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Analytical approaches to subspecies delimitation with
genetic data

This is the second of six papers forming a special issue of Marine Mammal Science (Vol. 33, Special
Issue) on delimiting cetacean subspecies using primarily genetic data. An introduction to the special issue
and brief summaries of all papers it contains is presented in Taylor et al. (2017a). Together, these papers
lead to a proposed set of guidelines that identify informational needs and quantitative standards (Taylor
et al. 2017b) intended to promote consistency, objectivity, and transparency in the classification of
cetaceans. The guidelines are broadly applicable across data types. The quantitative standards are based
on the marker currently available across a sufficiently broad number of cetacean taxa: mitochondrial
DNA control region sequence data. They are intended as “living” standards that should be revised as
new types of data (particularly nuclear data) become available.
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Abstract

The vast and remote distributions and large body size of most cetaceans make it
difficult to obtain and maintain morphological collections adequate for advancing
sound taxonomic arguments. Consequently, genetic data are playing an increasingly
important role in cetacean species and subspecies delimitation. We review seven cat-
egories of analytical methods useful in delimiting subspecies based on genetic data.
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For each category, we summarize its utility in evaluating putative subspecies, the
types of markers to which it can be applied, and potential challenges in interpreting
results in a taxonomic context. We focus on the utility of each type of method to
evaluate the critical features distinguishing subspecies from populations and species:
the degree of diagnosability between putative taxa and the extent to which the puta-
tive taxa have diverged along separate evolutionary pathways. We conclude that
diagnosability is best estimated with either assignment tests or multivariate meth-
ods, while evaluating the degree of divergence requires a synthesis of multiple lines
of evidence derived from different analytical methods and different data types,
including nongenetic data.

Key words: genetic differentiation, divergence, cetacean taxonomy, genetic analyti-
cal methods, subspecies definition.

Subspecies play an important role in cetacean conservation and evolutionary studies
(see Taylor et al. 2017b for a detailed review). Although there has been considerable
debate over the utility and validity of the subspecies concept over the last half decade
(Patten and Unitt 2002, James 2010, Braby et al. 2012), the use of subspecies for
understanding and conserving biodiversity has resulted in an increased focus on con-
sistent and timely subspecies delimitation (Patten and Unitt 2002, Haig et al. 2006,
Taylor et al. 2017b). Delimiting subspecies requires evaluating both the lower (popu-
lation vs. subspecies) and upper (subspecies vs. species) boundaries of a subspecies con-
cept. This in turn requires identifying those features that would lead to the
conclusion that two putative taxa are sufficiently different to warrant subspecific sta-
tus, but not so different that they should be elevated to full species status. We use
the definitions of subspecies and species proposed by Taylor et al. (2017b): “a species is
a separately evolving lineage composed of a population or collection of populations”
and “a subspecies is a population, or collection of populations, that appears to be a sepa-
rately evolving lineage with discontinuities resulting from geography, ecological spe-
cialization, or other forces that restrict gene flow to the point that the population or
collection of populations is diagnosably distinct.” Note that Taylor et al.’s species
definition is de Queiroz’s (2007) unified species concept modified slightly to reflect
the fact that several cetacean species exist as single populations rather than metapopu-
lations. The term “population” has many commonly used definitions spanning a wide
range of levels of connectivity (Waples and Gaggiotti 2006). We use the term “popu-
lation” broadly to refer to any Unit to Conserve below the subspecies level (Taylor
et al. 2017b). These are the definitions we used to determine the features distinguish-
ing these three levels.
Two types of metrics are needed to evaluate taxonomic cases based on these defini-

tions: the degree of genetic differentiation (used for both boundaries) and the degree
of diagnosability (used to distinguish subspecies from populations). Under our opera-
tional definition, subspecies can have some ongoing gene flow, so long as the rate of
gene flow is low enough that diagnostic characters arise and are maintained, making
it possible for unknown individuals to be assigned to the correct subspecies with high
accuracy, though not necessarily 100% (Amadon 1949, Patten and Unitt 2002, Tay-
lor et al. 2017a). However, they are not so diverged that they actually represent sepa-
rate species. Though both taxonomic units are independently evolving, subspecies
have not yet diverged to the point where their divergence is irreversible (Taylor et al.
2017b). If gene flow between them increased, they could still coalesce into a single
taxonomic unit. Species, on the other hand, have diverged to the point where coales-
cence is no longer possible.
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As noted by Taylor et al. (2017b), traditional morphological approaches to taxo-
nomic analyses for cetaceans have proven difficult (e.g., Milinkovitch et al. 2002,
Reeves et al. 2004, Monaghan et al. 2009, Dupuis et al. 2012). Hence, herein, we
review analytical approaches to delimiting cetacean subspecies using genetic data.
Although genetic data can include data on any genetically heritable trait, we use the
term to refer specifically to molecular data. We first review the features that delimit
the lower and upper subspecies boundaries: diagnosability and the degree to which
they are separately evolving entities. We then discuss seven categories of molecular
genetic analytical approaches (Table 1) that can be used to evaluate these features.
We discuss the genetic markers that work well with each approach, the advantages
and disadvantages of each analytical approach, and give examples of how each
approach has been applied in taxonomic studies. Given the rapid pace of development
of molecular genetic analytical methods, we do not discuss individual algorithms in
depth or even attempt to summarize all algorithms currently available in each cate-
gory. Rather, we focus on identifying the types of analytical approaches that are best
suited to subspecies delimitation using molecular data. Furthermore, we do not dis-
cuss the merits of different quantitative thresholds above which two taxa should be
considered subspecies or species. Rosel et al. (2017a) apply many of the analytical
methods we discuss to a large number of pairs of cetacean populations, subspecies,
and species. Based on these comparisons, Taylor et al. (2017a) propose quantitative
standards for delimiting cetacean subspecies. We refer readers to these papers.
We conclude with recommendations regarding the most promising analytical

approaches to evaluate the upper and lower subspecies boundaries. To help the reader,
we follow the logical progression of analysis for the case where the status of the taxo-
nomic unit of interest is unknown: it could be a population, a subspecies, or a species.
We assume that the researcher has already assessed the adequacy of their sample size
and distribution (Zhang et al. 2010, Hale et al. 2012, Rosel et al. 2017b, Taylor
et al. 2017a). Most subspecies definitions, including that of Taylor et al. (2017b),
require a discontinuity between subspecies (Mallet 2004). We therefore also assume
the researcher has done sufficient analyses to convince a reader that the units being
compared are not from the ends of a cline (see Manel et al. 2003 for a review of appro-
priate analyses), as this would violate our subspecies concept.

Evaluating Diagnosability

The concept of diagnosability has long been central to morphological studies of
subspecific variation (Amadon 1949, Mayr 1969). Archer et al. (2017b) provided a
detailed review of the concept of diagnosability and its use in taxonomic studies.
They defined diagnosability as “a measure of the ability to correctly determine the
taxon of a specimen of unknown origin based on a set of distinguishing characteris-
tics.” Species are generally expected to be 100% diagnosable, meaning that individu-
als can be assigned to species without error based on the characters used for diagnosis.
As noted above, on the other hand, diagnosability for subspecies is expected to be
high but need not be 100%. The threshold value above which diagnosability is high
enough to warrant subspecies delimitation is discussed in detail by Taylor et al.
(2017a) and Archer et al. (2017b).
Although diagnosability has long proved useful as a criterion for delimiting sub-

species, care must be taken in its application. As with most metrics, diagnosability
can be either over- or underestimated as a result of inadequate or biased sampling.
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Underclassification errors (i.e., failing to confer subspecific status when it is war-
ranted) can occur when the genetic markers used in estimates of diagnosability are
inadequate to resolve structure at the subspecies level. This can be the result of low
diversity (e.g., killer whale, Orcinus orca ecotypes; Hoelzel et al. 1998, LeDuc et al.
2008), recent and rapid divergence (e.g., delphinids, Kingston and Rosel 2004; song
sparrows, Melospiza melodia, Pruett and Winker 2010), or large effective population
size (e.g., spinner dolphins, Stenella longirostris; Galver 2002). Care must also be taken
when interpreting estimates of diagnosability derived from a large number of charac-
ters. All of these issues are discussed at length by Archer et al. (2017b).
Mitochondrial DNA sequences have formed the basis of many phylogeographic

and taxonomic studies. Appendix 1 discusses the many advantages of mtDNA over
nuclear markers in phylogeographic studies, as well as its drawbacks. One objection
to reliance on mtDNA that is particularly relevant to assessing diagnosability is that
it will fail to reflect male-mediated gene flow due to its strict maternal inheritance,
and could lead to overclassification errors. Such errors are less likely when gene flow
occurs due to male migration (i.e., organismal gene flow) because male immigrants to
a population are liable to be sampled in their new population, reducing diagnosabil-
ity at all genetic markers. However, in species such as humpback whales, Megaptera
novaeangliae (Baker et al. 2013), where male-mediated gene flow occurs without
permanent immigration of the males (i.e., gametic gene flow; Larsen et al. 1996,
Palsbøll et al. 1997, Peters et al. 2012), and in species with strong, matri-focal social
structure such as killer whales (Barrett-Lennard 2000, Ford et al. 2011) and false
killer whales, Pseudorca crassidens (Martien et al. 2014), mtDNA-based estimates of
diagnosability between social groups and populations can be as high as those typically
observed between subspecies or even species (Archer et al. 2017b). Therefore, if strong
social structure is suspected or if nothing is known about the social structure, the pat-
tern observed from mtDNA should be corroborated by an independent line of evi-
dence, such as nuclear genetic markers, morphology, or distribution (e.g., different
ocean basins).

Evaluating Separate Evolution

Demonstrating that two putative taxa meet some threshold of diagnosability is
only the first step in subspecies delimitation. To determine whether the taxa repre-
sent subspecies or full species, one must also evaluate the extent to which the taxa are
separately evolving (Taylor et al. 2017b). Cetacean taxonomists face multiple chal-
lenges when attempting to delimit subspecies and species, including recent and rapid
radiations (Kingston et al. 2009, Steeman et al. 2009, McGowen 2011, Amaral et al.
2012), variation in mutation rate across lineages, even for the same markers (White-
head 1998, Dornburg et al. 2012), and difficulty of obtaining morphological and
behavioral data. Many of these challenges are also common in other taxonomic groups
(e.g., Britten 1986, Smith and Donoghue 2008, Pruett and Winker 2010). Research-
ers typically employ a variety of proxies to infer evolutionary independence, most of
which are based on estimating how different the putative taxa are for the characters
under study (be they morphological, behavioral, or genetic) and comparing these
divergence estimates to those typically seen between accepted species. Such a compar-
ative approach to evaluating divergence is common in genetic taxonomic studies (e.g.,
Caballero et al. 2007, Wolf et al. 2007). Comparisons must be undertaken with great
care, however, because most measures of genetic divergence are influenced by the
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effective population size of the groups being compared and the characteristics of the
genetic markers used, such as mutation rate, mutation model, and whether the mark-
ers are from coding or noncoding portions of the genome (Appendix 2).
Attempts have been made to use data from a broad suite of sister taxa to identify

cutoff values for various genetic estimates of divergence that could serve as criteria for
evaluating species status. Hey and Pinho (2012) examined the distributions of two
estimates of genetic divergence derived from the program IM (Wakeley and Hey
1998, Nielsen and Wakeley 2001) to look for a qualitative difference between spe-
cies, subspecies, and populations. They failed to find any qualitative differences, find-
ing instead that the distributions of divergence estimates were broadly overlapping
for the different taxonomic levels. However, the lack of resolution of different taxo-
nomic levels in Hey and Pinho’s study may in part result from some of the confound-
ing factors discussed in Appendix 2. Had they restricted their comparisons to only
divergence estimates based on comparable loci and stratified them by effective popu-
lation size, they may have found less overlap between taxonomic levels. Their results
may also have been influenced by the broad range of taxa included and by possibly
miscategorizing comparisons (e.g., taxa currently considered subspecies that actually
represent different species or vice versa) due to taxonomic errors or uncertainty in the
literature they reviewed.
Rosel et al. (2017a) applied a similar comparative approach using a broader suite

of genetic divergence estimates in an attempt to identify metrics that could be used
to distinguish subspecies from species and populations. Unlike Hey and Pinho
(2012), Rosel et al. (2017a) limited their study to a single taxonomic group (ceta-
ceans), took greater care to ensure that their categorizations of units as populations,
subspecies, or species were well-accepted, and calculated all metrics for a comparable
locus. They also found broad overlap in estimates of most metrics between compar-
isons at different taxonomic levels. However, they identified two metrics—percent
diagnosability from Random Forests (Archer et al. 2017b; see Traditional Multivariate
Methods below) and dA (Nei 1987, p. 276; see Measures of Genetic Distance below)—
that were useful in delimiting subspecies. dA performed well at distinguishing species
from subspecies and populations, while percent diagnosability was useful for distin-
guishing populations from subspecies. Taylor et al. (2017a) use Rosel et al.’s results
to develop quantitative standards for delimiting cetacean subspecies using mtDNA
control region data, acknowledging that some comparisons will still fall in the “gray
zone” of overlap between different taxonomic levels. Tobias et al. (2010) developed a
point-based system to weight different lines of evidence (e.g., morphology, acoustics,
etc.) to evaluate the taxonomic status of avian taxa. Although currently available data
are not sufficient to develop an equivalent approach for cetaceans (Taylor et al.
2017a), most cetacean studies aimed at describing new subspecies have, nonetheless,
employed multiple lines of evidence in their taxonomic arguments (see review in
Rosel et al. 2017b).

Analytical Methods for Evaluating Taxonomic Hypotheses

In the following sections, we review seven different approaches to evaluate the
upper and lower subspecies boundaries using genetic data: traditional multivariate
methods, assignment tests, clustering methods, divergence time estimation, measures
of genetic distance, tree-based methods, and dispersal rate estimators. We highlight
methods that are useful for directly addressing the critical factors that distinguish the
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taxonomic levels. For a more general review of analytical approaches (both genetic
and nongenetic) used in identifying and delimiting species see Sites and Marshall
(2004).

Traditional Multivariate Methods

Multivariate methods combine data across multiple characters to classify samples
into groups. They can be useful for generating and testing taxonomic hypotheses
and, in particular, for estimating diagnosability. Numerous multivariate methods
have been used to evaluate diagnosability from morphological data. The most com-
monly used are Principal Components Analysis (PCA, Gotelli and Ellison 2004),
Discriminant Function Analysis (DFA, Fisher 1936, Klecka 1980), and Classification
and Regression Trees (CART, Breiman et al. 1984). By taking advantage of the fact
that PCA utilizes Euclidean distances between samples, which can be computed from
genetic data, methods have now been developed that allow these traditional
multivariate methods to be applied to a variety of genetic data types, including
microsatellites, single nucleotide polymorphisms (SNPs), Amplified Fragment
Length Polymorphism (AFLPs), and nuclear and mtDNA sequences.
Jombart et al. (2010) developed a method called Discriminant Analysis of Princi-

pal Components (DAPC), which combines DFA with PCA. DAPC can be used both
to describe groups of genetically-related individuals (e.g., Warmuth et al. 2013) and
assign new individuals to those groups. The percentage of samples correctly assigned
to the group from which they were sampled can serve as an estimate of diagnosability.
Unknown samples can also be assigned to clusters by calculating their distance from
the centroid of each cluster. DAPC can be applied to multiple data types, including
microsatellites, SNPs and nuclear and mitochondrial DNA (mtDNA) sequences (by
converting polymorphisms in the sequence data to SNPs; Jombart et al. 2010).
Similar to DAPC, Kingston and Rosel (2004) used an ordination technique closely

related to PCA known as nonmetric multidimensional scaling (NMDS, Borg and
Groenen 2005) to analyze AFLP data from two pairs of sister species from the family
Delphinidae. They used the method to characterize genetic variation within and
between the species. They also conducted species identification for six “unknown”
samples (i.e., samples for which the species identity was withheld from the researchers
until after the analysis) and showed that all six were correctly identified. Although
this demonstrates that NMDS can be used to classify samples and thereby estimate
diagnosability, this method has the drawback that the samples to be classified must
be included in the data set used to define the transformed variables used in the analy-
sis. Thus, the characterization of genetic variability in the groups to which samples
are to be assigned can vary depending on the properties of the unknown samples.
CART (Breiman et al. 1984) differs from PCA and DFA in that it attempts to

form a classification algorithm based on the best set of predictor variables and rules
that create the groups with the least amount of overlap. Archer et al. (2017b) devel-
oped a classification method for mtDNA data based on the Random Forests algo-
rithm (Breiman 2001), which is in turn an extension of CART. Random Forests is an
ensemble classification method in which multiple classification trees are developed
based on subsets (a.k.a. “training sets”) of the data. The trees collectively constitute a
classification “forest” that can be used to categorize unknown samples. Random For-
ests shares the same goal as the DFA methods used in morphological studies, namely,
to develop a classification model that maximizes the probability of correct classifica-
tion.
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Both Archer et al.’s implementation of Random Forests and Jombart et al.’s DAPC
treat each site in a sequence alignment as an independent character and use all charac-
ters concurrently to classify samples. Although different sites in a neutral sequence
locus are assumed to mutate independently, they are inherited as a single unit. This
is different from the inheritance pattern of morphological characters, which may be
correlated due to functional constraints. Multivariate methods such as PCA create sets
of uncorrelated characters, thus appropriately defining functionally correlated charac-
ters. Random Forests, on the other hand, handles potential correlations through the
stochastic selection of characters (e.g., nucleotide sites) during tree building. Over
enough trees in the forest, correlated characters will have equal contribution to classi-
fication power, and thus do not falsely enhance the diagnosability estimate from a
Random Forests analysis.

Assignment Tests

Assignment methods are used to evaluate the group membership of samples based
on allele frequencies. Like traditional multivariate methods, the primary utility of
assignment tests in taxonomic studies is for estimating diagnosability, the critical
parameter when evaluating the lower subspecies boundary. Unlike traditional multi-
variate methods, however, genetic assignment methods are based on models of
genetic evolution and inheritance. Manel et al. (2005) review assignment methods
and the types of questions they can address. They define assignment tests as methods
that can identify the population of origin for unknown individuals. In a classic
assignment test, a reference data set consisting of samples of known origin is used to
characterize the allele frequencies of groups that are defined a priori. Samples of
unknown or uncertain origin are then assigned to the groups. Assignment methods
can also be used to perform “self-assignment” tests or “re-assignments” in which sam-
ples of known origin are excluded from the reference set and then assigned to groups.
This approach is typically used to estimate the assignment error rate, identify first
generation migrants, or assess the level of differentiation between two strata (e.g.,
LeDuc et al. 2008). For subspecies delimitation, the percent correct self-assignment
can be used as an estimate of diagnosability (e.g., Matocq 2002, Froufe et al. 2003, de
Oliveira et al. 2008). If all samples assign back to their group of origin, the groups
are 100% diagnosable. If only 90% of the samples assign to their group of origin, the
groups are 90% diagnosable. Diagnosability can be calculated independently for dif-
ferent groups. For example, when comparing two groups, A and B, one could end up
with 90% of samples from A assigning to A, but only 60% of the samples from B
assigning to B. Evaluating the results of an assignment test with respect to diagnos-
ability can be complicated by the fact that most assignment methods assign samples
probabilistically, leaving the researcher to decide whether a sample that has, for
instance, an assignment score of 0.55 to its taxon of origin and 0.45 to a different
taxon should be considered correctly assigned (for further discussion see Archer et al.
2017b).
Assignment tests rely on detecting differences in allele frequencies between strata.

Consequently, they are most powerful when applied to highly polymorphic multilo-
cus data sets. When statistical power is low due to the use of too few loci, diagnos-
ability will be underestimated. This could lead to failure to recognize true subspecies
as such. The high mutation rate and resultant large numbers of alleles at many
microsatellite loci make them ideal for use in assignment tests. SNPs can also be used
in an assignment-testing framework. However, the di-allelic nature of SNPs means
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that large numbers of loci are often needed to achieve good discrimination between
groups, and may also require larger sample sizes for known strata (Liu et al. 2005,
Narum et al. 2008, Morin et al. 2012). For instance, Morin et al. (2012) found that
nearly six times as many SNP loci than microsatellite loci were needed in order to
accurately assign samples from two geographically disjunct populations of bowhead
whales. Assignment tests can also be applied to AFLP data. Although we are not
aware of any studies in which AFLP data and assignment tests have been used to
assess diagnosability of subspecies, AFLP assignment tests have been used to examine
rates and patterns of introgression and hybridization between species (Vallender et al.
2007, Kingston et al. 2009, McKinnon et al. 2010) and to assign unknown speci-
mens to species (Picard et al. 2011).
The fact that the mitochondrial genome is typically inherited as a single, nonre-

combining locus precludes the use of mtDNA data in standard assignment tests.
When haplotype distributions are completely nonoverlapping, assignments can be
made with certainty, but shared haplotypes lead to the trivial result that the probabil-
ity of an individual coming from each potential source population is equal to the fre-
quency of its haplotype in each of the sources. Problems arise in cases where an
individual has a novel haplotype (i.e., one not previously documented in any source),
as these cannot be assigned. Unlike mtDNA data, nuclear sequence data can be gener-
ated for multiple loci, making it more suitable to assignment tests than mtDNA
sequence data. However, the low mutation rate associated with most nuclear loci and
the fact that alleles are often shared across species means that a large number of loci
would likely be needed in order to reliably assign individuals to sources.

Clustering Methods

Clustering methods are similar to assignment tests in that samples are sorted into
groups on the basis of multilocus genotypes. They can be applied to the same data
types (microsatellites, SNPs, AFLPs) that are used in assignment tests. In fact, some
programs that conduct assignment tests can also be used to perform clustering analy-
ses (e.g., STRUCTURE; Pritchard et al. 2000, Falush et al. 2003, Hubisz et al.
2009). Clustering analyses differ from assignment tests in that samples are not strati-
fied a priori into groups. Rather, the groups are identified by the analysis based on the
genetic data (see Manel et al. 2005 for further discussion of clustering analyses vs.
assignment tests). The lack of a priori stratification means that clustering methods
cannot be used to estimate diagnosability, and therefore cannot be used to evaluate
the lower subspecies boundary directly. The concept of diagnosability in taxonomy is
based on the need to determine unambiguously to which taxon a sample of unknown
origin belongs, which requires an unambiguously determined training set of samples.
If there are no predefined putative taxa, it is impossible to evaluate how often samples
were clustered correctly. Additionally, clustering algorithms do not produce assign-
ment algorithms independent of the data. If a clustering analysis is re-run when a
new sample is added to a data set, it is possible that the clustering of some of the
original samples could change. Nonetheless, a clustering analysis in which the result-
ing groups perfectly correlate with geography, morphology, or some other line of evi-
dence indicates that the groups would be 100% diagnosable if stratified
appropriately.
Clustering methods are often used in taxonomic studies as a means of generating

taxonomic hypotheses and looking for concordance between genetic data and other
lines of evidence. Because they do not rely on a priori stratification, clustering
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methods can be helpful in detecting cryptic taxa (Natoli et al. 2006, LeDuc et al.
2008, Wang et al. 2008). Natoli et al. (2006) used a clustering analysis to
reveal strong differentiation between two groups of long-beaked common dolphins
(Delphinus delphis bairdii and Delphinus capensis) that were considered at the time to be
the same species. LeDuc et al. (2008) used the same method to show that pygmy blue
whales (Balaenoptera musculus brevicauda) from the Pacific and Indian Oceans are as dif-
ferent from each other as they are from true blue whales (B. m. intermedia). Methods
that do not require a priori stratification also have been developed for the explicit pur-
pose of identifying putative species. For instance, Population Aggregation Analysis
and other DNA bar coding methods (Davis and Nixon 1992, DeSalle et al. 2005)
attempt to group individuals into putative taxa based on mtDNA sequences. The
multilocus Field For Recombination method (Doyle 1995) identifies groups that do
not share any alleles across multiple nuclear loci.
When taxonomic hypotheses are based on nongenetic data (e.g., morphology or dis-

tribution), clustering methods can be used to test the hypothesis of concordance
between genetic and nongenetic data. For instance, de Olivera et al. (2008) used clus-
tering analysis to divide South American fur seals (Arctocephalus australis) into two
groups based on genetic data and found that they closely corresponded to groups
defined based on morphology. Subsequent assignment tests showed the groups to be
highly diagnosable, leading to subspecies designations. M€oller et al. (2008) used clus-
tering to confirm the differentiation of a suspected undescribed taxon of bottlenose
dolphins (Tursiops sp.) in Australia. Although an assignment test was not done, the
perfect correspondence between geography and the groups identified by the cluster-
ing analysis indicates that an assignment test in which taxa are defined based on
geography would demonstrate 100% diagnosability. Such correspondence between
multiple lines of evidence makes for a strong argument in support of the taxonomic
hypothesis (Padial et al. 2010).

Divergence Time Estimation

Estimates of the time since two putative taxa diverged are sometimes used to assess
the independence of lineages by determining whether they have been separated long
enough to develop subspecies- or species-level differences. Estimates of divergence
time can be made from either mtDNA or nuclear sequence data. Like most other esti-
mates of divergence, divergence times are bound to overlap widely among taxonomic
groups. The divergence times of sister species vary widely within and among large
taxonomic groups (Weir and Schluter 2007), and recent reviews have shown broad
overlap in the distributions of divergence time estimates between species, subspecies,
and populations (Hey and Pinho 2012). There are many examples of recognized spe-
cies with very recent divergence times (e.g., North Pacific and North Atlantic right
whales <1 million years ago; Steeman et al. 2009), and evolutionary mechanisms by
which subspecies or species can arise rapidly (Via 2009). Thus it may not be possible
to set divergence time thresholds on the population/subspecies or subspecies/species
boundaries. Nonetheless, an estimated divergence time of many millions of years
would constitute strong evidence that lineages are separately evolving.
Divergence time estimates have been based on the assumption of a consistent and

linear accumulation of genetic changes (referred to as a “molecular clock”) since DNA
sequences were first employed in phylogenetics (e.g., Brown et al. 1982). Early esti-
mates of divergence time were based on simple models and often lacked confidence
intervals. These methods applied a mutation rate to a measure of genetic distance,
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which had been corrected to account for multiple mutations at a site and different
rates for transitions and transversions, and assumed that the mutation rates were con-
stant across categories for all vertebrates, or at least across all taxa in the analysis
(Brown et al. 1982). As sequence data have become more available, it has become
clear that mutation rates vary among loci (Hodgkinson and Eyre-Walker 2011) and
that substitution rates can vary among lineages, resulting in an overall increase or
decrease in rates along different branches of the evolutionary tree (Dornburg et al.
2012). To accommodate this kind of rate variation, divergence time estimation has
evolved to include more complex models of substitution rate to estimate rates for dif-
ferent loci (Duchêne et al. 2011, 2013) and taxonomic groups (e.g., Jackson et al.
2009, McGowen et al. 2009, Xiong et al. 2009, Ho and Lanfear 2010). The choice of
fossil-based calibration points can also influence mutation rate estimates, and there-
fore inference of divergence dates, and need to be appropriate to the time scales of a
given study (Ho et al. 2008, Ho and Lanfear 2010).
The most widely used and accepted methods for inferring divergence dates are

Bayesian phylogenetic inference methods, implemented in the programs BEAST
(v1.7, Drummond et al. 2012) and MrBayes (v3.2, Ronquist et al. 2012). Previous
methods (maximum likelihood, parsimony, distance-based) used a specified model to
generate a phylogenetic tree, and a specified substitution rate could be used to infer
divergence times from the branch lengths. Bayesian methods make use of additional
information to help calibrate the trees and incorporate uncertainty into the substitu-
tion model parameters to explore the parameter space for various mutation and phylo-
genetic models (e.g., relaxed clock models). They can also make use of multiple types
of data (e.g., DNA, proteins, and morphology) in a single analysis. These methods are
rapidly improving, providing expanded model and parameter choices and integrated
ways to identify the best models for different data partitions or portions of the phylo-
genies.
The use of Bayesian methods requires the researcher to invest more effort in the

selection of appropriate prior distributions for calibration points and models for anal-
ysis. Dornburg et al. (2012) pointed out that inclusion of different taxonomic groups
with different substitution rates can bias the results, as will the number and distribu-
tion of calibration nodes in the tree. The clock-like behavior and relative mutation
rates of loci can also affect divergence time estimates (Duchêne et al. 2011). The
placement and timing of fossils within the phylogeny is often subject to debate, and
constraints on the node composition of extant taxa used as priors in the tree can also
significantly affect outcomes (Dornburg et al. 2012). Finally, the model for branch
splitting (e.g., Yule speciation model vs. coalescent) should be evaluated based on
Bayes factors to determine which model best fits the data, especially below the species
level (Rannala et al. 2012). All of these factors will contribute to variation in diver-
gence time estimates. Bayesian methods require that both the data and assumptions
about the uncertainty are specified, which makes those assumptions more transparent,
but not necessarily more correct.

Measures of Genetic Distance

Numerous measures have been used to evaluate whether the genetic distance
between groups is consistent with species or subspecies status. Their utility for assess-
ing the independence of lineages makes these types of measures important for assess-
ing both the upper and lower subspecies boundaries. Most genetic distance measures
used in taxonomic studies are based on mtDNA or nuclear sequence data. One of the
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most common measures of genetic distance used in recent cetacean taxonomic studies
is the number of fixed differences between sequences (mtDNA or nuclear; Rosel et al.
2017b). A fixed nucleotide difference develops between two groups when a mutation
from the ancestral population is lost from one group and becomes fixed in the other,
or when a new mutation arises in one group after the groups have split and then
becomes fixed in the population where it originated. The presence of fixed differences
thus provides evidence that two groups represent independently evolving lineages
with no ongoing gene flow. However, Rosel et al. (2017a) showed that the number
of fixed differences is not a good predictor of the current taxonomic status of cetacean
subspecies and species.
Another common genetic distance measure used in taxonomic studies is the per-

cent nucleotide divergence between sequences. A simple estimate of percent nucleo-
tide divergence (i.e., the average number of nucleotides that differ between
individuals from different groups divided by the sequence length) does not account
for within group variability or the probability that multiple mutations have occurred
at some nucleotide sites and thus is not appropriate for taxonomic inference. Instead,
within group variability should be accounted for by calculating net nucleotide diver-
gence, denoted dA (Nei 1987, p. 276). Because mutation rates vary across the gen-
ome, dA values are only comparable when using sequences that meet the assumption
that for the portion compared mutation rates are comparable. For example, dA is
expected to be higher comparing the highly mutable control region than when com-
paring the full mitogenome, which has large, highly conserved regions under selec-
tion. Rosel et al. (2017a) found that for cetaceans, dA calculated from control region
sequence was very effective at distinguishing between populations, subspecies, and
species, with species generally exhibiting values of dA greater than 0.02 and popula-
tions exhibiting values less than 0.004. Taylor et al. (2017a) propose using these val-
ues of dA as quantitative thresholds for delimiting subspecies of cetaceans using
mtDNA control region sequence data.
To account for multiple substitutions and back-substitutions when calculating

nucleotide divergence, the distance between a pair of sequences should be calculated
using the mutation model that best fits the data. Programs such as jModelTest2
(Posada 2008) can be used to identify the best mutation model. Divergence values
calculated under different substitution models are not necessarily equivalent (Fregin
et al. 2012), calling into question the validity of comparing values across studies,
even when each study used the best mutation model for their data set. Thus, care
must be taken that comparisons between pairs of taxa are only made for comparable
loci and comparable measures of divergence (Fregin et al. 2012). Furthermore,
authors should clearly state the exact metric used to calculate divergence, including a
citation to the original description of the metric, as the terms “sequence divergence,”
“nucleotide divergence,” and “genetic distance” are not always applied consistently in
the literature (Rosel et al. 2017b).
Estimates of genetic distance can also be made from nonsequence data (e.g.,

microsatellites, SNPs, and AFLPs), though they are used far less frequently in taxo-
nomic studies. These include Euclidean distance, Cavalli-Sforza chord distance
(Cavalli-Sforza and Edwards 1967), Reynold’s distance (Reynolds et al. 1983), Nei’s
distance (Nei 1978), and (dl)2 (Goldstein et al. 1995). Most of these statistics were
originally developed for allozyme data and therefore assume an infinite-alleles muta-
tion model, rendering them inappropriate for microsatellite data. However, the dis-
tance measure (dl)2 was developed specifically for microsatellite data. The percentage
of “private alleles” at microsatellite or SNP markers (Robineau et al. 2007, Wolf
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et al. 2007) or unique bands for AFLP markers (e.g., Wang et al. 2003) can also be
used as estimates of genetic distance. The remaining measures we discuss apply only
to sequence data.

Tree-based Methods

Trees have long been a staple of phylogenetic studies. By examining how samples
are grouped in clades on a tree, researchers can make inferences about the evolutionary
relationships of the samples. Phylogenetic trees can be used to address questions at a
broad range of scales, from intraspecific studies of gene flow and dispersal patterns
(e.g., Avise 1992) to taxonomic studies aimed at elucidating the relationships
between species and genera (e.g., McGowen et al. 2009). When delimiting sub-
species, trees can be useful for assessing the independence of lineages, which is neces-
sary when testing both the upper and lower subspecies boundaries. Trees are also
valuable for corroborating existing taxonomic hypotheses and for generating new
ones. Phylogenetic trees are generated from mtDNA or nuclear sequence data.
Numerous analytical approaches have been proposed for using gene trees to delimit

species, many of which are reviewed by Sites and Marshall (2004). Most of these
methods are aimed at identifying reciprocally monophyletic groups. However, recip-
rocal monophyly has been shown to be a poor proxy for species status. Funk and
Omland (2003) conducted a literature search across a broad suite of taxonomic groups
and concluded that 23% of species did not show a pattern of reciprocal monophyly.
Of the many potential causes of nonmonphyly, those that are most likely to affect
species delimitation in cetaceans are introgressive hybridization, incomplete lineage
sorting at neutral markers due to large effective population size, recent radiation, and
rapid divergence due to selection (Appendix 2). Many of these issues are exhibited by
members of the subfamily Delphininae, in which both species delimitation and reso-
lution of higher-level taxonomic relationships have been challenging (LeDuc et al.
1999, Kingston et al. 2009, McGowen et al. 2009, Andrews et al. 2013). In some
cases (e.g., recent radiation), these problems can be overcome with longer sequences,
which can improve phylogenetic resolution and lead to reciprocal monophyly (e.g.,
Morin et al. 2010). However, relying on reciprocal monophyly to evaluate either the
lower or upper subspecies boundary can also lead to overclassification errors. This can
occur when analyzing mtDNA in a taxon with substantial male-mediated gametic
gene flow (see Appendix 1) and in small populations where lineage sorting may occur
before adaptive divergence occurs.
Not all tree-based methods for assessing divergence rely on complete reciprocal

monophyly. Cummings et al. (2008) developed the genealogical sorting index (gsi)
for quantifying the degree of genealogical cohesion or “exclusivity” for groups on
phylogenetic trees. Cummings et al. (2008) also described a permutation test that
can be used to assess the statistical significance of gsi values. They showed that this
permutation test was able to reject the null hypothesis of random ancestry soon (i.e.,
fewer than Ne generations) after two groups diverged, whereas monophyly developed
much more slowly. The gsi permutation test appears to be a powerful tool for evaluat-
ing genealogical cohesion within groups, and thus avoiding the problem of overclas-
sification due to the high levels of diagnosability achievable with larger numbers of
markers. However, simply rejecting the null hypothesis of no divergence would not
be considered sufficient justification for defining new species. Thus, as with most
proxies for inferring separate evolutionary pathways to evaluate the subspecies/species
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boundary, the challenge with gsi is determining whether a particular value of the
statistic equates to species-level differences.
In recent years, there has been considerable work aimed at bringing coalescent the-

ory to bear on problems of species delimitation (Knowles and Carstens 2007, Liu
2008, Monaghan et al. 2009, Ence and Carstens 2010, Hausdorf and Hennig 2010,
Yang and Rannala 2010). Several of these methods were recently used to investigate
phylogenetic relationships within the notoriously difficult cetacean subfamily
Delphininae (Amaral et al. 2012), although with only moderate success in resolving
relationships (Andrews et al. 2013). Fujita et al. (2012) review coalescent-based spe-
cies delimitation and several methods available for using this approach. All these
methods use gene trees from multiple loci to investigate patterns of speciation. The
coalescent process is used to model stochastic lineage sorting at different loci to
resolve conflicts between branching patterns from different gene trees and estimate
the point at which the branching pattern switches from one consistent with an intra-
specific coalescent to one consistent with separately evolving species. Consequently,
these methods can be used to identify species boundaries even in the presence of
extensive incomplete lineage sorting. Several coalescent methods are specifically
designed to evaluate hypotheses regarding the species status of specific lineages (e.g.,
Ence and Carstens 2010, Yang and Rannala 2010) and may be particularly valuable
in evaluating the subspecies/species boundary, though there is concern that relying
solely on these rapidly-developing methods to delimit species may lead to taxonomic
inflation by conferring species status when it is not warranted (see Bauer et al. 2011).

Dispersal Rate Estimators

Gene flow is the primary force preventing allopatric populations from diverging
due to the effects of genetic drift and selection pressures imposed by different habi-
tats. Therefore, it is natural to look to estimates of gene flow when attempting to
determine whether two groups represent independently evolving lineages. The most
popular and simplest estimates of gene flow are the F-statistics, originally developed
by Wright (1931), which can be estimated from allelic and genotypic frequency dis-
tributions of any nuclear or mitochondrial marker. In a recent review, Rosel et al.
(2017b) found that 28% of papers delimiting new cetacean species and 83% of papers
delimiting new cetacean subspecies included estimates of FST.
Although FST and its analogues are extremely valuable for addressing demographic

questions at the population level, they are of limited utility in subspecies and species
delimitation. For analyses where the putative taxa could be species, it is plausible that
the dispersal rate is actually zero, which invalidates calculations of FST and related
statistics. This is particularly true when estimates are based on microsatellite loci,
whose high mutation rate and complicated mutation model violate the assumptions
of FST calculations (Meirmans and Hedrick 2011). Although the effect of mutation
rate is typically assumed to be trivial and ignored (Hedrick 2005), the high mutation
rates associated with highly variable markers such as microsatellites will result in FST
equilibrating at a value less than one even in the absence of gene flow. For instance,
the values of FST and its various analogues calculated from microsatellite data
between two recognized subspecies of blue whales are low and variable, ranging from
0.008 to 0.252, depending on which analogue is used and which samples are
included in the comparison (Table 2; LeDuc et al. 2007). Even leatherback turtles
(Dermochelys coriacea) and green turtles (Chelonia mydas), two species believed to have
diverged over 100 million years ago (Duchêne et al. 2012), exhibit an FST value based

40 MARINE MAMMAL SCIENCE, VOL. 33, SPECIAL ISSUE, 2017



T
ab
le
2.

V
al
ue
s
of
F
-s
ta
ti
st
ic
s
be
tw
ee
n
pa
ir
s
of
su
bs
pe
ci
es
(fi
rs
t
th
re
e
ex
am

pl
es
)
an
d
sp
ec
ie
s
(l
as
t
fiv
e
ex
am

pl
es
)
ca
lc
ul
at
ed

fr
om

m
ic
ro
sa
te
ll
it
e
da
ta
.S
am

-
pl
e
si
ze
s
ar
e
gi
ve
n
in
pa
re
nt
he
se
s
af
te
r
ea
ch

su
bs
pe
ci
es
/s
pe
ci
es
.D

iv
er
ge
nc
e
m
et
ri
cs
fo
r
ea
ch

da
ta
se
t
w
er
e
ge
ne
ra
te
d
us
in
g
th
e
st
ra
ta
G
pa
ck
ag
e
in
R
(R

D
ev
el
-

op
m
en
t
C
or
e
T
ea
m

20
11
,
A
rc
he
r
et
al
.
20
17
a)
.
T
he

di
ve
rg
en
ce

m
et
ri
cs

w
er
e
F
ST

(W
ei
r
an
d
C
oc
ke
rh
am

19
84
),
G
ST

(N
ei
19
87
),
G

0 ST
(H

ed
ri
ck

20
05
),

G
″ S
T
(M

ei
rm

an
s
20
06
)
an
d
D
(J
os
t
20
08
).
F
ST

w
as
co
nv
er
te
d
in
to
an

es
ti
m
at
e
of
N
em

us
in
g
W
ri
gh
t’
s
(1
93
1)
fo
rm

ul
a
F
ST

=
1/
(4
N
em

+
1)
.F
or
m
ic
ro
sa
te
ll
it
e

da
ta
ge
ne
ra
te
d
at
th
e
So
ut
hw

es
t
Fi
sh
er
ie
s
Sc
ie
nc
e
C
en
te
r
(fi
rs
t
tw
o
an
d
la
st
th
re
e
ex
am

pl
es
),
w
e
ge
no
ty
pe
d
1–
3
in
di
vi
du
al
s
of
ea
ch

sp
ec
ie
s
pa
ir
to
ge
th
er
fo
r

ea
ch

m
ic
ro
sa
te
ll
it
e
to

as
si
gn

al
le
le
si
ze
s,
th
en

no
rm

al
iz
ed

al
l
ge
no
ty
pe
s
fr
om

ea
ch

sp
ec
ie
s
pa
ir
us
in
g
th
e
pr
og
ra
m

A
ll
el
og
ra
m

(M
or
in
et
al
.2
00
9)
.

Sp
ec
ie
s
pa
ir

N
o.
of
lo
ci

F
ST

G
ST

G
0 ST

G
″ S
T

D
N
em

T
ru
e
bl
ue

w
ha
le
(4
6)
vs
.

In
di
an

O
ce
an

py
gm

y
bl
ue

w
ha
le
(3
6)

a
7

0.
08
2

0.
03
7

0.
22
4

0.
25
2

0.
20
0

2.
79
9

T
ru
e
bl
ue

w
ha
le
(4
6)
vs
.

P
ac
ifi
c
O
ce
an

py
gm

y
bl
ue

w
ha
le
(2
8)
a

7
0.
03
0

0.
00
8

0.
05
5

0.
06
3

0.
06
1

8.
08
3

H
ec
to
r’
s
do
lp
hi
n
(1
59
)
vs
.

M
au
i
do
lp
hi
n
(5
8)

b
9

0.
17
8

0.
10
3

0.
36
9

0.
42
8

0.
12
3

1.
15
4

D
om

es
ti
c
sh
ee
p
vs
.

B
ig
ho
rn

sh
ee
pc

8
0.
23
7

0.
13
4

0.
79
0

0.
81
5

0.
63
3

0.
80
5

C
al
if
or
ni
a
se
a
li
on

(1
6)

vs
.

G
al
ap
ag
os
se
a
li
on

(3
67
)d

22
0.
21
0

0.
10
3

0.
52
3

0.
56
7

0.
32
2

0.
94
0

G
re
en

tu
rt
le
(9
2)

vs
.

Le
at
he
rb
ac
k
tu
rt
le
(1
25
)e
,f

3
0.
24
4

0.
12
7

0.
48
5

0.
54
3

0.
20
3

0.
77
5

B
el
ug
a
w
ha
le
(2
99
)
vs
.

H
ar
bo
r
P
or
po
is
e
(2
20
)g
,h

4
0.
15
4

0.
08
3

0.
83
1

0.
84
4

0.
49
6

1.
37
3

Fa
ls
e
ki
ll
er
w
ha
le
(1
08
)
vs
.

co
m
m
on

bo
tt
le
no
se
do
lp
hi
n
(1
42
)i,
j

5
0.
12
2

0.
06
3

0.
41
8

0.
45
3

0.
32
6

1.
79
9

a L
eD

uc
et
al
.(
20
07
).

b
H
am

ne
r
et
al
.(
20
12
).

c F
or
be
s
et
al
.(
19
95
).

d
W
ol
f
et
al
.(
20
07
).

e D
ut
to
n
et
al
.(
20
13
).

f R
od
en

et
al
.(
20
13
).

g
O
’C
or
ry
-C
ro
w
e
et
al
.(
20
10
).

h
C
hi
ve
rs
et
al
.(
20
02
).

i M
ar
ti
en

et
al
.(
20
14
).

j M
ar
ti
en

et
al
.(
20
12
).

MARTIEN ET AL.: METHODS FOR SUBSPECIES DELIMITATION 41



on microsatellite data that is consistent with gene flow at a rate of nearly one migrant
per generation (Table 2).
A recent review found similarly poor performance of FST for discriminating

between taxonomic levels (Hey and Pinho 2012). The weak correlation between FST
and taxonomic level likely reflects the dependence of FST estimators on effective pop-
ulation size and mutation rate (Appendix 2). Because of their dependence on muta-
tion rate, comparing FST values across taxa or loci with different levels of
heterozygosity is not meaningful. The exception is the FST analogue ΦST (Excoffier
et al. 1992), which can be calculated for sequence data. Because it explicitly incorpo-
rates the mutation process by taking into consideration the genetic distance between
haplotypes, it is not similarly biased by increased mutation rate (Kronholm et al.
2010). However, ΦST does depend on having the genetic distances estimated by the
appropriate mutation model (see discussion above). We refer readers to Meirmans
and Hedrick (2011) for a thorough review of the limitations of FST analogues.
Although FST analogues are commonly used as measures of differentiation, they

are rarely converted into actual estimates of dispersal rate in cetacean taxonomic
papers (Rosel et al. 2017b). However, alternative methods of estimating dispersal
rates, such as those used in the programs IM (Wakeley and Hey 1998, Nielsen and
Wakeley 2001), Migrate (Beerli and Felsenstein 1999, 2001; Beerli and Palczewski
2010) and LAMARC (Kuhner 2006), are sometimes used (e.g., Wang et al. 2008).
The model-based approaches used in these programs allow for simultaneous inference
of multiple demographic parameters, including Ne, m, and divergence time, thereby
avoiding some of the problems associated with FST analogues. However, Hey and
Pinho (2012) reviewed estimates of dispersal rate generated by the program IM for a
wide variety of species, subspecies, and population pairs and found that the dispersal
rate estimates showed even lower correlation with taxonomic status than estimates of
FST.

Conclusions

The two key features that must be evaluated in a taxonomic argument for sub-
species delimitation are the degree of diagnosability between putative taxa (Ama-
don 1949, Patten and Unitt 2002) and the extent to which they are separately
evolving. Of the analytical approaches we reviewed, only two can be used to pro-
duce diagnosability estimates from genetic data (Table 1)—assignment tests and
genetic implementations of traditional multivariate methods. Taylor et al. (2017a)
include an estimate of diagnosability from a multivariate method (Random For-
ests; Archer et al. 2017b) in their quantitative guidelines for delineating sub-
species based on mtDNA control region sequence. Taylor et al. give thorough
consideration to the threshold above which diagnosability is considered high
enough to warrant subspecies designation. They discuss the merits of both an
empirically-based threshold (80%) and a higher threshold (95%) that is arbitrary,
but consistent with the threshold used for normally distributed morphological
characters. While acknowledging the merits of an empirically derived threshold,
Taylor et al. ultimately recommend the continued use of the higher (95%) thresh-
old for consistency with past studies.
Although they cannot be used to directly estimate diagnosability, the other meth-

ods we reviewed are, nonetheless, also potentially useful in genetic studies aimed at
evaluating the population/subspecies boundary. For instance, clustering methods can
be quite valuable in identifying cryptic taxa or testing hypotheses of divergence
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generated via other means (e.g., de Oliveira et al. 2008, M€oller et al. 2008). Similarly,
estimates of gene flow can be used to test for male-mediated gene flow in cases where
subspecific status is indicated by mtDNA.
Evaluating the extent to which two groups represent separately evolving lineages

is often more challenging than evaluating diagnosability. Though diagnosability can
be directly estimated, assessing evolutionary independence requires the use of proxies.
Because the expected level of evolutionary independence is lower for subspecies than
for species, evaluating evolutionary independence at the subspecies/population
boundary will generally be easier than at the subspecies/species boundary. For exam-
ple, clustering of the diagnosable groups on a phylogenetic tree, distinct from groups
of similar taxonomic rank, would indicate that they had been evolving relatively
independently for long enough to allow the in situ generation of new mutations (e.g.,
Kershaw et al. 2013). Estimates of divergence time or genetic distance (e.g., dA; Rosel
et al. 2017a) could also be used to assess whether a group has been isolated long
enough to warrant subspecies status.
When judging whether the degree of divergence between two putative taxa is

consistent with subspecies or species designation, the strongest arguments will be
those that use an integrative approach to combine the results from several differ-
ent analytical methods and data types (DeSalle et al. 2005, Padial et al. 2010,
Tobias et al. 2010). Such an integrative approach is consistent with the recom-
mendations of a 2004 Taxonomy Workshop aimed at addressing the shortcomings
in current cetacean taxonomy, which state that at least two independent lines of
evidence (which could be two different types of genetic markers, such as mtDNA
and nuclear sequence data) are necessary for delineating new species (Reeves et al.
2004).
Comparative studies have shown that taxonomic status is not strongly corre-

lated with estimates of divergence time, F-statistics, or the number or proportion
of fixed difference between groups (Hey and Pinho 2012, Rosel et al. 2017a).
However, Rosel et al. did find that dA performed well at distinguishing between
populations, subspecies, and species for cetaceans, with subspecies predominantly
falling into the range 0.004 < dA < 0.02. Although these values are specific to
the marker type (mitochondrial control region sequence) and taxa Rosel et al.
examined, the results provide important threshold values for the most commonly
used type of genetic data in cetacean taxonomic studies and suggest that similar
threshold values of dA could be identified for other marker types and taxonomic
groups. Taylor et al. (2017a) used Rosel et al.’s results to develop a set of qualita-
tive and quantitative standards designed to assist researchers in evaluating multi-
ple lines of evidence in cetacean taxonomic studies. Quantitative standards such as
those proposed by Taylor et al. for control region sequence data should bring con-
sistency and reproducibility to the construction of arguments for subspecies and
species designations.
Increases in the quantity and quality of neutral markers and the addition of

selected markers will bring new opportunities and challenges to the analysis and
interpretation of genetic data for improving taxonomy. In this exciting period of
rapid changes, it becomes all the more important to develop and evolve standards for
interpreting genetic data in a taxonomic context to lend order and consistency to the
discovery process. By focusing on the features that distinguish subspecies from the
taxonomic units above (i.e., species) and below (i.e., populations) them and choosing
methods that evaluate those critical features, researchers can make more convincing
and consistent arguments for subspecies delimitation.
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Appendix 1. The role of mtDNA sequence data in subspecies delimitation.

Mitochondrial DNA (mtDNA) sequence data have played a major role in taxo-
nomic and phylogeographic studies in the past several decades (Zink and Barrow-
clough 2008). In recent years, there has been considerable backlash against the use of
this marker for these types of studies (Ballard and Whitlock 2004, Edwards et al.
2005, Edwards and Bensch 2009, Dupuis et al. 2012). Much of this criticism stems
from the use of mtDNA in studies aimed at elucidating the relationships among spe-
cies. Reliance on mtDNA in such cases has proven problematic (e.g., Duchêne et al.
2011). Here we focus on the utility of mtDNA in taxonomic studies at and below
the species level—those aimed at delimiting subspecies and species rather than deter-
mining the relationships among species and higher-level taxa.
The prevalence of mtDNA in taxonomic studies results from the fact that it has

many characteristics that make it particularly well suited to such studies, including
those aimed at delimiting subspecies (Zink and Barrowclough 2008). The four-fold
smaller effective population size of the mitochondrial genome compared to the
nuclear genome allows lineage sorting to proceed more rapidly in the mitochondrial
genome and reciprocal monophyly to be achieved sooner, on average. Consequently,
mtDNA is often better suited to resolving recent divergences (but see Karl et al.
2012), a characteristic that is particularly important when attempting to delimit sub-
species in cetacean taxa, many of which radiated rapidly and recently (Kingston et al.
2009, Steeman et al. 2009). Mutation rates within the mitochondrial genome are
often well-tuned to the problem of phylogeographic inference at and below the spe-
cies level (e.g., Ducĥene et al. 2011). Microsatellite loci typically mutate rapidly and
therefore exhibit considerable homoplasy,2 a problem that is exacerbated by a muta-
tion model that results in high levels of back mutation, while nuclear introns and
other noncoding and coding sequences typically mutate at much slower rates than

2Homoplasy is acquisition of the same trait in unrelated lineages. Individuals can have the same num-
ber of repeats (identical by state) but have acquired that state through independent mutational histories
(not identical by descent).
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mtDNA, resulting in insufficient variation at these loci to be able to resolve recent
divergences.
The mitochondrial genome is inherited as a single, nonrecombining locus, making

it possible to generate gene trees from which to make phylogenetic inferences. Mito-
chondrial gene trees have proven extremely powerful in phylogenetic and taxonomic
studies. Although gene trees can also be generated for nuclear sequence data, doing so
presents considerable technical challenges when dealing with the possibility of
recombination and the diploid nature of the loci (but see Puritz et al. 2012). Finally,
because most mammalian cells contain thousands of copies of the mitochondrial gen-
ome compared to only a single copy of the nuclear genome, when dealing with
degraded, old, or poor quality samples, mtDNA is much easier to extract and amplify
than is nuclear DNA. The ability to obtain data from less-than-ideal samples is criti-
cal in studies of cetaceans due to the difficulty in collecting samples from many spe-
cies. It should be noted that nuclear SNP loci have been shown to work reliably with
poor quality samples, including historical samples (Morin and McCarthy 2007), and
the advent of Next Generation Sequencing (Meyer and Kircher 2010, Rohland and
Reich 2012) may make it possible to obtain nuclear sequence data from poor quality
samples as well.
Control region and cytochrome b sequence data are likely to continue to predomi-

nate in cetacean taxonomic studies because the technology to generate data from
them is readily available to most researchers. Furthermore, there are many existing
control region and cytochrome b data sets that can be added to as samples become
available. Although these markers are likely to continue to provide valuable insights
into taxonomic questions, they are vulnerable to errors in certain instances. Due to
the stochastic nature of the evolutionary process, the gene tree reconstructed from
mtDNA may not accurately reflect the species tree (Davis and Nixon 1992). Conse-
quently, accidents of lineage sorting may result in the most recent common ancestor
of two lineages substantially predating the actual species (or subspecies) divergence.
Conversely, past introgressive hybridization can result in species appearing much
more recently derived than they actually are (Seehausen et al. 2002, Shaw 2002, Chan
and Levin 2005), or can cause general lack of concordance between the mtDNA gene
tree and the actual species tree (e.g., Degnan 1993). These limitations likely con-
tribute the difficulty in inferring phylogenetic relationships and delimiting species
and subspecies within the subfamily Delphininae (Kingston et al. 2009, Amaral et al.
2012).
The strict maternal inheritance of mtDNA, while advantageous with respect to

effective population size and generating gene trees, means that mtDNA will fail to
reflect male-mediated gene flow. Some cetaceans exhibit male-biased dispersal (e.g.,
Escorza-Trevino et al. 2005, Oremus et al. 2007, Engelhaupt et al. 2009), while
others exhibit strong matri-focal social structure (e.g., Barrett-Lennard 2000). These
scenarios can result in strong differentiation in mtDNA but sufficient gene flow in
the nuclear genome to prevent divergence worthy of subspecific status. When gene
flow occurs due to male-biased dispersal (i.e., organismal gene flow), it is possible that
gene flow could be detected in a mtDNA data set if migrant males are included in
the sample set. However, if gene flow occurs only through mating between groups
(i.e., gametic gene flow), it will not leave any signal in the mtDNA gene pool. Thus,
when using mtDNA to evaluate taxonomic status researchers must convince readers
that their results will not be subject to unwarranted delimitation of subspecies
because of an inability to detect male-mediated gametic gene flow. Strongly disjunct
distributions (for example tropical species in the Atlantic and Pacific) are not a
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concern. Similarly, species with known fission-fusion social structure and high abun-
dance are unlikely cases for such false positives. In contrast, caution should be used in
cases with low effective population size and known or suspected male-biased dispersal
or maternally inherited site or social group fidelity. In these cases, the structure iden-
tified using mtDNA analyses must be corroborated with nuclear loci.
Fortunately, technological advances associated with Next Generation Sequencing

(NGS) are likely to result in a substantial increase in the number and types of loci
brought to bear in future taxonomic studies (e.g., Emerson et al. 2012, Funk et al.
2012, Peterson et al. 2012, Puritz et al. 2012, Hancock-Hanser et al. 2013). New ana-
lytical methods being developed for use with mitochondrial genome sequences and
multi-locus nuclear sequence data from neutral markers hold the potential to resolve
even very recent speciation events that cannot be resolved with control region or cyto-
chrome b data (Morin et al. 2010, McGowen 2011, Amaral et al. 2012, Fujita et al.
2012, Andrews et al. 2013). Another promising avenue of development is the use of
sequence data to identify selected regions of the nuclear genome. Genome-wide scans
of polymorphisms (see Davey et al. 2011 for a review of laboratory methods) can pro-
vide thousands of SNPs from which loci under selection may be detected using out-
lier tests or neutrality tests (Baird et al. 2008, Hohenlohe et al. 2010). Combined
with annotated whole-genome reference sequences, these methods may facilitate the
discovery of “speciation genes” (Nosil and Schulter 2011) and gene regions that
underlie the diagnosable morphological characters that were the basis of initial sub-
species hypotheses (for example within the Delphininae; Perrin 1990, Perrin et al.
1994).

Appendix 2. Evaluating divergence: Comparing apples to apples.

A comparative approach to identifying quantitative thresholds for different metrics
of divergence is problematic because all of these metrics are affected by effective pop-
ulation size (Ne), mutation rate, and whether the groups are diverging due to neutral
drift or different selection pressures. Large populations experience drift much more
slowly than small populations. Consequently, it will take new mutations much
longer to reach fixation in large populations, slowing the accumulation of fixed differ-
ences. Similarly, large populations maintain higher levels of genetic diversity than
small populations, again due to their slower rate of drift. Thus, two large populations
must be separated much longer in order to develop the same level of net nucleotide
divergence (corrected for within-population variability) as two small populations.
The slow rate of genetic drift in large populations is easily overcome by even low
levels of ongoing or periodic gene flow. As a result, two very small populations can
attain a very high level of divergence, as measured either by percent divergence or an
analog of Wright’s (1931) F-statistics, very quickly, even in the face of ongoing gene
flow, while two very large populations may exhibit very low divergence estimates
despite having been isolated long enough to develop strong morphological differ-
ences.
If two groups diverge solely due to random drift, then the dependence of diver-

gence metrics on Ne would not be problematic. After all, it really would take longer
for two large populations to diverge by random drift alone than it would for two
small populations. However, two geographically disjunct groups will almost always
be subject to different selective pressures. Certain types of selection can cause two
groups to diverge adaptively much more rapidly than expected by drift alone, but
that divergence might not be reflected in the neutral markers typically used in
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taxonomic studies. Thus, detecting species-level divergence of large populations that
are diverging under strong selection can be very challenging (e.g., Galver 2002,
Andrews et al. 2013).
Estimates of divergence between two groups will also depend on the mutation rate

of the loci used and, in the case of sequence data, the length of sequence obtained.
Thus a comparison made using sequences of the full mtDNA control region (~1,000
base pairs in cetaceans; Hoelzel et al. 1991) would be expected to reveal more fixed
differences than a comparison using only the ~400 base pairs of control region con-
taining hypervariable region 1 (HV1), which exhibits a higher substitution rate than
the rest of the control region. Although the difference in sequence length can be com-
pensated for by calculating the percent of base pairs that are fixed (number of fixed
differences divided by sequence length; Rosel et al. 2017a), the high substitution rate
and consequent homoplasy in HV1 may result in a lower proportion of fixed sites
than in the rest of the control region. The net percent divergence for full control
region sequence could be either higher or lower than for HV1 depending on whether
the between group diversity (the signal) or within group variability (the noise)
increases faster when the slower-mutating portion of the sequence is included. Most
analogs of Wright’s (1931) F-statistics are inversely correlated with mutation rate
(Meirmans and Hedrick 2011). Tree-based methods will produce greater resolution
and divergence time estimates will be more precise when applied to sequences from
loci that have mutation rates optimized to the question being addressed—mutation
rates high enough for informative variation to have developed but not so high that
there is substantial homoplasy (Duchêne et al. 2011).
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