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32 ABSTRACT

33 A major challenge in understanding the response of populations to climate change is to 

34 separate the effects of local drivers acting independently on specific populations, from the 

35 effects of global drivers that impact multiple populations simultaneously and thereby 

36 synchronize their dynamics. We investigated the environmental drivers and the demographic 

37 mechanisms of the widespread decline in marine survival rates of Atlantic salmon (Salmo 

38 salar) over the last four decades. We developed a hierarchical Bayesian life cycle model to 

39 quantify the spatial synchrony in the marine survival of 13 large groups of populations (called 

40 stock units, SU) from two continental stock-groupings (CSG) in North America (NA) and 

41 Southern Europe (SE) over the period 1971-2014. We found strong coherence in the temporal 

42 variation in post-smolt marine survival among the 13 SU of NA and SE. A common North 

43 Atlantic trend explains 37% of the temporal variability of the survivals for the 13 SU and 

44 declines by a factor 1.8 over the 1971-2014 time series. Synchrony in survival trends is 

45 stronger between SU within each CSG. The common trends at the scale of NA and SE capture 

46 60% and 42% of the total variance of temporal variations, respectively. Temporal variations 

47 of the post-smolt survival are best explained by the temporal variations of sea surface 

48 temperature (SST, negative correlation) and net primary production indices (PP, positive 

49 correlation) encountered by salmon in common domains during their marine migration. 

50 Specifically, in the Labrador Sea/Grand Banks for NA populations 26% and 24% of variance 

51 is captured by SST and PP, respectively and in the Norwegian Sea for SE populations 21% 

52 and 12% of variance is captured by SST and PP, respectively. The findings support the 

53 hypothesis of a response of salmon populations to large climate induced changes in the North 

54 Atlantic simultaneously impacting populations from distant continental habitats. 
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56 Key words: Spatial covariation, climate change, stage-based life cycle model, marine 

57 survival, Atlantic salmon, environmentally driven changes, bottom-up, hierarchical Bayesian 
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59  

60 1. INTRODUCTION

61 Understanding the response of populations to global changes, in terms of demography and 

62 adaptive capacity, is critical to support ecosystem-based management (Brown et al., 2011; 

63 Edwards, Beaugrand, Hays, Koslow, & Richardson, 2010; Harley et al., 2006; Stenseth, 

64 2002). A major challenge to understanding the response of populations to environmental 

65 variations is to partition the effects of global drivers that likely impact multiple populations 

66 simultaneously and synchronize their dynamics from the effects of drivers acting locally on 

67 specific populations (Moran, 1953; Post & Forchhammer, 2002). This is also critical for a 

68 better understanding of the mechanisms affecting the resilience of populations to global 

69 change (Heino, 1998; Palmqvist & Lundberg, 1998).

70 Life cycle models that consider and incorporate the spatial and temporal heterogeneity of 

71 ecological mechanisms and demographic responses are useful for examining the effects of 

72 multiple factors that interact in a hierarchy of scales (Cunningham, Westley, & Adkison, 

73 2018; Rochette, Le Pape, Vigneau, & Rivot, 2013; Stelzenmüller, Schulze, Fock, & 

74 Berkenhagen, 2011). When combined with the analysis of multiple populations, these models 

75 provide a powerful approach to partition the effects of factors impacting each population 

76 specifically from those affecting groups of populations simultaneously (Lahoz-Monfort et al. 

77 2013; Walter et al. 2017). In addition, signals that arise from multiple population relationships 

78 are more likely to represent true biological processes rather than statistical flukes (Myers, 

79 Mertz, & Bridson, 1997; Soberon & Nakamura, 2009) and as a result can be more informative 

80 than separate analyses of single populations (Britten, Dowd, & Worm, 2016; Szuwalski, Vert-

81 Pre, Punt, Branch, & Hilborn, 2015; Zimmermann, Claireaux, & Enberg, 2019).
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82 Separating out the different scales of interactions of ecological processes driving population 

83 dynamics is particularly challenging in the case of highly migratory species, which can 

84 interact with a multitude of single and/or synergistic factors at different points in time and 

85 space during their life cycle. For instance, the life cycle of anadromous fish, such as 

86 salmonids, relies on population-specific freshwater habitats for reproduction and juvenile 

87 growth and marine habitats shared by multiple populations for feeding and maturation. This 

88 makes these species sensitive to multiple environmental and anthropic stressors acting at 

89 different spatial scales, with factors operating at sea potentially having synchronizing effects 

90 on the dynamics of large groups of populations. For such species, identifying the space and 

91 time domains associated with specific life stages that are most susceptible to conditioning the 

92 population dynamics is a prerequisite to better understand population responses to global 

93 changes (Cunningham et al., 2018) and to support improved management decisions and 

94 actions at global and local scales. 

95 Atlantic salmon (Salmo salar) is one of the most emblematic fish in the Atlantic Ocean. The 

96 species reproduces in a large number (~ 2000) of rivers distributed in the eastern (Europe) and 

97 western (North America) regions of the North Atlantic. Due to its highly evolved homing 

98 ability, the species is structured into individual river populations, with specific and variable 

99 freshwater habitat environments. During the freshwater phase, the population dynamics are 

100 conditioned by local habitat quality and trophic resources (Elliott, 2001; Jonsson, Jonsson, & 

101 Hansen, 1998; Milner et al., 2003). During the marine phase, populations originating from 

102 distant continental habitats migrate to common feeding grounds in the North Atlantic, with 

103 major concentrations located off West Greenland, in the Labrador Sea, and the Faroes Islands 

104 and Norwegian Sea (Aas, Einum, Klemetsen, & Skurdal, 2010; D. H. Mills, 1989). In these 

105 aggregations at sea, they are exposed to common environmental marine conditions and 

106 fisheries. 

107 Atlantic salmon populations from North America and Europe have undergone a widespread 

108 decline in abundance over the last four decades (Chaput, 2012; ICES, 2017; Olmos et al., 

109 2019), but the mechanisms responsible for these declines are still unclear. The broad scale 

110 pattern of decline has led to the hypotheses that major ecosystem changes in the North 

111 Atlantic Ocean are the main driver of these declines (Olmos et al., 2019). The mechanisms for 

112 this may include an indirect effect associated with an increase in sea temperatures (Beaugrand 

113 & Reid, 2012; Friedland, Moore, & Hogan, 2009; Jensen et al., 2012). A major trophic shift in 

114 the North Atlantic Ocean was documented in the early 1990’s with trophic level changes 
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115 observed in the plankton communities upward to seabird populations (Beaugrand, Edwards, 

116 Brander, Luczak, & Ibanez, 2008; Durant, Anker-Nilssen, & Stenseth, 2003; A. J. Pershing, 

117 Head, Greene, & Jossi, 2010) which was hypothesized to exert bottom up control via 

118 reductions in the abundances and the energetic value of prey across higher trophic levels (K. 

119 E. Mills, Pershing, Sheehan, & Mountain, 2013; Otero et al., 2012; Renkawitz, Sheehan, 

120 Dixon, & Nygaard, 2015).  These changes may have been responsible for altered Atlantic 

121 salmon growth at sea and consequently survival through size-dependent mortality (Friedland 

122 & Reddin, 2000; Gislason, Daan, Rice, & Pope, 2010; Peyronnet, Friedland, Maoileidigh, 

123 Manning, & Poole, 2007).

124 Broader scale analyses to date, however, suggest that despite the overall spatial coherence of 

125 the trends in abundances and survival rates observed throughout the North Atlantic, the annual 

126 and region specific variations between continental stock groups (CSG) in North America and 

127 Southern Europe and among populations within a CSG are large (Olmos et al., 2019). This 

128 may in part be explained by the diversity and complexity of migration routes at sea 

129 undertaken by populations originating from different areas of the North Atlantic. As such, it is 

130 challenging yet necessary to identify the space and time domains along the migration routes at 

131 sea where salmon are exposed to favorable and unfavorable ecosystem conditions that may 

132 strongly affect their survival.

133 Although the early Atlantic salmon post-smolt marine phase is often suggested as a critical 

134 stage for survival (Friedland et al. 2003a, 2005, 2000; Thorstad et al. 2012; Chaput et al. 

135 2018), the environmental conditions encountered later in the first year at sea can also be 

136 important (Friedland et al., 2009; Friedland & Reddin, 2000; K. E. Mills et al., 2013). In 

137 addition, the factors involved in the declines in survival may differ between populations. 

138 Growth variations during the first summer at sea have been hypothesized as critical for the 

139 survival of SE populations (Friedland et al. 2008; Friedland et al. 2014; McCarthy, Friedland, 

140 and Hansen 2008; Peyronnet et al. 2007; Haugland et al. (2006) and Jensen et al. (2012)). In 

141 contrast, variations in predation pressure in early spring have been hypothesized to be the 

142 main driver of early post-smolt survival in southern NA populations (Friedland et al., 2014). 

143 The mechanisms involved at various spatial and temporal scales, and the degree to which 

144 these mechanisms and hence the responses are shared between populations remain largely 

145 unclear. A simultaneous and joint analysis of multiple populations throughout the Atlantic 

146 Ocean within a unified framework is needed to improve our understanding of the response of 

147 Atlantic salmon populations to changes in the marine ecosystem. 
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148 In this paper, we rely on the modelling framework developed by Olmos et al. (2019) to 

149 explore how environmental conditions encountered by Atlantic salmon in different space and 

150 time domains along the marine migration routes may contribute to the variations of marine 

151 survival in Europe and North America. Olmos et al. (2019) developed an age and stage-based 

152 model for the collective analysis of the dynamics of thirteen geographically proximate 

153 Atlantic salmon stock units (SU) from the eastern NA and SE CSG, and applied this model to 

154 data over the period 1971-2014. The model provides a framework to quantify the spatial 

155 coherence in the temporal variation of the post-smolt marine survival rates and in the 

156 proportion of fish maturing after one winter at sea (1SW) in a hierarchy of spatial scales 

157 across the North Atlantic. Olmos et al. (2019) reported on the strong coherence in temporal 

158 variation of marine survivals among the 13 stock units of Southern Europe and North 

159 America, represented by a collective decline in the marine survival over the 1971-2014 time 

160 series. The results also provided evidence of covariation among geographically proximate 

161 stock units, with the strength of the covariation that increases when going down to spatial 

162 scale, thus suggesting the intricate influence of drivers acting at a hierarchy of spatial scale. 

163 Here, by taking advantage of the flexibility of the hierarchical model structure, we first extend 

164 the modelling framework developed by Olmos et al. (2019) by explicitly modeling temporal 

165 variation in post-smolt survival as the sum of trends in a hierarchy of spatial scales across 

166 global to local SU-specific areas. This allows the investigation of the degree of synchrony in 

167 Atlantic salmon post-smolt survival and explicitly quantifies the amount of variance that is 

168 captured by trends at various spatial scales. Second, we investigate whether the temporal 

169 variation in the marine survival can be explained by environmental variation encountered by 

170 salmon during the early post-smolt marine phase when salmon use specific transit habitat, or 

171 during the later phase of the first year at sea when salmon of different areas aggregate at 

172 common feeding areas. We conducted an extensive review of the literature on post-smolt 

173 migration routes to define the space-time domains associated with the early marine phase 

174 (spatially specific to each SU or to small groups of SU with proximate freshwater habitat) and 

175 late phase of the first year at sea (feeding areas common to large groups of SU). We then 

176 assessed the relationships between the temporal variations of marine survival and 

177 environmental covariates defined in those space-time domains including sea surface 

178 temperatures, primary production indices, and large scale climate indices. Our prediction was 

179 that the environmental conditions encountered in the common feeding areas should explain 

180 the greatest part of the synchronous signal observed between the SUs, while environmental 
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181 conditions encountered during the early marine phase in transit habitat would not explain the 

182 broader scale responses of these salmon populations. 

183 2. MATERIALS AND METHODS

184 2.1 General Model Outline 

185 Below we provide the main outlines of the model. Further details can be found in Olmos et al. 

186 (2019). 

187 The model is an age- and stage-based life cycle model (Fig. 1) that formulates the dynamics 

188 of all SU in a single hierarchical framework. The spatial structure of the model is unchanged 

189 from Olmos et al. (2019). The model considers thirteen stock units that each define 

190 assemblages of river-specific Atlantic salmon populations reproducing in the respective North 

191 American (NA) and Southern European (SE) CSG. The NA CSG consists of 6 SU (indexed 

192 by r = 1,…,6). The SE CSG consists of 7 SU (indexed by r = 7,…,13) (Fig. 2).

193 The Atlantic salmon from a SU are considered to form a single homogeneous group with 

194 similar life history and migration routes at sea. Juvenile salmon produced in each SU migrate 

195 to the sea as smolts after 1 to 6 years in freshwater, with the proportions at age varying among 

196 SUs. The model draws on explicit hypotheses about the migration routes at sea that generate 

197 spatial segregation in salmon populations (Fig. 1 and 2). All salmon from NA and SE migrate 

198 from their specific coastal area to reach a common feeding ground in the Labrador Sea and the 

199 Norwegian Sea, respectively. After one winter spent at sea, some salmon mature and return to 

200 their natal river to spawn while non-maturing salmon migrate to West Greenland. The 

201 different SU in the model present two levels of aggregation (Fig. 1). During the first months at 

202 sea, post-smolts of different SU are assumed to occupy spatially different transit habitats. In 

203 the later phase of the first year at sea, they migrate to a shared feeding area common to all SU 

204 of the same CSG, and where they are exposed to high seas fisheries operating on mixed SU.

205 The model is formulated in a Bayesian hierarchical state-space framework (Parent and Rivot, 

206 2012; Rivot et al., 2004) that incorporates stochasticity in population dynamics as well as 

207 observation errors. It assimilates information from the time series of data (1971 to 2014) 
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208 collated by ICES WGNAS (Working Group on North Atlantic Salmon; ICES, 2015, 2017). 

209 These consist of: (i) annual estimates of the number of mature anadromous Atlantic salmon 

210 that return to each of the 13 SU, by 1SW and 2SW maiden sea-age classes; (ii) annual 

211 estimates of homewater catches for each SU by sea-age class; (iii) annual estimates of 

212 commercial catches for the mixed stock fisheries at sea operating sequentially on 

213 combinations of SU, and data on the SU origin of the catches (but see Olmos et al. 2019 for 

214 further details). 

215 The model was primarily designed to estimate the abundance of salmon at various life stages 

216 along the life cycle, the exploitation rates in the fisheries, and two key parameters of the 

217 marine phase: the post-smolt marine survival rates (from out-migrating smolts to the 1 

218 January of the first winter at sea, referred as the Pre Fishery Abundance stage, or PFA) and 

219 the proportions of fish maturing as 1SW, for each year and each SU. It explicitly considers 

220 temporal covariation in those two key demographic parameters. For the present analysis, we 

221 keep the original covariation model for the proportion of fish maturing as 1SW as defined by 

222 Olmos et al. (2019), with temporal variations of this parameters modeled as a multivariate 

223 random walk in the logit scale. Random variations are drawn from multivariate Normal 

224 distribution with a 13×13 variance-covariance matrix.  The model for temporal variation in 

225 post-smolt marine survival, which is the focus of this paper, is modified from Olmos et al. 

226 (2019), and temporal variation is modelled through an explicit decomposition of terms 

227 associated with the various spatial scales, as detailed hereafter. 

228 2.2 Investigating the spatial synchrony in marine survival

229 2.2.1 Hierarchical decomposition of the temporal variations of post-smolt survival 

230 Different models for the temporal variation of post-smolt marine survival are tested (Supp. 

231 Mat S1). In the reference model M1 (eq. (1), (2) and Tables 1, S1.1), temporal variation in 

232 post-smolt survival is explicitly written as the sum of three components to partition out the 

233 survival signal at three scales: a term capturing the synchronous signal between all SU, a term 

234 capturing the synchronous signal within each CSG, and a term for the remaining temporal 

235 variability specific to each SU. 
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236 Following the methodology developed by Grosbois et al. (2009) and Lahoz-Monfort et al. 

237 (2011, 2013), post-smolt survival  (in the logit scale) at year t in SU r within the CSG g ��,�
238 (g=NA or SE) is modelled as the sum of independent normally distributed random terms: 

239 (1) ,�����(��,�) =  �� + �� + ��� + ��,�
240 with  an intercept that is constant for all years and ( ) that are identically and �� ��,���, ��,�
241 independently normally distributed random terms:

242 (2) ��� ��� �, { �� ~ �(0,�2�)��� ~ �(0,�2��)��,�~ �(0,�2��)
243 Time series of  and  characterize the synchronous part of the signal at two spatial �� (�� + ���)
244 scales. The ’s capture the trend that is common to all SU over the North Atlantic Ocean. The ��
245 ’s characterize the amount of between year variation synchronous to all SU within �� + ���
246 each CSG, g=NA and g=SE.  are remaining random variations specific to each SU that ��,�
247 characterize the asynchronous part of the signal. Priors on parameters are all weakly 

248 informative (Table 1).

249 Two embedded models of lower complexity were then considered (Supp. Mat. S1). Since 

250 Olmos et al. (2019) have shown that there are correlations between SU, models with no 

251 correlations between SU were not examined further. Analyses that considered environmental 

252 covariates were based on the most complete model M1. 

253 2.2.2 Quantifying synchrony

254 The different random terms ( ) in eq. (1) are independent, therefore the total between ��,���, ��,�
255 year variance of the post-smolt survival time series of each SU ( , denoted , is �����(��,�)) �����
256 the sum of the variance of the random terms: 

257 (3) ������� = �2� + �2�� + �2�� 
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258 where g=NA for r=1,…,6 and g=SE for r = 7,…,13. 

259 Synchrony at different spatial scales was quantified by calculating the Inter-Class Correlation 

260 (ICC) based on the ratio of inter-annual variances (Grosbois et al., 2009; Lahoz-Monfort et 

261 al., 2013, 2011). For each SU r, we calculated  

262 (4) ����� =  
�2�������� 

263 (5) .����� =  
�2� + �2���������

264 where g=NA for r=1,…,6 and g=SE for r = 7,…,13.  quantifies the amount of variance �����
265 of the survival time series that is captured by the global trend component  A large  �. �����
266 means that the variance of the shared component ( , synchronous part of the signal) is large �2� 

267 relative to the total variance of the time series.  quantifies the amount of variance that is �����
268 captured by the continental trend g to which the SU r belongs.

269 We then calculated synchrony indices as the average of ICC values: 

270 (6) ,���� = ������� �(�����)
271 (7) ,����� = ������� � �� ��(������) 

272 (8) .����� = ������� � �� ��(������)

273  is the amount of temporal variance that is synchronous among all SU and provides a ����
274 global index of synchrony over the entire set of SU in both NA and SE CSG.  and �����
275  are the fraction of the between year variance accounted for by the NA (  and ����� � + ���)

276 SE (  synchronous components, respectively. They provide an index of synchrony � + ���)

277 within each CSG. 
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278 2.2.3 Testing the influence of environmental covariates in different space-time domains 

279 along the migration routes

280 The model was used to investigate correlations between times trends in post-smolt survival 

281 and environmental covariates integrated over different space-time domains occupied by 

282 salmon along the migration routes (Fig. 2). Specially, we considered two types of domains: (i) 

283 domains visited during the early post-smolt phase as transit habitat specific to each SU (or to 

284 groups of geographic proximate SUs); (ii) domains visited during the late post-smolt phase 

285 that are common to all SU of the same CSG (Fig. 2 and 3).

286 In this section, we first describe the methods used to define the space-time domains. Then, we 

287 present the ecological hypotheses tested and the associated environmental variables integrated 

288 over those different domains. Finally, we detail the statistical method used to quantify the 

289 amount of variance of the temporal variations of post-smolts survival that is captured by the 

290 covariates in the different space-time domains.

291 2.2.3.1 Defining specific and common CSG space-time domains

292 We conducted an extensive review of the literature to define the key space-time domains 

293 occupied by post-smolts over their marine phase across the North Atlantic Ocean (Fig. 2; Sup. 

294 Mat. S2). Two types of space-time domains were defined. Specific domains are transit habitat 

295 occupied by post-smolts during their first three months at sea of migration from the estuarine 

296 and coastal areas to the common feeding area (Fig. 2, zones 1 to 9, Table S2.1, Fig S2.1). 

297 These domains are specific to each SU or to small groups of geographic proximate SU (Fig. 3 

298 and Fig. S2.1). Common CSG domains are space-time domains corresponding to the habitat 

299 occupied by salmon in the later phase of the first year at sea (Fig. 2 domains A and B) and 

300 associated to feeding areas common to all SU within the same CSG (Fig. 3). 

301 The only exception is for the Southwest Iceland SU, which presents different migrations from 

302 the other SU from SE CSG. Salmon from Iceland reach the sea later, in June, and do not 

303 migrate to the Norwegian Sea (Guðjónsson, Einarsson, Jónsson, & Guðbrandsson, 2015). 

304 Consequently, for the Southwest Iceland SU, the same spatial limits are defined for the transit 

305 and common domains (Fig. 2 and Table S2.1).
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306 2.2.3.2 Integrating environmental variables over space-time domains

307 The sea surface temperature (SST) and primary production (PP) were averaged over the 

308 defined space-time domains (Fig. 3) and introduced as explanatory variables in the life cycle 

309 model to assess the extent to which the temporal variations in the post-smolt survival could be 

310 explained by environmental variations encountered in the specific or common domains 

311 occupied by salmons during the first year at sea. We also examined the influence of two large 

312 scale climate indices, the Atlantic Multidecadal Oscillation (AMO) and the North Atlantic 

313 Oscillation Index (NAOI) to assess their influence on the temporal variations in the post-smolt 

314 survival. 

315 Sea Surface Temperature (SST)

316 Ocean warming is one of the major effects of climate change on marine ecosystems.  An 

317 increase in seawater temperature may affect survival differently (negative or positive) through 

318 direct or indirect effects. 

319 The direct physiological effect of an increase in temperature is difficult to predict as it can be 

320 positive or negative, depending on the range of the temperature change relative to the species’ 

321 optima and tolerance. Atlantic salmon is an ectothermic species with a range of preferred 

322 temperatures at sea between 2°C and 14°C (Holm, 2000; David G. Reddin & Schearer, 1987), 

323 with the highest post-smolt captures being realized in temperatures between 4-10°C (D. G. 

324 Reddin & Friedland, 1993). Then, by directly increasing metabolism, an increase in 

325 temperature should increase growth potential of salmon, and in turn may have a positive 

326 effect on marine survival provided that foraging resources are available in sufficient quantity 

327 (Cunningham et al., 2018; Siegel, McPhee, & Adkison, 2017). By contrast, an increase of 

328 temperature well above the optimum could have a negative effect on growth and marine 

329 survival. However, based on the literature, we rather expect negative indirect effects of an 

330 increase in seawater temperature on both growth and survival, through bottom-up control of 

331 food resources available for salmon during the first year at sea (Beaugrand & Reid, 2012; 

332 Friedland et al., 2009; Jensen et al., 2012). 

333 SSTs were used to calculate the seawater temperature in each space-time domain and derived 

334 from the HadISST1 datasets (See Sup. Mat. S3). Standardized anomalies of SST for each 

335 space-time domain z (as defined in Table S2.1) and year t, denoted  were calculated as:��� ∗�,� 
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336 (9) ��� ∗�,� =  
����,� ― �������   

337 where is the SST averaged over the space-time domain z (averaged over month and ����,� 
338 space) for a particular year t,  is the SST averaged over spatial and temporal (months) ���
339 limits covered by all specific and common domains, and overall years t, and  is the ����
340 standard deviation calculated from the between year variability of the SST averaged over 

341 spatial and temporal (months) limits covered by all specific and common domains. Note that 

342 with this method, the anomalies are calculated relative to SST averaged over all space-time 

343 domains (both common and specific) and covering both NA ad SE post-smolt habitat. 

344 Therefore, the contrast in absolute value and temporal (between year) variance between the 

345 type of domains (specific versus common) and between the two CSG (NA and SE) is 

346 conserved. 

347 Primary Production (PP)

348 PP was considered as indicator of the ocean production which determines the prey availability 

349 for salmon at sea and consequently expected to be positively correlated to post-smolt survival.

350 PP data are derived from the Earth System Model) developed by the Geophysical Fluid 

351 Dynamic Laboratory (GFDL-ESM2M, Dunne et al., 2012) (see Sup. Mat. S3 for more 

352 details). 

353 Standardized anomalies of PP ( ) were calculated following the same approach as SST. �� ∗�,�
354 However, to match with the months of phytoplankton bloom, PP was integrated over the two 

355 months April-May in both specific and common domains.

356 Atlantic Multidecadal Oscillation (AMO)

357 The AMO is a low-frequency and basin-wide climate index reflecting sea surface temperature 

358 variability over the last century (Alheit, Drinkwater, & Nye, 2014; Enfield, Mestas-Nunez, 

359 Trimble, & others, 2001). 

360 Previous studies have reported on a negative correlation between temporal variations of 

361 salmon abundance and the AMO in both North America (Crozon et al., 2005; K. E. Mills et 

362 al., 2013) and in Southern Europe (Beaugrand et al., 2012). Friedland et al., (2014) 
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363 highlighted a differential response of salmon abundances from North America and Southern 

364 Europe to the AMO. Based on these publications, we expect the positive AMO to negatively 

365 impact post-smolt survival but with potentially different strength for NA and SE CSGs.

366 The effect of AMO on post-smolt survival is included using the average monthly value over 

367 the entire post-smolt phase (May-December); data from 1975 to 2012 were considered (see 

368 Sup. Mat. S3 for more details).

369 North Atlantic Oscillation Index (NAOI)

370 We used the winter NAOI (mean from December to March) as the NAOI is strongly 

371 associated with climatic conditions during the winter (Sup. Mat. S3). Previous studies have 

372 shown weak correlations between NAOI and salmon abundance (K. E. Mills et al., 2013; 

373 Beaugrand and Reid, 2003, 2012). Our prediction is that high winter NAOI should be 

374 associated with good feeding conditions because of positive temperature anomalies, and thus 

375 be positively correlated with post-smolt survival. However, because NAOI described different 

376 conditions in North America and Europe, our expectation is that the temporal variation of 

377 NAOI will affect the two CSGs differently. 

378 2.2.4 Quantifying the influence of environmental variables in the different space-time 

379 domains

380 We developed a variant of the variance analysis method from Grobois et al., (2009) and 

381 Lahoz-Monfort et al., (2011, 2013) to quantify the contribution of each covariate in the 

382 different space-time domains to the temporal and spatial variations of post-smolt survival. 

383 This also allows quantifying the contribution of covariates in generating synchrony at various 

384 spatial scales.

385 Preliminary analysis showed that the time series of environmental variables exhibited an 

386 important level of correlation, both between variables of different nature (i.e. variations of 

387 SST, PP, AMO and NAOI are not independent) and between the different space-time domains 

388 for the same covariate. Hence, the influence of each type of covariate was considered 

389 separately, and for the same covariate, the influence in the different space-time domains at 

390 different scales was also considered separately.
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391 Time series of environmental covariates ( , defined at different spatial scales k (specific or ���)
392 common CSG domains) were considered as an additional factor in model M1: 

393 (11) �����(��,�) =  �� + �� + ��� + ��,� + �� × ���      
394 where k refers to the specific or common domains, and  is the coefficient describing the ��
395 influence of covariate  on post-smolt survival (two separate models were built for the two ��
396 spatial scales). The  were drawn a priori in a non-informative Uniform prior distribution. ��
397 For covariates SST and PP at the scale of specific domains, different coefficients  for each ��
398 SU were considered. When covariates are considered at the scale of a common CSG domain, 

399 two coefficients  and  were considered for the influence on NA and SE, respectively. ��� ���
400 Because our expectation is that the effects of AMO and NAOI could be different between the 

401 two CSGs, two coefficients  and  were considered for the influence on NA and SE, ��� ���
402 respectively. Table 2 sums up the hypotheses tested and associated model configurations that 

403 included environmental covariates.

404 Contribution of the covariates to the temporal variability of post-smolt survival

405 For each covariate considered independently, models were run with (Cov) and without the 

406 effects of covariates (NoCov, all  fixed to 0, equivalent to model M1). For each time series of �
407 , the percentage of between year variance captured by covariate can therefore be �����(��,�)
408 estimated by the ratio :��
409 (12) �� = 1 ― �������(���)  �������(�����) 

410 where corresponds to the total inter-annual variance for the model without �������(�����)  

411 covariates as defined in eq. (3), and is the total inter-annual variance in the �������(���) 

412 model with covariates (i.e., the residual variance not captured by the covariate). The average 

413 percentage of variance captured by a given covariate (denoted  ) is then calculated over ����
414 all SU or over SU within each CSG. A high value of  corresponds to a high contribution  ����
415 of the covariates in the trends of post-smolt survival.
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416 Contribution of environmental covariates to generate synchrony or asynchrony in post-

417 smolt survival

418 To quantify the contribution of environmental covariates in generating synchrony or 

419 asynchrony in survival, we also assessed the amount of variance captured by the covariates at 

420 different levels of the spatial hierarchy:  

421 (13) ∆� = 1 ― �2�(���) �2�(�����)

422  (14) , for g = NA or SE∆�� = 1 ― �2�(���) + �2��(���)�2�(�����) + �2��(�����)
423  (15) , for r =1,…,13∆�� = 1 ― �2��(���) �2��(�����)

424 , , and  quantify the contribution of environmental covariates to the between year ∆� ∆�� ∆��
425 variance at the global scale (general synchronous component), CSG-scale (synchronous 

426 component within a CSG) or local scale (asynchronous component), respectively.  and  ∆� ∆�
427 are positive if the covariate acts as a synchronizing factor. Indeed, if the covariate captures 

428 part of the synchronous signal in components  or , the variance of the synchronous random � �
429 terms in the model should be lower when considering covariates (Table 2). Inversely, if  is  ∆��
430 positive, the variance of asynchronous terms is greater when considering covariates, meaning 

431 that the covariate acts as an asynchronous agent (Table 2). 

432 2.3 MCMC simulations and model checking

433 Bayesian posterior distributions were approximated using Monte Carlo Markov Chain 

434 (MCMC) methods using Nimble (https://r-nimble.org) (de Valpine et al., 2017). The Nimble 

435 code for our model is available on GitHub: https://github.com/MaxOlmos/SALMOGLOB-

436 Life-Cycle-Model. Two independent MCMC chains with dispersed initialization values were 

437 used. The level of autocorrelation of MCMC chains is very high (still significant at lag 30). 

438 The first 106 iterations were used as a burn-in period. To reduce the autocorrelation in the 
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439 MCMC sample used for final inferences, one out of 30 iterations post burn-in was kept and 

440 the resulting sample of 30,000 iterations per chain was used to characterize the posterior 

441 distribution. Convergence was assessed using the Gelman-Rubin statistic (Brooks & Gelman, 

442 1998) as implemented in the R Coda package (gelman.diag()). 

443 Following the methodology developed in Olmos et al. (2019), the model fit to each data 

444 source was assessed by checking that the 90% credibility envelope of the posterior predictive 

445 distribution of each variable contained the observation. In addition, Bayesian p-values 

446 calculated from chi-square discrepancy tests (Gelman et al., 2014a) were calculated to check 

447 the ability of the model to replicate a posteriori data similar to those observed. The likelihood 

448 and the core structure of the population dynamic is the same as in Olmos et al. (2019), and 

449 changes in the latent model structure do not affect the way the model fits the data. As in 

450 Olmos et al. (2019), posterior predictive distributions show that the model fits well to all 

451 observations, and posterior predictive checks do not indicate strong inconsistencies between 

452 the model a posteriori and the data. Those results are not developed further in this paper (see 

453 Olmos et al. (2019) for more details).

454 2.4 Model comparisons

455 We compared the parsimony of models using the W-AIC criterion. The WAIC is appropriate 

456 to compare hierarchical models of any structure fitted to the same data sets (Gelman, 2014a; 

457 Hooten & Hobbs, 2015; Watanabe, 2013). It can be considered as a generalization of the 

458 Deviance Information Criterion (Gelman, 2014a; Vehtari, Gelman, & Gabry, 2017) and has 

459 the advantage of being directly related to the posterior predictive ability of the model. Using 

460 the common convention for information criteria on the deviance scale, differences of W-AIC 

461 between models can be roughly interpreted according to the following rules of thumb: a 

462 difference of 1-2 units offers little to no support in favor of a particular model; a difference of 

463 between 4 and 7 units offers considerable support for the model with the lowest W-AIC; and a 

464 difference of >10 units offers full support for the model with the lowest W-AIC (Burnham 

465 and Anderson, 2002;  Gelman et al. 2014a; Gelman et al. 2014b).A
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466 3. RESULTS

467 3.1 Quantifying spatial synchrony at a hierarchy of spatial scales

468 3.1.1 Model evaluation

469 Model M1, which explicitly partitions the signal into a common trend plus two separate trends 

470 for each CSG, appears to be the best descriptor of the spatial coherence between SU and was 

471 therefore retained in the subsequent analyses (Supp. Mat. S1). 

472 3.1.2 Spatial synchrony in post-smolt survival

473 Results show a strong synchrony in the temporal variations of post-smolt marine survival 

474 between all SU, but with a higher coherence within CSG (Fig. 4). The average  relative ����
475 to the global scale component across all SU is 37%, indicating a strong synchrony between all 

476 time series of survival and the common trends. Time series of post-smolt survival show a 

477 consistent decline across the 13 SU over the study period. The global scale component 

478 exhibits a decrease in survival by a factor 1.8 (natural scale, not shown) with a strong drop in 

479 1987, followed by a slight increase in the early 2000s, before slightly declining again until 

480 2012 (Fig. 4a). The degree of synchrony with the common trend is variable depending on the 

481 SU.  are higher for SU within the SE CSG (Fig. 4b; average value of  across all SU ����� �����
482 in SE =45%) than within the NA CSG (average value of  across all SU in NA = 24%), �����
483 indicating that the SU in the SE CSG are more strongly correlated with the global scale 

484 component than the SU in the NA CSG. 

485 Temporal variation in post-smolt marine survival within each CSG shows a stronger 

486 coherence than among SU of the two CSGs, especially as the NA CSG presents a higher 

487 synchrony (  (Fig. 4d) than the SE CSG (  (Fig, 4f). Common ����� = 60%) ����� = 42%)

488 CSG trends (calculated as ( ) revealed differences between NA and SE CSG (Fig. 4c �� + ���)
489 and 4e), however, both exhibit an overall declining trend, characterized by a sharp decline in 

490 the 1990s. The survival in the NA component decreases over years with a strong decline by a 

491 factor 3 (natural scale, not shown) during 1985 to 1995 (Fig. 4c) while SE shows a smaller 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

492 decline by a factor 1.9. The survival in the SE component also slightly increases between 

493 2002 and 2007 although it remains relatively stable in the NA component after the decline of 

494 the 1990s. 

495 Within NA, Quebec ( =98%), Labrador ( =70%) and Newfoundland ( =65%) ����� ����� �����
496 are the SU that are the most strongly correlated with the global trend for NA (Fig. 4d). Within 

497 SE, the strongest correlation between SU and the common trend is obtained for England & 

498 Wales ( =98%), Eastern ( =58%) and Western Scotland ( =55%) (Fig. 4f). ����� ����� �����
499 Some SU like US in NA or N-Ireland in SE have specific trends that contrast with the average 

500 CSG trend. Logically they show weaker ICC indices ( =30% for US; =18% for N-����� �����
501 Ireland). N-Ireland exhibited a higher inter-annual variability compared to the SE common 

502 component (Fig. 4e). US presents a stronger decline than the NA component (Fig. 4c).

503 3.2 Influence of environmental covariates in different space-time 

504 domains along the migration routes

505 3.2.1 Time series of covariates in the different space-time domains

506 Time series of anomalies of covariates SST and PP exhibit some temporal variations over the 

507 period considered (Fig. 5). 

508 SST anomalies are in the same range between the specific and the common domains (Fig 5a 

509 and 5b). Time series of SST exhibit an overall increase over the period. Inter-annual variance 

510 of SST anomalies is generally higher in the specific than in the common CSG domains. In 

511 NA, the increase in SST is higher in the common CSG domains than in the specific ones (Fig. 

512 5a). In SE, the drop of SST observed in the common CSG domain at the beginning of the 

513 1990’s is stronger than in the specific domains (Fig. 5b). In NA, the time series of SST in the 

514 different space-time domains show large temporal fluctuations, all marked by a strong 

515 increase starting at the beginning of the 1990s, and again after 2003, following a decline 

516 between 1998 and 2003 (Fig. 5a). The time series of SST for the SE CSG show different 

517 signals than in NA, marked by a drop of SST between 1992 and 1995, and temperatures that 

518 have decreased since 2009 (Fig. 5b). 
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519 Trends in time series of PP are weaker than for SST and slightly decreasing (Fig. 5a to 5d).  

520 The decline of PP is slightly stronger in NA than in SE. By contrast with SST, PP anomalies 

521 calculated in the specific domains are much higher than in the common CSG domains. 

522 AMO shows a multidecadal variability and a marked increase over the time-series, especially 

523 since the beginning of the 1990’s (Fig. 5e). NAOI exhibits strong inter-annual variability, 

524 with a general decline after 1990 and with considerable negative anomalies in 1996 and 2010 

525 (Fig. 5f).

526

527 3.2.2 Model comparisons

528 Difference in W-AIC between model M1 and models with effects of covariates are weak and 

529 do not allow us to select one particular model (Table S4.1). Model comparisons show that the 

530 temporal variations of environmental covariates experienced by post-smolts in the common 

531 CSG domains better explain the variance in post-smolt survivals than environmental 

532 covariates in the specific space-time domains. The models considering a different effect of 

533 AMO and NAOI for each CSG are supported by the data and present low W-AIC values, 

534 similar to the ones of environmental covariates defined in the common CSG domains.

535 3.2.3 Influence of PP and SST in the specific space-time domains

536 Overall, temporal variations of SST and PP in the specific space-time domains occupied by 

537 post-smolts during the first three months of marine migration only explain a low part of the 

538 temporal variance of marine survival and the sign of their influence is not consistent across 

539 SU.

540 The absolute values of regression coefficients of SST and PP anomalies strongly differ (Fig. 

541 6a and 6b). However, no conclusions can be drawn from those differences as the method used 

542 to calculate anomalies, anomalies of PP and SST in the specific time-space domains are not 

543 centered on 0 and do not have the same variance. Still, the sign of regression coefficient and 

544 the amount of variance explained by both covariates can be compared. 

545 Overall, the signs of the coefficient of correlations between post-smolt marine survival and 

546 SST and PP anomalies considered in specific domains do not indicate a consistent direction of 
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547 the effect across SUs. The 95% posterior credibility intervals for most coefficients include 

548 zero, suggesting a limited influence of the variations in PP or SST in specific space-time 

549 domains on the marine survival rate. However, some exceptions are observed. In SE CSG, 

550 temporal variation of the marine survival in Ireland, Northern Ireland, Eastern Scotland, and 

551 England and Wales are negatively correlated with those of SST. In average, the SST 

552 coefficients associated with the northernmost SU of both CSGs (e.g. Southwest Iceland and 

553 Labrador to a lesser extend) are positive, whereas the majority of those associated with the 

554 southernmost SU are negative (e.g. Scotia-Fundy, US, Ireland, Northern Ireland, England and 

555 Wales, Eastern Scotland). This result suggests that the effect of SST could be different 

556 depending on the latitude, with a positive effect of increasing SST for SU in the northernmost 

557 post-smolt habitats, and a negative effect on SU with the southernmost post-smolt habitats. 

558 On average, PP and SST integrated over the specific space-time domains only captured a 

559 small percentage of the total variance, with SST being slightly more influential than PP  (����
560 0.2% and 11% for PP and SST, respectively) of the temporal variations of marine survival =

561 in each SU (red bars Fig. 6g and 6h).

562 Both covariates integrated over the specific domains act mainly as asynchronizing agents, 

563 meaning that the covariates capture part of the variance of the asynchronous component of the 

564 survival rate but not of the common trends. PP contributes only to the asynchronous 

565 component (Fig. 6g, orange bars). SST also essentially contributes to the asynchronous 

566 components, although some part of the synchronous components is explained by temporal 

567 variation of SST in the specific domains. SST in the specific space-time domains explains 

568 33% of the variance of the global component (blue bars, ; Fig. 6h), 29% of the variance of ∆�
569 the SE CSG component (green bars, ; Fig. 6h), but 0% of the variance of the NA CSG ∆���
570 component (green bars, ; Fig. 6h). The local (asynchronous) influence of PP is highest for ∆���
571 Newfoundland ( 22%), France ( 12%), Scotia-Fundy ( 10%), and explains ∆����� = ∆��� = ∆��� =

572 less than 10% for the Gulf, US, Quebec, Ireland, Eastern Scotland, and Northern Ireland (Fig. 

573 6g). The effect of SST is highest for South West Iceland ( 86%), England and Wales (∆���.�� =

574 25%), and France ( 19%), but explains only a low proportion of the specific ∆��� = ∆��� =

575 variance for the other SU (Fig. 6h).A
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576 3.2.4 Influence of environmental PP and SST in the common CSG domains

577 SST and PP integrated over space-domains shared by all SU within the same CSG later in the 

578 first year at sea explain a larger proportion of the temporal variation of marine survival than 

579 variables integrated in specific space-time domains. Also, the signs of the coefficients of 

580 correlation between marine survival and variables indicate a consistent direction of the effect 

581 across SU. 

582 The regression coefficients associated with PP integrated over common CSG domains for NA 

583 and SE are positive (Fig. 6c), whereas they are negative for SST (Fig. 6d). The coefficients 

584 associated with the two covariates are stronger for NA than for SE; the 95% credible intervals 

585 do not include zero for SST in NA and SE CSG and for PP in NA CSG, and 75% credible 

586 interval do not include zero for PP in SE CSG. Temporal variations of SST capture a greater 

587 proportion of the variance ( 16%) of the marine survival than does PP ( 10%) (Fig. 6j ���� ����
588 and Fig. 6i, respectively). 

589 SST and PP integrated over common CSG domains act as synchronizing agents for the 

590 temporal variability of post-smolt marine survival. SST accounts for 42% of the variance of 

591 the global trend (blue bar, ; Fig. 6.j), and PP about 19% (blue bar, ; Fig. 6i). When ∆� ∆�
592 downscaling at the scale of CSG trends ( ), SST integrated over the common CSG � + �
593 domains accounts for 26% and 21% of between year variance of the common trends for NA 

594 and SE, respectively (green bars, ; Fig. 6j). PP accounts for 24% and 12% of ∆��� ��� ∆���
595 between year variance of the common trends for NA and SE respectively (green bars, ∆���
596 ; Fig. 6i).  ��� ∆���

597 3.2.5 Influence of large scale environmental indices: AMO and NAOI

598 The AMO is negatively correlated with the trends in post-smolt survivals (Fig. 6e), but the 

599 magnitude of the effect is higher for NA than for SE. The AMO index captures a high average 

600 amount of variance ( 13%, red bar; Fig. 6k) and acts as a synchronizing agent of post-���� =

601 smolt survival. The effect of AMO accounts for 29% ( ), 26% ( ) and 21% ( ) of the ∆� ∆��� ∆���
602 global-scale, the NA CSG-scale, and the SE CSG scale, respectively and does not account for 

603 a specific scale component, except for England and Wales ( 14%) (Fig. 6k).∆��� =
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604 The NAO index is not correlated to post-smolt survival (Fig. 6f) and captures an insignificant 

605 part of the variance at any spatial scale (Fig. 6l).

606 4. DISCUSSION

607 Understanding the demographic and ecological mechanisms shaping the response of 

608 populations to climate change is a prerequisite for a science-based management and 

609 conservation ecology (Koenig, 1999). A particularly challenging issue is to separate out the 

610 effects of factors acting at various stages and spatial scales. This paper addressed this issue 

611 with the Atlantic salmon as a case study. We elaborate on a hierarchical life cycle model 

612 developed by Olmos et al. (2019) to analyze the dynamics of 13 large groups of populations 

613 that sequentially occupy different habitats in the North Atlantic Ocean, with different 

614 populations occupying distinct habitats during the first period of the marine phase and sharing 

615 common habitats later on.  The analyses provide a new quantification of the spatial synchrony 

616 in post-smolt marine survival examined at a hierarchy of spatial scales, from a basin scale 

617 (North Atlantic) to more local (national or regional) scales, and quantifies the amount of 

618 temporal variation in the post smolt survival that is captured by environmental changes at 

619 these spatial scales. To this end, we integrated explicit hypotheses on migration routes to test 

620 how spatial and temporal variations in the marine environment shape the covariation in post-

621 smolt survival rate. 

622 4.1 Geography of covariation of post-smolt marine survival

623 We partitioned the temporal variations of marine survival for 13 SU into three components 

624 that capture (i) coherence of the signal between all SU (global scale), (ii) within each CSG 

625 (NA or SE), and (iii) for each SU specifically (asynchronous components). 

626 Consistent with results of Olmos et al. (2019), we found strong coherence in the temporal 

627 variation of post-smolt marine survival among the 13 SU of NA and SE, characterized by a 

628 decline in the common trend for the 13 SU over the 1971-2014 time series. 
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629 Results also highlight an increased coherence in temporal variation of post-smolt survival at 

630 finer spatial scales. Synchronized dynamics are stronger among SU within the same CSG than 

631 between SU of different CSGs. The common trends at the scale of NA and SE capture 60% 

632 and 42% of the total variance of the temporal variations, respectively, with the remaining part 

633 of the variability being explained by local SU variations. Within the same CSG, synchrony is 

634 higher for geographically proximate SU, most likely explained by the similarity in post-smolt 

635 habitat and migration routes at sea. Specifically, in the NA CSG, Labrador, Newfoundland 

636 and Quebec are closer to the common feeding grounds in the Labrador Sea and Grand Banks. 

637 Fish of those SU are likely to have similar migration routes during the first year at sea, which 

638 would therefore explain the strong coherence in temporal variations of marine survival. 

639 Similarly, in SE, post-smolt survival rates of SU with closed migration routes to the common 

640 feeding grounds in the Norwegian Sea, such as Eastern Scotland, Western Scotland and 

641 England and Wales (the most abundant salmon rivers, the Tyne, Dee and Lune, are in the 

642 North of England) are correlated. 

643 4.2 Influence of environment variables in space-time domains 

644 along the migration routes

645 The geographic pattern of covariation in post-smolt survival suggests a response to spatially 

646 correlated environmental drivers (Moran effect; Liebhold et al., 2004; Stenseth, 2002; Walter 

647 et al., 2017). When arriving at sea, fish occupy different habitats sequentially along their 

648 migration routes and at varying levels of population aggregation. We tested if the spatial 

649 patterns of synchronicity in marine survival rate can be explained by temporal variations of 

650 environmental conditions (SST and PP) encountered by the fish in those different habitats.

651 To support this, we developed an extensive review of the available information on migration 

652 timing and migration routes from the mouth of the estuary in spring to the first over-wintering 

653 stage at the end of the following autumn. Based on this review, we defined two types of 

654 space-time domains: (i) associated with the early phase of the marine life (first two months 

655 after the smolts migration); (ii) associated with the later phase of the first year at sea and 

656 corresponding to common areas where salmon of different origins mixed to feed. 

657 Results support the hypothesis of synchronous variations of post-smolt survival driven by 

658 environmental factors affecting salmon in the feeding grounds where multiple populations 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

659 from a same CSG forage together in late summer/early autumn, in the Labrador Sea/Grand 

660 Banks for NA CSG and the Norwegian Sea for SE CSG. Temporal variations of the post-

661 smolt marine survival are best explained by temporal variations of SST (negative correlations) 

662 and PP (positive correlations) in those space-time domains than in the specific ones.

663 Our results are not fully consistent with Friedland et al. (2014) who found that warm 

664 temperatures in early spring negatively affected the recruitment index in NA, whereas 

665 recruitment in SE was negatively correlated with warmer SST in late summer. However, our 

666 inferences are based on a model that considers the population dynamics of all 13 SU in the 

667 North Atlantic Ocean in a single unified modelling framework. By contrast, data limitation 

668 and insufficient spatial coverage in Friedland et al. (2014) may have hampered their 

669 investigation of the spatial synchrony in a hierarchy of spatial scales. The authors compared 

670 proxies of marine productivity for NA and SE based on heterogeneous data sources between 

671 areas (global catch index for NA CSG and an index of marine survival based on tag returns 

672 from the North Esk River (UK) for SE CSG) and their correlative approach was not based on 

673 explicit hypotheses about salmon migration routes. Hence the lack of correlation between 

674 spring SST and marine productivity for SE CSG may come from a mismatch between the 

675 habitat occupied by salmon and the space-time domains where SST was considered. 

676 Although previous papers reported some weak degree of association between NAOI and 

677 Atlantic salmon dynamics (Beaugrand & Reid, 2012; K. E. Mills et al., 2013), no relationship 

678 between winter NAOI and post-smolt survival was found in the present study. One reason 

679 might be that the relationship between NAOI and salmon is not homogeneous between the 

680 two sides of the North Atlantic Ocean, and even across a latitudinal gradient within a given 

681 CSG. For instance, strong positive phases of the NAOI are associated with below-normal 

682 temperatures in SE and in the North of the Labrador region, but with above-normal 

683 temperature in Northern Europe and in the eastern coast of North America (Hurrell, Kushnir, 

684 Ottersen, & Visbeck, 2003): the effect of NAOI on salmon may therefore not be uniform 

685 across SUs or CSGs.

686 4.3 Indirect growth-dependent mechanisms are likely involved

687 Thermal conditions encountered by salmon in their open ocean feeding grounds are likely to 

688 influence salmon survival. However, it is still unclear if salmon are influenced by direct 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

689 effects of warming (by increasing energy expenditure and metabolism), or by indirect effects 

690 such as suboptimal food availability, predation, or migration timing.  

691 The direct effect of SST warming appears less likely responsible for the observed patterns. 

692 Ectothermic animals such as salmon have both their metabolic demand and growth potential 

693 increasing with temperature (Siegel et al., 2017). Growth variations during the post-smolt 

694 phase were hypothesized as being important for survival (Friedland et al., 2008, 2014; 

695 McCarthy et al., 2008). As SST indices in the open ocean feeding grounds remained within 

696 the optimal range (between 7°C-10,5°C) of Atlantic salmon (Holm, 2000; Reddin and 

697 Schearer, 1987), the observed SST warming over the time period studied is not likely to have 

698 a direct effect on marine survival, which is contrary to negative regression coefficients as well 

699 as the overall declining pattern of marine survival. 

700 The negative correlation between the temporal variation of SST, and the positive correlation 

701 of PP with the common trends of marine survival rate rather suggest an indirect effect of SST 

702 warming acting through bottom-up trophic mechanisms. The Norwegian Sea and the Labrador 

703 Sea/Grand Banks, which are major feeding grounds for SE and NA CSG populations, are 

704 sensitive areas to climate change in the North Atlantic (Beaugrand et al., 2008). Our findings 

705 are consistent with a major trophic shift in the North Atlantic documented in the early 1990s, 

706 with reported changes across trophic levels from phytoplankton communities to seabird 

707 populations (Beaugrand et al., 2008; Beaugrand, Luczak, & Edwards, 2009; Durant et al., 

708 2003) . Subsequent reduction of the abundance and the energetic quality of prey may have 

709 altered salmon growth at sea (K. E. Mills et al., 2013; Otero et al., 2012; Renkawitz et al., 

710 2015) and consequently survival through size-dependent mortality (Friedland & Reddin, 

711 2000; Gislason et al., 2010; Peyronnet et al., 2007). Antagonistic effects of direct and indirect 

712 mechanisms may also act in synergy. Indeed, although warmer temperature may imply a 

713 higher and faster growth potential, sustaining higher metabolic rates also requires higher food 

714 availability. Therefore, under limited resource conditions, warmer temperatures may well lead 

715 to a decrease in growth (and then of survival) because energetic demand might outweigh 

716 energy intake (Daly & Brodeur, 2015; Siegel et al., 2017).

717 Another possible indirect negative effect of warmer temperature could be increasing 

718 metabolic costs and mortality through reduced concentrations of dissolved oxygen. Deutsch et 

719 al. (2015) highlighted that the combined effect of dissolved oxygen loss and warming would 

720 reduce the metabolic index (ratio of O2 supply to an organism’s resting O2 demand) through 

721 the upper water column (0 to 400m) by ~20% globally and by ~50% in mid-latitude Northern 
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722 Hemisphere oceans. Investigating the combined effect of temperature warming and oxygen 

723 loss on Atlantic salmon habitat would be worth considering in the future.

724 4.4 Local specificities in temporal variations

725 Beyond the general patterns, our results reveal some differences in the temporal variations of 

726 post-smolt survival and response to environmental variations between CSG and between SU. 

727 Some of these can be explained by local specificities but are mostly the consequences of 

728 complex yet unexplained mechanisms. 

729 Results revealed a higher decline in post-smolt survival, a stronger coherence between SU and 

730 a stronger effect of PP and SST in North America than in Southern Europe. This might result 

731 from the particularly fast warming of the ocean in the Northwest Atlantic, especially in the 

732 Labrador Sea/Grand Banks (Belkin, 2009; A. Pershing, Dayton, Franklin, & Kennedy, 2018; 

733 Taboada & Anadón, 2012). Additionally, weaker synchrony observed in SE may be explained 

734 by the diversity of marine environments and associated growth conditions encountered during 

735 the post-smolt migration leading to the feeding areas in the Norwegian Sea. Post-smolt diet 

736 reported by Haugland et al. (2006) shows high spatial and temporal variability in terms of 

737 prey composition, with diet dominated by blue whiting in the Shelf Edge Current in the west 

738 of the United Kingdom, and by sandeel and herring in the North Sea and the Norwegian Sea. 

739 Such a high portfolio of potential prey depending on the area may reduce the synchronizing 

740 effect of environmental fluctuations. 

741 The sign of the correlations between post-smolt survival and SST integrated over the specific 

742 time-space domains occupied by salmon during the first three months of marine migration are 

743 not consistent across SUs. Specifically, a negative correlation between post-smolt survival of 

744 Scotia-Fundy, US, Ireland, Northern Ireland and England and Wales and SST integrated over 

745 specific domains may result from particularly warm temperatures in those space-time 

746 domains. In particular, SST in the Gulf of Maine has increased faster than 99% of the global 

747 ocean (A. J. Pershing et al., 2015), which could explain why US and Scotia-Fundy SU present 

748 the strongest declines in post-smolt survivals.

749 A negative correlation between PP integrated over the specific space-time domains and 

750 survival in the Labrador and Newfoundland and France SU was not expected. Salmon from 

751 the Labrador and Newfoundland SU have a shorter migration to the common feeding grounds 
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752 (Bley & Moring, 1988; Friedland, 1994) and may directly migrate to the common domains to 

753 feed. The spatial resolution of the specific space-time domain defined for the France SU, that 

754 encompasses the Biscay Bay, the North Sea and the Western coast of UK, could be too large. 

755 Populations from the North (Brittany and Normandy) and from South West of France may 

756 have different migration routes. Mixing different ecosystems with different possible trophic 

757 dynamics may have blurred the signal (Jensen et al., 2012; Haugland et al., 2006).

758 4.5 Limits and future prospects

759 In this study, we only considered a limited set of environmental covariates, namely SST, PP, 

760 and large-scale climate proxies, AMO and winter NAOI. The limited set of tested variables 

761 result from a trade-off between hypothesis testing about the mechanisms that drive post-smolt 

762 survival and the availability of data over the required spatial and temporal scales.

763 Extending the approach to the Northern Europe (NE) SU would also allow extending the 

764 gradient of environmental variation and may contribute to an even better understanding of the 

765 response of Atlantic salmon populations to large scale ecosystem changes. Stock assessment 

766 data for NE SU is only available for a shorter time series (starting in 1995 only; ICES, 2015). 

767 Nevertheless, it is characterized by a general decline in productivity over the period, 

768 suggesting a likely synchrony among the three CSG over the North Atlantic. Incorporating 

769 this data into the model would allow for extending the modelling framework to all SU in the 

770 North Atlantic. 

771 Because of data limitations, the model structure forces all temporal variations in survival to 

772 occur between the smolt migration and the Pre-Fishery stage. Indeed, as already discussed by 

773 Massiot-Granier et al. (2015) and Olmos et al. (2019), the data currently available do not 

774 allow partitioning out the temporal variations of the marine mortality that occur at different 

775 periods of the marine phase. To better understand the effect of environmental variations on 

776 marine survival, more data would be needed to partition out the natural morality along the 

777 migration routes. 

778 We also assumed that the space-time domains sequentially occupied by salmon during the 

779 first year at sea have not changed over the 1971 to 2014 period. However, both the timing of 

780 smolt migration (Otero et al., 2012; Satterthwaite et al., 2014), and the boundaries of 

781 favorable habitat at sea (Cheung et al., 2009; Poloczanska et al., 2013) have changed which 
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782 may have altered salmon migration routes (Guðjónsson et al. 2015). In addition, spring 

783 plankton blooms and therefore the peak of higher trophic resources available for salmon may 

784 be advanced in the season and may occur in different places (Edwards et al., 2010; Malick, 

785 Cox, Mueter, Peterman, & Bradford, 2015; Parmesan & Yohe, 2003), thus potentially creating 

786 a mismatch between salmon migration and available resources (Cushing, 1990). 

787 Last, our findings have direct management implications. Indeed, post-smolt marine survival is 

788 one of the main factors controlling Atlantic salmon stock productivity. Accurately accounting 

789 for and forecasting temporal variation in the post-smolt marine survival will provide for a 

790 more robust stock assessment and the provision of multi-year catch advice for the mixed-

791 stock fisheries occurring on these SUs within the North Atlantic (ICES, 2019; Vert-pre et al. 

792 2013; Britten et al. 2016). Also, developing models that account for the effect of 

793 environmental covariates on forecasting is critical to be able to integrate climate predictions 

794 scenarios in those forecasts. In this perspective, building models that appropriately consider 

795 how environmental changes can impact groups of populations simultaneously or differently is 

796 therefore critical to develop appropriate management measures at various spatial scales.   
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1085 Tables

1086 Table 1: Prior distributions used for the parameters of the hierarchical structures. N refers to a normal distribution 

1087 and U refers to a uniform distribution.

1088

1089

SPATIAL COMPONENT

PARAMETERS

r= 1:13

g= NA, SE

Prior distribution

� ~�(0,� = 10)
Specific Intercept �� ~�(0,5)

Standard deviation

Specific component 
��� ~�(0,5)

Standard deviation

CSG-specific component 
��� ~�(0,5)

Standard deviation

Global component 
�� ~�(0,5)
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1090 Table 2: Summary of the hypotheses tested and the associated model configurations that included environmental covariates.

1091
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TEMPORAL 
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agent at the 
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as 

synchronizing 

agent at the 

CSG scale if

Covariate act as 

asynchronizing 

agent if

PPInfluence of 

covariates in the 

specific space-

time domains
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first year at sea

SST

�����(��,�) =  �� +  �� + ��� +  ��,� +  �� × ���
���ℎ ��~ �( ― 6,6)

r= 1:13
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of the first 

year at sea
SST

AMO

Influence of the 

covariates in the 

common space-

time domains
Large Scale 

Indices NAO

�����(��,�) =  �� +  �� + ��� +  ��,� +  �� × ���
���ℎ ��~ �( ― 6,6)

g = NA or SE
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1093 Legends

1094 Figure 1: Structure of the age- and stage-based life cycle model and covariation structure among the 13 stock units 

1095 (adapted from Olmos et al. 2019). Sources of covariation include: 1) covariation in the time series of post-smolt 

1096 survival and proportion maturing as 1SW (depending on the model structure M1, M2 and M3; see Table 1); 2) 

1097 Covariation through fisheries operating on mixtures of SU at sea. Red boxes refer to NA SU (I = 1,…,6), blue boxes refer 

1098 to SE SU (j = 1,…,7) and purple boxes refer to both NA and SE SU. 

1099 Figure 2: Location of the 13 stock units and specific and common space-time domains considered in North Atlantic. 

1100 Stock units of North America: NFLD = Newfoundland, GF = Gulf, SF = Scotia-Fundy, US = USA, QB = Quebec, and 

1101 LB=Labrador. Stock units in Southern Europe: IR = Ireland, E&W = UK(England and Wales), FR = France, E.SC = 

1102 UK(Eastern Scotland), W.SC = UK(Western Scotland), N.IR = UK(Northern Ireland), and SWIC= Southwest Iceland). 

1103 Specific and common CSG space-time domains are in orange and green respectively. See Table S2.1 for 

1104 correspondence between space-time domains and SU.

1105 Figure 3. Theoretical representation of the hierarchy of space-time domains. Orange: Space-time domains defined as 

1106 transit habitat occupied by post-smolts during their first two months at sea (specific domains). Green: Space-time 

1107 domains corresponding to the habitat occupied by salmon in the later phase of the first year at sea, associated with 

1108 feeding areas, common to all SU within the same CSG (Labrador Sea and the Norwegian Sea for NA and SE CSG 

1109 respectively) (common domain).

1110 Figure 4: Left panel: Large scale component trends (medians of marginal posterior distributions and 95% credibility 

1111 interval (shaded area)) and individual time-series medians for each SU estimated. (a) Global component and the 13 SU 

1112 (c) NA component and NA SU (e) SE component and SE SUs. Right panel: Synchronicity indices ICC quantifying the 

1113 proportion of variance captured by the average trend for each SU within the global component (b), the NA CSG (d) and 

1114 the SE CSG (f). The average ICC (ICCm) is indicated by the thick line. The thick line corresponds to the median of the 

1115 ICCm and the shaded area represent the 95% credibility interval. 

1116 Figure 5: Time series of environmental covariates: Sea Surface Temperature in NA (a) and SE (b); Primary Production 

1117 in NA (c) and SE (d). For (a) to (d): time series defined in the common space-time domains (green color) and time 

1118 series defined in the specific space-time domains (color range from pink to maroon); (e) standardized Atlantic 

1119 Multidecadal Oscillation (AMO); and (f) standardized North Atlantic Oscillation Index (NAOI).

1120 Figure 6: Regression coefficients ((a)-(f)) and fraction of temporal variation of post-smolt survival accounted for by 

1121 effect of environmental covariates ((g)-(l)) defined in the specific space-time domains ((a) & (g)) (PP), ((b) & (h)) 

1122 (SST), in the CSG space-time domains ((c) & (i)) (PP), ((d) & (j)) (SST) ((e) & (k)) (AMO), ((f) & (l)) (NAOI). Left panels: 

1123 marginal posterior distributions for the regression coefficients. Thick point is the median, and the different 

1124 thicknesses of lines represent the 50%, the 75% and the 95% posterior credibility intervals. Right panels: fraction of 

1125 variation accounted for by the covariates.  is the average fraction captured by the covariates when considered ����
1126 over all stock units (red). Blue, green, and orange barplots represent the contribution of environmental covariates to 

1127 the between year variance at the global-scale ( , CSG-scale (  and specific scale (  ) respectively. ∆�) ∆��) ∆��
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