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Abstract

Sustained observations of marine biodiversity and ecosystems focused on specific

conservation and management problems are needed around the world to effectively

mitigate or manage changes resulting from anthropogenic pressures. These observa-

tions, while complex and expensive, are required by the international scientific,
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governance and policy communities to provide baselines against which the effects

of human pressures and climate change may be measured and reported, and

resources allocated to implement solutions. To identify biological and ecological

essential ocean variables (EOVs) for implementation within a global ocean observing

system that is relevant for science, informs society, and technologically feasible, we

used a driver-pressure-state-impact-response (DPSIR) model. We (1) examined rele-

vant international agreements to identify societal drivers and pressures on marine

resources and ecosystems, (2) evaluated the temporal and spatial scales of variables

measured by 100+ observing programs, and (3) analysed the impact and scalability

of these variables and how they contribute to address societal and scientific issues.

EOVs were related to the status of ecosystem components (phytoplankton and zoo-

plankton biomass and diversity, and abundance and distribution of fish, marine tur-

tles, birds and mammals), and to the extent and health of ecosystems (cover and

composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic

invertebrate abundance and distribution and microbe diversity and biomass were

identified as emerging EOVs to be developed based on emerging requirements and

new technologies. The temporal scale at which any shifts in biological systems will

be detected will vary across the EOVs, the properties being monitored and the

length of the existing time-series. Global implementation to deliver useful products

will require collaboration of the scientific and policy sectors and a significant com-

mitment to improve human and infrastructure capacity across the globe, including

the development of new, more automated observing technologies, and encouraging

the application of international standards and best practices.

K E YWORD S

driver-pressure-state-impact-response, essential ocean variables, framework for ocean

observing, global ocean observing system, marine biodiversity changes, Marine Biodiversity

Observation Network, ocean change

1 | INTRODUCTION

Climate change and our increasing use of the ocean are affecting

important marine resources and ecosystems at local, regional and

global scales and threaten the well-being of human kind. Economic

activity associated with growing use of ocean resources needs to be

balanced with the capacity of ocean ecosystems to sustain these activ-

ities. This requires up-to-date knowledge of resource status and trends

(EIU, 2015). Agencies that look after marine resources need timely

information of relevant ocean changes to improve forecasting capabili-

ties (Gattuso et al., 2015; ITF, 2015), respond with adaptive and more

rapid mitigating measures (Dunn, Maxwell, Boustany, & Halpin, 2016;

Maxwell et al., 2015) and sustain blue economies (Golden et al.,

2017). Because the ocean covers over 70% of the surface of the Earth

and is on average 4 km deep, developing this knowledge is a challenge

for any country. To meet the need of delivering ocean data to support

governance and management, a framework for ocean observing

emerged from the OceanObs’09 conference. This framework proposes

the coordination and integration of routine and sustained observations

of physical, biogeochemical, and biological essential ocean variables, or

EOVs, which are fit for purpose and defined by specific requirements

(Lindstrom, Gunn, Fischer, McCurdy, & Glover, 2012). Some of these

requirements include international reporting (e.g., the United Nations

Convention on Climate Change or UNFCCC, the UN Sustainable

Development Goals or SDGs, the Convention on Biological Diversity

or CBD Aichi Targets) and assessments (e.g., the UN World Ocean

Assessment; the Intergovernmental Science-Policy Platform on Biodi-

versity and Ecosystem Services/IPBES) (CBD, 2014a,b; Gattuso et al.,

2015; Lu, Nakicenovic, Visbeck, & Stevance, 2015; UN, 2016). These

are aimed at driving policies to help prepare, adapt, manage and miti-

gate the effects of ocean global change and providing the opportunity

for developing countries to identify their needs for global participation

and support, overall improving the economies and well-being of soci-

eties worldwide. As an example, coral reef monitoring since the late

1970s and 1980s enabled detection of change (decrease in coral

cover) and attribution to warming temperatures as early as the 1990s

(Wilkinson, 1998; Wilkinson et al., 1999; Williams & Bunkley-Williams,

1990). Recognizing the high cultural and socio-economic value of coral
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reefs for human populations, this initiated a movement towards the

establishment of a series of high level policies for coral reef conserva-

tion and management across the globe, including for example Aichi

Target 10 (minimize reef loss). It also triggered the establishment of

several long-term and large-scale monitoring programs, and of the Glo-

bal Coral Reef Monitoring Network (GCRMN), strongly linked to the

United Nations Environment Program (UNEP) through the auspices of

the International Coral Reef Initiative (ICRI).

The goal of this paper is to identify biological essential ocean

variables that when implemented as a sustained global ocean observ-

ing system (GOOS) will provide key information on global changes in

marine resources and ecosystems in response to society’s interna-

tionally agreed needs.

For 25 years, the GOOS has been a critical driver for initiating,

coordinating and globalizing ocean observations. GOOS provides

advice on physics, climate and biogeochemistry observations to gov-

ernments around the world (Lindstrom et al., 2012). GOOS physical

and biogeochemical EOVs are frequently supported as essential cli-

mate variables (ECVs) being based on specific scientific and societal

requirements driven mostly by the need to measure climate change

and for weather forecasts (Bauer, Thorpe, & Brunet, 2015; O’Brien,

Lorenzoni, Isensee, & Valdés, 2017). To help understand and forecast

better the responses of marine life and ecosystems to a changing

ocean and expand the coverage of ECVs, there is a pressing and

growing need to identify and implement biological and ecological

EOVs into an integrated and multidisciplinary observing system

(Miloslavich et al., 2015). Many of the biological ocean observations

were initiated in search for answers to scientific questions on short-

term monitoring (e.g., Jossi, 2010; Suthers & Rissik, 2009; and many

others), and to detect change over longer terms, such as those asso-

ciated with human and climate change signals at global (Henson,

Beaulieu, & Lampitt, 2016; Henson et al., 2010) or regional scales

(Taylor et al., 2012). Biological observations are increasingly also dri-

ven by their technical and scientific feasibility and for solving specific

societal problems including in the economic and policy sectors (Alli-

son & Bassett, 2015; Lindstrom et al., 2012). Lately, the proliferation

of possible monitoring frameworks and “essential variables” under

different names (see Table S1 for a list of frameworks and their vari-

ables) has created confusion and is delaying agreement on a coher-

ent, coordinated and integrated global system that would make

meaningful contributions similar to those now achieved by the global

climate observing system (GCOS), which meets the needs of the

UNFCCC (Bojinski et al., 2014; Houghton et al., 2012; WMO, 2016).

Biodiversity is varied and complex in detail and outcome. Biological

EOVs therefore need to be carefully chosen to address a broad num-

ber of stakeholders with a consistent nomenclature and clearly defined

standards. They should address fundamental characteristics of the bio-

logical components of marine ecosystems that can be combined into

indicators to (1) represent the complexity of real-world natural sys-

tems, (2) track temporal and spatial changes in the state of the envi-

ronment, (3) evaluate management performance, (4) deliver

information and products to scientific and policy audiences (Hayes

et al., 2015) and (5) assess progress towards international goals and

targets (Halpern et al., 2017; Tittensor et al., 2014; Walpole et al.,

2009). With these criteria, GOOS defines biological/ecological EOVs

as those sustained measurements that are necessary to assess the state

and change of marine ecosystems, address scientific and societal ques-

tions and needs, and positively impact society by providing data that will

help mitigate pressures on ecosystems at local, regional and global scales.

In this paper, we explain how we used the DPSIR (driver-pres-

sure-state-impact-response) model, a well-known framework used to

guide environmental assessment and reporting (Atkins, Burdon,

Elliott, & Gregory, 2011; EEA, 1995; Hayes et al., 2015; Kelble et al.,

2013; Maxim, Spangenberg, & O’Connor, 2009; Omann, Stocker, &

J€ager, 2009) to prioritize types of observations and to build a suite

of EOVs that will detect temporal and spatial changes in marine bio-

diversity and ecosystem state, thus supporting increasingly success-

ful management of marine resources and ecosystems over the

decades to come (Figure 1).

2 | MATERIALS AND METHODS

2.1 | Identifying the drivers and the pressures

To identify societal drivers and pressures, we reviewed the mission,

mandates, reporting requirements and assessment processes of 24

international conventions or agreements pertinent to global change

biology and ecology. Drivers were defined as the societal needs, and

pressures were defined as the anthropogenic stressors on marine

biodiversity and ecosystems. Conventions relevant to global change

biology were selected from the University of Oregon’s International

Environmental Agreements Database Project (multilateral agreements

related to coastal and marine habitats) (Mitchell, 2002–2016) and

from the conventions compiled by Mahon et al. (2015). We included

regional agreements related to the Arctic and the Southern Ocean

and grouped Regional Fisheries Management Organizations and

Authorities (RFMO/As) under the United Nations Convention on the

Law of the Sea (UNCLOS) (Table S2). The process included an exten-

sive review of climate change processes and expected impacts (IPCC,

2014). To cluster the drivers according to the conventions that

address them, a dendrogram was produced using a complete cluster-

ing algorithm on a Jaccard distance coefficient matrix. The selection

of the distance metrics was based on the binary characteristics of

the data (presence/absence) and the relative efficiency of the coeffi-

cient (Finch, 2005). The complete clustering agglomeration was

selected due to its higher cophenetic correlation value (r = .929)

with the original data when compared to other methods (Borcard,

Gillet, & Legendre, 2011). For each cluster of drivers, we calculated

the percentage of conventions addressing each pressure.

2.2 | State of biological observations in the marine
environment

We conducted an online survey to evaluate the current state, and

technical and scientific capabilities of biological ocean observations

within large geographical or long temporal scales and assessed their
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potential scalability to expand to larger geographies. The survey

included questions on the temporal and spatial scale and coverage

of observations, target ecosystems, biological variables measured

and data availability, among other queries (see Table S3 for the full

survey questions). The survey was developed using the online Sur-

vey-Monkey platform and was open from January to July 2016. Invi-

tations were distributed among large scientific and monitoring

programs including the marine Long-Term Ecological Research Sites.

It was also sent to the World Association of Marine Stations net-

work, which could potentially have time-series data on marine biodi-

versity, distribution and abundance.

We considered as priority variables those that were measured

by at least two thirds of the programs. For these priority vari-

ables, a standardized “Scalability Index” was created based on the

temporal and spatial scales at which the programs operate to

identify those variables with the highest feasibility for expansion

to global coverage. The “Scalability Index” (SI) was calculated as

the proportion of programs (Programsprop) that address each of

these priority variables weighted by their spatial cover (Spatial)

and temporal extent (Temporal). Spatial cover and temporal extent

were recorded on a 5-point scale: spatial (1 = 0–1 km, 2 = 1–

10 km, 3 = 10–100 km, 4 = 100–1,000 km, 5 = >1,000 km) and

temporal (1 = 1–5 years, 2 = 6–10 years, 3 = 11–20 years, 4 = 21–

50 years, 5 = >50 years). The Scalability Index SI was then calcu-

lated as:

SI ¼ median Spatialð Þ
max Spatialð Þ þmedian Temporalð Þ

max Temporalð Þ
� �

� Programsprop

where Programsprop is the proportion of programs that measure the

variable. Here, the maximum value for both the spatial and temporal

scale is 5 for any variable. The index varied between 0 and 2. For

example, the maximum value was 2 if all programs measured a par-

ticular variable at the maximal spatial and temporal scales. Therefore,

those variables measured by programs with spatial extent >1,000 km

and operative for more than 50 years were assumed to have the

highest scalability for expansion into global coverage.

2.3 | Determining the impact of biological ocean
variables

As a measure of how the variables address the societal needs identi-

fied by the international conventions, we used the SCOPUS abstract

and citation database to search the peer-reviewed literature for how

many publications referred to each driver, pressure or priority vari-

able and how frequently these occurred together. The Relevance

Index (RI) was calculated as:

F IGURE 1 Process used to identify biology and ecosystems essential ocean variables (EOVs) (external circle). Each of the external bubbles
describes steps in the process. The inner circle represents the DPSIR model (drivers-pressures-state-impact-response), with the bubbles
providing the details on each of the five components [Colour figure can be viewed at wileyonlinelibrary.com]
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RIdrivers ¼ # pubs D & Vð Þ
# pubs Dð Þ þ # pubs D & Vð Þ

# pubs Vð Þ

RIpressures ¼ # pubs P & Vð Þ
# pubs Pð Þ þ # pubs P & Vð Þ

# pubs Vð Þ

where: #pubs (D & V) is the total number of publications addressing

the driver and the variable together; #pubs (D) is the total number

of publications addressing the driver alone; #pubs (V) is the total

number of publications addressing the variable alone; #pubs (P & V)

is the total number of publications addressing the pressure and the

variable together; #pubs (P) is the total number of publications

addressing the pressure alone.

The index varies between 0 and 2, the maximum value of the

index would have been equal to 2 if 100% of the publications

for a specific variable had addressed a specific driver or

pressure.

3 | RESULTS

3.1 | Societal drivers and pressures

Nine societal drivers (Table S4) and ten anthropogenic pressures

(Table S5) were identified from 24 international conventions and

agreements. Drivers were grouped in four clusters based on the

agreements that address them together (Jaccard similarity coeffi-

cient) as: (1) sustainable use of biodiversity, biodiversity conserva-

tion and biodiversity knowledge, (2) environmental quality and

threat prevention and mitigation, (3) capacity building, sustainable

economic growth and ecosystem-based management and (4) food

security (Figure 2). As for pressures, 22 of the 24 conventions were

concerned with loss of habitat and biodiversity resources, including

losses through overfishing. Half of the conventions were concerned

with climate change and explicitly included impacts on marine life.

Other identified pressures on life in the ocean (for a much smaller

number of the conventions) were pollution and eutrophication,

coastal development, invasive species, solid wastes, ocean acidifica-

tion, extreme weather events, noise and mining. Each of these dri-

vers and pressures targets specific issues driving biological

responses to a changing ocean including changes in biodiversity pat-

terns, trends in primary productivity, zooplankton biomass, and fish

abundance, incidence of harmful algal blooms and population size

and trends of threatened species among many others (Tables S4 and

S5).

3.2 | State of biological observations

The large majority of the 104 observing programs that responded

the survey were guided by conservation and/or national policies,

with fewer than half being scientifically driven (Table S6; http://goo

socean.org/bioecosurvey). For most of the programs, quality-con-

trolled data within international standards (e.g., DarwinCore,

NetCDF, ISO19115, Ecological Metadata Language) are archived in a

national data centre or other data repository, and available through a

data portal interface, some with a few restrictions. Such restrictions

vary, from data only being distributed upon request or conditional

on funder acknowledgement, to more complex impediments such as

not sharing sensitive data on fisheries or location of endangered spe-

cies, moratoria after publication or within a specific time frame, or

data policies still under discussion.

The earliest sustained biological observations began more than

100 years ago and represented national initiatives (e.g., the Western

Channel Observatory in the UK), however most of the programs

have operated for between 20 and 50 years, providing a strong

baseline against which to measure current and future climate change

impacts. The first large-scale program that is still sustained for some

regions today is the Continuous Plankton Recorder (CPR) surveys,

the first tow having taken place in 1931. A notable rise in the num-

ber of programs observing biological variables in the ocean began in

the mid-70s, and the number is still increasing. Some of the more

recently established programs are attempting to address larger geo-

graphic coverage (Figure 3). Of the 104 programs, only seven have

either ceased or been reduced in sampling effort or observation

sites. One of the major programs (CARIACO) with more than

20 years of operation ended since our survey was conducted due to

lack of sustained funding and other support.

More than half of the programs operated at the largest spatial

scale (>1,000 km), and sampling frequency was highly variable across

programs, from daily to annually, depending on the variable (e.g., tax-

onomic group, habitat or ecosystem function). Observing methods

and tools comprised a vast array of platforms, from satellite and

remote sensing to visual observations, and from moorings, buoys

and Autonomous Underwater Vehicles to water bottles. Plankton

communities were the most observed followed by benthic inverte-

brates and nekton (bony fishes). The oceanic and neritic pelagic sys-

tems were the most observed, followed by seagrass ecosystems,

rocky shores, soft sediments and coral reefs (Figure S1a,b). Phyto-

plankton and zooplankton were usually measured by the same pro-

grams; similarly, programs measuring seagrass and macroalgae

frequently also measured associated benthic abundance, while coral

reef focused programs typically also surveyed associated fish. In

terms of temporal extent, the longest observations have been carried

out on phytoplankton and zooplankton diversity and biomass or

abundance, followed by observations on the distribution of large ver-

tebrates such as sea turtles, seabirds and marine mammals as well as

on diversity and abundance of some benthic invertebrates. Coral

reefs (through coral cover) are the living benthic ecosystem with the

longest history of observations (Figure 4).

Variables that were observed by at least two-thirds of the pro-

grams were (1) diversity, abundance and distribution of phytoplank-

ton (and pigments), zooplankton, benthic invertebrates, bony fish,

microbes, mammals and submerged vegetation, (2) diversity and

abundance of birds, sharks, marine mammals, (3) cover of submerged

vegetation, corals and benthic invertebrates, (4) distribution of

microbes, invertebrate nekton, submerged vegetation and mammals,

(5) behaviour and movement of bony fish and (6) microbial activity.

For further analysis, these priority variables were simplified into the
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F IGURE 2 Societal needs as identified from the review of 24 international conventions or agreements relevant to global ocean biology.
Drivers are clustered as addressed together by the conventions. Segments between drivers represent similarity, the shorter and closer, the
more similar. Horizontal bars represent the pressures addressed concurrently with those drivers within the same conventions [Colour figure
can be viewed at wileyonlinelibrary.com]

F IGURE 3 Timeline showing the cumulative number of biological ocean observing programs since the early 1900s (restricted to the 104
programs responding the survey). Internal tick-marks along the x-axis represent the years at which at least one new program started. External
dots along the x-axis represent new programs throughout the timeline, the darker the dot, the larger the spatial scale at which each operates
(as indicated in legend) [Colour figure can be viewed at wileyonlinelibrary.com]
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following categories: microbial diversity and abundance, microbial

activity, phytoplankton diversity, phytoplankton abundance or bio-

mass, zooplankton diversity, zooplankton abundance or biomass,

benthic diversity, benthic abundance, fish distribution, fish abun-

dance, turtle, bird and mammal distribution, turtle, bird and mammal

abundance, coral cover, seagrass cover, macroalgal cover and man-

grove cover. Overall, phytoplankton biomass, zooplankton abundance

and biodiversity (including ichthyoplankton), and abundance of ben-

thic organisms were the variables observed by the largest number of

programs.

3.3 | Scientific relevance and societal impact of
priority variables

The SCOPUS database contained a total of 12,240, 65,028 and

7,490 publications referring to the drivers, pressures and priority

variables, respectively. Of these, there were 288 publications where

drivers were mentioned with a variable (2.35% of all papers referring

to the drivers) and 1,795 where pressures were mentioned with a

variable (2.76% of all papers referring to the pressures). The vari-

ables that were connected the most to societal drivers and pressures

within the literature were mangrove cover, followed by coral cover,

macroalgal cover and fish abundance (Figure 5). The variables identi-

fied with the highest scalability were zooplankton abundance or bio-

mass, phytoplankton diversity, abundance of benthic invertebrates,

and phytoplankton abundance or biomass. The variables with the

highest impact (using the “RI” for pressures only) were mangrove

cover and coral cover (Figure 6). The analysis yielded two groups of

initial biological and ecosystem EOVs, one focused on ecosystem

components and the other on habitat extent and ecosystem health.

The ecosystem component EOVs are: (1) phytoplankton biomass and

diversity, (2) zooplankton biomass and diversity, (3) fish abundance

and distribution, (4) marine turtle, bird and mammal abundance and

distribution. The EOVs focused on habitat extent and ecosystem

health are (5) hard coral cover and composition, (6) seagrass cover

and composition, (7) macroalgal canopy cover and composition and

(8) mangrove cover and composition. As we learn more about the

role of microbes in altered ecosystems and technologies become

more feasible and affordable for global implementation, “microbial

diversity and biomass” will emerge as another EOV.

The general scientific questions to be addressed by the imple-

menting observing system are (1) what are the status and trends of

these EOVs in the ocean and (2) have there been biogeographical or

ecological shifts in their diversity, distribution and abundance in

response to human alterations. The needed complementary variables

to deliver these EOVs include taxonomic diversity, species distribu-

tion and population abundance among others, and many are framed

within the context of essential biodiversity variables (EBVs) (Pereira

et al., 2013). These EBVs will be integrated into the EOV framework

by the Marine Biodiversity Observation Network (MBON) based on

biodiversity observation requirements at different dimensions. Asso-

ciated benthic invertebrate abundance will be measured as a comple-

mentary variable alongside the four benthic habitats (coral reefs,

macroalgal, seagrass and mangrove communities). Information on

specific scientific questions, the list of complementary variables,

derived products and the societal drivers and pressures addressed by

each EOV is detailed in Table S7. Specification sheets with technical

information for each of the EOVs are available in the GOOS website

(http://goosocean.org/eov).

4 | DISCUSSION

The diversity and distribution of marine species depends on physical

and biological factors, including temperature and physiological adap-

tations, biological interactions, habitat area and food availability and

quality. As oceans continue to warm and currents to change, we are

observing new biogeography patterns and ecological interactions

between species (Johnson et al., 2011; Last et al., 2011; Ling &

Johnson, 2009; Pecl et al., 2017; Poloczanska et al., 2013; Wernberg

et al., 2016) as has occurred in the geological past (Chaudhary,

Saeedi, & Costello, 2016; Costello & Chaudhary, 2017; Harnik et al.,

2012). Monitoring biodiversity and abundance of key groups and the

extent of living habitats along with physical and biogeochemical

EOVs, will assist scientists, managers and policy makers forecast and

prepare for an expanding redistribution of species and its ecological,

social and economic consequences (Garc�ıa Molinos et al., 2016). Our

structured, quantitative approach to identify an initial set of biologi-

cal and ecosystem EOVs provides a framework for monitoring these

biological changes regionally and globally. The EOV framework (1)

F IGURE 4 Time extent in years of the 104 observing programs
measuring the different biological variables. The centre bar of the
box plot represents the median, the box extremes the 1st and 3rd
quartiles and the whiskers the 5th and 95th percentiles. Black dots
represent values above the 95th percentile. TBM: sea turtles, sea
birds and marine mammals. “Fish” includes sharks, rays and bony fish
[Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 5 Relevance of the priority variables (i.e., measured by at least two thirds of the observing programs) to address societal drivers
and pressures using the Relevance Index (RI). RI estimates how each of the variables addresses the convention’s drivers and pressures based
on the SCOPUS database. TBM: sea turtles, seabirds and marine mammals. “Fish” includes sharks, rays and bony fish [Colour figure can be
viewed at wileyonlinelibrary.com]

F IGURE 6 Relative impact vs. scalability graph for the priority variables (i.e., measured by at least two thirds of the observing programs).
“Impact” based on Relevance Index for pressures and “Scalability” based on the Scalability Index (SI) considering spatial cover and temporal
extent of observation of priority variables. Both axes were scaled to 0–1 using minimum and maximum values. The shaded grey area in the
upper right quartile represents the target area for essential ocean variable investment according to the framework for ocean observing. TBM:
sea turtles, seabirds and marine mammals. “Fish” includes sharks, rays and bony fish [Colour figure can be viewed at wileyonlinelibrary.com]
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considers societal relevance to inform several international conven-

tions and agreements (Figure S2), (2) builds on a century-long history

of exploration and observing from an engaged scientific community

and (3) builds on previously proposed technical and scientific frame-

works (Constable et al., 2016; Duffy et al., 2013; IOOC BIO-TT,

2016; Lara-Lopez, Moltmann, & Proctor, 2016; Muller-Karger et al.,

2014; Pereira et al., 2013; UNESCO-IOC, 2013, 2014; WMO, 2016;

Table S1). The EOVs identified here simplify communication and we

hope galvanize support for implementing a valuable and achievable

global observing system.

Target investments should be made in strengthening the imple-

mentation of EOVs that meet both the criteria of high societal rele-

vance and high technical feasibility at a global level, but that are also

fit for purpose (Lindstrom et al., 2012). For the identified biological

EOVs, societal impact will vary significantly across geographic areas,

and will be influenced by specific local and regional needs. For

example, a time-series of the more scalable variables (e.g., zooplank-

ton abundance, phytoplankton abundance and diversity), will have

significant relevance to understand long-term effects of the climate

system at the global level, while a time-series of coral or of man-

grove cover, two latitudinally restricted ecosystems which provide

important ecosystem services, especially to more vulnerable soci-

eties, will have a disproportionate (and more immediate) social and

economic impact in comparison to similar sized areas in the open

ocean. Some of the EOVs with higher scalability (e.g., zooplankton

abundance, phytoplankton diversity and abundance) are currently

either measured primarily at higher latitudes by established research

centres (Batten & Burkill, 2010; Edwards, Beaugrand, Hays, Koslow,

& Richardson, 2010; Edwards et al., 2012; Koslow, Miller, & McGo-

wan, 2015; McQuatters-Gollop et al., 2015) or can be partly

assessed from satellites (e.g., net primary productivity or NPP; Siegel

et al., 2016). As we move forward with implementation, there are

existing approaches that can be used to improve both the global

coverage and impact of these EOVs (e.g., assessments from remote

sensing platforms; Muller-Karger et al., 2013), but these will need

in situ verification at more local scales. It is essential that as a global

system, observations should be accessible to all countries and capac-

ity development and technology transfer will be indispensable ele-

ments of the implementation approach, both providing the global

coverage and uptake. The cost of implementing a global system is

another challenging factor to consider when developing each EOV.

Within GOOS, the maturity of an EOV is gauged by considering the

‘readiness’ of the variable in terms of requirements, observations,

and data and information (Lindstrom et al., 2012). For example, the

live coral EOV is considered to be relatively mature as there are

well-established programs that monitor the status of coral reefs on a

regular basis (see Jackson, Donovan, Cramer, & Lam, 2014 for the

Caribbean; Smith et al., 2016; for reefs in Hawaii and the central

Pacific; De’ath, Fabricius, Sweatman, & Puotinen, 2012; GBRMPA,

2014 and Hughes et al., 2017 for the Australian Great Barrier Reef).

Determining the cost of a global coral reef monitoring program,

however, is complex because it depends on a variety of aspects that

vary significantly depending on the reef location (remote vs. local),

labour costs, scientific capacity, operational capacity, scales, mea-

sured variables and protocol used, all of which are significantly sensi-

tive to the living costs of each particular region (Table S8). While

scientific knowledge and advances will underpin the GOOS, eco-

nomics will determine its success.

4.1 | Applicability of the EOVs to globally assess
marine life in a changing ocean

Given the complexity of marine ecosystems, some of the key issues

to consider for the applicability of these EOVs are (1) what can

these EOVs inform and in what time frame, and (2) will the EOVs be

useful to detect nonlinear responses.

Measuring phytoplankton biodiversity, community composition

and biomass on a sustained basis along with timely detecting global

harmful algal blooms is the focus of several ongoing efforts (e.g., the

Marine Biodiversity Observation Network or MBON and the IOC-

UNESCO’s Harmful Algal Bloom program) to make informed deci-

sions (Duffy et al., 2013; Muller-Karger et al., 2014). Monitoring the

phytoplankton EOV is a practical way to assess ocean ecosystem

health and detect changes at multiple levels because many ocean

ecosystem services, such as fishery catch potential (Cheung, Watson,

& Pauly, 2013; Glantz, 2005; Platt, Fuentes-Yaco, & Frank, 2003),

detection of harmful algal blooms (Paerl & Huisman, 2009), changes

in food quality (Winder, Carstensen, Galloway, Jakobsen, & Cloern,

2017), and carbon sequestration and flux export to the deep sea

(Siegel et al., 2014) depend on these microorganisms. Monitoring the

phytoplankton community can also help understand top-down pres-

sures (Casini et al., 2009; Frank, Petrie, Choi, & Leggett, 2005;

Mozeti�c, Franc�e, Kogov�sek, Talaber, & Malej, 2012; Prowe, Pahlow,

Dutkiewicz, Follows, & Oschlies, 2012) and shifts that are occurring

at higher trophic levels (Chavez, Ryan, Lluch-Cota, & ~Niquen, 2003;

Frederiksen, Edwards, Richardson, Halliday, & Wanless, 2006; Hunt,

2007; Schwarz, Goebel, Costa, & Kilpatrick, 2013). Remote sensing is

a sustainable means to monitor changes in the abundance of various

functional groups of phytoplankton and can provide regional as well

as three-dimensional insights into biological impacts from chemical

and physical ocean changes when paired with in situ time-series

(Boyd et al., 2016; Church, Lomas, & Muller-Karger, 2013; Kava-

naugh et al., 2014, 2016; Rivero-Calle, Gnanadesikan, Del Castillo,

Balch, & Guikema, 2015). Remote sensing data on ocean colour can

estimate changes in chlorophyll and productivity over time scales

from seasons to decades (e.g., Behrenfeld et al., 2006; Foster, Grif-

fin, & Dunstan, 2014); however, similarly to physical EOVs, multi-

decadal time-series (30–40 years or even more in the North Pacific)

may be needed to finally distinguish between climate variability and

climate change (Henson et al., 2010, 2016; Mantua & Hare, 2002;

Minobe, 1997; NASEM, 2016). Regardless of the variable and dura-

tion, observing is necessary if and when attribution becomes possi-

ble, and for a host of other requirements. Fortunately, in many cases

EOVs are building on existing long time-series, and existing collec-

tions like the CPR are being reanalysed with modern technologies,

including genetics and electron microscopy to extend their value to
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further biological groups. This means that the climate change signal

can be detected in some areas or for some taxa while the global

observing system is being built. Some scenarios suggest that the

strongest signal of a warming ocean will be in large turnover of local

community composition (Dutkiewicz, Scott, & Follows, 2013) and

taxonomic time-series have the advantage of extending back a cen-

tury or more (e.g., Last et al., 2011). The question of which kind of

changes in community composition the phytoplankton EOV will have

the power to detect will depend on the different organismal

responses (Boyd et al., 2008). These may include adaptation (Irwin,

Finkel, M€uller-Karger, & Ghinaglia, 2015; Langer et al., 2006), geo-

graphic shifts of existing biomes (e.g., Rueda-Roa et al., 2017; Sar-

miento et al., 2004) or the establishment of completely new

communities (Boyd & Doney, 2003). Phytoplankton monitoring may

detect climate-mediated shifts in biomes, especially in isolated areas

or where boundaries are very strong (Boyd et al., 2008), however to

detect adaptation, time-series of physiological manipulation experi-

ments on natural populations will be required (Boyd et al., 2016).

Zooplankton monitoring results may be used in international ini-

tiatives, including reporting against SDG 14, to develop global indica-

tors for the assessment of impacts of human activities, e.g., ocean

acidification due to rising CO2, plastic pollution, and marine ecosys-

tem health. Zooplankton are distributed throughout the global ocean,

and their diversity, even presence or absence of taxa, is sensitive to

environmental stresses including warming which may result in regime

shifts (Barange et al., 2010; Batten & Burkill, 2010; Beaugrand, Bran-

der, Souissi, & Reid, 2003; Beaugrand et al., 2015; Beaugrand,

Iba~nez, Lindley, & Reid, 2002; Di Lorenzo et al., 2013; Edwards

et al., 2010, 2012; Wooster & Zhang, 2004). Focusing on monitoring

selected zooplankton species has been proposed as a means to max-

imize spatial coverage and detect changes in a timely manner (Woos-

ter & Zhang, 2004). Changes in the zooplankton community will also

influence higher trophic levels, including fish and large vertebrates

(Beaugrand et al., 2003; Bi, Peterson, Lamb, & Casillas, 2011;

Richardson, Bakun, Hays, & Gibbons, 2009).

Commercial fisheries data have been the most accessible and

used to address temporal and spatial changes in fish communities

and provide an assessment of the status of fish in the ocean under

the impacts of fishing and climate change (FAO, 2016). Catch data,

collected and made available by the UN Food and Agriculture Orga-

nization (FAO) since 1950, have been used in global studies as prox-

ies for fish abundance and evaluation of fish stocks worldwide to

compensate for the lack of direct fish abundance indices and stock

assessments globally and for all stocks (Froese, Zeller, Kleisner, &

Pauly, 2012; Halpern et al., 2012; Kleisner, Zeller, Froese, & Pauly,

2013). However, using catch data as indicator of fish abundance or

fish spatial distribution can bias the evaluation of fishing impacts on

fish resources (Pauly, Hilborn, & Branch, 2013; Shin et al., 2012) or

of climate change on fish habitats (Reygondeau et al., 2012). On the

other hand, fisheries-independent, large-scale studies are constrained

by the availability of scientific survey data that provide direct

estimates of fish abundance and presence, though see Koslow,

Goericke, Lara-Lopez, and Watson (2011) for an excellent example

of a long time-series, with distributional changes linked to the chang-

ing ocean. Sharing of scientific data and metadata analyses have

allowed evaluation of ecosystem and fish populations status under

global change (e.g., Booth, Poloczanska, Donelson, Molinos, & Bur-

rows, 2017; Bundy, Bohaboy, et al., 2012; Coll et al., 2016; Hutch-

ings, Minto, Ricard, Baum, & Jensen, 2010; Kleisner et al., 2015;

Poloczanska et al., 2013), shifts in fish spatial distribution (Last et al.,

2011; Pinsky, Worm, Fogarty, Sarmiento, & Levin, 2013) and loss of

marine biodiversity (McCauley et al., 2015). The response of fish

population indicators to environmental changes may take generally

less than 4 years (Bundy, Coll, Shannon, & Shin, 2012), but for more

integrated fish community indicators, more than 10 years of data

may be needed (Nicholson & Jennings, 2004). Survey data time-ser-

ies, along with physical and plankton EOVs can help in refining our

knowledge of fish spatial habitats (Druon, Fromentin, Aulanier, &

Heikkonen, 2011; Jones, Dye, Pinnegar, Warren, & Cheung, 2012),

pressures on fish communities (Fu et al., 2015; Link et al., 2009) and

causes of interannual to decadal variability (Edwards et al., 2010;

Frank, Petrie, Leggett, & Boyce, 2016).

Marine megafauna such as seabirds, sea turtles and marine mam-

mals are ideal candidates for understanding and communicating the

impacts of climate change on marine ecosystems (Durant et al.,

2009; Hawkes, Broderick, Godfrey, & Godley, 2009; Lascelles et al.,

2014; Moore, 2008; Moore & Huntington, 2008; Sydeman,

Poloczanska, Reed, & Thompson, 2015; Sydeman, Thompson, &

Kitaysky, 2012). Many populations appear to have consistent migra-

tion pathways (Horton et al., 2017), and may be having difficulty in

adapting to shifts in environmental conditions (Ainley et al., 2005;

Barbraud et al., 2011; Hazen et al., 2013; Jenouvrier et al., 2009;

MacLeod, 2009; Soldatini, Albores-Barajas, Massa, & Gimenez, 2016;

Sprogis, Christiansen, Wandres, & Bejder, 2018; Sydeman et al.,

2012) and to bottom-up effects caused by changes in the distribu-

tion and abundance of prey species (Evans & Bjørge, 2013; Neeman,

Robinson, Paladino, Spotila, & O’Connor, 2015; Sydeman et al.,

2012). Resulting population declines worldwide may have dangerous

top-down effects on the structure, function and stability of marine

food webs (Estes et al., 2011; McCauley et al., 2015). At the same

time, the recovery of many whale species has been one of marine

conservation success stories although poorly recognized outside the

science community (Bejder, Johnston, Smith, Friedlaender, & Bejder,

2016). Population trends result mostly from field or satellite observa-

tions of entire colonies and from animal telemetry (LaRue et al.,

2014).

In addition to monitoring marine taxa, monitoring the health sta-

tus and trends of foundation coastal ecosystems is also of societal

relevance. Coral reefs have a long history of monitoring through the

engagement of scientists, reef managers and other stakeholders (e.g.,

the GCRMN; Jackson et al., 2014; Obura et al., 2017; Wilkinson,

1998, 2008). Increasing awareness of the importance of coral reefs

for biodiversity and ecosystem health indicators in policy circles

(Convention for Biological Diversity, 2014; UNEA, 2016; World Her-

itage Convention, 2017) and the intensifying impacts of climate

change (Heron et al., 2017; van Hooidonk et al., 2016; Wilkinson
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et al., 2016) emphasize the need for increased global coordination,

coverage and consistency. This will require formalizing societal

requirements, strengthening and resourcing methods and reporting

networks, and developing appropriate reports on coral cover as an

indicator of reef health (Flower et al., 2017). Implementing capacity

development and technology transfer to improve data series will be

crucial, as most coral reefs (and certainly those supporting low-

income communities) are in developing countries.

Marine vegetation ecosystems, including macroalgal assemblages,

seagrass beds and mangrove forests harbour diversified assemblages

of many species and contribute important functions and services to

coastal ecosystems. These include high primary production, provision

of nursery areas for commercially important species, protection from

coastal erosion and carbon storage (Aburto-Oropeza et al., 2008;

Donato et al., 2011; Ezcurra, Ezcurra, Garcill�an, Costa, & Aburto-

Oropeza, 2016; Hutchison et al., 2015; Krumhansl et al., 2016;

Marb�a, D�ıaz-Almela, & Duarte, 2014; Nagelkerken et al., 2008;

Schiel & Foster, 2015). These ecosystems are vulnerable to global

threats such as ocean warming, and to regional stressors resulting

from intensifying human activities along the coast (Bostr€om et al.,

2014; Marba & Duarte, 2010; Marb�a et al., 2014; Moore & Jarvis,

2008; Reusch, Ehlers, H€ammerli, & Worm, 2005; Waycott et al.,

2009). Decades of observations and experiments on macroalgal com-

munities, together with international collaborations, have provided a

solid basis to understand their response to environmental change

(Dayton, 1985) and show how highly context-dependent this

response is (Krumhansl et al., 2016). In these communities, nearly

instantaneous changes have been observed in response to heat-

waves (Wernberg et al., 2016), whereas forest decline in relation to

gradual warming has been observed on a decadal scale (Krumhansl

et al., 2016). Such regime shifts from macroalgal forests to less pro-

ductive and diversified alternative states dominated by turf-forming

algae or barren habitat are increasingly documented worldwide (Fil-

bee-Dexter & Scheibling, 2014; Ling, Johnson, Frusher, & Ridgway,

2009; Strain, Thomson, Micheli, Mancuso, & Airoldi, 2014; Wernberg

et al., 2016). Similarly, seagrass cover is a sensitive indicator of glo-

bal change because seagrass productivity and diversity are closely

related to its areal coverage, density and biomass. These provide reli-

able proxies for other associated species and ecosystem processes

of interest to conservation, management and fisheries. Field mea-

surements of seagrass cover, density and biomass, are relatively

straightforward (Short et al., 2006), but since some seagrass beds

are also visible from various remote sensing platforms, methods are

under active development to increase accuracy of seagrass measure-

ment via satellites and drones (Hossain, Bujang, Zakaria, & Hashim,

2015). Lastly, mangroves are considered an important contributor to

the blue economy (Aburto-Oropeza et al., 2008), but although histor-

ical estimates and an atlas of mangrove cover include local status

and important species information (e.g., Friess & Webb, 2014; Spald-

ing, 2010), they are snapshots using aggregated data from regional

or national studies. More often, these studies lack the high spatial

and temporal granularity or an agreed measurement method, limiting

our understanding of biodiversity, functionality, carbon stocks and

conservation associated with mangroves. Remote sensing technology

is helping to estimate mangrove cover at a worldwide scale; how-

ever, these can be limited without onground validation (McOwen

et al., 2016) to clarify species composition and status, and even the

value of good satellite coverage is limited if no one is paying atten-

tion (Duke et al., 2017).

Essential Ocean Variables are interdependent across trophic

levels and ecosystems. These ecosystems are complex with nonlinear

dynamics that can experience regime shifts (Fogarty, Gamble, & Per-

retti, 2016; Rocha, Yletyinen, Biggs, Blenckner, & Peterson, 2014),

but there is already evidence that some of the proposed EOVs can

capture these dynamics. For example, macroalgal canopy cover decli-

nes as a nonlinear function of grazing pressure and in response to

multiple anthropogenic perturbations. Transitions from macroalgal

forests to barren habitat or algal turfs are increasingly documented

worldwide (Filbee-Dexter & Scheibling, 2014; Strain et al., 2014).

Studies integrating observations, models and experiments have

shown that macroalgal canopy cover can detect these catastrophic

transitions and that early warning indicators can effectively anticipate

the approaching tipping point (Benedetti-Cecchi, Tamburello, Maggi,

& Bulleri, 2015; Ling et al., 2009; Rindi, Dal Bello, Dai, Gore, & Bene-

detti-Cecchi, 2017), therefore, using macroalgal canopy cover as an

early warning system in marine coastal environments is a realistic

prospect. The ability to detect nonlinear responses will also depend

on sampling resolution in time and space, and improved methods of

statistical analysis that can use data in an unaggregated form (Foster

et al., 2014). Other factors to consider as well are the number of

associated (and fit for purpose) physical and biogeochemical variables

being sampled concomitantly, the strength of the signal and the com-

plexity of the ecosystem (Metcalf, van Putten, Frusher, Tull, & Mar-

shall, 2014), among others. These will vary considerably across EOVs.

We have discussed the scientific applications of the EOVs and

how they are increasingly relevant for policy and to guide future

management. Some of these EOVs, specifically plankton and those

related to coastal habitats, are already being proposed as ECVs under

the GCOS framework (WMO, 2016). In physical oceanography,

essential variables (e.g., temperature) have been collected globally in

a standardized manner providing valuable input to the IPCC. At pre-

sent, there are no biological standards used globally even for well-

known important ecosystems as coral reefs. One of the major roles

of the global observing system will be to join forces with the observ-

ing networks (e.g., the GCRMN) to develop standard methods and to

help raise their profile to support national and global reporting.

An emerging EOV is microbial diversity, function and biomass.

While microbe-related variables ranked low on societal impact due

to the comparatively small number of papers linking microbial

science to societal drivers and pressures, ocean microbiome research

has pointed towards their use as indicators of ecosystem stress (Sun,

Dafforn, Brown, & Johnston, 2012). Significant progress has also

been made in understanding their seasonality, habitat-consistency

and role in biogeochemical processes in the ocean and as primary

producers (Moran, 2015). The Census of Marine Life program made

a major contribution to catalogue and quantify the diversity of
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microbes in the ocean through the International Census of Marine

Microbes (ICoMM) project (Amaral-Zetler et al., 2010). More

recently, the Tara Oceans Expeditions have contributed significantly

to the global knowledge of marine microbial communities by having

created a dataset with more than 7,200 gigabytes of metagenomic

data from a broad range of locations and depths across the global

ocean (Sunagawa et al., 2015). At least 30% of the programs we sur-

veyed carry out some type of microbial measurement, but few of

them are currently prepared to do it at large scales (e.g., Tara

Oceans, the Australian Integrated Marine Observing System—IMOS).

A recent inventory indicated that there are more than 70 microbial

or marine genomic observatories around the world and pointed out

for the need of more coordinated efforts to maximize the collective

efforts (Buttigieg et al., 2018). As “meta-omics” technologies are fur-

ther refined and made more easily available globally and as auto-

mated energy-efficient samplers and processors can be added to

existing sampling platforms, monitoring the ocean microbiome and

its attributes will become a powerful tool to understand environmen-

tal effects on biodiversity (Bodrossy, 2015; Pomeroy et al., 2007).

4.2 | Challenges of global implementation of the
EOVs

By focusing initial efforts on a small number of essential variables

that are well specified, the GOOS EOVs provide a means to promote

and facilitate networking, data standardization and consistent report-

ing, thereby raising their societal impact and relevance. As new tech-

nologies and new platforms are developed and more networks that

build on existing national and regional observing programs are incor-

porated in the global observing system, EOVs will be revisited and

their technical specifications will evolve. The emerging microbe EOV

will be an example of this evolution. Implementing a global observing

system of biological variables will face many logistical, technical and

conceptual challenges. Some of these will be to: (1) achieve stan-

dardization of the measurements, or at least intercomparability of

the data, (2) develop scientific and technical innovations that are bal-

anced with long-term stability, (3) have the commitment from the

international community to support the cost of the observing system

and a clear strategy to develop capacity and transfer technology to

where it is most needed, and (4) help to integrate experiments,

observation and modelling into the observing system. The integra-

tion of models across the environmental, social and economic dimen-

sions and strengthening the data capacity by improving data

collection, storage and analysis technologies has been proposed to

overcome some of these challenges (Addison et al., 2017). This will

require standardizing methodologies for indicators and increasing

data analysis and computing capacity (software, hardware and con-

nectivity) in the developing world while encouraging international

data publication standards and open data (Miloslavich et al., 2016).

Integrating manipulative experiments with monitoring will provide

additional insight on species-specific physiological adaptation mecha-

nisms and suggest new hypothesis which, coupled with modelling,

will result in better predictions of future shifts (Boyd et al., 2016).

The examples provided above illustrate the flexibility of EOVs to test

theories and hypotheses relevant to ocean conservation through the

integration of observations, models and experiments. While most of

the proposed EOVs are part of ongoing monitoring programs to

detect broad-scale trends, they are also suitable to experimental

manipulation and more process-based studies to identify the under-

lying factors causing those trends. The distributed experimental

approach, where local-scale experiments are embedded in large-scale

sampling activities, is a strategy to integrate observational and exper-

imental data (Hewitt, Thrush, Dayton, & Bonsdorff, 2007; Menge

et al., 2002). In addition, emerging techniques such as Empirical

Dynamic Modelling, offer new opportunities to integrate models

with observations (Clark et al., 2015; Sugihara et al., 2012; Ye et al.,

2015). These techniques improve our ability to detect causality in

complex ecosystems and can be implemented with short, spatially

replicated time-series, which are available and can be maintained for

all the proposed EOVs.

International collaboration will be essential in integrating and

coordinating these different scaled approaches (Duffy et al., 2013;

Lu et al., 2015). A significant first step in this direction is the

signed agreement between GOOS, the Ocean Biogeographic

Information System (OBIS) and the MBON of GEOBON (http://

www.iobis.org/documents/GOOS-BioEco-OBIS-GEOBON-MBON_

collaboration_SIGNED.pdf). This collaboration is intended to build

a unified, globally consistent and sustained observing system, com-

mitted to open access and data sharing, that will enhance current

existing observation scopes and capacities; make use of the best

available resources; implement best practices and international

standards; and enhance global capacity. While this is a major step

forward, it is still not enough. Establishing and/or strengthening

collaborations with the proliferating number of ocean stewardship

initiatives as well as ensuring the collaboration and commitment

from governments and increasing public and policy awareness on

the benefits of ocean observations will be the next required

steps.

4.3 | Building an integrated, multidisciplinary GOOS

We have discussed the relevance of the EOVs to assess and detect

spatial and temporal changes in marine biodiversity and ecosystems

matched with societal needs. The next step will be their implementa-

tion. For implementation to succeed, this global observing system

needs to: (1) be multidisciplinary and based on best practices, (2)

build on existing observing platforms, and (3) strengthen and expand

the current capacities. Measuring biological EOVs in conjunction

with the other GOOS physical and biogeochemical EOVs will help

characterize the interplay and dependence between the biological,

chemical, physical and geological properties of the environment. This

multidisciplinary approach is key to comprehensively understand the

variety of effects of global change at different spatial and temporal

scales across taxonomic groups and ecosystems (O’Brien et al.,

2017). Many platforms that have traditionally focused on physical

observations can be expanded to include biogeochemical and
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biological observations. Likewise, many biological observations are

accompanied by physical measurements that can also have use to

the physical oceanographic community (e.g., animal telemetry; Hus-

sey et al., 2015). An opportunity to strengthen the interaction

between biological and physical and biogeochemical platforms could

clearly be through the CPR program. The CPR time-series is unique

not only for being one of the longest biological time-series in the

ocean, but also because it was built using the same piece of sampler

gear that is still considered technically excellent. At present, CPR

deployment is being extended to further platforms, including some

traditionally used only for physical sampling and discussions are

underway to study the feasibility of installing biogeochemical sensors

(e.g., for oxygen) to take measurements along with the CPR tows

(Palacz et al., 2017).

Building and expanding on existing multiple observing programs

and establishing alliances with global sampling platforms and/or

long-term programs such as GO-SHIP (http://www.go-ship.org/),

OceanSITES (http://www.oceansites.org/), GEOTRACES (http://

www.geotraces.org/) and to emerging observing programs (e.g., the

Deep Ocean Observing Strategy— http://www.deepoceanobserving.

org/) among others, will be of utmost importance.
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