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32 Abstract

33 American lobster (Homarus americanus) supports one of the most valuable regional 

34 fisheries in the United States, with its abundance and distribution profoundly influenced by 

35 environmental conditions. To explain how lobster distribution has changed over time and      

36 assess the role of environmental variables on these changes, we used random forest classification 

37 and regression trees models to estimate occupancy and biomass in two seasonal periods. The 

38 occupancy models were fit to static and dynamic variables, which yielded model fits with AUC 

39 scores of 0.80 and 0.78 for spring and fall, respectively. Biomass models were fit with the same 

40 data and resulted in models explaining 61 and 63% of the spring and fall biomass variance, 

41 respectively. Significant variables scored in the formation of the regression trees were secondary 

42 productivity (i.e. zooplankton), bathymetry characteristics, and temperature. American lobster 

43 suitable habitat has changed regionally; habitat has increased in the Gulf of Maine and declined 

44 in Southern New England. There is also evidence of declining habitat along the inshore margin 

45 of the Gulf of Maine, which has been accompanied by a shift in occupancy probability offshore. 

46 Habitat suitability results from the random forest models provide insights on the structure and 

47 function of lobster habitat and context to understand recent population trends.

48 Key words: American lobster, Random Forest, suitable habitat, temperature, secondary 

49 productivity, front, Northeast U.S. Shelf
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57 American lobster (Homarus americanus) is widely distributed over the Northeast U.S. 

58 Continental Shelf (hereafter referred to as the Northeast U.S. Shelf) where it supports the most 

59 valuable single-species fishery in the United States (NOAA, 2017). A recent assessment 

60 highlighted the disparity between the two separate lobster stocks, with the Gulf of Maine-

61 Georges Bank (GOM/GBK) stock reaching record high abundances while the Southern New 

62 England (SNE) stock declining to all-time low abundances (ASMFC, 2015). While commercial 

63 harvest has influenced population abundances through time, environmental and ecosystem 

64 changes have contributed to the recent stock dynamics (ASMFC, 2015). A combination of 

65 conservation measures and favorable environmental conditions lead to dramatic increases in 

66 landings in the GOM/GBK lobster fishery, but deficient conservation measures and unfavorable 

67 environmental conditions led to a collapse of the SNE lobster fishery (Le Bris et al. 2018). To 

68 effectively provide advice on sustaining lobster populations and maintaining the viability of the 

69 commercial lobster fishery, understanding the environmental impacts on American lobster and 

70 its habitat are imperative.

71 Temperature is perhaps the most prominent environmental forcing factor on American 

72 lobster and in defining its habitat. American lobster migration has been linked to water 

73 temperatures, which contributes to a lobster’s ability to successfully molt, mate, and extrude eggs 

74 (Cooper & Uzmann, 1971; 1980). Increased temperatures have been associated with more 

75 frequent molts, reduced intermolt increments, smaller sizes to reach sexual maturity (Little and 

76 Watson, 2005; McMahan et al., 2016), and faster and earlier egg development and hatching 

77 (Goldstein and Watson, 2015). Lobsters partition spatially by size and sex (Karnofsky et al., 

78 1989; Campbell, 1990), with these segregations attributed to their differing responses to 

79 environmental factors such as temperature and depth (Chang et al., 2010). 

80 In the Northeast U.S. Shelf, ocean temperatures have increased significantly over the last 

81 several decades (Friedland and Hare, 2007; Pershing et al., 2015; Kavanaugh et al., 2017). The 

82 change in temperature is associated with changes in American lobster population size and 

83 distribution, with both centers of lobster biomass and fisheries landings shifting northeast since 

84 the 1970s (Pinsky and Fogarty, 2012). Projections of increasing temperatures over the next 

85 century (Saba et al., 2016) suggest that temperature will continue to have an impact on critical 

86 American lobster life history traits and the anticipated distribution of thermal habitat for lobster 

87 (Fogarty et al., 2007; Chang et al., 2010; Tanaka and Chen, 2015; Tanaka and Chen, 2016; 
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88 Georgas et al., 2016; Rheuban et al., 2017; Goode et al., 2019). Warming water conditions may 

89 have a disproportionate effect on lobster at the southern end of their latitudinal range due to 

90 impacts on their life history. At temperatures nearing 20ºC, increased physiological stress, 

91 increased prevalence of lobster epizooitic shell disease, and decreased immune function can lead 

92 to increased rates of natural mortality (Steenbergen et al., 1978; Dove et al., 2005; Pearce and 

93 Balcom, 2005; Glenn and Pugh, 2006; Wahle et al., 2009; Steneck et al., 2011; Barris et al., 

94 2018). 

95 Several other environmental and oceanographic factors affect lobster life history and 

96 contribute to the definition of lobster habitat. Lobsters are associated with benthic structure 

97 including rocks, cobble, boulders, and ledge that they use to shelter, particularly during larval 

98 settlement and following life stages (Lawton and Lavalli, 1995). Suitable settlement habitat has 

99 often been considered a significant contributor to recruitment success and may impose 

100 limitations on year class size (Wahle and Steneck, 1991; Wahle and Steneck, 1992). 

101 Productivity variables, which are not often accounted for in habitat evaluations, may also 

102 serve an important role in defining lobster habitat and influence recruitment. The Northeast U.S. 

103 Shelf ecosystem has undergone decadal changes in zooplankton community composition and 

104 spatial structure (Pershing et al., 2010; Morse et al., 2017), with zooplankton abundance 

105 variability linked to finfish stocks’ recruitment (Perretti et al., 2017) and larval habitat suitability 

106 (McManus et al., 2018). For adult marine fauna, correspondence between their abundance and 

107 zooplankton often highlight the reliance on productive regions and the oceanographic conditions 

108 that support them (Sheldon et al., 1977). Ocean fronts associated with water temperature and 

109 density may play an important role in structuring lobster habitat (Belkin et al., 2014) through 

110 defining regions of enhanced productivity and pelagic to benthic coupling that support      

111 increased growth and foraging opportunities (Bakun, 2006). Fronts likely contribute to suitable 

112 habitat for a range of species and subsequently increasing prey-predator interactions and feeding 

113 opportunities for lobster (Mugo et al., 2014). This interaction may be reflected in the diet of adult 

114 lobsters, which includes prey such as mussels, gastropods, macroalgae, polychaetes, and 

115 amphipods (Sainte‐Marie and Chabot, 2001). To date, food availability for older lobsters has not 

116 been considered a limiting factor in their abundance and distribution.

117 Species distribution models (SDMs) have been useful tools for identifying an organism’s      

118 potential habitat range, prioritizing areas for conservation and management decisions, and 
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119 evaluating survey designs (Guisan & Thuiller, 2005; Elith and Leathwick, 2009; Bacheler et al., 

120 2016). American lobster life history and habitat have been the subject of hindcast and forecast 

121 models for various portions of the Northeast U.S. Shelf using bioclimate envelope models, 

122 generalized additive models, and additional analytics (Chang et al., 2010; Tanaka and Chen, 

123 2015; Tanaka and Chen, 2016; Kleisner et al., 2017; Tanaka et al., 2017; Morley et al. 2018; 

124 Tanaka et al., 2018). However, previous studies have evaluated a rather narrow scope of 

125 variables and, aside from Kleisner et al. (2017) and Morley et al. (2018), isolated their inferences 

126 to fine scale areas that do not evaluate change over the entire Northeast U.S. Shelf. Furthermore, 

127 prior studies have not provided a comparative analysis of variable contribution. 

128 We implemented random forest (RF) ensemble models (Cutler et al. 2007) to identify the 

129 environmental factors that correspond to lobster presence and abundance. The RF models were 

130 then used to predict spatio-temporal lobster distribution to understand how lobster suitable 

131 habitat has changed through time for both U.S. stocks. The resulting time series habitat indices 

132 describe changes in the lobster abundance through time and help guide future ecosystem 

133 considerations for lobster fishery management. Using a suite of marine ecosystem descriptors, 

134 we aimed to help form hypotheses for future studies focusing on mechanistic relationships 

135 between lobsters and their habitat.

136 Methods and Materials 

137 This study is based on a series of SDMs, created with RF models, for dominant species in 

138 the U.S. Northeast Shelf (Friedland et al. 2020). Details for sources of variables in this study are 

139 provided in the respective sections below. 

140 Data collection

141 Lobster data

142 The response variables were occurrence and catch-per-unit-effort of American lobster      

143 from the Northeast Fisheries Science Center’s (NEFSC) fishery-independent bottom trawl survey 

144 within federal waters of the Northeast U.S. Shelf. The survey has been conducted in the spring 

145 since 1968 and the fall since 1963 using a stratified random design, which provides both spatial 

146 and temporal depictions of fish and macroinvertebrate abundances (Grosslein, 1969). Catches 

147 were standardized for various correction factors related to vessels and gears used in the time 

148 series (Miller et al. 2010), following the methods of Friedland et al. (2020). These data are from 
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149 the NEFSC fishery-independent bottom trawl survey available from the InPort NMFS Data 

150 Management Program (https://inport.nmfs.noaa.gov/inport/).

151 Explanatory variables

152 The independent or explanatory variable set included bathymetry, productivity, and 

153 climate variables (Table A1). Several explanatory variables were used to describe lobster habitat 

154 and develop hypotheses that can be tested in future studies focusing on mechanistic relationships 

155 in lobster habitat. Static variables were kept constant over all years, whereas dynamic variables 

156 varied annually. Station data included observations made contemporaneously to survey stations. 

157 Prior to fitting the models, the independent variable set was first tested for 

158 multicollinearity among the explanatory variables (R package rfUtilities, version 2.1-3), and 

159 strongly correlated covariates were removed from the analysis (threshold: p=0.1), following the 

160 methods of Murphy et al. (2010). From the reduced set of explanatory variables, the final model 

161 variables were selected utilizing the model selection criteria of Murphy et al. (2010) as 

162 implemented in ‘rfUtilities’. This includes removing multivariate redundant variables using qr 

163 matrix decomposition. Removing redundant variables improves the biological interpretability 

164 and predictive power.

165 Climate

166 Surface and bottom water temperature and salinity were used as dynamic abiotic 

167 variables in the analysis. These data were collected contemporarily to each tow with 

168 Conductivity/Temperature/Depth (CTD) instruments. The data are from the NEFSC survey 

169 temperature and salinity data from the National Center for Environmental Information 

170 (https://www.nodc.noaa.gov/oads/stewardship/data_assets.html).Temperature and salinity data 

171 for model predictions were based on an interpolation procedure described in Friedland et al. 

172 (2019). This procedure combines a kriged interpolation of the annual data with climatological 

173 data to estimate complete temperature and salinity fields. This approach was favorable since it 

174 preserved the observational nature of the data and kept it as close as possible to the data used in 

175 the habitat model fits. 

176 Sea surface temperature (SST) from remote sensing sources were summarized as monthly 

177 means with their associated gradient magnitude or frontal fields, and applied in the habitat 

178 models as static variables. There are many methods used to identify oceanographic fronts (e.g. 

179 Belkin and O'Reilly, 2009) that often apply a focal filter to reduce noise and then identifies 
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180 gradient magnitude with a Sobel filter. These calculations were conducted in R using the raster 

181 package (version 2.6-7) by applying a three by three mean focal filter and a Sobel filter to 

182 generate x and y derivatives, which were then used to calculate gradient magnitude. This indexes 

183 the annual cycle, and all the available monthly variables, after removing collinear and redundant 

184 variables, were used in each of the seasonal models. These monthly variables were averages of 

185 the monthly concentrations or fronts from all years in the time series. Monthly SST fields were 

186 based on the 4 km MODIS Terra sensor data. These data are from the Ocean Color website 

187 (https://oceancolor.gsfc.nasa.gov/).

188 Bathymetry

189 Bathymetry variables represented a series of static variables that reflect the shape and 

190 complexity of the benthic environment. Depth of the station (in meters) was used as a static 

191 variable in the analysis. The observed depth made with each survey tow was used in model 

192 fitting, whereas model predictions were based on depths from the ETOPO1 

193 (https://www.ngdc.noaa.gov/mgg/global/) dataset, which provided Northeast U.S. Shelf 

194 bathymetry at a resolution of 0.0167° (Fig A1).

195 Most of the other bathymetry variables were based on depth measurements, including the 

196 complexity, bathymetry position index (BPI), vector ruggedness measure (VRM), profile 

197 curvature at 2, 10, and 20 km, slope at 2, 10, and 20 km, slope of the slope at 2, 10, and 20 km, 

198 rugosity, and seabed topography variables (Table A1). Complexity represented the difference in 

199 elevation values from a center cell and the eight cells immediately surrounding it. Each of the 

200 different values were squared and then averaged. The index was the square root of this average 

201 (Riley et al., 1999). BPI was a second order derivative, which compares the depth and slope 

202 values at a location to those at neighboring locations, of the bathymetry using the Nature 

203 Conservancy Northwest Atlantic Marine Ecoregional Assessment (NAMERA) data with an inner 

204 radius of 5 and an outer radius of 50 (Lundblad et al., 2006). VRM measured terrain ruggedness 

205 as the variation in three-dimensional orientation of grid cells within a neighborhood based on the 

206 TNC NAMERA data (Hobson, 1972; Sappington et al., 2007). Rugosity measured small-scale 

207 variation of amplitude in the height of a surface, the ratio of the real to the geometric surface area 

208 (Friedman et al., 2012). Seabed topography is a measure that combines seabed position and slope 

209 (Anderson et al., 2010). Benthic profile curvature, slope, and slope of slope at 2 km, 10 km and 

210 20 km spatial scales were also derived from depth data (Winship et al., 2018). The vorticity 
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211 variable was based on benthic current estimates and is at a 1/6 degree (approximately 19 km) 

212 spatial scale (Kinlan et al., 2016). Soft sediment was based on grain size distribution from the 

213 USGS usSeabed: Atlantic coast offshore surficial sediment data (Anderson et al., 2010). Aside 

214 from the bathymetry variables derived from depth, these variables’ data were from Northeast 

215 Ocean Data (http://www.northeastoceandata.org/), or National Centers for Coastal Ocean 

216 Science (https://coastalscience.noaa.gov/project/statistical-modeling-marine-bird-distributions/).

217 Productivity

218 Productivity was incorporated into the model as both primary and secondary levels of 

219 production in the marine ecosystem. Chlorophyll concentration from remote sensing sources 

220 were summarized as monthly means with their associated gradient magnitude or frontal fields 

221 and applied in the habitat models as static variables. These chlorophyll concentration and frontal 

222 field variables represented seasonal primary productivity cycles. After removing collinear and 

223 redundant variables, all the available monthly chlorophyll variables were tested in each of the 

224 seasonal models. Chlorophyll concentration measurements were based on the 4 km data from the 

225 Sea-viewing Wide Field of View Sensor (SeaWiFS), Moderate Resolution Imaging 

226 Spectroradiometer on the Aqua satellite (MODIS), Medium Resolution Imaging Spectrometer 

227 (MERIS), and Visible and Infrared Imaging/Radiometer Suite (VIIRS) sensors during the period 

228 1997-2016. These data represented a merged product using the Garver, Siegel, Maritorena Model 

229 (GSM) algorithm obtained from the Hermes GlobColour website. These four sensors provided 

230 an overlapping time series of chlorophyll concentration during the period and were combined 

231 based on a bio-optical model inversion algorithm (Maritorena et al., 2010). From these data, 

232 mean monthly fields were generated for chlorophyll. Gradient magnitudes of these data were 

233 calculated in the same manner as with the habitat data as described above. These data are from 

234 the Hermes GlobColour website (http://hermes.acri.fr/index.php).

235 Zooplankton abundance was used as a dynamic variable measured by the NEFSC 

236 Ecosystem Monitoring Program (EcoMon), which conducts shelf-wide bimonthly surveys of the 

237 Northeast U.S. Shelf ecosystem (Kane, 2007), and the MArine Resources Monitoring, 

238 Assessment, & Prediction program (MARMAP), which conducted similar surveys before 

239 EcoMon (data available at https://accession.nodc.noaa.gov/0187513). Zooplankton and 

240 ichthyoplankton were collected throughout the water column to a maximum depth of 200 m 

241 using paired 61-cm Bongo samplers equipped with 333-micron mesh nets. Sample location in 
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242 this survey was based on a randomized strata design, with strata defined by bathymetry and 

243 along-shelf location. Plankton taxa were sorted and identified. In this study, zooplankton 

244 represents a proxy for secondary productivity as opposed to representing a direct relationship 

245 between zooplankton and adult and juvenile lobsters. This is because lobsters at the life stages 

246 represented in the trawl survey catch do not feed on zooplankton, because they are not in early 

247 life stages. We used the log of the abundance (number per 100m3 of water filtered) of each of the 

248 18 most abundant taxonomic categories as potential explanatory variables, and we also used the 

249 total bio-volume of all taxa (displacement volume in ml per 100m3 of water filtered) as a 

250 potential explanatory variable. Biovolume is the settled volume of plankton per water volume 

251 sampled (mm3/m3). It is measured by estimating the total volume of plankton in the sample jar. 

252 The zooplankton sample time series had some missing values which were ameliorated by 

253 summing data over five-year time steps so that the current year is centered and interpolated into a 

254 complete field using ordinary kriging, following the methods from Friedland et al. (2020). For 

255 example, the data for spring 2000 would include the available data from 1998-2002 tows. 

256 Data analysis

257 Random forest approach 

258 RF is an ensemble model approach based on combinations of large sets of decision trees 

259 (Breiman et al., 1984). Tree models such as RF provide powerful predictive power with many 

260 explanatory variables (Cutler et al., 2007), yet perhaps the greatest benefit of these models is 

261 they largely ignore non-informative predictors, but predictor selection is still important given 

262 redundant predictors increase variance and reduce model performance (Elith et al., 2008). Other 

263 benefits of tree models include resistance to overfitting, ability to identify interactions, and 

264 overall flexibility (Elith et al., 2008). In this technique, the learning sample is divided in two by 

265 maximizing the homogeneity in the two resulting child nodes, which is done with an algorithm 

266 known as binary recursive partitioning. RF trees are grown by selecting a random bootstrap 

267 subset of the original dataset and a random set of explanatory variables (Liaw and Wiener, 

268 2002), which is different from the process in standard decision trees, where all explanatory 

269 variables are used. Within the subset, the partitioning starts with the most important variable and 

270 ends with the least important variable. 

271 Occupancy and biomass habitat models
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272 Occupancy and biomass habitats for lobster were estimated with RF decision tree models 

273 using the aforementioned static and dynamic explanatory variables. The effect of bathymetry, 

274 productivity, and climate factors on variation in species presence or absence and biomass were 

275 tested. Models were constructed separately for spring and fall seasons. The spring and fall 

276 seasons were based on the timing of the offshore survey, which varied slightly over time. The 

277 modeling domain focused on the Northeast U.S. Shelf and upper slope, latitudinally extending 

278 from the states of North Carolina to Maine. Occupancy models were fit as two-factor 

279 classification models (absence as 0; presence as 1) using the ‘randomForest’ R package (version 

280 4.6-14). Biomass models were also fit using the same package with log10 transformed biomass-

281 per-unit-effort plus one (fall biomass: mean=0.228, sd=0.4, spring biomass: mean=0.180, 

282 sd=0.353) as the response variable and the same starting set of explanatory variables as in the 

283 occupancy models. The number of trees was set to 200, and the number of variables randomly 

284 sampled as candidates at each split was the square root of the total number of variables for the 

285 occupancy models, and the total number of variables divided by three for the biomass models.                  

286 Habitat was estimated from the model fits over a standard 0.1° grid, which circumscribes 

287 the range of ecosystem assessment areas in the region (Figure 1) and a wide range of habitats 

288 with varying oceanographic conditions (Townsend et al., 2006). The grid represented limited 

289 extrapolation into the inshore areas of the Northeast U.S. Shelf not exceeding one grid cell 

290 beyond the observed data. The length of the time series of model fits was constrained by the 

291 shortest dynamic variable time series to meet the requirement of complete cases in the RF fitting. 

292 As such, the fitting time series was constrained to 1992 – 2017, corresponding to the length of 

293 the station salinity data. 

294 Model selection criteria and variable importance

295 The habitat models were evaluated for fit based on out-of-bag classification accuracy. For 

296 occupancy model accuracies, AUC (Area Under the Receiver Operating Characteristic      Curve) 

297 and Cohen’s Kappa were calculated using the “irr” R package (version 0.84) (Gamer et al., 

298 2012). The AUC assumes a threshold of classification probability of 0.5. For biomass models, 

299 the variance explained by the model, mean absolute error, root mean square error, and bias were 

300 calculated using the “Metrics” R package (version 0.1.3). To evaluate variable importance in 

301 both occupancy and biomass models, the number of times a variable was the root variable, or the 

302 variable at which the whole sample is divided into two (the first variable in the tree), were 
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303 plotted against the mean minimum node depth for the variable, highlighting the top 10 important 

304 variables (“randomForestExplainer” R package, version 0.9). For occupancy models, Gini index 

305 decreases were plotted against accuracy decreases, whereas node purity increases versus MSE 

306 increases were plotted for the biomass models, highlighting the top 10 most important variables. 

307 These presentations allowed for calculating and visualizing variable importance under different 

308 criteria.

309 Visualizations     

310 Three types of visualizations were created from the model output. The first visualization 

311 provided the average probability of occupancy over the ecosystem, accompanied by the rate of 

312 change in occupancy probability as a Sen slope, which represented the median of the slopes of 

313 all lines through pairs of points. The nonparametric Sen slope is less vulnerable to single values. 

314 The second visualization provided the gradient magnitude of occupancy probability over the 

315 ecosystem, or frontal strength of this habitat measure, also accompanied by the rate of change in 

316 occupancy gradients as a Sen slope. Gradient magnitudes of these output data were calculated in 

317 the same manner as with the habitat data as described above. The third visualization provided 

318 average biomass habitat over the ecosystem, also accompanied by the rate of change in biomass 

319 habitat as a Sen slope. Trends in total occupancy habitat area in each ecoregion (GOM, GBK, 

320 and SNE), delimited by threshold occupancy probabilities of 0.25, 0.50, and 0.75 over time, were 

321 calculated, as well as the sum of the area with occupancy probabilities above each probability 

322 during each year. 

323 Results

324 Model diagnostics 

325 Although both occupancy models were accurate, the spring model was better fitting than 

326 the fall model (Table 1). The AUCs indicated that all models performed better than random 

327 classifications. The spring model had a better rate of successful classification than the fall model. 

328 The Kappa statistics indicated that spring and fall occupancy models showed substantial and 

329 moderate agreements, respectively. For biomass, the RF models explained between 60.9% to 

330 63% of the variance (Table 2). The spring biomass model had a smaller error and bias than the 

331 fall biomass model. 

332 Variable importance
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333 A variety of climate, bathymetry, and productivity variables were significant and 

334 included in the spring and fall models (Table A1). Bottom water temperature, BPI, depth, several 

335 secondary productivity variables, and SST fronts were important variables (Figure 2; Figure 3). 

336 Bottom water temperature was a highly important variable for fall, and more for the occupancy 

337 model than for the biomass model. In the spring, SST fronts were more important than in the fall, 

338 especially for occupancy (Figure 2 a and b and Figure 3 a and b). Bathymetry variables were 

339 more important for occupancy in the spring than in the fall. Chlorophyll fronts were more 

340 important than SST fronts in the fall, and SST fronts were more important than chlorophyll 

341 fronts in the spring. Zooplankton taxa Chaetognaths, Centropages typicus, Paracalanus parvus, 

342 and Calanus finmarchicus were particularly important for occupancy and biomass models in the 

343 spring, followed by bathymetry variables (Figure 2 c and d). Secondary productivity was 

344 consistently more influential and significant than primary productivity in the spring. Secondary 

345 productivity variables were also important in the fall occupancy model, followed by bathymetry 

346 variables (Figure 3 a and b). Metridia lucens, Appendicularians, Pseudocalanus spp., and 

347 Centropages hamatus had especially strong influences in the fall. Productivity variables were 

348 also very important for fall biomass, while bathymetry variables were not as important for fall 

349 biomass as they were for fall occupancy (Figure 3 c and d). 

350 Of the most important variables, lobster occupancy was negatively related to depth, slope 

351 at 2 km, and Metridia lucens. Lobster occupancy had nonlinear relationships and optimal ranges 

352 with values of November SST front, December SST front, BPI, March chlorophyll 

353 concentration, Chaetognatha, Paracalanus parvus, Calanus finmarchicus, Pseudocalanus spp., 

354 Gastropoda, Appendicularians, and bottom water temperature. Lobster occupancy was positively 

355 related to Centropages typicus and Salpa (Fig. A1 - A10; A21- A29). Lobster biomass decreased 

356 with SST, December SST front, Chaetognatha, Paracalanus parvus, Calanus finmarchicus, 

357 Appendicularians, and Centropages typicus. Lobster biomass had nonlinear relationships and 

358 optimal ranges with values of November SST front, December SST front, BPI, September 

359 chlorophyll concentration, Penilia spp., and Gastropoda. Lobster biomass increased with depth, 

360 June chlorophyll concentration, July chlorophyll concentration, October chlorophyll front, 

361 Temora longicornus, Centropages hamatus, and Pseudocalanus spp. Lobster biomass increased 

362 and then decreased with bottom water temperature (Fig. A11- A20; A30- A41). Values of these 

363 important dynamic variables varied overtime (Fig. A42- A54).
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364 Predicted area occupied and biomass

365 Lobster distribution varied across space, with greater occupancy and biomass predicted 

366 for GOM and GBK than SNE. Lobster habitat occupancy probabilities were greatest (probability 

367 > 0.50) for inshore GOM, off the coast of southern Nova Scotia, and offshore SNE (Figure 4 a 

368 and c). All models predicted low occupancy in offshore southern GOM. In the fall, the 

369 occupancy was concentrated near inshore areas, whereas it was more diffused into offshore areas 

370 in the spring. However, the occupancy probability area in offshore SNE was higher in the fall 

371 than in the spring. Off the coast of Massachusetts, more areas were predicted to be found with 

372 lobster in the fall than in the spring as well. 

373 Occupancy habitat scores increased through time in most of the offshore GOM and some 

374 portions of SNE and declined in the inshore GOM and most of SNE (Figure 4 b and d). The 

375 greatest negative change in occupancy was in the northern and inshore region of SNE. The 

376 greatest positive change in occupancy was in the offshore GOM. In the spring, there was more of 

377 a positive change in the center of the GOM than in the fall. The greatest negative change in 

378 occupancy for the fall was in the northern part of SNE and GBK. More of the inshore GOM had 

379 a negative change in occupancy in the fall than in the spring. 

380 The total area with 25% or greater probability of occupancy varied over time and regions 

381 (Figure 5 a and b). In the GOM, the total area with 25% or greater probability of occupancy 

382 increased in the fall and varied with no trend in the spring. In GBK, the total area with 25% or 

383 greater probability of occupancy varied with no noticeable trend. In SNE, the total area with 25% 

384 or greater probability of occupancy varied with no noticeable trend in the spring and decreased in 

385 the fall. The total area with 50% or greater probability of occupancy increased greatly over time 

386 in the GOM and increased slightly in GBK (Figure 5 c and d). In SNE, the total area with 50% or 

387 greater probability of occupancy varied with no trend in the spring and decreased in the fall. At 

388 the beginning of the time series, the total area with 50% or greater probability of occupancy was 

389 lowest in the GOM compared to the other regions, but by the end of the time series, the total area 

390 was highest in the GOM. The total area with 75% or greater probability of occupancy increased 

391 greatly in the GOM but declined in recent years (Figure 5 e and f). In GBK and SNE, the total 

392 area with 75% or greater probability of occupancy varied over time in the spring and slightly 

393 decreased in the fall. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

394 Habitat frontal strength, or occupancy gradient magnitude, was large off the inshore 

395 GOM, around GBK, and in offshore SNE near the shelf break (Figure 6 a and c). In the fall in 

396 SNE, there was a larger shift in habitat front towards offshore near the shelf break than in the 

397 spring. The linear trend in the occupancy fronts was most positive in the offshore GOM and the 

398 most negative in the inshore GOM, indicating that the habitat front was moving offshore (Figure 

399 6 b and d). 

400 Spatial predictions of the models highlighted strikingly area-specific differences in 

401 biomass (Figure 7 a and c). Lobster biomass was predominantly concentrated near inshore GOM, 

402 including off the coast of southern Nova Scotia, and most of the predicted lobster biomass was 

403 off mid-coast Maine. The predicted biomass of the inshore GOM was much higher than the 

404 predicted biomass in any other area, with the highest predicted biomass in other areas being 

405 almost half of that in the inshore GOM. Biomass was much less in the offshore GOM and the 

406 whole area of SNE, although in SNE much of the lobster biomass was predicted to be offshore 

407 near the shelf break. There was more biomass in the offshore GOM in the spring than in fall, and 

408 biomass off Cape Cod and in GBK was greater in the fall than the spring. 

409 Changes in biomass were not necessarily aligned with changes in occupancy. Positive 

410 changes in biomass were pervasive in the GOM, especially off mid-coast Maine, and most of the 

411 negative change in biomass was in SNE (Figure 7 b and d). There were also some patches of 

412 positive changes in biomass in the southern region of SNE. In the spring, the most positive 

413 change in biomass was off midcoast Maine. In the spring, the rate of change was more similar 

414 over space in the GOM than it was in the fall. The most positive change the fall biomass was off 

415 the coast of Maine and Nova Scotia. There were also some negative changes in biomass on GBK 

416 and in some parts of the inshore GOM in the fall, as well as positive changes in biomass in the 

417 greater GOM region. These changes differ from the spring, in which there was less negative 

418 change on GBK and positive change in most of the inshore GOM. 

419 Habitat fronts produced from spatial predictions of the occupancy and biomass models 

420 corresponded to SST fronts (Figure 8). Strongest SST front probabilities in the spring and fall 

421 were most pronounced along the shelf break in SNE, followed by the inner shelf regions of SNE 

422 and GOM, and southwest GBK. Habitat fronts were strongest in the inner GOM and SNE, and 

423 offshore SNE, but spatially mismatched with SST front probabilities in GBK.

424 Discussion
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425 Trends in lobster habitat suitability

426 The RF models accurately described the changes in American lobster habitat over the 

427 Northeast U.S. Shelf. The models provide information on both lobster distribution and the 

428 environmental conditions associated with lobster occupancy. The habitat trends estimated for 

429 ecoregions corresponded to the declining and increasing population trends for the SNE and 

430 GOM-GBK stocks, respectively (ASMFC, 2015). Separating the GOM and GBK into two 

431 regions, as opposed to the unified stock region, allowed for acknowledging the oceanography 

432 differences between the two areas, as well as their differences in habitat suitability trends. Since 

433 1992, lobster habitat has declined and shifted offshore in SNE, and shifted offshore into deeper 

434 water in GOM-GBK. These patterns agree with previously reported decreasing habitats in SNE 

435 (Rheuban et al., 2017; Tanaka and Chen, 2015), offshore transitioning thermal habitats in the 

436 GOM-GBK (Rheuban et al., 2017), increased habitat suitability in the GOM (Tanaka and Chen, 

437 2016; Chang et al., 2010), and regional landings increasing in the north (NMFS, 2018).

438 Occupancy and biomass patterns differed in both the spring and fall, possibly indicating 

439 density-dependent habitat selection of American lobster. Both occupancy and biomass were 

440 highest off the coast of the GOM, peaking off the coast of the mid-Maine region, but there was a 

441 greater change in occupancy in the offshore GOM and even a negative change in occupancy in 

442 the inshore GOM, unlike the change in biomass. Lobsters are moving into areas that were 

443 previously less occupied or unoccupied, which may be attributed to the increase in biomass in 

444 the inshore GOM or an offshore shift in optimal thermal conditions (Tanaka and Chen, 2016), 

445 causing lobsters to spread out into more offshore areas. It has been repeatedly demonstrated that 

446 the spatial distribution of marine species expands with increases in abundance (Marshall and 

447 Frank, 1994; Petitgas, 1998; Anderson and Gregory, 2000), indicating density-dependent habitat 

448 selection where increases in population size lead to increases in competition, reduced habitat 

449 suitability and ultimately an expansion of occupied area (Fretwell and Lucas, 1970; MacCall, 

450 1990). The ideal free distribution theory describes that mobile individuals will select habitats that 

451 maximize their fitness (Fretwell and Lucas, 1970). Population abundance can affect demographic 

452 and life history characteristics of populations, such as dispersal (Fauchald et al., 2006), survival 

453 (Bjornstad et al., 1999; Hails and Crawley, 1992), and reproductive success (Burgess et al., 

454 2011). Future research should consider including a density-dependent variable into analyses of 

455 spatial distributions of lobster. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

456 Environmental drivers in predicted habitat

457             Although American lobster distribution has been extensively studied, the RF models 

458 provided additional insight on the effects of environmental factors on lobster abundance and 

459 distribution. Spatial-temporal variability in lobster abundance and distribution corresponded to 

460 both biological and physical oceanographic conditions. Although climate variables were 

461 important drivers of American lobster habitat, productivity and bathymetry variables had the 

462 greatest significance on lobster presence and biomass. These results suggest that productivity 

463 fronts, which correspond with SST fronts, are important for lobster habitat. To date, biotic 

464 variables such as chlorophyll concentration and zooplankton have not been included in lobster 

465 habitat models. Additionally, bathymetry variables have largely not been included. 

466 Environmental drivers

467 Climate drivers

468 Exact mechanisms driving habitat occupancy change are unclear but have been 

469 associated with increasing ocean temperatures. Ocean warming has led to a northward center of 

470 biomass shifts for many taxa (Pinsky et al., 2013), and the results for lobster biomass in this 

471 study agrees with this. Increased prevalence and severity of epizootic shell disease in the 

472 warming habitats of SNE (Steneck et al., 2011; Castro et al., 2006) have contributed to the 

473 collapse of southern lobster populations, which suggests that temperature has a large effect on 

474 habitat.

475 The influence of temperature was stronger and significant in the fall, with secondary 

476 productivity variables relevant in both seasons. Temperature’s profound impact on lobster life 

477 history makes it surprising that it was not the leading contributor to habitat suitability in the RF 

478 models in the spring. However, this finding should not negate or lessen the impact of 

479 temperature on lobster behavior, physiology and distribution, as temperature is anticipated to 

480 have further ramifications for the population in the future (Fogarty et al., 2007; Pinsky et al., 

481 2013). The variability of temperature during the spring trawl surveys may contribute to the 

482 model results. Additionally, during the timeframe of the spring trawl surveys, lobsters may not 

483 be actively migrating or moving since temperature may not have increased enough to stimulate 

484 movement. 

485 Bathymetry drivers
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486 Bathymetry, especially depth and BPI, played a large role in lobster habitat. However, the 

487 importance of bathymetry variables was often less than that of productivity and climate 

488 variables. Although shelter is important for lobsters, bathymetry may play a role more for 

489 smaller lobsters for refuge from predators than larger lobsters. As lobsters grow larger, they 

490 become more active and use shelter less often (Lawton and Lavalli, 1995). 

491 Productivity drivers

492 Although zooplankton taxa have been found to directly impact larval survival and 

493 recruitment for several fish stocks in the study region (Peretti et al., 2017), the importance of 

494 zooplankton taxa for lobster likely represents another important environmental condition that 

495 also relates to zooplankton. This study focuses on juvenile and adult lobster and not earlier life 

496 stages that may feed directly on zooplankton. Zooplankton biomass varies dynamically during a 

497 given year, which makes it difficult to relate zooplankton biomass collected at the time of the 

498 zooplankton surveys to lobsters in the spring and fall. However, averaging zooplankton biomass 

499 can be a proxy for productivity over time, as the chlorophyll variables were static. The 

500 zooplankton variables represent overall ocean productivity as opposed to a true predator-prey 

501 relationship. The relationship between adult and juvenile lobsters and zooplankton is probably 

502 not a direct relationship but lobster habitat is most likely dictated by productivity and 

503 oceanography. For example, ocean fronts are key components to the ecosystem within the 

504 Northeast U.S. Shelf through vertical mixing of nutrients that can affect the onset and duration of 

505 phytoplankton blooms (Mann and Lazier, 2006). Ocean fronts occur over various spatial and 

506 temporal scales (Belkin et al., 2014) and support multiple trophic levels and fisheries (Tseng et 

507 al., 2014). 

508 We hypothesize that the significance of zooplankton in describing lobster habitat is 

509 associated with the role of physical oceanography, specifically frontal transition zones, in 

510 creating these productive, ecologically rich features, as has been described for other species (Le 

511 Fevre et al., 1986). The link between water column productivity in supporting demersal fish and 

512 invertebrate species via benthic-pelagic coupling has been noted within the Northeast U.S. Shelf 

513 (Friedland et al., 2008), and may serve as a major mechanism in providing lobster habitat in 

514 these dynamic regions. Broad changes in the GOM may be reflected by changes in zooplankton 

515 abundances (Pershing et al., 2005). Zooplankton community composition has undergone distinct 

516 regime shifts over the previous decades (Morse et al., 2017). In this study, breaking zooplankton 
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517 into small taxonomic levels was beneficial, because individual taxonomic levels are spatially 

518 varied. Plankton biovolume was not used in any of the models, probably because it is not as 

519 spatially varied as individual taxonomic levels. Some individual taxonomic levels tend to line up 

520 with production zones and fronts, which further supports our hypothesis that productive waters 

521 are important for lobster habitat. Some plankton species are more dominant within fronts, 

522 whereas others are more dominant outside of fronts (Moisander et al. 1997; Taylor et al. 2012; 

523 Roy et al. 2015). In Georges Bank, different taxonomic levels are associated with different water 

524 mass types (Ashjian et al. 2001). In the Northeast U.S. Shelf, anomalies of several copepod taxa 

525 are associated with changes in frontal zones (Pershing et al. 2010). Therefore, the model results 

526 are most likely suggesting general correlations among organisms within high productivity 

527 waters.      

528 Nonetheless, these results can be used to develop hypotheses to test in future studies that 

529 focus on the role of zooplankton in lobster habitat. Another future research topic can be the 

530 effect of broad scale changes in productivity on American lobster. This study suggests      

531 productivity has a large effect on lobster distribution, even more so than temperature. 

532 Modelling limitations

533 The results from this modeling effort are limited by both the survey design and the 

534 covariate data available. The trawl survey data capture the broader population movements and 

535 abundance trends through time; trawl surveys are unable to sample near rocky bottom or ledge or 

536 where fixed gear is set (Smith and Tremblay, 2003), a known habitat preference and high 

537 abundance regions of lobsters (Wahle, 1992; Lawton and Lavalli, 1995). The significance of 

538 bathymetry and ruggedness in the RF models suggests that this preference for lobsters is at least 

539 partially accounted for, but both sampling in these areas and covariate information at finer scales 

540 and descriptions (e.g. cobble, rock, ledge, boulder) may improve results. 

541 The NEFSC trawl survey also occurs in federal waters offshore and samples larger 

542 lobsters, while a notable portion of the population, particularly smaller lobsters, reside within 

543 inshore waters from spring through fall. Additionally, the large proportion of adult lobsters in the 

544 trawl survey data may be a result of exploitation of the young lobsters. Thus, these results are 

545 specific to larger lobsters, and may not represent the habitat requirements of younger, pre-recruit 

546 lobsters. Other trawl surveys that cover inshore waters should be considered. Once catchability 

547 differences between the NEFSC and states’ trawl surveys are calibrated, other trawl data sources 
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548 can be included to allow for fully modeling the regions. Additionally, although correction factors 

549 were applied, changes in vessels and gears in the trawl survey can introduce biases. 

550 A key assumption in this study is that relationships between lobster and environmental 

551 variables are stationary across space and time. Li et al. (2018) modeled lobster spatial 

552 distribution allowing relationships to vary among space and found that the relationships 

553 between lobster and environmental variables were different in the western and eastern GOM. 

554 Similarly, the relationship between bathymetry variables and lobster may have changed 

555 overtime with fluctuations in the abundance of predators and therefore, the need for sheltered 

556 habitat.

557 In this study, the RF models were used to describe American lobster realized niche using 

558 bottom-up forcing covariates, and do not account for top-down controls on the population. 

559 Predation on lobsters also influences their spatial distribution, most prominently at the extreme 

560 ends of the range of lobsters (Boudreau et al., 2015). Changes in top-down controls related to 

561 ground fish predation have been postulated to have influenced lobster abundance in the coastal 

562 GOM area. Following intense fishing on cod and haddock in the coastal GOM during the 1930s, 

563 lobster abundance and landings increased in the following decades with the contemporary 

564 increased abundance consistent with a predation release effect (Acheson and Steneck, 1997; 

565 Steneck, 2006; Steneck and Wahle, 2013). Predators, notably cod, have long been noted to 

566 influence lobster abundance and distribution (Boudreau et al., 2015). The decline in cod 

567 abundance has been thought to explain part of the increase in lobster abundance (Hanson & 

568 Lanteigne, 2000). Li et al. (2018) found a significant relationship between temperature and 

569 lobster habitat in the eastern GOM, but not in the western GOM, with the operating hypothesis 

570 that predators may have a greater effect on lobsters than temperature in the western GOM. 

571 Predation risk on lobsters is lower in the GOM than in SNE, which may affect lobster habitat 

572 (Wahle et al., 2013). Changes in top down controls (i.e. predators) may have also allowed 

573 lobster to persist on previously unsuitable substrates (i.e. mud). Other top down controls, 

574 including fishing pressure, may also contribute to discrepancies between our predictions and 

575 empirical observations and should be further evaluated. 

576 Additionally, RF models have limitations. Interpreting the relationships between the 

577 response and explanatory variables can be difficult with many decision trees. Furthermore, 

578 variable importance from RF models tend to be biased towards correlated variables, continuous 
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579 variables, and variables with many categories (Strobl et al. 2007; 2008). 

580 Conclusions

581 These habitat suitability results advanced current understanding on lobster habitat 

582 distribution, change, and the various environmental factors influencing American lobster 

583 presence and biomass. Of note, the role of lower trophic level productivity appears to be an 

584 important consideration in defining lobster habitat, which previous studies have not 

585 investigated. Furthermore, previous studies have examined finer spatial scales for lobsters 

586 (Chang et al., 2010; Tanaka and Chen, 2015; Tanaka and Chen, 2016; Tanaka et al., 2017; 

587 Tanaka et al., 2018), whereas this work provides a more holistic view of the changes in lobster 

588 habitat since 1992 that better correspond to the migratory species’ stock bounds. 

589  These results may prove valuable as inputs to the lobster stock assessment (i.e. tuning 

590 recruitment deviations). Furthermore, these results can provide insights into the environmental 

591 variables that have strong influences on distribution, and hence, population dynamics. Including 

592 such estimates and information in the stock assessment model may better account for ecosystem 

593 changes that have impacts on lobster life history and abundance, a common call often included in 

594 assessments’ terms of references. As these results suggest, a holistic approach using various 

595 levels of oceanography should be incorporated into the assessment and management of American 

596 lobster to ensure sustainable harvests. With the marine ecosystem expected to continue changing, 

597 understanding of the environmental drivers for America’s largest fishery are imperative now 

598 more than ever.
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910 Table 1. Diagnostics for occupancy models including accuracy, area under the curve (AUC) and 

911 Cohen’s Kappa.
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Season Accuracy AUC Cohen’s Kappa

Spring 0.85 0.80 0.62

Fall 0.79 0.78 0.56

912

913 Table 2. Diagnostics for biomass models including variance explained, Mean Absolute Error 

914 (MAE), Root Mean Squared Error (RMSE), and bias (logarithmic scale).

Season Variance explained MAE RMSE Bias

Spring 60.9 0.059 0.15 -0.0048

Fall 63.0 0.096 0.17 -0.0054

915

916 Figures 

917  

918 Figure 1. Northeast U.S. shelf with the estimation grid (a). Boundaries between Gulf of Maine, 

919 Georges Bank and Southern New England regions demarked with yellow lines (b). Grey dashed 

920 lines denote 100 m depth contour. 
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922

923

924 Figure 2. The number of times a variable was the root node variable versus the mean minimal 

925 depth of a variable in a tree in spring occupancy (a) and biomass (c) models. The mean decrease 

926 in the Gini index of node impurity by a variable versus the mean accuracy decrease if a variable 

927 were to be removed from the spring occupancy model (b); red circles indicate that the variable is 

928 significant. The mean node purity increase by a variable versus the mean increase of mean 

929 squared error (MSE) if a variable were to be removed from the spring biomass model (d); red 

930 circles indicate that the variable is significant. The variables are significant if the number of 

931 nodes in which the variable was used for splitting is greater than the theoretical number of 

932 successes if they were random. The explanations of the abbreviations are in Table A1. 

933 A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

934

935

936 Figure 3. The number of times a variable was the root node variable versus the mean minimal 

937 depth of a variable in a tree in fall occupancy (a) and biomass (c) models. The mean decrease in 

938 the Gini index of node impurity by a variable versus the mean accuracy decrease if a variable 

939 were to be removed from the fall occupancy model (b); red circles indicate that the variable is 

940 significant. The mean node purity increase by a variable versus the mean increase of mean 

941 squared error (MSE) if a variable were to be removed from the fall biomass model (d); red 

942 circles indicate that the variable is significant. The variables are significant if the number of 

943 nodes in which the variable was used for splitting is greater than the theoretical number of 

944 successes if they were random. The explanations of the abbreviations are in Table A1.A
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945

946

947 Figure 4. Time series mean predicted occupancy probability for American lobster in the spring 

948 (a) and fall (c) using the RF model with the annual rate of change (Sen slope) in occupancy 

949 probability (b and d, spring and fall, respectively). Black crosses in rate of change panels indicate 

950 significant slopes (p<0.01).
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951

952 Figure 5. Habitat areas in each region (Gulf of Maine, Georges Bank, and Southern New 

953 England) with minimum occupancy probabilities of 25%, 50%, and 75% for spring (a, c, and e, 

954 respectively) and fall (b, d, and f, respectively) for the years 1992 to 2017 predicted from the RF 

955 models. 
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956

957

958 Figure 6. Time series mean occupancy probability gradient magnitudes (frontal strengths) 

959 predicted in the spring (a) and fall (c) with the rates of change (Sen slope) in occupancy gradient 

960 magnitudes (b and d, spring and fall, respectively). Black crosses in rate change panels indicate 

961 that the slopes are significant (p<0.01).
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963

964

965 Figure 7. Time series mean predicted biomass for American lobster in the spring (a) and fall (c) 

966 using the RF model with the annual rates of change (Sen slope) in biomass (b and d, spring and 

967 fall, respectively). Black crosses in rate of change panels indicate significant slopes (p<0.01).
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969

970

971

972 Figure 8. Sea surface temperature frontal probabilities (expressed as percent) for winter (a), 

973 spring (b), summer (c), and fall (d). Sea surface temperature frontal probabilities were taken 

974 from Winship et al. (2018) and represent the likelihood of a front forming during the four 

975 seasonal time periods.  A
u
th
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