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24 Abstract 

25 Estimating the effective population size and effective number of breeders per year (Nb) can facilitate early 

26 detection of population declines.  We used computer simulations to quantify bias and precision of the one-

27 sample LDNE estimator of Nb in age-structured populations using a range of published species life history 

28 types, sample sizes, and DNA markers.  Nb estimates were biased by ~5–10% when using SNPs or 

29 microsatellites in species ranging from fishes to mosquitoes, frogs, and seaweed.  The bias (high or low) was 

30 similar for different life history types within a species suggesting that life history variation in populations will 

31 not influence Nb estimation.  Precision was higher for 100 SNPs (H≈0.30) than for 15 microsatellites (H≈0.70).  

32 Confidence intervals (CI’s) were occasionally too narrow, and biased high when Nb was small (Nb<50); 

33 however, the magnitude of bias would unlikely influence management decisions.  The CI’s (from LDNE) were 

34 sufficiently narrow to achieve high statistical power (≥0.80) to reject the null hypothesis that Nb=50 when the 

35 true Nb=30 and when sampling 50 individuals and 200 SNPs.  Similarly, CI’s were sufficiently narrow to 

36 reject Nb=500 when the true Nb=400 and when sampling 200 individuals and 5,000 loci.  Finally, we present a 

37 linear regression method that provides high power to detect a decline in Nb when sampling at least five 

38 consecutive cohorts.  This study provides guidelines and tools to simulate and estimate Nb for age structured 

39 populations (https://github.com/popgengui/agestrucnb/), which should help biologists develop sensitive 

40 monitoring programs for early detection of changes in Nb and population declines.  

41 Keywords: effective population size, conservation genetics, population decline, genetic monitoring, 

42 population fragmentation, connectivity, viability, computer simulations, power analysis

43

44 Introduction

45 The effective population size (Ne) is among the most important parameters in conservation and evolutionary 

46 biology because Ne influences the efficiency of natural selection and gene flow, as well the rate of inbreeding 

47 and loss of genetic variation (Frankham 2005; Charlesworth 2009; Jamison and Allendorf 2012).  

48 Unfortunately, Ne is notoriously difficult to estimate, especially for species with age structure.  In age-

49 structured populations, we are often interested in both the effective size per generation (Ne) and the effective 

50 number of breeders per year or reproductive cycle (Nb).  Ne is a crucial metric in conservation because, for 

51 example, if Ne is less than ~50, inbreeding often leads to substantial inbreeding depression (Jamison and 

52 Allendorf 2012).  While much of population genetic theory uses Ne per generation, Nb can be a more relevant 

53 parameter than Ne in age-structured species. For example, Nb is important when studying seasonal or annual 

54 processes, reproduction events, or sexual selection in age-structured species.  

55 The effective number of breeders (Nb) per reproductive cycle or cohort is advantageous to monitor because it 

56 allows early detection of a population decline.  If Nb sharply declines for multiple reproductive cycles, then Ne 
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57 and Nc (population census size) will also likely decline (but see Whiteley et al. 2015). An Nb decline might be 

58 detectable by monitoring Nb for as few as 4 or 5 consecutive reproductive cycles in a species with a long 

59 generation interval of >10-20 years (Leberg 2005; Wang 2005; Antao et al. 2010).  Early detection of a decline 

60 in Nb can help prevent loss of genetic diversity, population extirpation, and subsequent loss of ecosystem 

61 services (Schwartz et al. 2007; Luck et al. 2003; Schindler et al. 2010).  Nb monitoring also allows early 

62 detection of population growth or expansion following species restoration, recovery, or spread of an invasive 

63 species (Kamas et al. 2016; Tallmon et al. 2012).  

64 Nb estimation per breeding cycle, using a single-sample estimator, provides advantages over the estimation of 

65 effective population size per generation (Ne).  First, estimating Ne may require waiting several years between 

66 sampling events, for example, when using the temporal method (Waples and Yokota 2007).  However, 

67 estimating Nb allows frequent (annual) monitoring of population status, which is helpful for early detection of 

68 population trends in species with long generation intervals (Waples et al. 2013).  For example, samples from 

69 newborns allow estimation of Nb a few weeks or months after the birthing season, which facilitates the 

70 assessment of population threats such as reproductive failure or cryptic population bottlenecks (Luikart et al. 

71 1998).  Sampling newborns can facilitate the sampling of single cohorts because in many species only 

72 newborns (or yearlings) can be aged.  In some taxa, such as fishes, plants, and amphibians, we can sample 

73 several age classes during a single collection event, which allows testing for trends in Nb (Tallmon et al. 2012).  

74 It recently has become feasible to estimate Nb in age-structured populations, using the single sample (one time 

75 point) genetic estimator LDNE (Waples and Do 2010).  Waples et al. (2014) quantified the bias of the LDNE 

76 estimator of Nb related to age structure, using 100 microsatellite loci across a range of species and relatively 

77 large Nb estimates (Nb = 200-5000)(see also Robinson and Moyer 2013).  However, the precision of this Nb 

78 estimator has not been extensively quantified for age-structured populations (but see Robinson and Moyer 

79 2013), and the bias and the precision of the estimator are poorly understood when considering populations 

80 with different or variable life histories.  For example, it is not known how changes in age-specific survival, 

81 fecundity, or longevity will bias or change Nb estimates, even if the true (deterministic) Nb remains constant; 

82 this is important because these age-specific vital rates influence the Nb/Ne ratio which can influence or bias Ne 

83 estimates obtained from the LDNE method (Waples et al. 2014). 

84 Finally, we know little about bias and precision at small Nb (Nb < 200) in age-structured populations, or when 

85 using SNP loci.  Here, we focus mainly on small Nb’s, because effective size estimators perform best for small 

86 population sizes and because small populations have the greatest need for monitoring to prevent extirpation 

87 (Luikart et al. 1998; Leberg 2006).  We also conduct simulations with a larger Nb, ranging from 300 to 2,000 

88 to help quantify the power to identify populations with an Nb around 500.  An Nb or Ne of 500 is important in 

89 conservation because the “50/500” rule states that Ne must be larger than ~500 to maintain evolutionary 

90 potential (Jamieson and Allendorf 2012). Frankham et al. (2014) recommend changing the 50/500 rule to 

91 100/1000 justifying use of larger Nb for some simulations here.
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92 When using hundreds of loci, confidence intervals (CIs) can be excessively narrow because not all the 

93 pairwise comparisons between loci are independent (Waples and Do 2008).  Thus, a new CI estimation method 

94 was recently produced to provide wider and more reliable CI’s (Jones et al. 2016).  Finally, little is known 

95 about the effects of pooling cohorts on the magnitude of bias when using SNPs and small Nb, so we quantified 

96 the effects of pooling 2 or 3 cohorts.

97 Many species, including threatened trout, have substantial life history variation within and among populations 

98 (Shepard et al. 1984; Fraley and Shepard 1989; Northcote 1997; Al-Chokhachy and Budy 2008).  It is 

99 important to quantify the effects of life history variation on the bias of Nb estimators because if the magnitude 

100 of the bias changes, the Nb estimates could change even when true Nb remains constant.  For example, trout 

101 populations can have substantially different fecundities and age-specific survival rates if mortality increases in 

102 older fish (e.g., migratory individuals), due to predation or fishing mortality.  Similarly, a population’s average 

103 fecundity can also change rapidly if migratory fish are constrained due to a new barrier, fragmentation, 

104 overharvest of the large migratory females, or increased predation (e.g., by introduced species) along their 

105 migration pathway to spawning or feeding areas (Al-Chokhachy and Budy 2008).  Migratory fish are often far 

106 larger than non-migratory fish and thus produce far more eggs.

107 Our overarching goal is to improve our ability to estimate and monitor Nb in natural populations by evaluating 

108 the performance of the LDNE estimator using many simulated populations with known Nb and age-structured 

109 populations.  This is novel and important because most population genetics theory assumes discrete 

110 generations, but the vast majority of species have overlapping generations and age structured populations.  Our 

111 five objectives are to: (1) quantify effects of life history variation (vital rate differences) on the bias and 

112 precision of Nb estimates; (2) quantify bias and precision for a range of microsatellite and SNP loci (15-5,000) 

113 and heterozygosities (H = 0.25 to 0.7); (3) assess the effects of pooling cohorts on Nb estimator bias; (4) 

114 quantify our ability to compute precise and reliable confidence intervals when Nb is near 50 or 500, and (5) 

115 quantify the power of a novel linear regression approach to detect a declining Nb when sampling 5 to 10 

116 consecutive cohorts.  

117 We conduct most simulations using 100-400 SNPs because this number is commonly used and easily feasible 

118 in many species thanks to recent SNP chip and genotyping-by-sequencing technologies such as GTseq and 

119 Rapture (Ruegg et al. 2014; Kraus et al. 2015; Narum et al. 2015; Ali et al. 2016).  For simulations with larger 

120 Nb, we used 800 - 5,000 independent SNPs to achieve reasonable precision.  Finally, we provide guidelines 

121 and a computer simulation program to compute, interpret, and simulate Nb estimates and confidence intervals 

122 over a broad range of taxa (https://github.com/popgengui/agestrucnb/).  This study and simulation program 

123 will help researchers and managers develop and improve genetic monitoring programs for natural and 

124 managed populations (Schwartz et al. 2007; England et al. 2010).

125 Methods 
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126 Simulations and life tables

127 We simulated age-structured populations using the forward-time, individual-based simulator simuPOP (Peng 

128 and Kimmel 2005, Peng and Amos 2008).  Each simulation tracked demographic and genetic processes in an 

129 age-structured population up to 1000 reproductive cycles (years).  Demographics were governed by vital rates 

130 (age-specific survival and fecundity) and longevity provided in life tables.  The life table data from mosquito, 

131 wood frog, and seaweed were reported in Waples et al. (2013).  We used vital rate information published for 

132 life stages of the westslope cutthroat trout (Shepard et al. 1984; Fraley and Shepard 1989) and bull trout (Al-

133 Chokhachy and Budy 2008) and converted them into age class data to construct life tables for simulating 

134 populations (see Table S1 and Appendix 1).

135 For cutthroat trout, one life table was constructed using data from Shepard et al. (1984), and a second life table 

136 (with the fecundity increasing with age) using data from Fraley and Shepard (1989) (Appendix 1).  For bull 

137 trout, we constructed three different life tables that we termed “standard”, “predation”, and “long-lived” to 

138 span a realistic range of life histories and vital rates.  The standard table was derived from migratory bull trout 

139 that exhibit an adfluvial life history (with rearing and foraging in lacustrine habitat) in the Flathead River 

140 system (Fraley and Shepard 1989) and elsewhere throughout their current range (Downs et al. 2006; Weaver 

141 2006; Johnston and Post 2009).  For the bull trout “predation” life table, we modified vital rates from the 

142 standard vital rates to simulate the effects of high predation on those age classes (ages 4 and 5) that migrate 

143 from their natal spawning streams to lakes (e.g., Flathead Lake, Montana). In many lakes, mortality caused by 

144 predation and competition is elevated by the introduced lake trout in the lake (Martinez et al. 2009; Ellis et al. 

145 2011).  For the “long-lived” life table, we used bull trout information from large lakes where individuals live 

146 longer than bull trout in the Flathead drainage (Johnston and Post. 2009).

147 For each life table, and for a given Nb, we computed demographic Ne by using the program AGENE, which is a 

148 deterministic discrete-time model (Waples et al. 2011).  We used AGENE to determine the stable age 

149 distribution, total population size (NT), and adult population size (N), given the life table vital rates and the 

150 number of offspring produced per year that survived to age 1 (N1), as in Waples et al. (2014).  The values of 

151 NT, N, Ne, and Nb all scale linearly with N1, so when a different N1 is used, the ratios of these variables do not 

152 change.  To initialize year 0 and to generate NT individuals, the age of each individual was drawn randomly 

153 from the stable age distribution and the sex was randomly assigned (male or female) with equal probability.  

154 The total population size, and the number of individuals in each age class (by sex), varied randomly around the 

155 mean values expected in a stable population.  The adult sex ratio varied randomly around 0.5 and could differ 

156 substantially from 0.5 due to sex-specific survival rates and ages at maturity.  

157 To produce each newborn individual, one male and one female parent were drawn randomly from the pool of 

158 potential parents (those with ages for which bx > 0).  All potential parents of the same sex and age had an equal 

159 opportunity to be the parent of each newborn, but that was not necessarily true for individuals of different ages 
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160 or sex. That is, the probability that an individual of age x was chosen to be the parent of a newborn was 

161 proportional to bx for that sex.  We used the Nb /Ne ratio to assess the expected direction of bias and the 

162 approximate magnitude of bias in Nb estimates (as in Waples et al. 2014).

163 Loci

164 To compare microsatellites to SNPs, we simulated a set of 100 microsatellites (H ≈0.7), although most of our 

165 analyses use only 15 microsatellites as is typically used in many studies, including nearly all genetic studies of 

166 bull trout (Ardren et al. 2011; DeHaan et a. 2011).  We simulate 100, 200, and 400 SNPs, which are the 

167 approximate numbers of loci often in studies using SNP chip and amplicon sequencing approaches (Hemmer-

168 Hansen et al. 2011; Amish et al. 2012; Narum et al. 2010; Seeb et al. 2007; Seeb et al. 2012; Ali et al. 2016).  

169 To test for effects of heterozygosity on bias and precision, we simulated sets of SNPs with a range of mean 

170 heterozygosity (H ≈0.25. 0.30, 0.35, 0.40, and 0.45).

171 Allele frequencies for each locus in each replicate were separately initialized using a Dirichlet distribution, 

172 which is widely used in population genetics and has little influence on allele frequency distributions after a 

173 simulation burn-in of many generations (below).  Multilocus genotypes in offspring were generated randomly 

174 assuming simple Mendelian inheritance from the two randomly chosen parents.  

175 Data analysis and Nb estimation

176 After a simulation burn-in period of 50 years (which achieved an approximate demographic and genetic 

177 equilibrium; see Waples et al. 2014), we waited for the mean SNP heterozygosity to drop to 0.40 to achieve 

178 allele frequencies realistic for natural population and then tracked demographic and genetic parameters for 

179 another 50 years before starting a replicate. To quantify the effect of mean SNP heterozygosity as specified 

180 above, we also tracked results with other heterozygosity values (H = 0.45 - 0.25) for a subset of scenarios (e.g., 

181 Nb =50 or 100, and samples of 50 individuals and 100 SNPs). For each simulation scenario, we generated a 

182 total of 1,000 replicate samples.  There was little/no difference between the low versus highest heterozygosity 

183 simulations so we present results from only one mean heterozygosity typical of many SNP studies (H = 0.30).  

184 For microsatellites, we waited until mean heterozygosity was near 0.75 (with ~8 alleles per locus).

185 We used four different sampling strategies useful in natural populations: (a) only newborns (that is, a single 

186 cohort), (b) two consecutive cohorts (50% newborns, 50% age 1 fish), (c) three consecutive cohorts (33% 

187 newborns, 33% age 1, and 33% age 2), and (d) all individuals in the population.  In each case, individuals were 

188 sampled randomly without replacement from these targeted groups.  For each strategy, we took samples of 15, 

189 25, 50 and 100 individuals and evaluated them for 15 microsatellites and 100, 200, and 400 SNP loci.  For 

190 model validation, we also conducted longer runs to track the loss of heterozygosity over time and compared 

191 (validated) the loss rate to that expected (from theoretical equations) and the rate estimated from values from 

192 AGENE.
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193 In each simulation sample, we estimated effective size using the program LDNE (Waples and Do 2008).  

194 Because we were initially interested in assessing bias, we used Pcrit = 0.05.  Pcrit is the lowest allele frequency 

195 allowed in the analysis.  Waples and Do (2010) found that this Pcrit value minimized bias with small sample 

196 sizes.  Negative and infinite values of Nb estimates were converted to 106 as in previous related studies 

197 (Waples et al. 2014); negative Nb estimates can result when the LD signal (i.e., gametic disequilibrium signal) 

198 from sampling error noise is larger than the LD signal from the small number of parents and drift.  For results 

199 reported below, unless otherwise stated (e.g., Fig. 1 left side panels), the estimates from LDNE were adjusted 

200 to reduce bias by applying the Nb/Ne bias adjustment from Waples et al. (2014).

201 The realized Nb from each replicate simulation was calculated using a standard formula for the inbreeding Ne 

202 (equation 2 in Waples et al. 2014).  The realized Nb varies stochastically among simulation replicates with 

203 variance ~ N/2; therefore, the coefficient of variation in realized Nb increases as the population size decreases 

204 (Waples and Faulkner 2009).  Because this simulation-induced stochasticity in Nb among simulation replicates 

205 is relatively large for small Ne and does not occur in natural populations (each of which has a single true 

206 trajectory of Ne over time) (Waples and Faulkner 2009), we constrained the realized Nb to vary only by < 1% 

207 above or below the expected (deterministic value), e.g. Nb = 50, or 100.  Thus, all simulations of Nb = 50 

208 included simulation replicates with a realized Nb of 49.5 ≤ Nb ≤ 50.5. 

209 Violin and box plots

210 For easy comparison among simulated scenarios (life histories, numbers of loci and individuals sampled) we 

211 produced violin plots (Fig. 1) and box plots visualizing the distribution of Nb point estimates (e.g., Figs. 2 and 

212 3), as well as the distribution of the upper and lower confidence interval limits (Figs. 4 and 5).  Each box plot 

213 shows the median, box edge percentiles (20th and 80th percentiles), and 5th and 95th percentiles of the point 

214 estimate from each of 1,000 simulation replicates for each simulation scenario.  

215 Linear f method

216 To quantify our ability to detect a declining Nb by sampling multiple consecutive cohorts, we simulated 1000 

217 independent declines of 5%, 7%, 10% and 15% per year (or cohort) and using a 0% decline as a control.  This 

218 was an exponential decline because, for a 10% decline, each year Nb lost 10% of what was left: Nb =100, 90, 

219 81, 73, 66, 59, 53, 48, 43, 39, and 35. This type of decline is close to linear for 5-10 years, linear in log space, 

220 and never reaches 0 but gets arbitrarily close. We then conducted linear regressions through 5, 7 or 10 

221 consecutive cohort Nb point estimates (from LDNE) and tested whether the slope of the line was negative as 

222 expected for a declining Nb.  Statistical tests for a significant negative slope (and thus a population decline) 

223 were computed using least-squares linear regression (Neter 1985). The test statistic (t*) for the slope of a linear 

224 regression can be calculated using the equation below for a normally distributed regression with a null 

225 hypothesis that b1 is equal to zero, where b1 is the slope of the regression and s(b1) is an estimate of the 

226 variance of the slope (Neter 1985). 
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227 � ∗ =  �1 �(�1)                 (1)

228 Using t* and the degrees of freedom of the regression (n - 2 where n is the number of points used in the linear 

229 regression) we calculated the p-value for that line using a Cumulative Density Function (CDF) on the T 

230 distribution (Neter 1985).

231 Results

232 We first computed Nb and Ne for each life table using the deterministic model in the program AGENE, as in 

233 Waples et al. (2014).  For example, the Nb/Ne ratio was 0.79 for the standard bull trout life table.  This ratio 

234 dropped to 0.66 for the “predation” bull trout life table, which had higher mortality rates for the 4 and 5-year-

235 old age classes.  The Nb/Ne ratio for bull trout with a longer life span (BT-Long) was 0.78.  The Nb/Ne ratio for 

236 a mosquito, wood frog, and seaweed, were 0.27, 0.60, and 1.26, respectively (Waples et al. 2013).

237 Our stochastic simulations with random demographic variability (using simuPOP) yielded populations with the 

238 same Nb/Ne ratios as the deterministic model AGENE and agreed closely with theoretical expectations of the 

239 rate of loss of heterozygosity given the Ne from AGENE.  Thus, we next looked for potential bias in the 

240 genetically based LDNE Nb estimates for each sample of individual genotypes simulated with simuPOP by 

241 comparing these Nb estimates with the AGENE true Nb values.   

242 Bias, cohort pooling

243 Our bias in LDNE estimates of Nb due to age structure was similar in magnitude (3% to 15%) to previous 

244 evaluations that considered relatively large Nb’s (Nb  > 200) and microsatellite loci (Waples et al 2014).  The 

245 direction of the bias was generally upward for the species with Nb < Ne (bull trout, cutthroat trout, mosquito, 

246 and wood frog), as expected (Waples et al. 2014).  The direction of bias was downward for the species with Nb 

247 > Ne (seaweed), also as expected (Fig. 1).  The results reported below include the bias correction using the 

248 Nb/Ne ratio adjustment (as in Waples et al. 2014), which generally reduced the magnitude of bias by a few 

249 percent, as in previous studies (Waples et al. 2014).  Many of the results below are also reported for only one 

250 life history (BT-Stnd, i.e., standard bull trout), unless otherwise stated, because the magnitude of bias and the 

251 precision were similar for the range of life histories considered here (Fig. S1 in supplementary materials).

252 The bias was generally similar for microsatellites and SNPs (Fig. 2).  The bias was highest (~15%) in some 

253 scenarios when using only 15 microsatellite loci (Fig. 2, Nb = 100). The magnitude of bias was similar across 

254 the range of the number of loci used (up to 400) and of individuals (25-100) considered here.  

255 Heterozygosity of markers had little effect on bias.  For example, as the mean heterozygosity decreases from 

256 0.40 to near 0.25 for 100 SNPs, the distribution of Nb point estimates (from 1000 simulations) shifted only 

257 slightly (data not shown).  
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258 Pooling samples from two or three cohorts increased the magnitude of upward bias to ~30-40% higher than the 

259 deterministic (true) Nb (AGENE).  Combining cohorts increases the upward bias when the true Ne is larger than 

260 Nb, as here (Waples et al. 2014).  For example, pooling two consecutive cohorts gave a median estimate of Nb 

261 = 65 from 1000 simulations when the actual deterministic Nb was only 50.  Pooling three cohorts further 

262 increased the magnitude of bias, such that the mean Nb increased to ~70 when the deterministic Nb per cohort 

263 was only 50 (Fig. 3). This bias high agrees with the upward bias reported by Waples et al. 2014 when pooling 

264 of cohorts from populations with Nb/Ne ratios less than 1.0.  Pooling can be more appropriate when estimating 

265 Ne, not Nb, because the estimates obtained from LDNE for pooled cohorts often approach Ne (see figure 4a in 

266 Waples et al. 2014).

267

268 Precision, confidence intervals, and power

269 Precision was higher for 100 bi-allelic SNPs than for the 15 microsatellites having ~8 alleles per locus.  For 

270 example, the range of the Nb point estimates was 90-165 for microsatellites versus 95-130 for 100 SNPs, when 

271 the deterministic (true) Nb (from AGENE) was 100 (Fig. 2).  These Nb estimates included the Nb/Ne bias 

272 adjustment from Waples et al. (2014), which used an assumed true (deterministic) Nb/Ne computed in program 

273 AGENE using life history parameters.  When the Nb (from AGENE) was only 50, the range of point estimates 

274 was ~45 to 75 for 15 microsatellites versus only ~46 to 65 for 100 SNPs, when sampling a single cohort and 

275 50 individuals.  Precision increased substantially such that the distribution of point estimates narrowed when 

276 using 200 SNPs compared to 100 SNPs, in all the species evaluated (trout, wood frog, seaweed, mosquito); 

277 however, precision only slightly improved for 400 SNPs compared to 200 SNPs (Fig. 2).  

278 Confidence interval estimates (95% CIs, from LDNE jackknife method) performed well when using 100 SNP 

279 loci and 50 individuals as they contained the deterministic Nb for 94% of simulation replicates for the bull trout 

280 (BT-Stnd) (Table 1; Fig. 4).  When Nb =50, only 90% of independent CI’s contained the deterministic (true) 

281 Nb, when sampling 100 SNPs and 50 individuals.  For example, bull trout had only 90% of independent CI’s 

282 that contained the deterministic Nb, when simulating an Nb = 100 and when sampling 50 individuals and 100 

283 SNPs (Table 1). CI’s tended to be biased high, which contributed to only 90% of CI’s containing the true 

284 deterministic Nb.  

285 Confidence intervals for a true Nb = 30 were below Nb = 50 in 80% of simulations when 200 loci and 50 

286 individuals were genotyped; thus the power was 0.80 to detect that Nb was below 50.  The CI distributions 

287 and power were similar (~0.80 to 0.90) for other species including mosquitos, westslope cutthroat trout, and 

288 wood frog (Fig. S1).   Similarly, confidence intervals for a true Nb=400 were below Nb =500 in approximately 

289 80% of simulations (power  0.80) when 400 loci and 100 individuals were genotyped (Fig. 5); the power 

290 increased to >0.95 when genotyping 800 loci and 500 individuals (Fig. 5).  Finally, when the true Nb=2,000, 

291 ~80% of simulated CI’s allowed rejection of the null hypothesis that Nb = 2,300 when sampling at least 500 
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292 individuals and 5,000 loci (Fig. S2 in supplementary materials). Importantly, for the larger Nb values of 500 or 

293 2,000, the size of CI’s was reduced more by doubling the number of individuals than by doubling the number 

294 of loci sampled (Fig. S2). 

295 Power to detect a declining Nb via linear regression

296 The linear regression method for detecting a declining Nb is visualized in Fig. 6.  The benefit of doubling the 

297 number of cohorts from 5 to 10 increased power from 0.55 to 1.0 (Fig. 6, 7) when sampling 100 individuals 

298 and 100 SNP loci during a 10% annual decline in Nb.  In another example, power to detect a 15% decline per 

299 year in Nb was only ~0.53 (53%) when sampling 50 individuals and 100 SNP loci from each of five 

300 consecutive cohorts and testing for a negative slope (Fig. 7).  Power increased to ~0.73 and ~0.80 when 

301 doubling the number of loci and individuals, respectively.  Power increased to near 100% when doubling the 

302 number of consecutive cohorts that were sampled from 5 to 10 cohorts (Fig. 7, dashed arrow).  

303 We conducted an extensive power analysis for detecting different rates of Nb decline (5%, 7%, 10%, and 15%) 

304 when using different sample sizes of individuals, SNPs, and number of cohorts. This analysis showed that 

305 doubling the number of cohorts from 5 to 10 increased power far more than doubling the number of loci or 

306 individuals (Fig. 7).  Sampling more than 5 cohorts was often required to achieve power >0.80 to detect Nb 

307 declines, given the range of Nb values and sample sizes considered here.  Finally, a power analysis in wood 

308 frogs revealed very similar power for detecting Nb declines as in bull trout (see Fig. 7 versus Fig. S3 in 

309 supplementary materials).

310 Discussion

311 We evaluated the effects of life history variation and sampling strategy on estimates of Nb to help biologists 

312 plan genetic monitoring programs and obtain more reliable estimates of Nb in natural and managed 

313 populations. We found that life history variation, such as changes in survival or fecundity within a species did 

314 not cause substantial variation of Nb estimates, for the scenarios studied here.  This observation is important for 

315 researchers interested in monitoring Nb in species with variable vital rates because it demonstrates that changes 

316 in Nb estimates do not likely reflect changes in vital rates.  We also report that the bias in Nb estimates is 

317 generally small (<5-10%) for relatively small population sizes and SNP marker sets.  These scenarios (e.g., Nb 

318 < 200; SNPs), along with sampling of pooled cohorts have not been thoroughly investigated.  Our simulations 

319 and discussions below regarding the behavior of confidence interval estimates and power for detecting Nb 

320 differences and population declines will help researchers understand how to monitor Nb in age-structured 

321 populations.

322 Bias

323 The bias correction, based on a species’ Nb/Ne ratio (Waples et al. 2014) reduced the magnitude of bias slightly 

324 for all five species, which had a wide range of Nb/Ne ratios.  This result is similar to that reported for larger 
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325 populations and microsatellite loci (Waples et al. 2014).  The results here are useful because they consider 

326 relatively small Nb (25 to 200) typical of threatened species, and they consider different marker types (15-100 

327 microsatellites and 100-400 SNPs).  The greatest proportional bias occurred at small Nb.  For example, when 

328 true Nb = 25, point estimates after applying the Nb/Ne correction were still approximately 10-12% biased-low 

329 (Nb = 22.2) for mosquitos, and 10% biased-high (Nb = 28.0) for bull trout.  This downward bias occurs for 

330 mosquitos because their Nb is greater than Ne, unlike the trout that have an Nb less than Ne (Waples et al. 2014).  

331 This magnitude of bias is only ~5% when Nb becomes large (Nb ≥ 200), which is consistent with the findings 

332 of Waples et al. (2014).  The bias is generally small and unlikely to cause biologists to make erroneous 

333 management conclusions.  For example, the Nb estimate of 28 (instead of 25) for the bull trout likely would not 

334 prompt a different management decision.  

335 The cause of bias in a single-cohort sample has been discussed by Waples et al. (2013) and Waples et al. 

336 (2014). Briefly, there are two main sources of the LD influencing the estimate of Nb:  the Nb per year that 

337 reflects new LD produced by the effective number of breeders (Nb), and the Ne per generation that reflects 

338 residual LD that has not yet broken down.  The sampling process also generates LD.  The LDNE estimator, in 

339 effect, assumes Nb equals Ne.  However, if Ne is larger than Nb, there is less residual LD signal from Ne than is 

340 assumed by the estimator, and the Nb estimate is biased high, as we observed in trout (e.g., Fig. 1).  

341 Conversely, if Ne is smaller than Nb, there is more LD signal from Ne than assumed by the estimator and the Nb 

342 estimate is biased low (Fig. 1; and see Fig. 2 in Waples et al. 2014).  Importantly, estimating the expected bias 

343 in magnitude and direction, which is predictable from the Nb /Ne ratio, can help researchers interpret Nb 

344 estimates and avoid potentially erroneous inferences.

345 With microsatellite loci, the bias was occasionally slightly higher than with SNPs, likely because of the larger 

346 proportion of low-frequency alleles for microsatellites compared to SNPs (Waples and Do 2010), and perhaps 

347 because the initial bias corrections for LDNE were derived from simulations of two-allele loci (Waples 2006).  

348 SNPs are becoming more widely used than microsatellites for most conservation applications and taxa. A set 

349 of 15 microsatellites have been widely used to assess population genetic structure and diversity in bull trout 

350 populations (Ardren et al. 2010; DeHaan et al. 2011).  However, sets of ≥100 SNPs are increasingly used 

351 because this number of SNPs can be genotyped for less cost than 10 microsatellites (Amish et al. 2010; 

352 Campbell et al. 2015; Ali et al. 2016).  

353 An advantage of SNPs is that thousands can be screened to find hundreds with relatively high heterozygosity 

354 (e.g., H > 0.2) for use in SNP chip or other genotyping technologies, which improves accuracy and power for 

355 Nb estimation.  Another advantage of SNP chips, GTseq, or Rapture is they can include marker loci from all 

356 chromosomes, sex identification loci, mitochondrial loci, and species-diagnostic loci for detection of hybrids 

357 (Amish et al. in press).  
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358 Importantly, changing the mean heterozygosity of SNPs ranging from 0.25 to 0.40 had little effect on bias. 

359 However, if many loci have very low heterozygosity (H < 0.1) and thus have low-frequency alleles, the Nb 

360 point estimates could become less precise and more biased (Waples and Do 2010).

361 Sampling multiple cohorts 

362 Occasionally it is not feasible to sample enough individuals (n > 20-30) from a single cohort, and thus cohorts 

363 must be pooled to achieve sufficient sample sizes.  Pooling samples from two or three cohorts increased the 

364 magnitude of bias to near a 20% and 30% overestimation of Nb, respectively (Fig. 3).  This bias from pooling 

365 cohorts is expected only when the Nb/Ne ratio is not near 1.0 (Waples et al. 2014).  This high-bias could result 

366 from less LD signal in a sample of multiple cohorts due to more individual parents contributing offspring to 

367 the sample.  The bias from pooling could result from the pooling leading toward estimating the total Ne per 

368 generation, which is larger than Nb in these trout (for which Nb/Ne ≈ 0.78); Recall that the algorithm for 

369 estimation assumes Nb/Ne ≈ 1.0 (Do et al. 2014).  The direction of the bias (high versus low) depends on 

370 whether the Nb/Ne ratio is low versus high, respectively; a bias-low occurs for an Nb/Ne ratio > 1.0 (Waples et 

371 al. 2014).  

372 Because we now know the magnitude of bias from pooling, our results and those from Waples et al. (2014) 

373 suggest we could correct for the bias when interpreting or estimating Nb (and Ne) from pooled cohorts.  For 

374 example, for bull trout, the bias for two pooled cohorts is approximately 20% high, and thus we can subtract 

375 approximately 20% from any Nb point estimate calculated from samples of pooled cohorts for bull trout. Bias 

376 correction for any given species will depend on the Nb/Ne ratio and the effects of cohort pooling, which can be 

377 quantified as we did here using simulations in the program AgeStrucNe.

378 Previous work showed that pooled cohort samples can yield LDNE estimates that reflect the generational Ne 

379 more accurately than the cohort Nb (Robinson and Moyer 2013, Waples et al. 2014).  Our results for bull trout 

380 simulations, which yielded cohort-pooled estimates of ~65 and 70 from two and three cohorts, respectively, 

381 indicate a relatively accurate estimation of the generational Ne with pooled cohorts (true generational Ne ~ 64 

382 based on Nb = 50 and Nb/Ne = 0.78). Thus, these results suggest that biologists can use the LDNE output to 

383 obtain approximate estimates of Ne from pooled cohorts. Ne can also be inferred from an Nb estimate of a 

384 single cohort if you know the Nb/Ne ratio (e.g. Nb/ Ne = 0.78); For example, an Nb/ Ne ratio of 0.78 would 

385 correspond to an Ne that was 28% higher than an estimated Nb value (1/0.78 = 1.282); Thus, if Nb = 100, Ne = 

386 128.

387 Precision and Confidence Intervals

388 Poor precision is usually the main limitation for the application of Ne estimators to natural populations (Leberg 

389 2005; Wang 2006; Luikart et al. 2010).  The precision and the width of confidence intervals for the LDNE 

390 method improves rapidly (geometrically) with the number of loci (L) because the degrees of freedom is based 
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391 on a multiple of L as follows: n = [(K-1)^2]*L(L-1)/2, where K is the number of alleles per locus and K-1 is 

392 the number of independent alleles.  There are L(L-1)/2 pairs of loci.  For each pair of loci, there is the 

393 equivalent of (K-1)^2 independent comparisons of alleles (Waples and Do 2010).  Ironically, in this genomics 

394 age, high precision (narrow confidence limits) can be problematic because when thousands of loci are used, 

395 CI’s can become excessively narrow.  

396 Two major factors determine the performance of confidence intervals: a) whether the point estimate is 

397 unbiased, and b) whether the correct degrees of freedom are used to generate the width of the CI’s.  If the point 

398 estimate is strongly biased, even CI’s with the proper width will perform poorly, and if the degrees of freedom 

399 are too large the CI’s will be too narrow and will include the true value less than the expected fraction of the 

400 time, even if the point estimate is unbiased. For the LD method, the number of pairwise comparisons increases 

401 with the square of the number of loci.  If all of these pairwise comparisons provided independent information, 

402 precision would be very high with 1000s of SNP loci, and resulting CI’s would be very tight.  In reality, 

403 however, physical linkage and overlapping pairs of loci in the comparisons mean that the effective (true) 

404 degrees of freedom is considerably less than the number of pairwise comparisons (e.g., see Figure 7 in Waples 

405 et al. 2016).  

406 This reduction in effective degrees of freedom is less of an issue in most of our evaluations, which use no 

407 more than 100-800 loci.  Furthermore, we used the Jones et al. (2016) improved jackknife method (which is 

408 implemented in NeEstimator V2.1) to generate realistic confidence intervals that reflect the true effective 

409 degrees of freedom for each dataset (Do et al. 2014).  Therefore, any deviations in the performance of the CI’s 

410 can be attributed to bias in the estimates of Nb.  Ironically, if enough data are used, even a small bias can 

411 translate into poor CI performance in terms of covering the true Nb, because off-centered CI’s will become 

412 narrower as precision increases and less likely to contain the true parameter value.  

413 Our observation of lower precision for 15 microsatellites compared to 100 SNPs was expected from the lower 

414 degrees of freedom (fewer pairwise locus comparisons) for the microsatellites.  For 100 SNPs, approximately 

415 96% of CI’s contained the deterministic Nb (known from AGENE) when the Nb was 200 and when sampling 50 

416 individuals.  This 96% containment is close to the 95% coverage expected when computing 95% CI’s for 

417 standard statistical tests.  CI’s were extremely wide when Nb =200 with samples of only 25 individuals (and 

418 100 SNPs), likely because of the low signal to sampling-noise ratio (Waples et al. 2010).  When Nb =200 and 

419 sampling 25 individuals, the upper CI limit was usually greater than 600 and often was infinity when 

420 genotyping 100 loci.  Thus, a larger sample size (>75-100) or more loci (> 200-400) will be needed to achieve 

421 reasonable precision when Nb is 200 or larger. 

422 Confidence intervals contained the true Nb less often than expected when Nb was relatively small.  For 

423 example, when Nb = 50 and when using 100 SNPs, approximately only 90% of CI’s contained the 

424 deterministic Nb (known from AGENE), when sampling 50 individuals (Table 1). Thus, in this scenario, CI’s 
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425 contained the deterministic Nb 5% less often than the expected 95% of CI’s.  There are two main causes for 

426 this. First, the Nb estimator is slightly biased high (even after using the Nb/Ne bias correction from Waples et al. 

427 2014), thus CI’s tend to be shifted high and therefore contain the deterministic Nb less often than expected. 

428 Second, CI’s become relatively narrow as the number of loci increases to >100-200, even after using the recent 

429 correction to widen CI’s (Jones et al. 2016).

430 Power to Determine When Nb is Small

431 It is crucial for population assessment and monitoring programs to have high power to identify populations 

432 with a small Nb.  For example, according to the “50/500 rule” if Ne is smaller than 50, inbreeding can occur at a 

433 high rate and cause reduced fitness, i.e., inbreeding depression (Jamieson and Allendorf 2012).  Similarly, an 

434 excessive loss of evolutionary potential can occur if Ne < 500 (Jamieson and Allendorf 2012).  Therefore, we 

435 simulated Nb values that were 20%-30% below 50 (and also below 500) to determine how many loci and 

436 individuals are required to identify populations with Nb less than 50, or 500.  Recall that Nb might nearly equal 

437 Ne for some taxa like bison, red deer, mole crabs, fruit flies, sagebrush lizards, dolphins, Atlantic cod, 

438 razorback suckers (see supplementary materials in Waples et al. 2013).  However, the Nb/Ne results for these 

439 analyses assumed that males had random reproductive success within each age class.  If this is not true, Nb will 

440 be affected more than Ne, and thus Nb might not equal Ne.

441 Confidence intervals were narrow enough to identify a population with Nb approximately 20-30% less than 50.  

442 For example, when the true Nb equaled 30, we could reject the hypothesis that Nb = 50 in approximately 80% 

443 of simulations when sampling 50 individuals and 200 loci (Fig. 4, middle panel); thus the power was ~0.80.  

444 The power was higher (~0.95) to reject Nb = 50, when the true Nb = 30 and when sampling 100 individuals and 

445 200 loci (Fig. 4, middle-right panel).  

446 Similarly, confidence intervals were narrow enough to identify a population with Nb ~20% lower than 500.  

447 That is, when the true Nb = 400, ~80% of CI’s were less than Nb = 500 if 5,000 loci and 200 individuals are 

448 sampled (Fig. 5). These examples and results in figures 4 and 5 will help biologists develop genetic monitoring 

449 programs to precisely estimate Nb and detect when Nb < 50 or Nb < 500 (see also Fig. S1).

450 Power to detect a declining Nb using linear regression

451 Genetic monitoring programs need high power to detect a population decline. Many biologists would like to 

452 detect a decline in Nb of 10% per year (or reproductive cycle).  Power was too low to detect a 10% decline 

453 when using the linear regression test for a negative slope when regressing a line through estimates of Nb for 

454 each of five consecutive cohorts and using 50-100 individuals with 100-200 SNPs (Fig. 6, 7).  Power to detect 

455 a 10% decline increased to >0.80 when sampling 400 SNPs, 100 individuals, and only 5 consecutive cohorts 

456 (Fig. 7, red diamond).  Statisticians generally recommend a power of > 0.80 to make a study worth conducting 

457 or a monitoring program worth implementing.  In another example, the power to detect a 15% decline (starting 
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458 at Nb = 50) was 0.80 when sampling 100 SNPs and 100 individuals from each of 5 consecutive cohorts (Fig. 

459 7).  Power to detect a 15% decline was >0.80 when 7 cohorts, 25 individuals and 200 SNPs were sampled to 

460 test for a linear decline in Nb across cohorts.  Power to detect a 15% decline was similar for bull trout and 

461 wood frog as is shown by comparing Fig. 7 versus Fig. S3 (see dash line ovals).  

462 For a comparison with microsatellite loci, we quantified the power to detect a 15% decline in Nb using 30 

463 microsatellites. We discovered that 50 individuals from each of 5 consecutive cohorts provide power of 0.59 

464 when using 30 loci (Figure S3).  Power increased to 1.00 when 10 cohorts were sampled. These microsatellite 

465 power results are similar to power from 100 SNPs for the same 15% decline when also sampling 100 

466 individuals for 5 and then 10 consecutive cohorts (Fig. 7). Researchers can quantify power to develop sensitive 

467 monitoring programs using the simulation program AgeStrucNe that is freely available at 

468 https://github.com/popgengui/agestrucnb/ 

469 Our power analysis provides guidelines for the number of cohorts, loci, and individuals needed to achieve high 

470 power to detect a linear or exponential Nb decline of 5% to 15% per reproductive cycle (Fig. 7).  The results 

471 suggest that we must generally sample >5 consecutive cohorts to achieve power > 0.80 unless >100 

472 individuals are sampled per cohort.  It can be difficult in threatened species or small populations to sample >25 

473 individuals, which will make it difficult to achieve power > 0.80, even with 400 SNPs and samples from 10 

474 consecutive cohorts.  Future research is needed to test if a thousand SNPs might increase power above 0.80 to 

475 detect a 5% decline when sampling small numbers of individuals.  Biologists can address this and other 

476 questions using the AgeStrucNe simulation package.  

477 Limitations and future research

478 Future research is needed using simulations and empirical datasets with larger Nb and thousands of loci to 

479 understand the limitations of Nb estimation using genomic approaches.  Marandel et al. (2018) simulated 

480 populations with Ne of 1,000 to 1,000,000 and ~200 loci and concluded that large samples of individuals 

481 (thousands to millions) must be sampled to obtain useful LDNE estimates of Ne.  Using many thousands of loci 

482 can improve precision. However, loci often are not independent when many pairs of loci are from the same 

483 chromosomes (Larson et al. 2014).  Use of loci from different chromosomes is facilitated by using program 

484 NeEstimator and inputting the chromosomal map position of loci.  Restricting comparisons to loci residing on 

485 different chromosomes will eliminate linkage bias but does not make all the pairwise comparisons of loci 

486 independent (Waples et al. 2016).

487 We also need future research to advance the use of linked sets of loci with known recombination rates because 

488 the use of recombination information can increase power to detect and date historical bottlenecks (e.g., Hill 

489 2001; Tenesa et al. 2007; Lehnert et al. 2019).  The use of runs of homozygosity (RoH) to estimate Ne is 

490 becoming feasible for non-model species (Browning and Browning 2015; Grossen et al. 2018).  However, this 
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491 will remain difficult for many species because it requires the mapping of tens of thousands of loci and 

492 genotyping the loci in many individuals.  

493 Future research should go beyond simply detecting an Nb decline to also determine the cause of a decline.  For 

494 example, if the slope of an Nb decline can be inferred from the linear regression method, this slope could be 

495 tested for correlations with environmental variables that might be driving declines (or increases). 

496 Environmental variables such as temperature, habitat availability, invasive species, diseases or predators, are 

497 increasingly available from public databases from NASA and other sources (e.g., Table II in Grummer et al. 

498 2019).  Interestingly, Whiteley et al. (2015) suggested that inter-annual variation in streamflow could be 

499 driving inter-annual variation in Nb in native trout populations. 

500 Importantly, biologists must know the Nb/Ne ratio before estimating Nb (or Ne) in species with age structured 

501 populations because the interpretation of Nb estimates (from LDNE) requires knowledge of this ratio.  This is 

502 because Nb estimates are biased if Nb ≠ Ne.  Fortunately, estimation of the Nb/Ne ratio is easily feasible using 

503 the program AgeNe or AgeStrucNe (Waples 2011; and see https://github.com/popgengui/agestrucnb/).   

504 Finally, we need future research to understand the temporal stability of the Nb/Nc ratio in natural populations. 

505 If the ratio remains stable over many generations, the population census size (Nc) could be inferred from Nb 

506 which would facilitate monitoring of population abundance from Nb (Pierson et al. 2018).  

507 Conclusions

508 We show how Nb point estimates and confidence intervals from the one-sample LDNE method can be reliably 

509 computed and used to estimate and monitor Nb in age-structured populations.  The bias adjustment method, 

510 based on the Nb/Ne ratio (Waples et al. 2014), produced Nb estimates biased by 5-10%.  This magnitude of bias 

511 is relatively small and unlikely to influence conservation or management decisions.  Life history and vital rate 

512 variation within species had little effect on the magnitude of bias of Nb estimates, suggesting managers can 

513 monitor Nb with little concern that a change in vital rates (survival or fecundity) would strongly shift the 

514 estimates of Nb when the true Nb has not changed.  Our results showed that confidence intervals (CIs) for Nb 

515 estimates are generally reliable.  However, the CI’s were occasionally narrow and biased-high when Nb was 

516 small (<30) and hundreds of loci were used.  LDNE CI’s were sufficiently narrow to reject the hypothesis that 

517 Nb = 50 when the true Nb was only 40 and when sampling >100 individuals and 400 SNPs.  Similarly, CI’s 

518 were sufficiently low to reject the hypothesis that Nb = 500 when the true Nb was only 400 and when sampling 

519 >300 individuals and ~5,000 independent SNPs.  Power to detect a declining Nb was high (>0.80) when using 

520 the linear regression test across ≥ 7 consecutive cohorts (breeding cycles) and when sampling at least 50 

521 individuals and 100 loci.  The guidelines and simulation approach presented here, along with the software 

522 AgeStrucNb, will help biologists develop sensitive genetic monitoring programs to detect changes in Nb and 

523 thereby help to conserve populations and prevent extinctions.  
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Table 1. Median of Nb point estimates from 1000 simulated populations with true Nb values of 25, 50, 100, and 

200.  The “% of CI’s low” is the percentage of populations with the upper CI below the true (simulated) Nb. The 

“% of CI’s high” is the percentage of populations with the loci CI above the true Nb.  Simulations were conducted 

using 100 SNPs and samples of 25, 50 and 100 individuals for BT-Stnd life history.  Note that CI’s are often 

biased high, especially when the true Nb is small with larger samples of individuals (see bold numbers). 

True Nb 

Median of  

1000 Nb point 

estimates 

Number of  

individuals 

sampled 

% of  

CI's low* 

% of  

CI's high  

25 26.6 25 1% 6% 

25 27.8 50 1% 15% 

25 NA **100 NA NA 

50 52.0 25 1% 4% 

50 54.8 50 1% 9% 

50 53.6 100 1% 13% 

100 101.0 25 1% 2% 

100 109.9 50 1% 3% 

100 105.0 100 1% 5% 

200 166.6 25 1% 2% 

200 226.0 50 1% 3% 

200 211.8 100 1% 3% 

     

 * most percentages in this column were between 0.5 to 1.04 and were rounded to 1% 

 ** NA = not enough individuals (100) existed to be sampled for simulations at small population size (Nb) 
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 (A)  5 consecutive cohorts                         (B) 10 consecutive cohorts 

   

 

 

Figure 6 
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Figure 7 
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