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ABSTRACT: This article introduces an ensemble clustering tool developed at the Weather Prediction Center (WPC) to
assist forecasters in the preparation of medium-range (3–7 day) forecasts. Effectively incorporating ensemble data into an
operational forecasting process, like that used at WPC, can be challenging given time constraints and data infrastructure
limitations. Often forecasters do not have time to view the large number of constituent members of an ensemble forecast,
so they settle for viewing the ensemble’s mean and spread. This ignores the useful information about forecast uncertainty
and the range of possible forecast outcomes that an ensemble forecast can provide. Ensemble clustering could be a solution
to this problem as it can reduce a large ensemble forecast down to the most prevalent forecast scenarios. Forecasters can
then quickly view these ensemble clusters to better understand and communicate forecast uncertainty and the range of pos-
sible forecast outcomes. The ensemble clustering tool developed at WPC is a variation of fuzzy clustering where operation-
ally available ensemble members with similar 500-hPa geopotential height forecasts are grouped into four clusters. A
representative case from 15 February 2021 is presented to demonstrate the clustering methodology and the overall utility
of this new ensemble clustering tool. Cumulative veri� cation statistics show that one of the four forecast scenarios identi-
� ed by this ensemble clustering tool routinely outperforms all the available ensemble mean and deterministic forecasts.

SIGNIFICANCE STATEMENT: Ensemble forecasts could be used more effectively in medium-range (3 –7 day)
forecasting. Currently, the onus is put on forecasters to view and synthesize all of the data contained in an ensemble
forecast. This is a task they often do not have time to adequately execute. This work proposes a solution to this prob-
lem. An automated tool was developed that would split the available ensemble members into four groups of broadly
similar members. These groups were presented to forecasters as four potential forecast outcomes. Forecasters felt this
tool helped them to better incorporate ensemble forecasts into their forecast process. Veri� cation shows that presenting
ensemble forecasts in this manner is an improvement on currently used ensemble forecast visualization techniques.

KEYWORDS: Empirical orthogonal functions; Ensembles; Forecasting techniques; Numerical weather prediction/forecasting;
Operational forecasting

1. Introduction

Advances in computational resources have allowed most
global Numerical Weather Prediction (NWP) centers to pro-
duce ensemble forecasts. Due to the chaotic nature of the at-
mosphere and the ampli� cation of initial condition errors with
time, ensemble forecasts are indispensable in the creation of
medium-range (3–7 day) forecasts. This is because ensemble
forecasts give the best approximation of the entire range of
possible forecast outcomes. At the National Centers for Envi-
ronmental Prediction’s (NCEP’s) Weather Prediction Center
(WPC), global ensemble forecasts from NCEP, the European
Centre for Medium-Range Weather Forecasts (ECMWF),

and the Canadian Meteorological Centre (CMC) are routinely
consulted in the preparation of medium-range forecasts. Each
EPS alone does not have enough spread to suf� ciently simu-
late the true range of possible forecast outcomes (Buizza et al.
2005), so the available EPSs are routinely combined to form a
multimodel ensemble.

Forecasters working under strict time constraints do not nec-
essarily have time to thoroughly interrogate and investigate the
wealth of information contained in this multimodel ensemble.
Traditionally, forecasters have used multimodel ensemble fore-
casts by viewing the ensemble mean and spread (standard devi-
ation) or by viewing spaghetti plots (described by Inness and
Dorling 2012) that show the forecasted location of a given me-
teorological parameter contour (e.g., the 5800-m contour of
500-hPa geopotential height) for each ensemble member. This
gives a forecaster a quick approximation of the uncertainty of
the forecast and a cursory idea of the range of possible forecast
outcomes, but a host of useful information is ignored. To allevi-
ate the data overload problem, the National Weather Service
(NWS) has developed the National Blend of Models (NBM;
Craven et al. 2020). The NBM intelligently postprocesses and
combines deterministic and ensemble forecasts to create one
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consistent and accurate forecast for use as a common starting
point across the NWS. This is essential for consistent messaging
across NWS organizations concerning high-impact weather
events. However, forecasters have expressed concerns about
solely relying on the NBM. Forecasters want tools that will
show them the underlying data the NBM used to arrive at its
forecast as well as plausible alternatives to the NBM forecast.
This is especially needed for medium-range forecasts where
there is still signi� cant forecast uncertainty. Thus, a tool that al-
lows forecasters to ef� ciently and objectively get a more detailed
view of the most prevalent forecast scenarios contained in the
multimodel ensemble forecasts that are incorporated into the
NBM is needed and would greatly enhance the forecast process.

A tool that could accomplish these goals is an ensemble clus-
tering tool. Ensemble clustering is a well-established method of
grouping ensemble members with similar forecasts together,
thereby reducing a large set of ensemble forecasts down into
the most prevalent forecast scenarios. Different methods of en-
semble clustering have been used successfully to address various
operational forecasting challenges. In the short range (1–3-day
forecasts),Johnson et al. (2011)used a hierarchical cluster anal-
ysis on a convection-allowing model to show different forecast
scenarios for short-range precipitation events. In the medium
range (4–10-day forecasts),Ferranti and Corti (2011) use empir-
ical orthogonal functions (EOFs) and the k-means clustering al-
gorithm to cluster medium-range forecasts over Europe from
the ECMWF Ensemble (ENS). Last, in the subseasonal range
(10–30-day forecasts),Palmer et al. (1990) used EOF analysis
and a Ward hierarchical clustering algorithm on ECMWF ENS
forecasts to produce different 10–30-day forecast scenarios over
the Northern Hemisphere, noting that one of the clusters usu-
ally had a more accurate forecast than the ensemble mean
forecast.

WPC’s own most recent development work on the topic of
ensemble clustering is documented inBrill et al. (2015) . Brill
et al. (2015)developed a divisive clustering method that applied
a one-dimensional discrete Fourier transformation to ensemble
member deviations from the ensemble mean 500-hPa geopoten-
tial heights in a truncated zonal band over North America. Brill
et al. (2015) applied this clustering method to a combination of
the NCEP Global Ensemble Forecast System (GEFS) and the
ECMWF ENS. WPC medium-range forecasters found these
cluster forecasts plausible and of value to their forecast process.
However, the largest clusters produced by this method were not
able to consistently outperform the ECMWF ENS mean.
In addition, this method reduces the geopotential data to
one dimension, potentially ignoring important information
about two-dimensional forecast variability. Thus, a cluster-
ing algorithm that can produce cluster forecasts of compa-
rable accuracy to the available EPS means and takes into
account two-dimensional variability is desired.

An ensemble clustering methodology that could satisfy
these desired requirements is EOF analysis in conjunction
with fuzzy k-means cluster analysis, hereafter referred to as
ensemble fuzzy clustering (EFC). EFC was developed byHarr
et al. (2008) who used the technique on ensemble forecasts of
western Paci� c typhoons undergoing extratropical transition to
learn what factors drive the predictability of the extratropical

transition process. More recently, Zheng et al. (2017) has used
EFC to determine forecast scenarios for high-impact U.S. East
Coast winter storms from a large multimodel ensemble. The
authors of Zheng et al. (2017) made a version of their EFC
product available for testing in WPC’s Winter Weather Experi-
ment (WWE) during the 2017/18 winter season. WWE partici-
pants were intrigued by this tool and its potential to assist the
forecast process. When WPC launched its Extended Range
Forecast Experiment (ERFE) in 2017, WPC developers set out
to develop an ensemble clustering tool that could reveal the
most prevalent medium-range (3–7 day) forecast scenarios of
temperature and precipitation over the contiguous United
States (CONUS) and could serve as a prototype for the needed
and desired complement to the NBM. Development of this tool
began in 2017 and it has been re� ned through testing during
ERFE sessions. Over time, the use of the tool has spread from
WPC to forecasters throughout the NWS. This paper details
WPC’s EFC tool which is geared toward forecasting tempera-
ture and precipitation over the CONUS during days 3–7 and
demonstrates its utility through a case study.

The remainder of this paper proceeds as follows.Section 2
discusses the datasets and details the ensemble clustering meth-
odology. Section 3 provides a case study that demonstrates
the utility of WPC ’s EFC tool for creating medium-range
forecasts. Statistical veri� cation of the cluster forecasts is
presented in section 4. Section 5 provides a summary and
key conclusions.

2. Data and methodology

a. Data

The ensemble data used in this study are 0.58 resolution
versions of the CMC Global Ensemble Prediction System
(GEPS; 20 members;Lin et al. 2019), the NCEP GEFS
(30 members; Zhou et al. 2022), and the ECMWF ENS
(50 members;ECMWF 2021). These data were used because
they are what is available to forecasters at WPC to consult in
their preparation of medium-range forecasts. These three en-
semble prediction systems (EPSs) also make up the bulk of
the data the NBM combines to create 3–7-day forecasts. The
NBM applies a postprocessing technique (Hamill et al. 2017)
to these 0.58resolution ensemble member forecasts of several
surface-based variables, including maximum temperature
(TMAX), minimum temperature (TMIN), and precipitation
(QPF). This is done to improve their accuracy and � ne-scale
detail. To be a true compliment to the NBM, our EFC tool
would have used these postprocessed forecasts. However, at
the time of development, they were not available so we used
the available raw versions. The multimodel ensemble com-
prised of these three global EPSs contains 100 members and
should reasonably include most possible forecast outcomes.
The scope of ERFE was limited to creating experimental fore-
casts for 500-hPa geopotential height (Z500), TMAX, TMIN,
and QPF. Consequently, these are the only ensemble forecast
parameters used in our prototype ensemble clustering tool.
These data were accessed and available in real-time at NCEP but
may be downloaded from ECMWF’s THORPEX Interactive
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Grand Global Ensemble (TIGGE; Bougeault et al. 2010; Buizza
2014; Swinbank et al. 2016) archive.

b. EOF analysis

The � rst step of the EFC methodology demonstrated by
Harr et al. (2008), and modi� ed for use in this study, is to per-
form EOF analysis on an ensemble forecast parameter of in-
terest. EOF analysis is a common data analysis technique
used in climatological studies to determine the spatial patterns
that most ef� ciently explain the variability of a multivariate
dataset with time (Richman 1986). EOF analysis can be calcu-
lated across the model ensemble member dimension instead
of the more common time dimension. In this case, the result-
ing modes of the EOF analysis will show the dominant pat-
terns of the difference between individual ensemble members
and the ensemble mean. The leading principal components
(PCs) derived from this type of EOF analysis represent the
projections of the dominant EOF patterns onto the difference
between each of the ensemble members and the mean of all
ensemble members. The EOF patterns together with the PC
values for each ensemble member will ef� ciently detail the
dominant two-dimensional modes of variability in the ensem-
ble forecast and how a given ensemble member’s forecast dif-
fers from the mean of all ensemble members. Accordingly, a
clustering algorithm can be applied to the PCs to group to-
gether members that have similar forecasts for the parameter
of interest. As in Harr et al. (2008) and Zheng et al. (2017),
each PC is normalized to have a variance of 1, and only the� rst
two leading EOFs and their attendant PCs are considered.

The most important part of EFC is selecting the proper
forecast variable and domain on which to perform the EOF
analysis. What variable and domain is proper is dictated by
the end goal of EFC. The goal of this study is to objectively
create forecast scenarios of temperature and precipitation
over regions of the CONUS for each day of the 3–7-day fore-
cast period. This requires performing EOF analysis on a single
variable contained in the ensemble forecasts that will suc-
cinctly capture and ef� ciently describe what the weather will
be like on a given day. A variable we felt satis� es these re-
quirements and is familiar to forecasters is Z500. The Z500
pattern usually governs the location of the storm track (areas
of high precipitation) as well as areas of anomalous TMIN and
TMAX. Thus, Z500 is one variable that will give a forecaster
some information about the TMIN, TMAX, and QPF forecast.
For our ensemble clustering tool, ensemble clusters for a given
day were derived from EOF analysis of the 24-h-averaged
Z500 � eld spanning that day. Sets of clusters were provided
for a CONUS-wide domain as well as three prede� ned regions
of CONUS (east, west, and central). The boundaries for the
domains over which the EOF analysis is conducted are listed
in Table 1.

c. Cluster analysis

The second step of EFC is applying the fuzzyk-means clus-
tering algorithm to the EOF PCs to group ensemble members
with similar forecasts together. Traditional k-means clustering
(Lloyd 1982) is a popular and widely used method of clustering

data points. In traditional k-means clustering, each data point is
assigned to only one cluster. In fuzzyk-means clustering, each
data point can belong to more than one cluster. Each data point
is assigned a membership coef� cient for each cluster that de-
scribes the degree to which it belongs to that cluster. This infor-
mation can be used to create more nuanced clusters.Harr et al.
(2008) used the membership coef� cient to leave ensemble
members on the border between two clusters unclassi� ed.
Alternatively, Zheng et al. (2017) assigned each ensemble
member to the cluster for which it had the highest membership
coef� cient. This effectively creates a clustering scheme that is
likely identical to traditional k-means clustering. For our en-
semble clustering tool, traditional k-means clustering was uti-
lized as potentially excluding large numbers of ensemble
members from classi� cation was not desired. However, exclud-
ing large outliers from classi� cation was desired, so ensemble
members with at least one normalized PC of greater than 3.5 were
� ltered out before applying the k-means clustering algorithm. In
practice, most of the time no ensemble members are� ltered out
before applying the k-means clustering algorithm.

As detailed in Zheng et al. (2017), the steps of thek-means
clustering algorithm are as follows:

1) place a prede� ned number of clusters (initial guess) in the
EOF PC1–PC2 phase space,

2) assign each ensemble member represented by its pair of
PCs to the nearest group center,

3) compute new centers by minimizing an objective function
that evaluates the distance from each point to each new
cluster,

4) reexamine each point relative to the updated cluster cen-
ters, and

5) repeat steps 2–4. If no points can be reassigned because
they lie closer to another center, the iterations stop.

In practice, steps 2–4 are usually repeated less than 15
times. The other critical aspect of both fuzzy and traditional
k-means clustering is deciding the number of prede� ned clus-
ters. As detailed in Harr et al. (2008), objectively determining
the optimal number of clusters is very dif� cult and is often im-
material. The goal of ensemble clustering in this application,
as in Harr et al. (2008) and Zheng et al. (2017), is to partition
the data into an adequate subdivision of similar groups.
Harr et al. (2008) took a subjective approach to determining
the adequate number of clusters.Zheng et al. (2017) took an
objective approach and used the Rand index (Yeung and
Ruzzo 2001) to determine the optimal number of clusters,
� nding that the optimal number of clusters was often 3–5.
Subjectively determining the optimal number of clusters was
not an option as our tool would be automated. For simplicity,

TABLE 1. EOF domains.

Domain name Domain area

CONUS 228–728N, 408–1558W
EAST 258–558N, 608–1008W
CENTRAL 25 8–558N, 758–1158W
WEST 258–558N, 958–1358W
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we decided to keep the number of clusters� xed at four clus-
ters, the middle of the optimal range found by Zheng et al.
(2017). However, this decision may need to be revisited as
some users have voiced a preference for the number of clus-
ters to vary.

d. Cluster display

WPC forecasters and other end users were provided with
a simple website to view the clusters. For each day in the
3–7-day forecast period and for each region, this website dis-
played the two leading 24-h-averaged Z500 EOFs and a phase
space that showed each ensemble member’s PC values and to
which cluster it belonged. The website also displayed cluster
mean forecasts for 24-h-averaged Z500, daily TMAX, daily
TMIN, and 24-h QPF. Cluster mean forecasts were displayed
as the difference between the cluster mean and the multimo-
del mean of all 100 ensemble members. This was done so that
forecasters could quickly see how each cluster was different
from the multimodel ensemble mean. The cluster forecasts
were presented to participants in the order of their ranked
size (i.e., cluster 1 was comprised of the largest number of

ensemble members). The utility of the WPC clustering tool
will now be demonstrated through a case study.

3. 15 February 2021 eastern U.S. case

February of 2021 was an active weather month over the
central and eastern United States. The middle of the month
was particularly active with the region being impacted by a
notable cold air outbreak and several impactful precipitation
events. The 15 February 2021 case is in the middle of this ac-
tive period and will be used to demonstrate the utility of
WPC’s EFC tool as a means to better understand the range of
possible forecast outcomes.

a. Synoptic overview and verifying analyses

Before discussing the ensemble clustering output, a brief
overview of the verifying analyses for the parameters of in-
terest (Z500, QPF, TMIN, and TMAX) is presented. The
24-h-averaged Z500 analysis ending at 0000 UTC 16 February
from the GFS (Fig. 1a) shows a closed 500-hPa low centered
over James Bay in Canada. Troughing extends southwestward

FIG . 1. (a) GFS analysis 24-h-averaged Z500 (gray contours; m) and standardized anomalies (shading;s) with respect to CFSR climatol-
ogy ending at 0000 UTC 16 Feb 2021. (b) CCPA 24-h precipitation (shading; mm) ending at 0000 UTC 16 Feb 2021. (c) Lowest
ERA5 2-m temperature between 0000 and 1200 UTC 15 Feb 2021 (shading;8C). (d) Highest ERA5 2-m temperature between
1200 UTC 15 Feb 2021 and 0000 UTC 16 Feb 2021 (shading;8C).
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and then southward from this feature over the central United
States, with the most anomalous troughing located over Texas.
Downstream from the trough, there is an expansive ridge over
the east coast of the United States and the western Atlantic
Ocean. Between the central United States trough and down-
stream ridge, a strong front is draped from the lower Missis-
sippi Valley to the Tennessee Valley. Morning TMINs from
ECMWF ’s ERA5 dataset (Hersbach et al. 2020) were as low
as 2 158C in western Tennessee and as high as 58C in eastern
Tennessee (Fig. 1c). Afternoon TMAXs stayed below 2 7.58C
in western Tennessee and surged above 158C in eastern Ten-
nessee (Fig. 1d). According to The Environmental Modeling
Center’s Climatology-Calibrated Precipitation Analysis (CCPA)
dataset (Hou et al. 2014), areas along this front experienced
heavy precipitation of up to 35 mm (Fig. 1b) with some of this
precipitation falling as snow, sleet, and freezing rain. Overall, this
was a high-impact weather day for the central and eastern United
States.

b. Ensemble forecasts at different lead times

Figure 2 shows the multimodel ensemble mean 24-h-averaged
Z500 forecast and verifying analysis for this case at different lead
times. The 7-day multimodel ensemble mean forecast (Fig. 2a)
was poor and featured weak toughing over the eastern United
States and the western Atlantic Ocean where ridging occurred.
Over the central United States, the 7-day multimodel ensemble
mean forecast has weak ridging where troughing occurred. This
serves to highlight the perils of only using an ensemble mean
forecast. By 5 days prior to the event, the multimodel ensemble
mean forecast had improved (Fig. 2b). The multimodel mean
24-h-averaged Z500� eld is relatively zonal and does not ade-
quately depict the magnitude of troughing over the central
United States or ridging over the eastern United States and
western Atlantic that occurred, but it no longer forecasts trough-
ing where a ridge veri� ed and ridging where are trough veri� ed.
The 3-day multimodel ensemble mean forecast (Fig. 2c) showed
further improvement. While the amplitude of the 24-h-averaged
Z500 features was underdone, the forecast had the central U.S.
trough and the eastern U.S. ridge in the right locations. The fol-
lowing subsections will focus on the application of WPC’s EFC
methodology to the 7- and 5-day ensemble forecasts for this
high-impact event.

c. 7-day ensemble clustering forecast output

Figure 3a shows the 7-day multimodel mean and spread
forecast for the 24-h-averaged Z500 � eld initialized at
0000 UTC 8 February 2021. As previously noted, this forecast
was poor. However, the ensemble spread in 24-h-averaged
Z500 is greatest over eastern Canada and the northeastern
United States. This suggests that the ensembles contain a wide
range of forecast solutions, with perhaps some individual solu-
tions being more accurate than the multimodel mean. A tradi-
tional spaghetti plot of the 24-h-averaged Z500 is shown in
Fig. 3b, but like most spaghetti charts, it is dif� cult to interpret
and useful patterns are hard to determine.

The � rst step of our ensemble clustering methodology is to
evaluate the � rst two EOF patterns for the 7-day 24-h-averaged
Z500 � eld over the EAST domain de� ned in Table 1. Figures 3c
and 3d show these� rst two leading EOFs, which explain 50.6%
and 27.3% of the variance in the 24-h-averaged Z500� eld, re-
spectively. The � rst EOF (EOF1; Fig. 3c) is a monopole pattern
with positive values collocated with the weak multimodel ensem-
ble mean troughing over the northeastern United States. Thus,
members with positive (negative) PCs for EOF1 have higher
(lower) heights and stronger ridging (troughing) in this area.
Meanwhile, the second leading EOF (EOF2; Fig. 3d) is a dipole
with negative values over the Upper Midwest and Ontario and
positive values centered just south of Nova Scotia. This indicates
that members with positive (negative) PCs for EOF2 have in-
creased troughing (ridging) when compared to the multimodel
ensemble mean over the Upper Midwest and Ontario and in-
creased ridging (troughing) when compared to the multimodel
ensemble mean over Atlantic Canada.

Figure 4 shows the partition of the 100 multimodel ensem-
ble members into the four clusters as determined by the clus-
tering method. The 39 members that comprise cluster 1 are
generally in the lower right quadrant of the phase space, with
positive values for PC1 and negative values for PC2. Accord-
ingly, cluster 1 contains the ensemble members that have
more ridging over the central and eastern United States and
troughing over Atlantic Canada. The 32 members that com-
prise cluster 2 are located on the left side of the phase space,
with negative values for PC1. Thus, cluster 2 contains the en-
semble members that have enhanced troughing over the east-
ern United States. The 23 ensemble members that comprise

FIG . 2. 24-h-averaged Z500 verifying analysis (gray contours; m) and multimodel ensemble mean (black contours; m) from ensemble
forecast initialized at (a) 0000 UTC 8 Feb 2021 (7-day forecast), (b) 0000 UTC 10 Feb 2021 (5-day forecast), and (c) 0000 UTC 12 Feb
2021 (3-day forecast) and valid at 0000 UTC 16 Feb 2021.
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