The evolution of microendemism in a reef fish

(Hypoplectrus maya)

Benjamin M. Moran1,2,* , Kosmas Hench1, Robin S. Waples3, Marc P. Höppner4, Carole C.
Baldwin5, W. Owen McMillan6, and Oscar Puebla1,6,7,*,8

1 GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology,
Düsternbrooker Weg 20, 24105 Kiel, Germany
2 Department of Marine and Environmental Sciences, Northeastern University, 360 Huntington
Ave., Boston, MA 02115, USA
3 Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle,
Washington, USA
4 Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105
Kiel, Germany
5 Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian
Institution, 10th and Constitution Ave, NW, Washington, DC 20560, USA
6 Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de
Panamá
7 University of Kiel, Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Platz 4,
24118 Kiel, Germany
8 oscar.puebla@mail.mcgill.ca, moran.ben@husky.neu.edu
9 Lead Contact

Running Title: The evolution of marine microendemism
Abstract

Marine species tend to have extensive distributions, which are commonly attributed to the dispersal potential provided by planktonic larvae and the rarity of absolute barriers to dispersal in the ocean. Under this paradigm, the occurrence of marine microendemism without geographic isolation in species with planktonic larvae poses a dilemma. The recently described Maya hamlet (Hypoplectrus maya Serranidae) is exactly such a case, being endemic to a 50-km segment of the Mesoamerican Barrier Reef System (MBRS). We use whole-genome analysis to infer the demographic history of the Maya hamlet and contrast it with the sympatric and pan-Caribbean black (H. nigricans), barred (H. puella) and butter (H. unicolor) hamlets as well as the allopatric but phenotypically similar blue hamlet (H. gemma). We show that H. maya is indeed a distinct evolutionary lineage, with genomic signatures of inbreeding and a unique demographic history of continuous decrease in effective population size since it diverged from congeners just ~3000 generations ago. We suggest that this case of microendemism may be driven by the combination of a narrow ecological niche and restrictive oceanographic conditions in the southern MBRS, which is consistent with the occurrence of an unusually high number of marine microendemics in this region. The restricted distribution of the Maya hamlet, its decline in both census and effective population sizes, and the degradation of its habitat place it at risk of extinction. We conclude that the evolution of marine microendemism can be a fast and dynamic process, with extinction possibly occurring before speciation is complete.

Keywords: hamlets, Hypoplectrus, endemism, speciation, demographic inference.
Introduction

Islands, in the sense of isolation, are much more rare in the ocean than on land. Many marine organisms are planktonic for a portion of their life cycle, allowing them to cross the pelagic expanses that limit terrestrial organisms (Palumbi, 1992). Planktonic dispersal leads to a greater rate of cosmopolitanism than in terrestrial communities and a corresponding rarity of microendemic species (that is, species that are endemic to unusually small areas), as colonists are less likely to exist in isolation long enough for reproductive isolation to evolve (Kay & Palumbi, 1987; Randall, 1998; L. Rocha & Bowen, 2008). Cases of marine microendemism that have been identified are generally in taxa with short or non-existent planktonic phases (Paulay & Meyer, 2002; Meyer, Geller & Paulay, 2005). This paradigm suggests planktonic larval duration (PLD) as a potential driver of range size in reef fishes; however, syntheses have shown that these factors are poorly correlated (Lester & Ruttenberg, 2005; Mora et al., 2012; Luiz et al., 2013). Instead, growing knowledge of marine dispersal suggests that reef fishes show lower average dispersal distances than expected based on PLD (G. Jones et al., 2009). This deviation is driven in part by local oceanographic processes, and by natal homing and habitat selectivity among larvae (Leis, 2006). As such, bio-physical coupling of oceanic currents and larval behavior is currently regarded as the primary determinant of dispersal patterns (G. Jones et al., 2009).

While mean dispersal in reef fishes is often limited to the scale of tens of kilometers, the potential for rare long-distance dispersal events remains (Simpson, Harrison, Claereboudt & Planes, 2014). Consequently, rates of microendemism are generally lower in marine fishes than in terrestrial animals (Kay & Palumbi, 1987; Paulay & Meyer, 2002). Marine fishes with exceptionally small ranges are generally found in the most isolated islands of habitat, or in zones where circulation patterns lead to a unidirectional transport of larvae towards inhospitable
habitat (Roberts et al., 2002). Nonetheless, given the importance of local-scale oceanography and behavior in determining reef-fish dispersal, marine microendemism might emerge without severe geographic isolation.

The Maya hamlet, *Hypoplectrus maya* (Serranidae), is a clear example of such microendemism without geographic isolation. This reef fish was identified by P.S. Lobel in the coastal lagoon of the Mesoamerican Barrier Reef System (MBRS) in Belize in 1993, and thereafter variously referred to as the "Belize" (Heemstra, Anderson Jr. & Lobel, 2002), "Belize Blue" (Ramon, Lobel & Sorenson, 2003) or "Mayan" (C. L. Smith et al., 2003) hamlet. Domeier (1994) identified the Maya hamlet as a population of the similarly-colored blue hamlet, *H. gemma*, which occurs in Florida, Cuba, and the northern Yucatan (Aguila-Perera & Tuz-Sulub, 2010; Fig. 1); however, based on the lack of melanized upper and lower margins on the caudal fin which are diagnostic of *H. gemma*, Lobel (2011) described the Maya hamlet (*H. maya*) as a distinct species. The Maya hamlet has been reported on the lagoon side of the MBRS between Wee Wee Cay and the Sapodilla Cays, corresponding to a range of approximately 50 linear kilometers of reef (though one vagrant individual was collected northward in 2010 on the seaward reef wall off Alligator Cay, Lobel, 2011; Fig. 1). This is an exceptionally small range considering that reef-fish distributions typically range between 2000 and 13,000 km in the Atlantic (Ruttenberg & Lester, 2015). As of 2003, the species was described as "common and abundant" in the Pelican Cays and the surrounding Rhomboidal Cays (C. L. Smith et al., 2003). In particular, Lobel (2011) noted the frequent occurrence of *H. maya* among mangrove roots, suggesting an ecological specificity to the complex array of shallow coral ridges and mangroves found within these cays.

The restricted range of the Maya hamlet contrasts sharply with the pan-Caribbean barred (*H. puella*), black (*H. nigricans*), and butter (*H. unicolor*) hamlets, which are also found in the coastal lagoon of the MBRS in Belize (B. Holt, Côté & Emerson, 2010; Fig. 1). These species
are sympatric throughout most of their range, with ongoing gene flow maintaining low levels of genetic differentiation despite strong assortative mating (Puebla, Bermingham, Guichard & Whiteman, 2007; Puebla, Bermingham & McMillan, 2014; Hench, Vargas, Höppner, McMillan & Puebla, 2019). More broadly, the genus includes a total of 19 species that vary widely in range size and abundance (B. Holt et al., 2010). It encompasses the entire continuum of genomic divergence, from species that are almost genetically identical (Barreto & McCartney, 2008; Puebla, Bermingham & Guichard, 2012; Puebla et al., 2014) to well-diverged species (Victor, 2012; Tavera & Acero, 2013). Hamlets are nonetheless reproductively isolated from a behavioral perspective through strong assortative mating (Fischer, 1980; Puebla et al., 2007; Barreto & McCartney, 2008), and described as valid species by ichthyologists (Lobel, 2011; Victor, 2012; Tavera & Acero, 2013; Victor & Marks, 2018). We herein follow this current, accepted nomenclature and consider them species, even though reproductive isolation is not always complete. In this regard we note that the biological species concept does not necessarily imply absolute isolation; many species that are considered good species do hybridize in nature, and hybridization also occurs above the species level (Mallet, 2005).

Hamlets are very similar from an ecological perspective (Whiteman & Gage, 2007; B. G. Holt, Emerson, Newton, Gage & Côté, 2008), yet the color patterns that characterize the different species appear to be ecologically relevant through crypsis (Thresher, 1978; Fischer, 1980) and mimicry (Randall & Randall, 1960; Thresher, 1978; Puebla et al., 2007; Puebla, Picq, Lesser & Moran, 2018). It has been suggested that speciation in the hamlets may be driven by a combination of natural (Thresher, 1978; Puebla et al., 2007) and sexual (Puebla, Bermingham & Guichard, 2012) selection, but it remains unclear whether the hamlets diverged in full sympatry or in allopatry followed by secondary contact as suggested by Domeier (1994). Regardless, the two-week planktonic larval stage of the hamlets (Domeier, 1994), the occurrence of hybrid spawnings in natural populations (Fischer, 1980; Puebla et al., 2007; Barreto...
the apparent lack of post-
zygotic barriers between species (Whiteman & Gage, 2007), the identification of hybrid and
backcrossed individuals in the field (Hench et al., 2019), and the low levels of genetic dif-
ferentiation among sympatric species (McCartney et al., 2003; Ramon et al., 2003; Puebla,
Bermingham & Guichard, 2012) as well as allopatric populations within species (Puebla, Ber-
mingham & Guichard, 2008, 2009; Picq, McMillan & Puebla, 2016) indicate that gene flow
is pervasive among Caribbean hamlets, in contrast to the genetic isolation usually implied by
microendemism. Given the biogeographic disparity observed in the hamlets, *H. maya* presents
an ideal opportunity to understand the processes by which marine microendemism might arise
or persist in the absence of geographic isolation.

The recent publication of a chromosome-resolution reference genome for the hamlets of-
fers a new opportunity to understand the evolution of marine microendemism from a genomic
perspective (Hench et al., 2019). Here, we test whether *H. maya* represents an evolutionarily
distinct lineage from its three sympatric pan-Caribbean congener (*H. puella, H. nigricans*, and
H. unicolor) and from the allopatric but phenotypically similar species *H. gemma*. Considering
the restricted range of *H. maya*, we also test the hypothesis that it may present genomic sig-
natures of inbreeding (in terms of nucleotide diversity, heterozygosity, coefficient of inbreeding,
relatedness and runs of homozygosity) relative to its more widely distributed congeners. Follow-
ning the same line of thought, we then infer the demographic histories of the five species using
Markovian Coalescent analyses of past effective population size (*N*_e). Finally, we estimate the
recent effective population size of *H. maya* and discuss the potential causes and consequences
of microendemism in marine species.
Methods

Sampling

We considered whole genomes of 12 individuals each of *H. puella, H. nigricans*, and *H. unicolor* from the Belize portion of the MBRS, available from a previous study (Hench et al., 2019). To this we added 10 *H. maya* samples collected in Belize in May 2017 under STRI IACUC protocol 2017-0101-2020-2, Northeastern University IACUC protocol 17-0206R, and Belize Fisheries Department permit 000026-17, as well as 5 *H. gemma* samples collected in the Florida Keys in July 2017 under the prior IACUC protocols, NOAA ONMS permit 2017-042, and Florida FWCC permit SAL-17-1890A-SR. Gill tissue for sequencing was preserved in salt-saturated DMSO buffer, and entire fish were preserved in 10% formalin until accessioned and stored as voucher specimens in 70-75% ethanol at the Smithsonian National Museum of National History (Suppl. Tab. 2).

Field Surveys

In Belize, *H. maya* surveys were carried out opportunistically in May 2017 in the center of the species’ known distribution (Fig. 1; Suppl. Fig. 1). Surveys targeted reef and mangrove habitat, including the specific cays where *H. maya* had been previously reported (Domeier, 1994; C. L. Smith et al., 2003; Lobel, 2011). In the latter case, snorkelers surveyed all mangrove habitat encircling the cay and those interior ponds which were accessible by boat. A combination of snorkeling (0-5 m) and SCUBA diving (5-15 m) was moreover used to haphazardly survey reef habitat on the MBRS exterior wall, fringing reefs around cays, and patch reefs within the lagoon.

Field surveys were also conducted in the Florida Keys in July 2017 using 4 x 100 m linear SCUBA transects to assess the densities of *H. gemma* and all other hamlets, and to evaluate
whether densities and relative abundances changed over the last 15 years (Suppl. Fig. 2).

Average densities over all transects were compared to the yearly averages from stationary surveys (15 m² diameter) conducted throughout the Keys by the Florida Keys Reef Visual Census, which took place in all years between 2002 and 2016, except for 2013 and 2015 (S. G. Smith et al., 2011). To test for changes in community composition over time, years were divided into two periods with equal sampling effort, 2002–2008 and 2009–2017. The dissimilarity of community composition was tested using PERMANOVA (Anderson, 2001) with 999 permutations and the Bray-Curtis measure of ecological distance, as implemented in the vegan package in R (Oksanen et al., 2018).

Genotyping

Hypoplectrus gemma and H. maya genomic DNA was extracted from gill tissue using a Qiagen MagAttract High Molecular Weight Kit and sequenced to a mean genome-wide coverage of ~22X on an Illumina HiSeq 4000 (PE, 2x151) at the Institute of Clinical Molecular Biology (IKMB) in Kiel, Germany (Suppl. Tab. 2), following the same sequencing approach that was taken for the H. puella, H. nigricans, and H. unicolor samples (Hench et al., 2019). Raw reads were mapped to the H. puella reference genome (Hench et al., 2019) using BWA v0.7.12 (Li & Durbin, 2009), with an average mapping efficiency of 97.24% for H. maya, 98.62% for H. gemma, 99.16% for H. unicolor, 99.20% for H. nigricans, and 99.21% for H. puella. All samples considered in this study were genotyped together with a workflow adapted from GATK Best Practices, with hard filters for quality control (Van der Auwera et al., 2013). Specifically, reads were filtered to remove outliers in the ratio of Phred-scaled probability of the genotype to sequencing depth (QD < 2.5), the Phred-scaled p-value from a Fisher’s Exact Test for strand bias (FS > 25.0), the Strand Odds Ratio (SOR > 3.0), the root-mean-squared mapping quality across samples (MQ < 58.0 or > 62.0) and the U-values from rank-sum tests for differences in
mapping quality (|MQRankSum| > 2.5) and variant position within read (|ReadPosRankSum| > 2.5) in reference vs. alternate alleles. Additional filtering with respect to minor allele frequency and coverage was specific to each analysis and mentioned explicitly when applied. Two VCF data sets were generated: one including all (variant and invariant) callable sites (555 379 974 sites, 2.5% missing data), and another including only biallelic SNPs (11 419 868 sites, 0.4% missing data). A phased data set was generated from the biallelic VCF by using phase-informative reads and SHAPEIT2 (Delaneau, Howie, Cox, Zagury & Marchini, 2013).

Population Genomics

To estimate the extent of physical linkage, r^2 was calculated using VCFtools between all pairs of SNPs with a minor allele frequency greater than 10% in 200 randomly placed windows of 30 kb each. Principal Component Analysis (PCA) was performed using the R package SNPRelate (Zheng et al., 2012). This analysis was conducted on all samples, repeated considering the Belize samples only (i.e. excluding H. gemma), and repeated again in Belize considering a minimum distance of 15 kb between SNPs to minimize the effect of linkage. Genome-wide differentiation (F_{ST}) was calculated for all pairs of species using the weighted mean approach implemented in VCFtools (Weir & Cockerham, 1984). F_{ST} was also calculated in sliding windows (50 kb window with 5 kb increments) between H. maya and each other species in order to explore the distribution of differentiation across the genome. Heterozygosity and inbreeding coefficient (F) were calculated for each sample using VCFtools, and the data set including all callable sites was used to calculate nucleotide diversity (π) in non-overlapping 10 kb windows for each species using VCFtools (Danecek et al., 2011). The data set including all callable sites was also used to calculate absolute divergence (d_{XY}; Nei, 1987) for each species pair in non-overlapping 50 kb windows using popgenWindows.py (Martin, 2016). Genome-wide absolute divergence was then calculated by averaging over the windows using the number of
SNPs as weights. Relatedness was calculated between all pairs of individuals using the Maximum Likelihood Estimation (MLE) method implemented in SNPRelate as well as the unadjusted A_{jk} statistic in VCFtools (Zheng et al., 2012; Yang et al., 2010). Runs of homozygosity (ROH) greater than 150 kb in length were identified using PLINK and located in the genome after filtering SNPs for a minor allele frequency > 5% across all individuals (Purcell et al., 2007). iHH12 (Torres, Szpiech & Hernandez, 2018) was also calculated over the entire genome (50 kb windows, 5 kb increments) using selscan (Szpiech & Hernandez, 2014) to look for signs of recent positive selection.

Demographic Inference

Demographic history was inferred for each species using the Multiple Sequentially Markovian Coalescent (MSMC) v2.0.0 (Schiffels & Durbin, 2014). Data preparation was performed following https://github.com/stschiff/msmc-tools. Based on the recommendations of Nadachowska-Bryzyska et al. (2016), variant sites were filtered for a minimum depth of 10X, and a maximum depth of twice the individual’s mean depth. MSMC inference may be affected by deviations from neutrality caused by selection (Schrider, Shanku & Kern, 2016); as such, runs were repeated after excluding the regions above the 99.90th F_{ST} percentile identified in Hench et al. (2019). Each MSMC run included 4 individuals, with the exception of 2 runs of 3 individuals in *H. maya* (Suppl. Tab. 4). Each individual was included in only one MSMC analysis; replicate runs are therefore independent sample-wise. To explore the history of divergence among species, we also considered the cross-population coalescence rate, scaled relative to the within-population coalescence rates (relative cross-coalescence rates, Schiffels & Durbin, 2014). Cross-coalescence rates were inferred for the maximum possible number of independent runs for each species pair, considering two individuals per species (four individuals per run). All MSMC runs were performed with a time segmentation pattern of $1 \cdot 2 + 25 \cdot 1 + 1 \cdot 2 + 1 \cdot 3$, and the
average of Watterson's estimator across input data sets, $\theta = 2.55 \times 10^{-3}$. To explore whether
the recent demographic trends observed in MSMC were an artifact of phasing switch errors, we
also applied SMC++ v1.14.0, an extension of the Sequentially Markovian Coalescent that does
not rely on phasing (Terhorst, Kamm & Song, 2017). A single SMC++ composite likelihood
estimate for each species was created from the product of estimates across chromosomes, and
across each possible "distinguished individual" in a species (see Terhorst et al., 2017). In both
MSMC and SMC++, the mutation rate was set at $\mu = 3.7 \times 10^{-8}$, based on the closest relative
for which the value was known (Liu, Hansen & Jacobsen, 2016). Generation times (that is,
the mean age of successfully reproducing individuals) for hamlets are uncertain, but likely fall
between 1 and 3 years based on size, taxonomy, and habitat. Due to the resultant uncertainty,
time is presented in terms of generations, with potential years on a secondary axis.

To complement estimates of past effective population size (N_e), we used a novel whole-
genome implementation of recent N_e estimation based on linkage disequilibrium (Hill, 1981;
R. S. Waples, 2006). We first used GATK to subset the biallelic SNP set by species, then
selected sites with no missing genotype calls and minor allele counts > 2 (i.e. minor allele
frequency > 0.1 in *H. maya*). Each SNP set was then randomly subset into 100 non-overlapping
sets, to which N_e estimations were applied independently. We utilized a new feature of the
LD method in NeEstimator v2.1 (released December 2017), calculating N_e based on only
interchromosomal comparisons (Do et al., 2014). Confidence intervals were obtained from the
per-individual jackknife of A. Jones, Ovenden & Wang, 2016, as well as the distribution of N_e
across the 100 SNP subsets. This analysis was applied to all species except for *H. gemma* due
to the low sample size for this species.

All scripts to reproduce our results from the raw data are available at https://github
.com/benmoran11/hamlets_endemism.git.

This article is protected by copyright. All rights reserved
Results

Field Surveys

Only two Maya hamlets were sighted in the Pelican Cays and surrounding Rhomboidal Cays where *H. maya* was described as "common and abundant" by Smith et al. (2003). One individual was a juvenile found on the reef flat adjacent to Little Cat Cay at a depth of 1.5 m next to an *Orbicella* coral head. The other individual was found in proximity to a barrel sponge surrounded by *Acropora cervicornis* rubble at a depth of 3 m in "Tunicate Cove", a honeycomb of coral ridges adjacent to Cat Cay where Lobel (2011) collected the holotype and eight paratypes over seven years. In contrast, *H. maya* was the most abundant hamlet species in the shallow (1-5 m) *A. cervicornis* patch reefs near Laughing Bird Cay National Park, where the majority of samples were collected for this study. Two individuals were also sighted at a depth of 2 m on an *Orbicella*-dominated fringing reef in Bread and Butter Cay (Suppl. Fig. 1).

In Florida, 27 non-overlapping transects were conducted between Geiger Key and French Reef, encompassing the majority of the range surveyed by the FL Reef Visual Census (Key West to Key Largo; Suppl. Fig. 2). Total mean density of hamlets in 2017 was 4.8 ± 1.0 (SE) fish 1000 m⁻², while RVC estimates in 2002-2016 fell between 2.5 and 4.5 fish 1000 m⁻² (Suppl. Fig. 3). Hamlet community composition changed significantly between the first and second half of the temporal data set (Suppl. Fig. 4; PERMANOVA *P* = 0.002), with *H. unicolor* increasing in relative abundance at the expense of *H. gemma*. Between the two periods, mean *H. gemma* densities declined by more than 50%, from 0.41 ± 0.03 (SE) to 0.18 ± 0.03 (SE) fish 1000 m⁻².
Population Genomics

Our linkage analysis indicates that physical linkage decays rapidly within 5 kb (Suppl. Fig. 5). Genome-wide PCA showed clear clustering of *H. maya*, *H. gemma*, and *H. nigricans*, with partial overlap between *H. puella* and *H. unicolor* (Fig. 2a). Similar patterns were obtained when considering only SNPs > 15 kb apart to minimize physical linkage (Suppl. Fig. 6). Genome-wide differentiation was greatest between *H. maya* and *H. gemma* ($F_{ST} = 0.060$), lowest between *H. puella* and *H. unicolor*, ($F_{ST} = 0.004$), and intermediate for the other species pairs ($F_{ST} = 0.014–0.040$; Tab. 1). Sliding-window analysis revealed heterogeneous patterns of differentiation between *H. maya* and the four other species, with an accumulation of differentiation on linkage groups (LGs) 8 and 9 (likely due to large inversions, Hench et al., 2019) and a number of sharp peaks, some of which were repeated across different species comparisons (Suppl. Fig. 7a). The genomic regions above the 99.99th F_{ST} percentile in comparisons involving *H. maya* are highlighted in Suppl. Fig. 7 and the genes found within these regions are listed in Suppl. Tab. 3.

Heterozygosity was depressed in *H. maya* (median = 0.162) relative to other Belizean hamlets (median = 0.169 – 0.173) and to *H. gemma* (median = 0.181; Fig. 2d). Nucleotide diversity was also lowest in *H. maya* (median $\pi = 0.0047$ versus 0.0049 – 0.0053 in other species), but the difference was small relative to the variation among 10 kb windows (Suppl. Fig. 8). For both maximum likelihood estimates and A_{jk}, mean relatedness was highest in *H. gemma* (mean MLE $r = 0.012, A_{jk} = 0.054$), followed by *H. maya* (mean MLE $r = 0.008, A_{jk} = 0.032$) and the other Belizean hamlet species (mean MLE $r = 0, A_{jk} = -0.011 - 0.003$ Fig. 2c, Suppl. Fig. 9). A positive outlier was observed between two *H. maya* individuals, suggesting inbreeding beyond background relatedness (MLE $r = 0.041, A_{jk} = 0.093$; Fig. 2c, Suppl. Fig. 9). Inbreeding in *H. maya* was also suggested by the higher inbreeding coefficients observed in this species (median $F = 0.068$) relative to the other Belizean species (median $F =$
0.008 – 0.030, Fig. 2e, note that this includes *H. unicolor* which is rare in Belize) as well as the markedly higher number of runs of homozygosity > 150 kb in *H. maya* relative to other species (Fig. 2b). The ROH were located all over the genome, indicating that the higher prevalence of ROH in *H. maya* is a genome-wide phenomenon. Nevertheless, ROH were disproportionately represented on LG2, LG9 and LG12, matching the F_{ST} patterns (Suppl. Fig. 7b). This result was confirmed by the integrated haplotype homozygosity pooled (iHH12, Torres et al., 2018, Suppl. Fig. 7c), which is often used to detect signs of recent positive selection and thereby suggests that selection is also playing a role in these regions. The blue hamlet showed negative inbreeding coefficients (median = -0.040), yet this result should be interpreted with caution due to the low sample size for this species ($n = 5$).

Demographic Inference

We used MSMC to identify demographic trends leading to current biogeographic patterns. The most ancient and two most recent time segments provided highly inconsistent N_c estimates within species (Suppl. Fig. 10) and were therefore not considered, since this suggests unreliable inference (S. Schiffels, personal communication). All species presented very similar trends earlier than 3000 generations before present (gpb), suggesting that they diverged only recently (Fig. 3). Following an expansion until 2000 gbp, *H. maya* N_c decreased continuously to a minimum of 12000 at 290 gbp (Fig. 3). The *H. gemma* and *H. nigricans* populations also decreased beginning 2000 gbp, but rebounded to a final N_c of 50000 and 100000 ± 15000 (mean ± SE across *H. nigricans* runs), respectively. In contrast, *H. puella* and *H. unicolor* N_c increased to final values of 120000 ± 18000 and 110000 ± 13000, respectively (Fig. 3). SMC++ analysis, which does not rely on phasing, confirmed that these general trends were not due to phasing switch errors (Suppl. Fig. 12). Though the heuristic calculation of time points limited SMC++ inference to 10^3–10^5 gbp, we nonetheless observed a population expansion beginning
10^4 gbp in all species, a sharp decline in *H. maya*, and a limited decline in *H. gemma* (Suppl. Fig. 12). The most notable differences in the SMC++ results were large N_e fluctuations between 10^6 and 10^4 gbp and a shift towards older times for the beginning of the declines in *H. maya* and *H. gemma* (Suppl. Fig. 12). For both analyses, results were qualitatively identical with and without the most diverged genomic regions that are likely under selection (Suppl. Fig. 10; Suppl. Fig. 11; Suppl. Fig. 12). The cross-coalescence results indicate that *H. gemma* diverged from the other species within ~ 6000 gbp, followed by *H. nigricans* (~ 5000 gbp) and *H. maya* (~ 3000 gbp, Fig. 4). The barred and butter hamlets appear to have diverged even more recently (~ 2000 gbp), yet these results should be interpreted with caution due to ongoing gene flow between these two species in Belize (Hench et al., 2019, which may explain the observed cross-coalescence rates > 1.0). Relative cross-coalescence was > 0.01 in all comparisons until < 500 gbp, and remained > 0.05 throughout inference in two *H. puella*–*H. unicolor* runs (Fig. 4). As such, MSMC relative cross-coalescence supports other evidence of ongoing gene flow within the genus, especially between *H. puella* and *H. unicolor*.

For the estimation of recent N_e, quality filters left 3,296,967 suitable variant sites in *H. maya*, which were split into 100 non-overlapping data sets. Median estimated N_e was 1584 individuals, with a minimum of 1002, and a maximum of 9478 (Fig. 5). Based on the Jones et al. (2016) jackknife variance method, NeEstimator estimated that the effective degrees of freedom associated with the 100 subsets ranged from 229647 to 532857; jackknife 95% confidence intervals had lower bounds between 277 and 528, and a consistent upper bound of infinity (Fig. 5). In contrast, the 100 replicates provided an empirical 95% CI of 1073 – 4426 effective individuals (Fig. 5). All 100 analyses for *H. puella*, *H. unicolor* and *H. nigricans* produced N_e point estimates, as well as lower and upper confidence bounds, of infinity.
Discussion

Our data confirm that *H. maya* represents a rare case of microendemism in reef fishes. From the moment of its scientific documentation, this species was confused with the phenotypically similar *H. gemma* of the northern Caribbean (Domeier, 1994). The diagnostic color pattern used to describe the new species and distinguish it from *H. gemma* (absence of black margins on the caudal fin, Lobel, 2011) is only found within the MBRS; however, such characteristics are strained as taxonomic identifiers in the hamlets, where intermediate phenotypes, polymorphism, and regional variants of described species are frequently observed. In particular, black margins on the caudal fin are polymorphic within other hamlet species and populations (O. Puebla, personal observation). As such, we sought first to establish the status of *H. maya* as a distinct evolutionary unit. Our analyses demonstrate that *H. maya* and *H. gemma* are distinct evolutionary lineages, despite their phenotypic similarity. In fact, whole-genome differentiation between these two species is markedly higher than any other allopatric or sympatric comparison within this study, and *H. maya* is also differentiated from the other three sympatric pan-Caribbean hamlets (Tab. 1; Fig. 2). The Maya hamlet can therefore be considered a separate species, so far as the biological species concept applies to the low differentiation and ongoing gene flow regime within *Hypoplectrus*.

The evolution of microendemism

Considering the restricted distribution of *H. maya* and its recent divergence, it provides a rare window into the evolution of marine microendemism. The heterogeneous landscape of genomic differentiation between *H. maya* and other *Hypoplectrus* species suggests that *H. maya* evolved under the effect of selection and may be locally adapted (Suppl. Fig. 7). Some of the highly differentiated regions evidenced here have been previously identified, and include genes involved in vision (*rorb*) and pigmentation (*sox10*) that may play a role in reproductive isolation.
through visually-based assortative mating (Hench et al., 2019). We also note the presence of
a sharp peak of differentiation on LG07 centered on the androgen receptor (AR) gene, which,
although not above the 99.99th F_{ST} percentile, is consistently and exclusively observed in
comparisons involving $H. maya$ (Suppl. Fig. 7a). A iHH12 signal was also observed at this
locus (Suppl. Fig. 7c), suggesting that it is under positive selection. Androgens are involved
in the development of sex-specific traits, including vision (Shao et al., 2014) and pigmentation
(Lindsay, Webster & Schwabl, 2011). It remains to be shown whether this is the case in
the hamlets, which have a very specific simultaneously hermaphroditic mating system whereby
individuals reciprocally trade eggs for fertilization (Fischer, 1980).

All measures point to reduced genomic diversity and increased inbreeding in $H. maya$ rel-
ative to pan-Caribbean congeners (Fig. 2). The Maya hamlet shows decreased heterozygosity,
higher inbreeding coefficients, and more runs of homozygosity than sympatric congeners, as
expected following a bottleneck or ongoing population decline (Nei, Maruyama & Chakraborty,
1975; Frankham, 1998). In contrast to the three pan-Caribbean species, background levels of
relatedness are also > 0 in $H. maya$. Furthermore, we identified one pair of Maya hamlets
that are much more related than background levels ($r = 0.041$, which corresponds to the level
of relatedness that is expected between second cousins with a most recent common ancestor
3 generations ago; Wright, 1922; Fig. 2). These individuals were collected 34 km apart, at
opposite ends of the sampling area, which is within the estimated dispersal potential of Belizean
hamlets across three generations (Puebla, Bermingham & McMillan, 2012). Median nucleotide
diversity was also 4-12% lower in $H. maya$ than congeners (Suppl. Fig. 8). This difference
may appear small, particularly in comparison to observed π in other taxa: $H. maya$ nucleotide
diversity is ~ 2 times higher than that observed in Ficedula flycatchers, and ~ 6 times higher
than that in humans (Primmer, Borge, Lindell & Sætre, 2002; International SNP Map Working
Group, 2001). This high diversity is expected within the framework of high marine effective
population sizes, and is concordant with our inferred demographics: the hamlets experienced a
pre-divergence bottleneck of $N_e \approx 30 \times 10^4$ (Fig. 3), as opposed to 20×10^4 and 1×10^4 in
flycatchers and humans, respectively (Nadachowska-Brzyska et al., 2016; Li & Durbin, 2011).

We note that *H. gemma* presents striking population genomic patterns, with higher levels of
heterozygosity and background relatedness, and lower (negative) inbreeding coefficients relative
to the four other species (Fig. 2). We suggest that the high heterozygosity and apparent
outbreeding observed in this species may be associated with the mixing of two lineages, from
the Gulf of Mexico and Caribbean, in the Florida Keys (Ramon et al., 2003). As for the high
levels of relatedness, they may be due to the ongoing decline of *H. gemma* populations in
the Florida Keys documented by the transect data (Suppl. Fig. 3; Suppl. Fig. 4). We
nevertheless reiterate caution with these hypotheses since they rely on only five *H. gemma*.

The analysis of present-day diversity and divergence is complemented by an understanding
of the historical population dynamics in which they arose. Our approach allowed us to infer
Hypoplectrus demographic histories up to < 300 generations before present, with a likely
historical range of $\sim 300 - 900$ years ago (Fig. 3). Regardless of uncertainty in *Hypoplectrus*
generation times, inference provided clear support for widely divergent demographic trends in *H.
maya*, beginning near the last glacial maximum. While pan-Caribbean species began a growth
trajectory ending with effective population sizes around 100000, *H. maya* began a monotonic
decrease to $N_e \approx 12000$. In contrast, *H. gemma* N_e declined to ~ 30000, and rebounded to
~ 50000. The divergent trajectories of these taxa provide further support for their evolutionary
distinction. Cross-coalescence rates, too, support the developing picture of *Hypoplectrus* as an
ongoing speciation event. Our analyses suggest four independent divergence windows, all falling
during or after the last glacial maximum (Fig. 4). Extended gene flow is also suggested by
this coalescent approach, with gene flow continuing into the current millennium in all lineages,
and ongoing between *H. puella* and *H. unicolor*, the species pair between which high-probability
hybrid and back-crossed individuals have been previously identified (Hench et al., 2019). An explicit analysis of the history of gene flow—which may be complex—is beyond the scope of this study, and we note that the decrease in N_e inferred in $H. maya$ may also be interpreted in terms of a decrease in gene flow from other hamlet species and populations. Regardless, given the recent divergence of $H. maya$, it is likely that it arose within the MBRS and is thereby neoendemic to this area.

Recent effective population size

The estimation of recent effective population size from linkage disequilibrium using whole-genome data has been limited by the computational scale of the necessary number of pairwise comparisons, as well as physical linkage, which decreases the effective degrees of freedom presented by each pair of loci (R. K. Waples, Larson & Waples, 2016). To eliminate bias due to physical linkage, we considered only interchromosomal comparisons. The remaining effects of non-independence among pairwise comparisons of loci were accounted for by the per-individual jackknife procedure of A. Jones et al., 2016, which calculates "effective degrees of freedom" and corresponding confidence intervals. In addition, we leveraged the scale of our data set to calculate N_e estimates from 100 non-overlapping sets of markers, allowing an empirical evaluation of uncertainty in our estimate. These replicates display much less uncertainty than the jackknife confidence intervals would suggest; though no finite upper bounds could be placed on the jackknife CIs, 95% of our estimates fell between ~ 1000 to 4500 (Fig. 5). Simulation-based analysis of pseudo-replication in genomic-scale LD data sets suggests that the Jones et al. (2016) jackknife confidence interval generally underestimates precision in LDN_e, and that subsetting loci provides a more realistic assessment. On the other hand, genetic indices (like r^2 for unlinked loci) that reflect very recent demography are sensitive to the pedigree structure of the individuals in the sample. Replicating across many subsets of loci, all generated by the
same pedigree, will not capture uncertainty associated with differences between the pedigree structure of the sample and the pedigree structure of the population as a whole (King, Wakeley & Carmi, 2018). This argues for some caution in interpreting CIs for estimates of Ne for the hamlets, all of which are based on small samples of individuals. Nonetheless, given the order of magnitude of the \(N_e \) estimates, this does not change our interpretation of the \(H. \) \(maya \) population as orders of magnitude smaller than its size at the beginning of speciation, including a tenfold reduction within the last few hundred generations.

Our recent \(N_e \) estimate of \(~1600\) contrasts with the rarity of \(H. \) \(maya \) in the field and its restricted distribution. Considering the dramatic decline of \(H. \) \(maya \) in the Pelican and surrounding Rhomboidal Cays within the last two decades documented here, this number may nevertheless be inflated by much higher effective population sizes just a few generations ago. It is also possible that \(H. \) \(maya \) \(N_e \) is still affected by gene flow from pan-Caribbean hamlets, or that the population center of \(H. \) \(maya \) may not be in the Pelican and surrounding Rhomboidal Cays but around Laughing Bird Cay and further south, beyond the area surveyed here. Though effective population sizes as low as 500 were originally theorized as stable from a mutation-drift equilibrium perspective, the body of empirical evidence suggests that sizes of 1000-5000 are likely necessary to maintain fitness in perpetuity (Lande, 1995; Frankham, Bradshaw & Brook, 2014). As such, we suggest that the past and present effective population size of \(H. \) \(maya \) is by itself sufficient cause for concern regarding its long-term survival.

Our data also support the disparity in effective population size between \(H. \) \(maya \) and its congener. \(N_e \) estimation for \(H. \) \(gemma \) was not possible due to the low sample size for this species (\(n=5 \), which is below the validated range for LD-based estimation). Such a limitation is unfortunate given the recent decline in \(H. \) \(gemma \) census population reported here, and a renewed effort to estimate this species’ \(N_e \) is advised. In other species, though, infinite \(N_e \) estimates were obtained with a larger sample size (\(n=12 \)) than in \(H. \) \(maya \) (\(n=10 \)), which
indicates that the pan-Caribbean species’ N_e can be reliably inferred as ‘much larger’ than that of $H. maya$. This is compatible with a previous Approximate Bayesian Computation estimate of N_e of ~ 15000 for $H. nigricans$ on the BBR, an order of magnitude higher than our $H. maya$ estimate (Puebla, Bermingham & McMillan, 2012).

Microendemism in the MBRS

While the case of the Maya hamlet is remarkable, it is not unique. Twelve fish species are known to be endemic to the Belize section of the MBRS and the adjacent Honduran Bay Islands, representing over 20% of those endemic to the continental Caribbean (Floeter et al., 2008; Robertson & Van Tassell, 2015; Suppl. Tab. 1). Similar levels of microendemism are found among invertebrates (Rützler et al., 2000; Miloslavich et al., 2010). In the MBRS, the endemic fishes are distributed variably between the landward lagoon, the seaward barrier wall, and the associated atolls (Lobel, Rocha & Randall, 2009). This high level of microendemism may be due in part to the intense sampling and exploration of the southern MBRS (Miloslavich et al., 2010). Yet analogous cases of microendemism have been documented in the less intensively sampled Indo-Pacific (Allen, Erdmann & Hidayat, 2018; Allen, Erdmann & Cahyani, 2018), suggesting that such patterns may be more prevalent among reef-fish communities than previously recognized. Should broader sampling reveal similar concentrations of microendemics elsewhere in the Caribbean, in particular among small cryptobenthic fishes or in the mesophotic zone, the question of the underlying evolutionary processes will become even more pressing.

In accordance with the recognition of ocean currents as a limiting factor in marine dispersal (G. Jones et al., 2009), we suggest that local oceanography may be a primary cause of high microendemism in the MBRS. Drifters and numerical models have identified a system of temporally variable eddies that occur along the Belizean MBRS. Areas south of Glover’s Reef ($\sim 16.75^\circ$N) experience slow, invariant transport to the south, while those found at or north
of this point experience variable transport dependent on the season: transport may be rapidly
southward, or weakly northwestward (Ezer, Thattai, Kjerfve & Heyman, 2005; Tang, Sheng,
Hatcher & Sale, 2006). Particles (e.g. planktonic larvae) which are transported southward
either encounter the interior MBRS lagoon and the Honduran Bay Islands, or are carried into a
gyre within the Gulf of Honduras (Richardson, 2005; Paris, Chérubin & Cowen, 2007). Of the 12
species endemic to the MBRS and southward Honduran islands, ten have northward boundaries
at Carrie Bow Cay and Glover’s Reef (Floeter et al., 2008; Robertson & Van Tassell, 2015).
D’Aloia (2015) estimated the dispersal kernel of one of these endemics (Elacatinus lori) at the
proposed oceanographic divide, and recovered an isotropic kernel of extremely small dispersal
range. Such a pattern is consistent with an oceanographic limitation to range expansion, so
long as these species originated in the southern MBRS under the current oceanographic regime.
Multiple independent estimates of these species kernels across their entire range, extending the
work of D’Aloia (2015), could shed further light on this hypothesis.

The case of the Maya hamlet is remarkable in that it is currently sympatric with congeners in
terms of both distribution and microhabitat. This contrasts with other cases of microendemism
in reef fishes, which show either allopatry or habitat divergence (Allen, Erdmann & Hidayat,
2018; Allen, Erdmann & Cahyani, 2018). Though H. maya overlaps in habitat with sympatric
congeners, it may differ in its habitat specificity. Our qualitative observations indicate that
H. maya is strongly associated with shallow (1–3 m) reef habitat. The Maya hamlet was nearly
extirpated from the Pelican Cays as of 2017, coinciding with the degradation of shallow coral
communities on the Cays’ characteristics polygonal ridges (O. Puebla and B. Moran, personal
observation). In contrast, H. maya was the dominant hamlet species on the shallow reefs
west of Laughing Bird Cay, which harbored high coverage of A. cervicomis (O. Puebla and
B. Moran, personal observation). Specialist adaptation to shallow A. cervicomis reefs would
provide another explanation for the long-term N_e decline of H. maya inferred by our MSMC

This article is protected by copyright. All rights reserved
analyses, given the geological history of their range. The cays of the southern MBRS lagoon began as Pleistocene limestone surfaces, which were submerged by sea-level rise after the last glacial maximum (Macintyre, Precht & Aronson, 2000). *Acropora cervicornis* colonized this substrate, growing towards the surface at a rate of up to 8 m/1000 years (Westphal, 1986; Macintyre et al., 2000; Aronson, Macintyre, Precht, Murdoch & Wapnick, 2002). Where reef accretion outpaced sea level rise, the reef crest was colonized by the shallow-specialist coral *Ponge divaricata*, and later red mangrove (*Rhizophora mangle*) trees (Neumann, 1985; Macintyre et al., 2000). The MBRS lagoon thus represents a non-equilibrium habitat in relative isolation, presenting the exceptional opportunity for reduced gene flow with outside populations, unfilled niches, and founder effects. If *H. maya* is indeed an *A. cervicornis* specialist that appeared in the mid-Holocene as inferred by our MSMC analyses, ecological succession after the last glacial maximum would have created a long-term natural decline in habitat availability throughout its existence. This, combined with a relatively short PLD of 14–22 days (Domeier, 1994) and the aforementioned oceanographic characteristics of the southern MBRS, may explain this case of micro-endemism and a long-term decline of *H. maya*. The generality of such forces could be tested in other cases of micro-endemism, both in geographically distinct cases within *Hypoplectrus* (Víctor & Marks, 2018) and in phylogenetically distinct cases within the MBRS.

Microendemism and extinction

Species with small ranges are particularly vulnerable to extinction, due to a combination of low total population size and increased threat presented by local extirpations (Gaston, 1998). This risk is further elevated in the case of ecological specialists, which exhibit a synergistic combination of lower population densities and lower tolerance to change (Munday, 2004). While *H. maya* population declines predated human influence, the reduction in habitat available to *H. maya* was likely accelerated in the last century by the drastic decline in Caribbean corals,
and acroporids in particular. This trend of reef degradation is largely attributable to coral
disease outbreaks (Aronson & Precht, 2001), coastal development (Murray, 2007), decline of
herbivorous fishes and invertebrates (Hughes, 1994), and ocean warming (Aronson, Precht,
Macintyre & Murdoch, 2000). The MBRS lagoon, in particular, is currently threatened by
clear-cutting of mangroves and dredging of shallow patch reefs to increase land values for
real estate and touristic development (McKee & Vervaeke, 2009). Furthermore, the invasive
lionfish constitutes a direct threat to the Maya hamlet and other Caribbean microendemic fishes
(L. A. Rocha, Rocha, Baldwin, Weigt & McField, 2015). Such a combination of stressors
provides a plausible explanation for the recent reduction of the H. maya population evidenced
here by both genetic data and field surveys. Likewise, the recent decline in H. gemma evidenced
by transect surveys (Suppl. Fig. 3) coincides with the loss of Florida Keys reef communities
to disease and warming (Precht, Gintert, Robbart, Fura & Van Woesik, 2016). Collection by
the aquarium trade may also play a role in the case of H. gemma, given the popularity of this
species among public and private aquarists (O. Puebla and B. Moran, personal observation).

Given the exceptionally small range of H. maya, its rarity, its long-term and recent decline in
population size, its strong association with A. cervicomis and the ongoing degradation of its
habitat, the persistence of this recently-diverged species is in jeopardy. The case of the Maya
hamlet shows that the evolution of marine microendemism can be a fast and dynamic process,
with extinction possibly occurring before speciation is complete.

Acknowledgements

We thank Ryan Waples for feedback during the implementation of whole-genome LDNe,
Stephan Schiffels for his guidance regarding MSMC, Derya Akkaynak for assistance in the
field, as well as Katie Lotterhos and Phil Lobel for their input regarding population genomics
and Belizean endemics. We are indebted to the staff of Carrie Bow Cay Field Station and

This article is protected by copyright. All rights reserved
Keys Marine Laboratory for their assistance during sampling, to Allison and Carlos Estapé, and to Lisa Carney of the Belizean coral restoration non-profit Fragments of Hope. This work was conducted under National Geographic Society Young Explorers Grant #WW-037ER-17, a Summer Independent Research Fellowship from Northeastern University, and two scholarships (Undergraduate and Short-Term Research) from the German Academic Exchange Service to BM, a German Research Foundation and a Future Ocean Cluster of Excellence grant to OP, and a Global Genome Initiative and Smithsonian Institute for Biodiversity Genomics grant to CB, WOM, and OP.

References

This article is protected by copyright. All rights reserved

Data Accessibility

All new raw sequences (H. maya and H. gemma) have been deposited at the European Nucleotide Archive (ENA) under project accession number PRJEB29705; the individual accession numbers for these samples are provided in Suppl. Tab. 2. Previously sequenced Belizean samples (H. nigricans, H. puella, and H. unicolor) are available under ENA project PRJEB27858. The biallelic SNP genotypes in VCF format for all samples are also available in Dryad (doi:10.5061/dryad.hp388dm).
Author contributions

BM conceived of the study, conducted field work and data analyses, and wrote the manuscript.

OP conceived of the study, conducted field work, and contributed to the manuscript. RWS contributed to data analyses and the manuscript. KH contributed to the data analyses. WOM and MH contributed to genome sequencing. CB contributed to the curation of specimens. All co-authors provided feedback on the manuscript.
Tables

Table 1 Estimates of genome-wide differentiation and divergence among the *Hypoplectrus* species considered in this study; F_{ST} above the diagonal, and d^{XY} below.

<table>
<thead>
<tr>
<th>Species</th>
<th>H. gemma</th>
<th>H. maya</th>
<th>H. nigricans</th>
<th>H. puella</th>
<th>H. unicolor</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. gemma</td>
<td>—</td>
<td>0.060</td>
<td>0.040</td>
<td>0.037</td>
<td>0.033</td>
</tr>
<tr>
<td>H. maya</td>
<td>0.00379</td>
<td>—</td>
<td>0.039</td>
<td>0.026</td>
<td>0.028</td>
</tr>
<tr>
<td>H. nigricans</td>
<td>0.00378</td>
<td>0.00360</td>
<td>—</td>
<td>0.016</td>
<td>0.014</td>
</tr>
<tr>
<td>H. puella</td>
<td>0.00379</td>
<td>0.00357</td>
<td>0.00360</td>
<td>—</td>
<td>0.004</td>
</tr>
<tr>
<td>H. unicolor</td>
<td>0.00379</td>
<td>0.00360</td>
<td>0.00361</td>
<td>0.00359</td>
<td>—</td>
</tr>
</tbody>
</table>
Figure 1 Ranges of the *Hypoplectrus* species considered in this study. *H. puella*, *H. nigricans*, and *H. unicolor* occur throughout the Greater Caribbean (purple). *H. gemma* (blue) is restricted to the Northern Caribbean, and *H. maya* (yellow) to a section of the Mesoamerican Barrier Reef System (MBRS) in Belize. Inset: reports of *H. maya* from the literature (triangles) and the current study (circles, note that some of these locations had been reported before). Distribution of pan-Caribbean hamlets extrapolated from the WCMC-008 Global Distribution of Coral Reefs (UNEP-WCMC et al., 2010).
Figure 2 Population genomics of five Hypoplectrus species. a) Principal Component Analysis (PCA) based on whole genome data from all individuals in this study. Proportion of explained variance for the first two PCs listed on axes. b) Runs of Homozygosity (ROH) > 150 kb in each individual. The total number of ROH with length > 150 kb is plotted against the summed length of those ROH. c) Genome-wide Maximum Likelihood Estimation (MLE) of relatedness between all pairs of samples. d) Heterozygosity, calculated genome-wide for each individual. e) Inbreeding coefficient F, calculated genome-wide for each individual. Central bars represent median values, and boxes 25th–75th percentile intervals. Whiskers show data within $1.5 \times$ interquartile range, and dots are outliers beyond this range.
Figure 3 MSMC inference of effective population size over time in the five species. Each analysis is based on 3-4 genomes and each genome is used in only one analysis. All estimates are scaled with a per-site mutation rate $\mu = 3.7 \times 10^{-8}$. The most ancient and two most recent time segments are omitted due to unreliable inference (see text).
Figure 4 MSMC cross-coalescence inference of divergence times between all pairs of species. Each line represents an independent run, including 2 individuals from each species. Panel headers identify the first species in the comparison, and colors the second. All estimates are scaled with a per-site mutation rate $\mu = 3.7 \times 10^{-8}$. In a given time interval, a relative cross-coalescence rate of 1 (dashed line) indicates totally shared ancestry, and a rate of 0 indicates no shared ancestry.
Figure 5 Estimates of *H. maya* recent effective population size from inter-chromosomal LD among 100 non-overlapping SNP subsets. N_e point estimates (black points) are ordered by effective degrees of freedom (blue line) inferred from the individual-wise jackknife procedure of Jones et al. (2016). Corresponding N_e 95% CIs (red shading) extend to positive infinity in all estimates. Empirical 95% CI is denoted by dashed horizontal lines. Both vertical axes are log-scaled.
(a) PC1 (2.5 %) vs. PC2 (2.3 %)

(b) Number of ROH > 150 kb vs. Total Length of ROH > 150 kb

(c) Heatmap showing heterozygosity across different species:
- H. gemma
- H. maya
- H. nigricans
- H. puella
- H. unicolor

(d) Box plot showing heterozygosity:
- MLE r (c)
- MLE r (d)

(e) Box plot showing inbreeding coefficient F:
- MLE r (e)

This article is protected by copyright. All rights reserved.