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ABSTRACT

Skillful Arctic Sea ice prediction is becoming increasingly important because of its societal, industrial, and
economic impacts over the polar regions and potential inßuence on lower-latitude weather and climate
variability. In this work, we evaluate the multiweek forecast skill of Arctic sea ice using the Climate Forecast
System, version 2 (CFSv2). To the authorsÕ knowledge, this is the Þrst effort to diagnose and assess the skill of
multiweek Arctic sea ice prediction from a coupled atmosphereÐocean model. Analysis of a suite of retro-
spective 45-day forecasts spanning 1999Ð2015 shows that CFSv2 captures general features of sea ice con-
centration (SIC) variability. Total SIC variability is dominated by interannual variability, which accounts for
more than 60% of the total variance. Submonthly variability accounts for 29% of the total variance in
December, 20% in March and June, and 12.5% in September. We assess the ability of CFSv2 to predict the
pan-Arctic SIC, as well as regional SIC in nine Arctic regions. Results show that the SIC prediction skill is
highly region dependent (e.g., higher prediction skill for Kara/Barents Seas and lower for the Canadian
Archipelago). Overall, the maximum anomaly correlation coefÞcient (ACC) of SIC for both melt and freeze-
up seasons is near the marginal zones, and their spatial distribution shows a relationship with the distribution
of the variance. If the ACC of 0.5 is taken as the critical value for skillful prediction, the predictability of
weekly SIC near the marginal zones is about 5Ð6 weeks. Prediction skill for Arctic sea ice extent is above 0.6
for the entire six target weeks and has a large contribution from interannual variability.

1. Introduction

Sea ice plays an important role in the global cli-
mate system through its impact on the water and energy
budgets (McBean et al. 2005; Budikova 2009; Guemas
et al. 2016). Sea ice reßects most of the incident solar
radiation through high albedo, thus reducing the amount
of energy absorbed by the surface. It also modulates the
exchange of moisture and heat ßuxes between the ocean
and the atmosphere. The Arctic sea ice has changed
dramatically over the past few decades and is expected to
continue to decline throughout the twenty-Þrst century
(Stroeve et al. 2012; Serreze et al. 2007). The recent de-
cline of Arctic sea ice has been attributed to both natural
and anthropogenic causes (Overland et al. 2008), the
latter being associated with increased levels of green-
house gases. The decline of Arctic sea ice has important
societal and economic impacts (e.g., more commercial

opportunities, such as opening of new shipping routes and
Arctic Þshing).

Previous studies have shown that sea ice variability is
largely affected by the atmospheric circulation (Fang and
Wallace 1994; Deser et al. 2000; Serreze et al. 2003; Ding
et al. 2017). For example, the Arctic Oscillation (AO) can
affect Arctic sea ice variability ( Rigor et al. 2002; Mysak
and Venegas 1998; Serreze et al. 2003; Rigor and Wallace
2004). Other low-frequency large-scale climate variations
(e.g., Arctic dipole, ENSO, PNA) also have an impact on
Arctic sea ice (Wu et al. 2006; Wang and Overland 2009;
LÕHeureux et al. 2008). On the other hand, Arctic sea ice
variability can also affect the Arctic weather, ocean, and
climate (Serreze et al. 2007). A number of studies suggest
that Arctic sea ice decline can impact high-latitude tem-
perature ampliÞcation (Screen and Simmonds 2010;Kumar
et al. 2010; Collow et al. 2018) and midlatitude cooling
(Mori et al. 2014; Screen et al. 2015; Kug et al. 2015), while
some other studies indicated that no evidence is found re-
garding the link between Arctic sea ice loss and midlatitudeCorresponding author: Yanyun Liu, yanyun.liu@noaa.gov
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extremes (McCusker el al. 2016); thus, a controversy about
the ArcticÐmidlatitude weather linkage still exists (Collow
et al. 2018). Arctic sea ice decline can also regulate ocean
circulation [e.g., weaken the Atlantic meridional over-
turning circulation (AMOC) and its poleward heat trans-
port (Sévellec et al. 2017)]. These Þndings suggest that sea
ice is a covarying component in the coupled atmosphereÐ
ocean system. Therefore, understanding the causes for the
Arctic sea ice prediction skill and improving the skill of sea
ice predictions has become increasingly important to the
advance of weather and climate services.

Previous studies mainly focused on the seasonal fore-
cast of Arctic sea ice concentration (SIC) or sea ice ex-
tent (SIE), either using statistical models (Drobot 2007;
Lindsay et al. 2008; Yuan et al. 2016; Kapsch et al. 2013,
Petty et al. 2017) or using coupled dynamical models
(Wang et al. 2013; Zhang et al. 2013; Sigmond et al. 2013,
2016; Chevallier et al. 2013; MerryÞeld et al. 2013;
Blanchard-Wrigglesworth et al. 2016; Tietsche et al. 2014;
Bushuk et al. 2017). Using a linear statistical model,
Lindsay et al. (2008) found that, except for the trend,
much of the predictive information in the iceÐocean
system is lost after lead times of 3 months. Using fully
coupled dynamical models,Wang et al. (2013), Sigmond
et al. (2013), and Chevallier et al. (2013) showed that
prediction skill for detrended regional SIE generally
exceeds that of an anomaly persistence forecast and the
sea ice variability could bepredicted up to 2Ð4 months
ahead, except for January/February when forecast
skill is moderately high up to an 11-month lead time
(Sigmond et al. 2013). Besides the seasonal forecast,
there are also several studies that deal with shorter-
term forecasts (Posey et al. 2015; Hebert et al. 2015;
Smith et al. 2016; Lemieux et al. 2016; Schweiger and
Zhang 2015). For example, the U.S. Navy operational
Arctic sea ice forecast system, designed to provide short-
term, 1Ð7-day forecasts of Arctic sea ice and ocean
conditions, was also shown to be skillful compared
climatology for forecasts up to 102 h (Hebert et al.
2015). Schweiger and Zhang (2015) suggested that
Arctic sea ice drift forecasts during the summer of 2004
remain skillful for 8 days using the Marginal Ice Zone
Modeling and Assimilation System.

Recently, the National Oceanic and Atmospheric
Administration has initiated activities to improve skill
of forecasts in the weeks 3Ð4 time range to extend
weather forecast capability beyond the conventional
range of 10Ð15 days. While Arctic sea ice forecasts at
seasonal time scales have received considerable at-
tention, very limited work has been done on shorter
time scales.Wang et al. (2016)show that summertime
Arctic sea ice can be predicted with reasonable skill at
lead times of 20Ð60 days using a data-driven statistical

model. With the ongoing advancement in the devel-
opment of coupled atmosphereÐocean forecast sys-
tems during the past years, it is of great interest to
investigate the capability of dynamical forecast sys-
tems in predicting sea ice at weekly to monthly time
scales.

In this study, a fully coupled atmosphereÐocean
model is used to evaluate the forecast skill of weekly
mean sea ice from week 1 to week 6 for Arctic regions
using NCEPÕs Climate Forecast System, version 2
(CFSv2). To the authorsÕ knowledge, this is the Þrst ef-
fort to diagnose and assess multiweek Arctic sea ice
prediction skill from a coupled atmosphereÐocean
model, and the following aspects are analyzed: 1) the
overall prediction skill of SIC and SIE in the CFSv2, 2)
the contribution to variations and the predictability of
weekly sea ice anomalies from long-term trends as well
as detrended interannual and submonthly variations,
and 3) regional variations in prediction skill, which
have a greater practical use than the overall Arctic SIE
to stakeholders (Bushuk et al. 2017). Section 2describes
the forecast data from the CFSv2 and observations
used for veriÞcation. The observed Arctic variability
and the contribution of different components (includ-
ing the trend, interannual, and submonthly variability)
to the observed total sea ice variability, and the as-
sessment of the forecast performance of multiweek
Arctic sea ice, as well as the regional sea ice prediction
skill, are discussed in section 3. Section 3 also pres-
ents the Arctic SIE variability and prediction skill in
CFSv2 and is followed with a summary and discussion
in section 4.

2. The forecast model, data, and processing method

a. Forecast model data and observations

The retrospective forecast dataset analyzed in this
study is from the fully coupled CFSv2 model (Saha
et al. 2014). This forecast model consists of the NCEP
atmospheric Global Forecast System (GFS) at a hor-
izontal resolution of T126 (; 100 km) with 64 vertical
levels and the Geophysical Fluid Dynamics Labo-
ratory (GFDL) Modular Ocean Model, version 4
(MOM4), with 40 vertical levels. The ocean compo-
nent includes a thermodynamic and dynamic sea ice
model from the GFDL Sea Ice Simulator ( GrifÞes
et al. 2004).

The sea ice model in the CFSv2 has two layers for sea
ice and one layer for snow. In each ice grid there are Þve
categories of possible sea ice thicknesses: 0Ð0.1, 0.1Ð0.3,
0.3Ð0.7, 0.7Ð1.1, and. 1.1 m. The sea ice dynamics
is based on Hunke and Dukowicz (1997) using the
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elasticÐviscousÐplastic technique to calculate ice in-
ternal stress, while the sea ice thermodynamics is based
on Winton (2000). The sea ice concentration forecast
data from the CFSv2 with a horizontal resolution of
0.58 3 0.58is used.

Retrospective and real-time forecasts initialized
from the NCEP Climate Forecast System Reanalysis
(CFSR; Saha et al. 2010) for 1999Ð2015 are used for this
study. The CFSR is a weakly coupled assimilation
system using a coupled atmosphereÐlandÐoceanÐsea
ice model. The CFSR assimilates conventional atmo-
spheric observations, satellite radiances, daily Optimum

Interpolation Sea Surface Temperature (or daily
OISST) of Reynolds et al. (2007), subsurface temper-
ature data from expendable bathythermographs
(XBTs), the Tropical AtmosphereÐOean (TAO) array
of moored buoys, and Argo and Argo-like ßoats, as well
as soil moisture from a parallel land assimilation sys-
tem. For sea ice, only the sea ice concentration from
satellite observations is assimilated. Sea ice thickness
and its horizontal displacement are determined by the
thermodynamic and dynamic balance between the sea
ice and the overlying atmosphere and underlying
ocean water. The input satellite sea ice concentration

FIG . 1. Spatial pattern of total weekly anomaly standard deviation of Arctic SIC for four target months of
(a) March, (b) June, (c) September, and (d) December during 2000Ð15, obtained from NSIDC observations. The
black lines represent the 15% concentration contour of the 2000Ð15 average in the NSIDC observations, which is
usually used to deÞne the sea ice edge.
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observations are from different sea ice analyses. From
1 January 1999 to 29 February 2000, the global ice
concentration analysis was the NCEP operational ice
analysis. From 1 March 2000 to 29 October 2007 the sea
ice analysis is the newer NCEP sea ice analysis system
(GRUa) that is applied to archived passive microwave
data for DMSP F13, F14, and F15. The newer system is
based on the NASA Team 2 algorithm (Markus and
Cavalieri 2000). From 30 October 2007 to the present,
the operational NCEP passive microwave sea ice con-
centration analysis was used. More details on the as-
similation of sea ice concentration can be found in
Saha et al. (2010). Raw forecast data include output
from four 45-day forecast runs from 0000, 0600, 1200,

and 1800 UTC each day. Retrospective forecasts from
29 February in leap years are not available and are not
considered.

For the assessment of the CFSv2 performance, data
from the National Snow and Ice Data Center (NSIDC)
(Cavalieri et al. 1996; Fetterer et al. 2002) during 2000Ð
15 are used. As suggested byNotz et al. (2013), care
must be taken when comparing model results to the
ÔÔobservedÕÕ SIC based on just a single algorithm. Thus,
we used the average of SIC from the NASA team and
bootstrap algorithms as the veriÞcation data for forecast
assessment to reduce observational uncertainty (Notz
et al. 2013). For example, the correlation between
the daily CFSR SIE anomalies and the NSIDC SIE

FIG . 2. As in Fig. 1, but for detrended interannual SIC anomalies.
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anomalies is 0.93. The CFSR by its design assimilates
different sea ice concentration datasets. These sea ice
datasets are not necessarily the best observations and
contain different levels of observational uncertainty

and bias. In evaluating the forecast performance, we
would like to verify the forecast against independent
observations for a realistic assessment of the forecast
capability. Evaluating the forecast against the input

FIG . 3. As in Fig. 1, but for submonthly SIC anomalies.

TABLE 1. Total standard deviation and its components (including trend, detrended interannual, and submonthly variability) for four
target months (March, June, September, and December) obtained from observational data. The values are area-weighted averages over
the Arctic regions (508Ð908N). The values in parentheses are the percentage contribution of the trend, detrended interannual, and sub-
monthly variance to the total variance.

NSIDC SIC standard deviation
(percentage variance) March June September December

Total 0.10 0.12 0.15 0.09
Trend interannual 0.04 (13.6%) 0.04 (10.5%) 0.07 (19.3%) 0.03 (9.3%)
Detrended interannual 0.08 (64.1%) 0.10 (68.9%) 0.13 (68.2%) 0.07 (61.3%)
Submonthly 0.05 (22.3%) 0.05 (20.6%) 0.05 (12.5%) 0.05 (29.4%)
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data for CFSR might inßate the skill artiÞcially.
The mixture of NASA team and bootstrap algorithms
provides a better representation of the observation
than the individual input sea ice data used in CFSR
and allows a more realistic skill measure of the fore-
cast system. The NASA observational dataset has a
region close to the pole that cannot be observed
owing to the orbit inclination of the satellites. This
region, known as the ÔÔpolar hole,ÕÕ is masked out
from the NSIDC dataset and CFSv2 model output
for a consistent evaluation. We also note that the skill
assessment may be inßuenced by differences in the
data sources used for forecast initialization and for
veriÞcation.

b. Processing method

This study focuses on the analysis of weekly mean
anomalies from CFSv2 for 0Ð5-week leads. For each
forecast starting day, the following steps are taken
to produce the weekly average of the ensemble mean
forecast: 1) forecast runs from the latest 3 days were
used to form a lagged ensemble of 12 runs; 2) a daily
average of the 12-run ensemble mean is computed
for 42 target days; 3) a nonoverlapping 7-day weekly
average is calculated from the daily ensemble mean
for 0-week lead (day 1Ð7 average) to a 5-week lead
(day 36Ð42 average). For example, the forecast
starting on 1 January produces the weekly mean

FIG . 4. Mean SIC climatology biases (CFSv22 NSIDC) of the CFSv2 for the 3-week-lead forecast (L3) for four
target months of (a) March, (b) June, (c) September, and (d) December.
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from 1Ð7 January (0-week lead) to 5Ð11 February
(5-week lead).

The forecast data of the ensemble-mean weekly
average are then rearranged according to lead time
and target (or veriÞcation) week. For the descrip-
tion of the processing method, we useF(d, L , yr) to
represent the forecastF for the weekly mean of the
target week beginning on day d (1Ð365) in year yr
(2000Ð15) at lead timeL (0Ð5 week). Notice that
d represents a 7-day target week rather than a day,
with d 5 1 for the average of 1Ð7 January andd 5 2 for
the average of 2Ð8 January. For a given target week,
say, d 5 1, L 5 0 is the 0-week lead forecast from

1 January, L 5 1 is the 1-week lead forecast from
25 December, L 5 2 is the 2-week lead forecast
from 18 December, and so on. For simplicity, we will use
L0ÐL5 to individuate 0Ð5-week-lead forecasts. To facili-
tate the calculation, and for a consistent comparison, the
corresponding observational data are rearranged fol-
lowing the CFSv2 forecast structure to form the weekly
average of SIC for each target veriÞcation week starting
from each calendar day between 2000 and 2015 both for
NASA team and bootstrap algorithms. The average of
SIC using the NASA team and bootstrap algorithms is
then calculated and used for veriÞcation. The verifying
observational data are arranged to follow the forecast

FIG . 5. ACC between the CFSv2 forecast and observationsfor total SIC anomalies at L3 for four target months of
(a) March, (b) June, (c) September, and (d) December. The black contours indicate the climatology of the observed 15%
concentration, and the green contours indicate the climatology of 15% concentration for the CFSv2 forecast at L3.
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data structure and are denoted asO(d, yr) where O
represents the observations.

c. Climatology and anomalies

For both forecasts and observations, a 16-yr (2000Ð15)
average of 7-day mean SIC is calculated for each starting
date from 1 January to 31 December (d 5 1Ð365); for a
forecast, a calculation is performed for each lead time
(L0ÐL5) The climatology for each starting target date
d) is deÞned as the 31-day (fromd 2 15 to d 1 15)
running mean of the resulting 16-yr average and is
denoted asFc(d, L ) for the forecast and Oc(d) for the
observation. As suggested by previous studies (Lindsay
et al. 2008; Wang et al. 2013; Chevallier et al. 2013),
a large source of sea ice prediction skill is derived

from the linear trend. The forecast skill after re-
moving the linear trend is smaller and generally not
statistically signiÞcant at lead times greater than
2Ð3 months, except for January/February when the
forecast skill is moderately high up to an 11-month
lead time (Sigmond et al. 2013). Further, the variability
at different time scales may indicate different sources
of the predictability in the coupled system components.
Therefore, in this work, we divided the total anomaly
into the trend, detrended interannual, and submonthly
anomalies.

Three types of anomalies are calculated: total anom-
aly, interannual anomaly, and submonthly anomaly.
The total anomaly is calculated as the deviation of the
total weekly mean values of SIC from the climatology.

FIG . 6. As in Fig. 5, but for detrended interannual SIC anomalies.
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The interannual anomaly is deÞned as the monthly
mean of the total anomaly. The submonthly anomaly
is the deviation of the total anomaly from the inter-
annual anomaly (i.e., the monthly mean of the total
anomaly). The interannual anomaly is further divided
into two components: the trend interannual anomaly
and the detrended interannual anomaly. Decomposing
the total weekly anomaly into different time scales
may help us to understand the sources of the predict-
ability of the weekly mean anomaly. For example,
the long-term trend can be attributed to the contri-
bution of anthropogenic forcings, the detrended
interannual anomaly may be associated with the low-
frequency variability in the ocean and sea ice, while
the atmospheric variability may contribute to the

high-frequency submonthly anomaly. More detailed
descriptions of these anomalies calculations are included
in the appendix.

There are alternative ways to deÞne the interannual
component, for example, using a 3-month seasonal mean
or a low-pass Þltering approach. Given the strong month-
to-month seasonality of the sea ice anomalies, we think
the monthly mean is more appropriate than the seasonal
mean to represent the seasonal evolution of interan-
nual variability. One advantage of the decomposition of
the total anomaly procedure we adopted here is that
the three components (trend interannual, detrended
interannual, and submonthly anomalies) are inde-
pendent and their variancesare additive; that is, the
sum of the variances of the individual components

FIG . 7. As in Fig. 5, but for submonthly SIC anomalies.
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equals the variance of the total anomaly. This property
would not be satisÞed if the interannual component is
deÞned with low-pass Þltering.

3. Results

In this section we Þrst examine the observed Arctic
variability using the NSIDC SIC. The prediction skill of
multiweek pan-Arctic SIC, as well as regional SIC in the
CFSv2 forecasts, is then assessed, followed by an anal-
ysis of the SIE variability and prediction skill.

a. Observed SIC variability

Figure 1 shows the spatial pattern of the total weekly
anomaly standard deviation of NSIDC Arctic SIC

anomaly for four target months (March, June, September,
and December) during 2000Ð15. The black curves in
Fig. 1 represent the average sea ice edge taken as a 15%
contour of the climatological SIC during 2000Ð15. The
climatological sea ice edge latitude based on the 15%
contour of the average SIC may be different from the
average sea ice edge latitude of individual years. Large
variability is generally located near the sea ice edge, as
indicated by the 15% SIC black contours. The Arctic
SIC shows relatively high variability in different Arctic
regions during different months: the Bering Sea and the
Sea of Okhotsk during March; the Chukchi, Kara, and
Barents Seas during June; the Beaufort, East Siberian,
and Laptev Seas during September; and the Kara
Sea during December. The variability patterns of the

FIG . 8. As in Fig. 5, but for damped persistence.
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detrended interannual and submonthly anomalies are
similar to that of the total anomalies ( Figs. 2and 3), with
the standard deviation of the submonthly anomalies
having a smaller amplitude.

For a quantitative comparison, Table 1 lists the con-
tributions of different components, including the trend
interannual, detrended interannual, and submonthly var-
iability, to the observed total SIC standard deviation av-
eraged over Arctic regions (508Ð908N) for four target
months (March, June, September, and December). The
percentage variance contributions are given in parenthe-
ses. As shown inTable 1, the Arctic SIC shows the larg-
est (smallest) variability during September (December).

The total SIC variability is dominated by detrended in-
terannual variability, which accounts for more than 60%
of the total variance. The contribution of submonthly
anomalies accounts for about 20% of the total variance
in March and June, 12.5% in September, and 29.4% in
December. The submonthly variance is 2Ð3 times as
strong as the trend variance for March, June, and
December, but not for September, when the sub-
monthly variance is weaker than the trend variance.

b. SIC climatology

The prediction performance in representing Arctic
SIC climatology in CFSv2 is assessed in this section.

FIG . 9. RMSEs between the CFSv2 forecast and observations for total SIC anomalies at L3 for four target months
of (a) March, (b) June, (c) September, and (d) December. The black contours indicate the observed 15% con-
centration, and the orchid contours indicate the 15% concentration for the CFSv2 forecast at L3.
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