the 1E n  vector of observed streamflow at day t, and    denotes the Euclidean norm. This is a 
direct generalization of the continuous ranked probability score (Equation 10), to which the energy score 
reduces in dimension  1E d  . Then, the energy skill score (ESS) is defined as

ESS
ES

ES

fcst

ref

 1� (14)

where ESfcst  is the average ES of the forecast model, ESref  is the average ES of the reference forecast. As for 
the CRPSS, the ESS ranges from  to 1, and its values have the same meaning. For GLM, ES corresponds 
to the Euclidean norm of the mean absolute error (MAE) from the gauges modeled.

We also evaluated the BHNM performance for different types of events by considering sample stratification 
for the probabilistic metrics (Bellier et al., 2017) by defining three event categories (strata). The three cat-
egories defined are “low,” “normal,” and “high” forecast events, defined as those days when the ensemble 
forecast mean (Q t   ) is below the median observed ( 50thQE  ), between 50th and 80th observed quantiles ( 50thQE  
and 80thQE  ) and above the 80th observed quantile ( 80thQE  ), respectively.

To evaluate the reliability and accuracy of the joint forecast, we computed the basin average specific stream-
flow (i.e., streamflow per unit area). Then, the days in each strata are obtained as described above. Table 2 
shows the threshold considered for each gauge and the basin average specific streamflow. Time series of 
observed daily streamflow at three gauges for 1978–2014 showed that above the upper threshold ( 80thQE  ) 
are most of the high flow events while between 0 and the lower threshold ( 50thQE  ), only low flow events are 
contained (see Figure S3).

The uncertainty of CRPSS and ESS metrics was generated by applying bootstrap to the time position vector 
of the observed streamflow.

4.  Results
4.1.  Best Model Selection

Candidates BHNM were fitted for the entire period (1978–2104) and their DIC values are shown in Table 3. 
It is important to mention that for all candidate BHMs, significance of the regression coefficients (E β and E  ) 
were checked (posterior PDFs do not contain zero in the 95% credible interval). As mentioned in Section 3.4, 
the standard deviation (E  ) was considered stationary for the lognormal distribution. The best BHNM was 
model 1, which considered as covariates the streamflow at the feeder site (  


( )

1
j i

tE Q J  ) and the 1-day accu-
mulated spatial average precipitation ( 

( )
1 , 1

i
d tE P  ) at the day t−1 for the gauge i. Gamma distribution is seen to 

perform better than Lognormal—which is consistent with other studies (e.g., Razack & Lasm, 2006), in that 
Lognormal exhibits higher variability especially for high flows from back transformation.

The schematic of the best BHM model for the basin is shown in Figure 3 and the model is presented below. 
The daily streamflow at each gauge i, ( )i

tE Q  , follow a Gamma distribution

Gauge

Streamflow threshold ( 3 1m sE  )

50thQE 80thQE

Mandleshwar 1,460 3,919

Handia 1,324 3,520

Hoshangabad 1,000 2,914

Specific streamflow threshold ( 1mdE  )

Basin average 4.9 20.6

Table 2 
Thresholds Considered for Stratification Analysis
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Figure 3.  Schematic of the Bayesian Hierarchical Network Model for the Narmada River basin. ( )i
tE Q  corresponds to 

the observed streamflow at gauge i and day t (predictand), 
( )

1 , 1
i

d tE P  to 1-day accumulated spatial average precipitation at 
gauge i and day t, and  


( )

1
j i

tE Q J  to the daily streamflow at gauge j and day t. For each gauge  


( )
1

j i
tE Q J  was considered as the 

only covariate when  ( )
1 , 1 0i
d tE P  .

  ( ) ( ),i i
t tE f Model

Covariates

DIC1: Mandleshwar 2: Handia 3: Hoshangabad

Gamma 1  
(3) (1)

1 1 , 1,t d tE Q P  
(3) (2)

1 1 , 1,t d tE Q P  
(4) (3)

1 1 , 1,t d tE Q P 11,148

2  
(3) (1)

1 2 , 1,t d tE Q P  


3 (2)
2 , 11, d ttE Q P  

(4) (3)
1 2 , 1,t d tE Q P 11,763

3  
(3) (1)

1 3 , 1,t d tE Q P  
(3) (2)

1 3 , 1,t d tE Q P  
(4) (3)

1 3 , 1,t d tE Q P 12,355

Lognormala 4  
(3) (1)

1 1 , 1,t d tE Q P  
(3) (2)

1 1 , 1,t d tE Q P  
(4) (3)

1 1 , 1,t d tE Q P 12,104

5  
(3) (1)

1 2 , 1,t d tE Q P  
(3) (2)

1 2 , 1,t d tE Q P  
(4) (3)

1 2 , 1,t d tE Q P 12,334

6  
(3) (1)

1 3 , 1,t d tE Q P  
(3) (2)

1 3 , 1,t d tE Q P  
(4) (3)

1 3 , 1,t d tE Q P 12,470

Note. The best model corresponds to model 1, which has the lowest DIC.
DIC, deviance information criterion.
a ( ) ( )

1
i i

tE  for models 4, 5, and 6 (see Equation 5).

Table 3 
DIC Values for Candidates BHM Considered in the Best Model Selection
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,

( )
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
  1 1 1 1 2 3

J

� (15)

where    0i
tE  is the shape parameter and    0i

tE  is the rate parameter at the gauge i and day t. These pa-

rameters can be expressed in terms of the expected value,  ( )i
tE  , and variance,   

2i
tE  , of ( )i

tE Q  (Wilks, 2011) as 
follows:

 
  
     

  
 
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2
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2 2,

i
iti i t

t t
i i

t t

� (16)

Expressions for  ( )i
tE  and   

2i
tE  at each station are the following:

Mandleshwar (  1E i  ):

   

       
 


  



 

   
  

1 3(1) (1)
1 1 , 12 1(1)

1 3 1 1(1) (1)
3 1 , 14 1 1 , 15

0

0
d tt

t
d tt d t

Q P

Q P P
� (17)

   


  
 

  

   
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(1) (1) (3) (1)
1 2 1 1 , 11

(1) (1) (3) (1) (1) (1)
3 4 1 5 1 , 1 1 , 1

0
0

t d t
t

t d t d t

Q P
Q P P

� (18)

Handia and Hoshangabad (  2, 3E i  ):

   

       
 


  





 
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1 2 1 1 , 1
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where 
( )

1 , 1
i

d tE P  is the 1-day spatial average precipitation for the gauge station i. Posterior distributions of the 
model coefficients ( ( )iE β  and  ( )iE  ) at each gauge showed that BHNM captures the correlation between the 
coefficients (see Figures S4–S9).

Figure 4 shows the predictive posterior distribution ensembles of streamflows from the best BHNM for 
July–August daily streamflow for Mandleshwar (the terminal gauge) for the whole record (1978–2014, Fig-
ure 4a) and the year 2013 (which is a high flow year) (Figure 4c) for a closer visualization of the timing 
of the flows. The flow ensembles are generated from the Gamma distribution using the posterior samples 
of the model coefficients (Equations 17–20). The flow ensembles are presented as time series of boxplots. 
Also, Figure 4b displays the scatter plot of daily observed streamflow versus ensemble mean streamflow. 
The ensembles mean daily flows are generally slightly lower than the observed flows (Figures 4a and 4c); 
however, almost all the observed high flows are captured within the ensemble spread with few exceptions 
(e.g., high value in 1996, Figure 4a). The daily streamflow timing is captured very well by the posterior en-
sembles, as can be seen in Figure 4c for the high flow year 2013. Correlation coefficients (R), NSE, and BIAS 
for 2018–2014 and 2013 are displayed in Figures 4b and 4c, respectively. The R values are 0.83 and 0.92 for 
1978–2014 and 2013, respectively, while BIAS and NSE values are 1.8% and −8.1%, and 0.69 and 0.82 for 
1978–2014 and 2013, respectively.
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We achieved even better performance for the other two gauges (Fig-
ures S10 and S11) as can be seen in Table 4 which displays a summary of 
the accuracy metrics.

In addition, Figure 5 shows the spatial dependence of July–August daily 
observed streamflow (Figure  5a) and ensemble mean streamflow from 
BHNM for the three gauges\enleadertwodots The spatial dependence was 
assessed using Pearson correlation coefficient for each pair of gauges. It is 
seen that the spatial dependence structure is strong for the observed data 
(R ranging from 0.77 to 0.9.3), and ensemble mean streamflow from the 
BHNM captures them very well. Note that the GLM can also capture this 
spatial dependence structure (see Figure S12) as this is mainly from the 
skillful covariates considered.

Gauge

1978–2014 2013

R NSE BIAS (%) R NSE BIAS (%)

Mandleshwar 0.83 0.69 1.8 0.92 0.82 −8.1

Handia 0.89 0.77 1.1 0.92 0.85 0.4

Hoshangabad 0.87 0.75 −9.6 0.92 0.84 −6.9

BIAS, relative bias; NSE, Nash-Sutcliffe efficiency.

Table 4 
R, NSE, and BIAS Values for the Entire Record (1978–2014) and the Year 
2013 (High Flow Year)

Figure 4.  (a) Predictive posterior distribution ensembles of July–August daily streamflow, and (b) scatter plot of daily observed streamflow versus predictive 
posterior ensembles mean streamflow for the entire record (1978–2014), and (c) predictive posterior distribution ensembles of July–August daily streamflow for 
2013 (high flow year) at Mandleshwar gauge. The boxplots represent the posterior distribution estimates of the daily streamflow. Outliers are not displayed. Red 
lines correspond to the observed daily streamflow and blue-dashed lines to the posterior ensembles mean daily streamflow. R, Nash-Sutcliffe efficiency (NSE), 
and relative bias (BIAS) values for 1978–2014 and 2013 are displayed in panels (b) and (c). R values are significant ( p value 0.05E ‐  ).
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4.2.  Cross-Validation

The leave 2-year out cross-validation, following the procedure described in Section 3.5, was performed for 
both BHNM and GLM models. Figure 6 shows the predictive posterior ensemble forecast of July–August 
daily streamflow at Mandleshwar for the year 2013. As in Figure 4c, Figure 6a shows that for Mandleshwar, 
the ensemble mean slightly underestimates the observed for high streamflow values, but the ensembles 
spread can capture most of them except for a few events (July 30, 1991 and July 29, 1996). While accuracy 
metrics (R, NSE, and BIAS) present similar values as for BHNM calibration, which an indication of good 
out-of-sample predictability for the BHNM for Mandleshwar and the other two gauges (see Figures S13 
and S14). Table 5 summarizes performance accuracy metrics for both models BHNM and GLM. It can be 
seen that the BHNM provides higher performance compared to GLM.

4.3.  Probabilistic Performance Metrics at Site

To assess the at site (marginal) probabilistic skill, we computed the CRPSS for BHNM (GLM was considered 
as the reference forecast) and rank histograms at each gauge and for the entire period (1978–2014) and the 
three strata (low, normal, and high forecasts).

Figure 7 shows CRPSS distribution of BHNM for the entire period and three strata (see the color legend). 
At all the gauges the skills are very good (95% of the distributions above E  0.4) for the entire period (i.e., 
total) with a clear increase for Hoshangabad (95% of the distributions above 0.65). Performance for low 
flow forecasts is similar to that for the entire period, except at Handia, where the CRPSS distribution is 
high (above 0.5). For normal flow forecast there is a decrease of the CRPSS compared to total, this reduc-
tion is more evident for Handia. For high flow forecast events, there is a clear increase in skill compared 

Figure 5.  Pairwise scatter plots (upper triangular matrix) and Pearson correlation coefficients (R, lower triangular matrix) of July–August daily (a) observed 
streamflow and (b) ensembles mean forecast streamflow from Bayesian Hierarchical Network Model for the three gauges analyzed in this study. Streamflow 
values are in (103m3s−1). All Pearson correlation coefficients are significant ( p value 0.05E ‐  ).
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to the total. CRPSS values for the entire period and strata shows that the 
BHNM is highly skillful relative to the GLM.

Figure 8 displays rank histograms of the BNHM ensembles streamflow 
along with discrepancy indexes (DI) obtained from the cross-validation 
for each station (columns) and the entire period and the three strata 
(rows). Ensembles for the entire period and the first two strata (low and 
normal flow forecast events) at the three gauges show over-dispersive 
(underconfident) rank histograms but close to a uniform shape (red line 
corresponds to the median value) that indicates an adequate reliability 
overall. This feature is also confirmed by not so high DI values (most of 
them below 40%). For High flow forecast events (last row), rank histo-
grams show a slightly over-forecasting bias for Mandleshwar and Handia 
gauges with DI values of 50.5% and 35.2%, respectively. For Hoshang-
abad, rank histogram shows a slightly under-dispersion (overconfident) 
with a DI value of 35.6%.

Model Metric Mandleshwar Handia Hoshangabad

BHNM R 0.83 0.89 0.86

NSE 0.68 0.77 0.74

BIAS (%) 1.8 1.1 −4.6

GLM R 0.75 0.87 0.81

NSE 0.33 0.59 −0.19

BIAS (%) 25.2 25.8 71.3

Note. For BHNM, the metrics were computed considering the ensembles 
mean.
BHNM, Bayesian Hierarchical Network Model; GLM, generalized linear 
regression.

Table 5 
Summary of Accuracy Metrics for BHNM and GLM for the Period 
1978–2014

Figure 6.  As in Figure 4 but predictive posterior ensemble forecast of July–August daily at Mandleshwar for the cross-validation.
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4.4.  Probabilistic Multivariate Performance Metrics

To assess the join skill and reliability of the BHNM ensembles, we com-
puted the rank histograms for the total period and each strata using the 
basin average specific streamflow as was described in Section  3.5. For 
computing the ESS for the three strata, we considered the events (days) 
classification obtained for the Basin average specific streamflow.

Figure  9 shows ESS distributions of BHNM for the entire period and 
three strata. ESS distribution for the total period and three strata show 
that BHNM provides a better joint accuracy and reliability compared to 
GLM (95% of the distributions above 0.46). Also, compared to the margin-
al skill (CRPSS), ESS shows a better joint performance (ESS values higher 
than CRPSS), except for Hoshangabad.

Figure  10 displays rank histograms of the BNHM ensembles basin av-
erage specific streamflow along with discrepancy indexes (DI) obtained 
from the cross-validation for the entire period and the three strata. Al-
though rank histograms for the entire period (Figure 10a) and low flow 
forecast (Figure 10b) show an over-forecasting bias, they are closer to the 
uniform shape (DI values below 25%) than at site ranks histograms (Fig-
ure 8). For normal flow forecast strata, shape of rank histogram is close 
to the uniform shape, except for the highest ensemble percentile bin, and 
also present a low DI value (20%). Finally, rank histogram for high flow 
forecast presents an under-dispersion (overconfident) shape, but a lower 
DI value (E  31%) than the three gauges (last row in Figure 8). Thus, rank 
histograms also show a better reliability than at site rank histograms (Fig-

ure 8) overall. The better joint performance is also checked for the predictive posterior ensemble forecast of 
July-August daily basin average specific streamflow (see Figure S15).

5.  Summary and Discussion
In this study, we formulated and presented a BHNM for daily streamflow modeling and forecasting. The 
model uses the spatial dependence induced by the river network topology and hydrometeorological vari-
ables from the upstream contributing area between the covariates' gauges. The daily streamflow at each 
gauge is assumed to be conditionally independent and distributed as general probability density function 
with time-varying distribution parameters. The distribution parameters for each day and at each gauge are 
modeled as linear functions of potential covariates.

We applied this to forecast daily summer (July–August) streamflow at three gauges in the Narmada 
River Basin network in west-central India for the period 1978–2014, at 1 day lead time. The best BHNM 
was selected based on the lowest DIC, considered a Gamma distribution as the suitable distribution 
for each gauge, and included daily streamflow from upstream feeder gauges and 1-day accumulated 
spatial average precipitation from the area between two consecutive gauges from the previous day as 
covariates.

BHNM ensembles forecast showed to be more skillful than GLM for both at the site and jointly, that is, 
for both cases, skill scores (CRPSS or ESS) for the total period and each forecast strata were above zero. In 
general, BHNM provides reliable marginal (each gauge) and joint forecast distribution, but with a slight 
over-dispersion for some strata.

Figure 7.  Boxplots of continuous ranked probability skill score at the 
three gauges for the total period; low flow forecasts strata (  50th)ˆ ( QE Q t  ); 
normal flow forecasts strata (  50th 80thQ ( ) QˆE Q t  ); and high flow forecasts 
strata (  80th)ˆ ( QE Q t  ). The whiskers show the 95% credible intervals, boxes 
the interquartile range, and horizontal lines inside the boxes, the median. 
Outliers are not displayed. Generalized linear regression was considered as 
the reference forecast model.
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Overall, the BHNM framework has the following benefits:

1.	 �Using the network structure in incorporating flow information from upstream gauges and precipitation 
contributing areas between gauges as covariates, communicates information through the network and 
captures the spatial correlation of flows simultaneously.

2.	 �Allows capturing the timing of the high flows through via feeder gauges that capture high flows peak in 
advance as covariates.

3.	 �Can capture non-Gaussian features.
4.	 �Allows capturing the heteroscedasticity of the data by considering nonstationary variance.
5.	 �Compared to standard non-Bayesian alternative GLM, BHNM provides robust estimates of uncertainties.

Figure 8.  Rank histograms of the Bayesian Hierarchical Network Model ensembles forecast of July–August daily streamflow obtained from the cross-
validation for the total period; low flow forecasts strata (  50th)ˆ ( QE Q t  ); normal flow forecasts strata (  50th 80thQ ( ) QˆE Q t  ); and high flow forecasts strata  
(  80th)ˆ ( QE Q t  ). Horizontal red lines correspond to the median frequency. DI denotes the discrepancy index.
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Although the BHNM was applied to a river network with only four gaug-
es (headwater gauge was only used as a predictor), the framework can 
be conceptually easily extended to a bigger and more complex basin, as 
was shown by (Ravindranath et al., 2019). The model's success lies in the 
availability of skillful covariates and correct identification of the feeder 
gauges. In that sense, the ability to capture the high flow timing depends 
on identifying feeder gauges that have a lag of at least 1 day for the peak 
flow relative to the predictand. This requirement could be a problem in 
river networks with multiple junctions where some feeder gauges cannot 
capture the peak flow at least 1 day in advance. This could be alleviated by 
considering all possible combinations of covariates which will increase 
computational time.

Potential extensions of this framework include combining this with de-
terministic physical model forecasts to provide multi-model ensemble 
forecasts, use of other covariates such as reservoir levels, releases and so 
on to capture human affects and also in snow-melt basins.

All of these findings indicate that this BHNM can be used in real-time 
coordinated flood mitigation and early warning across the river network 
basin at all locations.

Figure 9.  Boxplots of the energy skill score (ESS) of daily streamflow 
ensembles from Bayesian Hierarchical Network Model for the total 
period; low flow forecasts strata (  50th)ˆ ( QE Q t  ); normal flow forecasts 
strata (  50th 80thQ ( ) QˆE Q t  ); and high flow forecasts strata (  80th)ˆ ( QE Q t  ). 
The whiskers show the 95% credible intervals, boxes the interquartile 
range, and horizontal lines inside the boxes, the median. Outliers are not 
displayed. Generalized linear regression was considered as the reference 
forecast model.

Figure 10.  Rank histograms of the Bayesian Hierarchical Network Model ensembles forecast of July–August daily 
basin average specific streamflow obtained from the cross-validation for the total period; low flow forecasts strata  
(  50th)ˆ ( QE Q t  ); normal flow forecasts strata (  50th 80thQ ( ) QˆE Q t  ); and high flow forecasts strata (  80th)ˆ ( QE Q t  ). 
Horizontal red lines correspond to the median frequency. DI denotes the discrepancy index.
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Data Availability Statement
The data set used in this study, which consists of time series of potential covariates and daily monsoon pe-
riod (July–August) streamflow for four station gauges in the Narmada River basin, can be downloaded from 
https://www.hydroshare.org/resource/34e0b581418442068e796762aa4fc4d8/.
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