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Abstract

We developed spatial Bayesian hierarchical models to assess potential climate

change impacts on suitable habitat for five important tree species in the

Pacific northwestern United States (California, Oregon, and Washington).

Individual-species models were fit with presence–absence data from forest

inventory field plots and spatial relationships were specified through a condi-

tional autoregressive model. This modeling approach allowed us to visualize

uncertainty in response curves, map current and future prediction uncertainty,

and provide interval estimates for change. Upward elevational or northward lati-

tudinal shifts in climatically suitable habitat were projected for all species.

Climate change impacts were the most damaging for noble fir (Abies procera),

for which 79%–100% of the current range was projected to become climatically

unsuitable by the 2080s. Although coastal Douglas-fir (Pseudotsuga menziesii

var. menziesii) has been projected by others to gain habitat in Canada, within

our study area we projected a net loss of climatically suitable habitat

(ca. 8000–31,400 km2) under three of four future climate scenarios. A net loss in

habitat was also projected for Oregon white oak (Quercus garryana) under three

of four scenarios, with 40%–60% of the current range becoming unsuitable.

Although there was no net loss of habitat for forest land blue oak under any sce-

nario, other factors like competition may inhibit blue oak (Quercus douglasii)

and white oak from occupying areas projected to increase in climatic suitability.

Additionally, between 13% and 32% of blue oak’s current range was projected to

become unsuitable; some of these areas aligned with dieback following the

2012–2015 California drought, which our data set predates. Unlike the other

four species, we projected a 17%–25% increase in climatically suitable habitat for

California black oak (Quercus kelloggii), although 1%–20% of the current range

was still projected to become unsuitable. Our findings indicate that, although

some species will face more pressure in tracking climatically suitable habitat

than others, climate change will impact the location of suitable habitat for many

species.
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INTRODUCTION

Rapid changes to climate are impacting and will continue
to impact the location of suitable habitat for many
tree species (Lenoir et al., 2008; Mathys et al., 2017;
McKenney et al., 2007; Soja et al., 2007). Within this cen-
tury, warmer temperatures and changes to the timing
and amount of precipitation are projected for the Pacific
Northwest (PNW) region of the contiguous United States
(Garfin et al., 2014; Mote et al., 2014). In response to cli-
mate change, the geographic ranges of many tree species
in North America are expected to move upward in eleva-
tion and northward in latitude (Iverson et al., 2008;
McKenney et al., 2007). However, climate change impacts
will not be uniform for all species (Prasad et al., 2020), nor
will they be uniform across a species’ current distribution
(Mathys et al., 2017; Rehfeldt et al., 2014a). For example,
loss of suitable habitat at southern and low-elevation
areas will not necessarily match gains at northern and
high-elevation areas.

Forest ecosystems provide a wealth of ecological bene-
fits and can serve as both economic and cultural resources
for local communities. Protection of these resources
through effective planning and management depends upon
an informed understanding of how climate change may
impact important tree species. In this study, we focused on
five tree species that are important to the PNW and we
assessed the potential impacts of four climate projections
for the 2080s on the location of climatically suitable habitat
for these species.

Five important species of the PNW

We selected five species based on their commercial,
ecological, or cultural importance in the PNW and their
expected vulnerability to projected changes in climate
(Brown et al., 2018; Case & Lawler, 2016; Devine et al.,
2012; Long et al., 2018): noble fir (Abies procera), coastal
Douglas-fir (Pseudotsuga menziesii var. menziesii), blue
oak (Quercus douglasii), Oregon white oak (Quercus
garryana; hereafter, white oak), and California black oak
(Quercus kelloggii; hereafter, black oak). Except for the
geographic range of coastal Douglas-fir, which extends
from southern California into British Columbia, Canada,
the ranges of these species are primarily contained within

the PNW. Coastal Douglas-fir is a major component of
the timber industry in the PNW, supporting Oregon and
Washington as the top softwood-lumber-producing states
in the United States (Smith et al., 2009). Noble fir is an
endemic, high-elevation species in the northern PNW
and is managed for timber and bough production (Blatner
et al., 2010; Franklin, 1990). Another endemic species to
the south is blue oak, which occupies hot, dry foothill
woodlands and is the most drought tolerant of California’s
deciduous oaks (McDonald, 1990). White oak woodlands
and savannas are sparsely scattered across the PNW and
extend slightly into British Columbia (Stein, 1990). Despite
substantial habitat conversion from changes in land use
and disturbance regimes, white oak woodlands continue to
host high levels of species richness, including many at-risk
species (Fuchs, 2001; Hahm et al., 2018; Pellatt et al., 2012).
Black oak is an iconic species across California and
southern Oregon and doubles as “both an ecological key-
stone and a cultural keystone” species (Long et al., 2016).

Multiple studies have highlighted the unique responses
that these five species may have to climate change.
For high-elevation species with limited upslope-migration
options, such as noble fir, warmer temperatures are expected
to negatively impact suitable habitat (Bell et al., 2014). The
overall effect of climate change on coastal Douglas-fir’s range
size (i.e., area of its range) is projected to be small, with losses
in suitable habitat expected at lower elevations and gains
expected at higher elevations and northward into British
Columbia (Gray & Hamann, 2013; Mathys et al., 2017;
Rehfeldt et al., 2014a). However, Rehfeldt et al. (2014b)
found that, while much of coastal Douglas-fir’s habitat
would remain climatically suitable by the 2060s, 18% of the
projected future habitat is presently unoccupied by coastal
Douglas-fir and an additional 24% is presently occupied by
genetic stock that is projected to becomemaladapted.

Despite blue oak’s drought tolerance, Brown et al.
(2018) found end-of-century vulnerability for blue oak to
be greatest to the south and in areas surrounding the
Great Central Valley, where the frequency of drier years
was projected to increase. Focusing on the northern por-
tion of white oak’s range and using observations from the
1930s onward, Pellatt et al. (2012) predicted climatically
suitable habitat to increase by the end of this century, but
that much of this future habitat would be spatially
fragmented or occur in areas where white oak is cur-
rently in decline. Harsh sites, fragmentation, and other

2 of 25 KRALICEK ET AL.



threats to white oak’s extant habitat have led to this
species being identified as highly vulnerable to climate
change (Case & Lawler, 2016; Devine et al., 2012).
Impacts of climate change on black oak are less clear,
although increased moisture stress is expected to nega-
tively impact mature black oak, particularly toward the
fringe of this species’ range (Long et al., 2016; Lutz
et al., 2010).

Utility of CAR models in bioclimatic SDMs

Species distribution models (hereafter, SDMs; Araújo &
Peterson, 2012; Elith & Leathwick, 2009; Franklin, 2009)
are often used to understand how climate change impacts
may shift suitable habitat for tree species (e.g., Bell
et al., 2014; Rehfeldt et al., 2014a). Bioclimatic SDMs use
current climate data to estimate correlative relationships
between a species’ response (e.g., occurrence, abundance)
and climate covariates representing the species’ climatic
habitat. The estimated species–climate relationships can
then be applied to data from future climate scenarios to
project how these scenarios would impact the geographic
location of climatically suitable habitat.

Correctly identifying the relationship between a spe-
cies and climate is an important step in building useful
SDMs for climate change studies. The observed distribu-
tion of a species is not solely the result of climate, but
rather a complex interaction of climate with other envi-
ronmental and ecological factors (e.g., soils, disturbances,
competition, dispersal). Often the direct, proximal vari-
ables representing influential factors are not available,
and so appropriate surrogate variables are used (Austin,
2007). Information from such influential factors, which is
not captured by surrogate variables in SDMs, may still
be captured as spatially patterned error and expressed
as spatial autocorrelation in model residuals (Cressie
et al., 2009; Ver Hoef et al., 2018).

When data are associated with spatial areal units, we
can incorporate spatial information into the modeling pro-
cess with spatial conditional autoregressive (CAR) models
(Besag, 1974). To encode spatial dependency, CAR models
use neighbor relationships by specifying dependency
conditional on observations at neighboring locations
(Cressie, 1993; Ver Hoef et al., 2018). For example, spatial
random effects for individual polygons (i.e., random inter-
cepts) can be included in a Bayesian hierarchical general-
ized linear model (GLM), where the covariance matrix of
the random effects uses a CAR model based on specified
neighbor relationships (Ver Hoef et al., 2021). When SDMs
are estimated with Markov chain Monte Carlo (MCMC)
methods, spatial CAR models have the added benefit of
allowing practitioners to map covariate and prediction

uncertainty (Cressie et al., 2009). The ability to characterize
prediction uncertainty is particularly appealing in cli-
mate change studies where it is common for projected
impacts to be examined for multiple future climate
scenarios.

The overall goal of our study was to develop
species-specific SDMs for these five tree species, with the
aim of providing realistic predictions of climatically suit-
able habitat and evaluating potential impacts of four cli-
mate projections for the 2080s. For each species, our
specific objectives were to: (1) develop a spatial Bayesian
hierarchical model to estimate spatial relationships (via a
CAR model) between species and habitat based on spe-
cies’ presence–absence data and 30-year averages of cur-
rent climate; (2) estimate the effect of climate covariates
on the probability of species occurrence; (3) produce
mapped predictions of climatically suitable habitat and
mapped prediction uncertainty for the current and four
future climate scenarios; and (4) evaluate impacts of
climate change on the species’ geographic range by
assessing the estimated change in range size and examin-
ing the area expected to persist (remain suitable), expand
(become suitable), or contract (become unsuitable) by the
2080s for the future climate scenarios. We outline an
approach that provides characterizations of uncertainty
when assessing climate change impacts, including esti-
mates of covariate and prediction uncertainty.

METHODS

Study region

The study area covers the western states of California,
Oregon, and Washington of the United States, hereafter
referred to as the PNW. This region is composed of a broad
range of climate conditions as latitudinal, orographic, and
maritime influences interact to form a variety of tempera-
ture and precipitation regimes. The diverse environmental
conditions of the PNW are expressed in a wide variety of
vegetation types, ranging from temperate rain forests in
northwest Washington to chaparral shrublands and
deserts in southern California. Within this region, we focus
on five tree species: noble fir, coastal Douglas-fir, blue oak,
(Oregon) white oak, and (California) black oak.

Data and model forms

Field observations

The sample units in our study come from presence–absence
observations on plots measured between 2001 and 2011 by
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the Forest Inventory and Analysis (FIA) program. As part
of a national monitoring program for forest vegetation, FIA
field plots (hereafter, FIA plots) are randomly located within
a tessellation of hexagonal spatial units, with each hexagon
covering approximately 2400 ha. Across our study area, the
median number of FIA plots per hexagon is one, with a
maximum of five plots in national forests with spatial inten-
sification. The FIA program only recorded species data on
forested FIA plots and defined forested lands as areas with
greater than 10% canopy cover or stocking on the acre.
Although the ranges for three of our focal species are
contained within forested lands, the ranges of blue oak and
white oak extend into nonforested lands (i.e., areas not
meeting the forested threshold). For clarity, we hereafter
refer to FIA plots by the response type: observed FIA plots,
which occur on forested lands where the species’ occurrence
was recorded, and unobserved FIA plots, which occur on
naturally nonforested lands (e.g., rangeland) where species’
occurrence was not recorded. In addition to observed FIA
plots, which were included in all data sets, we included
unobserved FIA plots in the data sets of blue oak and white
oak. The conceptual relationship between FIA plots and
hexagons is illustrated in Figure 1.

To protect landowner privacy and data integrity,
some data collected on FIA plots are not made publicly
available (e.g., true location; Burrill et al., 2021). We

obtained permission to use the full data and were
therefore able to associate FIA plots with their containing
hexagon (for documentation and access information, see
Burrill et al., 2021). Access to the full data also allowed
us to associate FIA plots with their corresponding ecolog-
ical section (ES; Cleland et al., 2007). These ES designa-
tions define large areas with similar physical and
biological features, which are expected to respond simi-
larly to disturbance (McNab et al., 2007). Although not a
surrogate for populations, we expected that the average
response of a species to climate would vary between ESs
because of their unique ecological characteristics. A list
of the ESs present in each species-specific data set is pro-
vided in Appendix S1: Section S1.

Characteristics of the five species-specific data sets
used in this study are presented in Table 1. For each spe-
cies, FIA plots with absences or unobserved responses
were only included if they occurred within 200 km of an
FIA plot with a presence. Because FIA plot data do not
distinguish between varieties for Douglas-fir, we differen-
tiated the range of coastal Douglas-fir from the Rocky
Mountain variety (var. glauca) based on genetic and
migration findings in Gugger et al. (2010) and subse-
quently removed FIA plots within the Rocky Mountain
variety’s range. Finally, we removed any FIA plots occur-
ring in isolated hexagons (i.e., those not sharing a com-
mon edge with another hexagon in the sample) from
species-specific data sets. After the data sets were assem-
bled, we classified hexagons as observed or unobserved:
an observed hexagon contained at least one observed
FIA plot and an unobserved hexagon contained only
unobserved FIA plots. We discuss the rationale for
removing isolated hexagons and classifying hexagons in
the section Spatial Bayesian hierarchical model.

Present and future climate

Current climate data for FIA plots were obtained from
PRISM (parameter-elevation relationships on independent
slopesmodel) climate normals (30-year averages) ofmonthly
and annual temperature and precipitation data for the period
1981–2010 at 800-m resolution (data set Norm81m; PRISM
ClimateGroup, 2012). From these data, we calculated all bio-
climatic variables (Hijmans, 2004; Nix, 1986) according to
O’Donnell and Ignizio (2012). Of the two equations
O’Donnell and Ignizio (2012) provide for temperature
seasonality, we applied the standard deviation equation that
aligns with Hijmans (2004). In addition to bioclimatic
variables, we calculated variables for degree-days and a
heat–moisture index (calculations provided in Table 2).

Future climate data were locally downscaled and gen-
erated with the ClimateNA version 5.21 software package

F I GURE 1 An example illustration of the relationship

between Forest Inventory and Analysis (FIA) plots (sample units)

and their containing hexagons (spatial units), where forested FIA

plots are shown in blue (i.e., FIA plots where the species

occurrence was recorded; an observed response) and nonforested

FIA plots are shown in red (i.e., FIA plots where species occurrence

was not recorded; an unobserved response). Only observed FIA

plots were included in the data sets for noble fir, coastal

Douglas-fir, and black oak, while both observed and unobserved

FIA plots were included in data sets for blue oak and white oak.

Subscripted labels (e.g., y5, z1) are used to demonstrate the

structure of matrices in a spatial Bayesian hierarchical model.
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(available at https://sites.ualberta.ca/~ahamann/data/
climatena.html), which is based on methodology
described by Wang et al. (2016). We evaluated possible
climate change impacts for four future climate scenarios
for the 2080s (2071–2100 normal period), including two
emission pathways and two climate models. We selected
representative concentration pathways (RCPs; van Vuuren
et al., 2011) that represent an intermediate emissions path-
way in which radiative forcing stabilizes around the year
2100 (RCP 4.5, stabilizing at approximately 4.5 W/m2 by
2100) and a high emissions pathway in which radiative
forcing continues to rise after 2100 for some time (RCP
8.5, exceeds 8.5 W/m2 by 2100).

To interpret each emission pathway, we selected two
climate models (atmosphere–ocean general circulation

models; AOGCMs). We compared the AOGCMs available
through ClimateNA and chose the AOGCMs that
represented a median (CCSM4; NCAR Community
Climate System Model, version 4.0; Gent et al., 2011) and
a worst-case (HadGEM2-ES; Met Office Hadley Centre
Global Environmental Model, version 2, Earth System;
Jones et al., 2011) climate projection. For this compari-
son, we examined projected changes between the 1970s
(1961–1990 normal period) and the 2050s (2041–2070
normal period) in state-level (i.e., California, Oregon, and
Washington) mean annual temperature and mean
annual precipitation under the intermediate emission
pathway (i.e., RCP 4.5; data accessed from the
ClimateNA website). Temperature was projected to
increase by the 2050s under all AOGCMs but changes in

TAB L E 1 Species abbreviations (abbrev) and summary statistics for the species-specific data sets. Summary statistics include observed

prevalence (in percentage), number of observed (o) and unobserved (u) Forest Inventory and Analysis (FIA) plots and hexagons, and

number of ecological sections (ESs).

Species Abbrev Prevalence

FIA plots Hexagons

ESso u o u

Noble fir ABPR 3.5 15,126 10,161 20

Coastal Douglas-fir PSMEM 53.8 16,144 11,790 22

Blue oak QUDO 7.3 6719 6083 6124 6010 20

Oregon white oak QUAG4 2.6 17,952 9579 12,957 9225 27

California black oak QUKE 9.5 12,113 9290 25

TAB L E 2 Description of climate covariates and their inclusion in fixed-effects model forms for noble fir (ABPR), coastal Douglas-fir

(PSMEM), blue oak (QUDO), white oak (QUGA4), and black oak (QUKE).

Covariate Description

Fixed-effects model form

ABPR PSMEM QUDO QUGA4 QUKE

gdd5 Growing degree-days over 5�Ca X X

hmi Heat–moisture indexb,c

tmax-warmM Max. temp. of warmest monthd X X

tmin-coldM Min. temp. of coldest monthd X

tmean-wetQ Mean temp. of wettest quarterd X X X X

tmean-warmQ Mean temp. of warmest quarterd X X X

ppt-ann Total annual precipitationc,d

ppt-wetM Precipitation of wettest monthd X

ppt-wetQ Precipitation of wettest quarterd X X

ppt-warmQ Precipitation of warmest quarterd X X X X

Note: Climate covariates that were included in a species’ model (e.g., through a linear, quadratic, or interaction term) are indicated by an “X” in boldface if a
term related to that covariate was significant in the final hierarchical model (zero excluded from equal-tailed 90% credible interval for the posterior mean); the
fixed-effect intercepts were significant in final hierarchical models for all species.
aSum of month-days for which mean temperature exceeded 5�C (i.e., frost-free days; in days).
bIndex calculated as (tmean-ann + 10)/(ppt-ann/1000), where tmean-ann (annual mean temperature) was calculated as in O’Donnell and Ignizio (2012).
cNot included in the final model form for any of the species.
dSee O’Donnell and Ignizio (2012) for calculation; units are temperature in degrees Celsius and precipitation in millimeters.
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precipitation were more variable. When AOGCMs were
sorted by the magnitude of projected temperature
change, the CCSM4 model had a median projection while
the HadGEM2-ES had one of the warmest projections
(worst case). Although both models generally projected
drier conditions by the 2050s, neither model had the most
extreme projected increase nor decrease in precipitation
when compared with the other AOGCMs.

Identifying model forms

After identifying climate covariates that were physiologi-
cally meaningful to each species, model forms were
determined by fitting nonspatial, logistic generalized lin-
ear mixed models (GLMMs) on all covariates with a fixed
intercept and a random intercept for ES. All 10 climate
covariates listed in Table 2 were initially considered for
blue oak and black oak, while all but ppt-wetM (precipi-
tation of wettest month) were considered for the other
three species. Covariates were standardized (centered
and divided by their standard deviation) before model
fitting, and covariate standardizations were recorded and
applied to future climate data sets for prediction. Both
linear and quadratic terms were considered for bioclimatic
variables to allow for unimodal response curves, except for
gdd5 (growing degree-days over 5�C) for which we only con-
sidered linear terms. To allow for the effect of precipitation
to vary with mean temperature, we considered interaction
terms for precipitation and mean temperature variables
within a similar period, for example, wettest quarter or
month (e.g., tmean-warmQ and ppt-warmQ, tmean-wetQ
and ppt-wetQ, tmean-wetQ and ppt-wetM). Covariates
included in final model forms were identified by succes-
sively removing covariates when all parameters associated
with a specific covariate were not significant (0.1 level) and
removal resulted in an improvement in Akaike information
criterion (Akaike, 1973). The climate covariates included in
the final model forms are described in Table 2.

Spatial Bayesian hierarchical model

We used spatial Bayesian hierarchical models to examine
the effect of climate covariates and predict climatically
suitable habitat for each species. We denote the vector
of species’ response at the FIA plots y, for which the
Bernoulli response (i.e., presence or absence) was
observed or, if the species was blue oak or white oak, pos-
sibly unobserved (i.e., unknown response). We related
the response at an FIA plot to the climate covariate data,
ES membership, and hexagon membership for that FIA
plot through the following hierarchical model:

y� yjβ,v,z,X,Q,U½ � �Bernoulli μð Þwithμ� g− 1 ηð Þ,
ð1Þ

η�Xβ+Qv+Uz, ð2Þ

v� vjσv½ � �MVN 0,σ2vI
� �

, ð3Þ

z� zjθ½ � ¼ zjρ,σz½ � �MVN 0,Σθð Þ, ð4Þ

Σθ � σ2z diag W1ð Þ− ρWð Þ− 1 � σ2zR
− 1
ρ , ð5Þ

where the bracket notation …½ � denotes a probability dis-
tribution of the variable on the left of the symbol j condi-
tional on the variables or parameters to the right of that
symbol (Gelfand & Smith, 1990). Here, the mean
response vector μ is related to the linear predictor η by
the inverse-logit function g− 1. The vector η is related to
the design matrix X containing the climate covariate data
for the FIA plots with fixed-effects regression coefficients
β, the design matrix Q containing 0s and 1s for ES ran-
dom effects v, and the design matrix U containing 0s and
1s that match FIA plots with their hexagon’s spatial ran-
dom effect (elements of z).

We assumed that both v and z follow multivariate nor-
mal distributions and that the distribution of the spatial
random effects (z) depends on the covariance matrix Σθ
through the parameter vector θ¼ ρ,σzð Þ0. Following Ver
Hoef et al. (2018), we modeled this dependence with a
row-standardized CAR model. In Equation (5), the func-
tion diag creates a diagonal matrix; W is a matrix
encoding neighbor relationships; 1 is a vector of ones;
and Rρ denotes the single matrix for the row-standardized
CAR model that is dependent on the parameter ρ. We used
a first-order neighbor structure for W and encoded neigh-
boring hexagons by 1 and non-neighbors by 0. We defined
neighbors as any two hexagons sharing a common edge,
which translated to a maximum of six neighbors for an
individual hexagon. Because a row of zeros inW would be
problematic, we removed isolated hexagons (and all FIA
plots within these hexagons) from species-specific data sets
before model fitting. Although other options for handling
isolated spatial units exist (Ver Hoef et al., 2018), we had
relatively few isolated hexagons (0.4%–2.0% depending on
the data set) and the removal of associated FIA plots did
not greatly impact our overall sample size.

Row-standardized CAR models tend to estimate a
greater marginal variance for spatial units (hexagons)
with fewer neighbors (Ver Hoef et al., 2018). Assuming
greater uncertainty toward the perimeter of sample loca-
tions is reasonable when the entire geographic range of a
species is represented in the sample data. However, such
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CAR models can still be applicable if the species’ response
is partly unobserved (i.e., blue oak and white oak) or if the
species’ range extends beyond the study area’s extent
(i.e., coastal Douglas-fir). For blue oak and white oak,
greater marginal variances in observed hexagons toward
the interior of the species range can be stabilized by includ-
ing covariate data from FIA plots in unobserved hexagons.
Because the range of coastal Douglas-fir is truncated in our
data set at the Canadian border, we know to expect greater
marginal variances in (observed) hexagons along the
northern extent of our study area.

For computational savings during model fitting, we
write z¼ zo0,zu0ð Þ0 where zo and zu are vectors of spatial
random effects associated with observed hexagons and
unobserved hexagons, respectively (Ver Hoef et al., 2021).
If the response on all FIA plots was observed (i.e., noble
fir, coastal Douglas-fir, and black oak), then zu is a
zero-length vector and z ¼ zo.

The response vector y can be partitioned as
y¼ yo

0,yu0ð Þ0 into the responses on observed (yo) and
unobserved (yu) FIA plots. As illustrated in Figure 1,
unobserved FIA plots for white oak and blue oak may
occur in observed or unobserved hexagons. We can simi-
larly structure X, Q, and U to be partitionable by the
observed or unobserved FIA plots. For X and Q, we have

X¼ Xo

Xu

� �
and ð6Þ

Q¼ Qo

Qu

� �
, ð7Þ

where Xo and Xu are matrices with the same number of
columns as X and number of rows corresponding to the
length of yo and yu, respectively; that is, Xo and Xu are
the design matrices with climate covariate data
corresponding to the FIA plots with observed and
unobserved responses, respectively. The same notation
holds for Q where Qo and Qu are design matrices
encoding ES membership for FIA plots with observed
and unobserved responses, respectively. Because U
matches FIA plots to hexagons, we can further partition
U for blue oak and white oak by the observed or
unobserved hexagons,

U¼ Uo

Uu

� �
¼ Uo,o Uo,u

Uu,o Uu,u

� �
, ð8Þ

where a matrix’s two-letter subscript indicates the type of
response on the FIA plot and the type of hexagon being
matched through that matrix; for example, Uu,o matches
FIA plots with an unobserved response (yu) with the ran-
dom effects for observed hexagons (zo). For noble fir,

coastal Douglas-fir, and black oak, we have X¼Xo,
Q¼Qo, and U¼Uo,o. Because observed FIA plots cannot
occur within unobserved hexagons (by definition), Uo,u is
always a matrix of zeros. To illustrate this concept,
suppose Figure 1 showed all plots within the blue oak
data set, then the components of Equation (8) are writ-
ten as

Uo,o ¼

1

1

1

0

0

0
0 1

2
66664

3
77775, Uo,u ¼

0

0
0

0

2
6664

3
7775, Uu,o ¼

1

1

0

0
0 0

2
64

3
75, and

Uu,u ¼
0

0

1

2
64

3
75,

where the elements of y and z are ordered according to
the subscripts in Figure 1.

Assuming conditional independence between the ele-
ments of y, we can write Equation (1) as

yjβ,v,z,X,Q,U½ �
¼ yojβ,v,zo,zu,Xo,Qo,Uo½ � yujβ,v,zo,zu,Xu,Qu,Uu½ �: ð9Þ

Then, the joint posterior distribution based on the
observed response data for all parameters is

ψjXo,Qo,Uo,yo½ � ¼ β,ρ,σz,σv,v,zo,zujXo,Qo,Uo,yo½ �
/ yojβ,v,zo,zu,Xo,Qo,Uo½ � zo,zujρ,σz½ � vjσv½ � β½ � σz½ � σv½ � ρ½ �,

ð10Þ

where ψ¼ β0,ρ,σz,σv,v0,zo0,zu0ð Þ0 is a vector containing
model parameters and we specify flat infinite priors for
the components of β and flat priors for ρ� 0,1ð Þ,
σz � 0,∞ð Þ, and σv � 0,∞ð Þ. Based on (9) and (10), the
posterior predictive distributions of the observed and
unobserved FIA plots are:

~yo, ~Xo,Qo,Uojyo
� �¼ ð

ψ
~yo,β,v,zo,zu, ~Xo,QojUo
� �

ψjXo,Qo,Uo,yo½ �dψ and ð11Þ

~yu, ~Xu,Qu,Uujyo
� �¼ ð

ψ
~yu,β,v,zo,zu, ~Xu,QujUu
� �
ψjXo,Qo,Uo,yo½ �dψ, ð12Þ

respectively, where the tilde denotes a new set of data;
that is, ~yo and ~yu can be interpreted as new species
response (presence or absence) at the observed and
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unobserved FIA plots for the new climate covariate data
contained in ~Xo and ~Xu, respectively. Note that the inte-
grand on the right-hand side of Equations (11) and (12)
is the product of the data model and the posterior
distribution.

Model fitting

Species-specific models were fit with MCMC methods
using a Metropolis–Hastings sampler (Hastings, 1970;
Metropolis et al., 1953) in R (R Core Team, 2020); for an
overview of MCMC methods, see Gilks et al. (1996). Our
MCMC scheme implemented the time-saving innova-
tions outlined in Ver Hoef et al. (2021), including split-
ting zo and zu, use of sparse matrices in block sampling,
and use of lookup tables. Proposal distributions were cen-
tered on a parameter’s sample from the previous iteration
and tuned so that acceptance rates stayed between 0.2
and 0.5. We used Gaussian proposals for the components
of β, zo, zu, and v, uniform proposals for σz and σv, and a
discrete uniform proposal for ρ. Block proposals were
used for zo, zu, and v. To ensure identifiability from the
fixed-effect intercept (β0), an additional constraint was
placed on v to be centered at zero; this was accomplished
by centering the components of v following proposal
draws. To speed likelihood computations for the determi-
nant and inverse of Σθ, we used a lookup table for Rρ

based on 101 values of ρ between 0 and 1 evenly spaced
from −8 and 8 along the logit scale. The discrete uniform
proposal for ρ was therefore based on these 101 values.
No boundary issues were observed in our study for
parameters with constraints (i.e., ρ, σz, and σv).

To further increase the speed of model conver-
gence, spatial random effects were sampled at a
higher rate (50:1) than other model parameters. For
each complete iteration across all model parameters,
we kept the last sample of zo and zu. For clarity, we
hereafter use the term iteration to refer to a single com-
plete sample across all model parameters. Following a
burn-in of 200,000 iterations, we ran the sampler for
1,000,000 iterations and kept every 500th sample; this
resulted in 2000 samples from the joint posterior
distribution.

To assess if models converged to a stationary posterior
distribution, we examined trace plots and summary sta-
tistics for the parameters. Because of the large number of
random effects, examining individual trace plots was not
practical for zo, zu, and v. Instead, summary statistics
(mean and interquartile range) and a subset of these
parameters’ trace plots were examined. For the trace
plots, we chose a subset that was representative of both
extremes and common conditions within the data set
(e.g., varying numbers of FIA plots and observed

presences, and both observed and unobserved hexagons).
Further details on the MCMC sampling procedure are
included in Appendix S1: Section S2.

Model predictions

With the 2000 MCMC samples from the joint posterior
distribution, we generate predictions for each of the five
climate data sets (current and four future climate scenar-
ios) by updating the climate covariate data contained X.
For a given climate scenario, we write the vector
of predicted probabilities for the kth MCMC sample as
μk ¼ g− 1 ηk

� �
where, recalling that g− 1 is the

element-wise inverse logit, the vector ηk is calculated
based on Equation (2) as

ηk ¼Xβk +Qvk +Uzk, ð13Þ

where the superscript k indicates the vectors βk, vk, and
zk come from the kth MCMC sample and X contains the
climate covariate data for the specified climate scenario.
We map μk by associating predictions with their FIA plot
locations. Repeating this process for all 2000 MCMC sam-
ples yields 2000 prediction maps for that specific climate
scenario.

We interpret the μk predictions as the probability of
presence with respect to climatically suitable habitat,
hereafter the probability of climatically suitable habitat.
Predictions depend on the model’s estimation of the cur-
rent species–climate relationship, effect of ES, and spa-
tial effects. We assumed that spatially patterned error at
the hexagon level from unaccounted-for influential fac-
tors (e.g., competition, soils) will not change substan-
tially by the 2080s. Although climate change may
impact factors expressed through the model’s spatial
component, we consider the model’s estimation of the
current spatial effects to be an informed “better guess”
of future spatial effects. Therefore, we used the MCMC
samples of the spatial random effects for prediction in
Equation (13). Rather than projecting the location of a
species’ presence in the 2080s, we believe the projec-
tions represent the probability of climatically suitable
habitat, with some adjustment for present-day spatial
and ES effects.

Additionally, because observations of species’ pres-
ence in the FIA data were limited to forested lands, pre-
dictions should be interpreted within this context. For
example, the hottest and driest part of blue oak’s current
range is in areas that could be classified as blue oak
savannah, where the canopy cover or stocking on the
acre may be less than 10% (i.e., nonforested lands). While
we include covariate data from nonforest areas for blue
oak and white oak to obtain more realistic estimates of
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uncertainty along the forest/nonforest boundary, no spe-
cies response data are collected at these locations.
Therefore, while a location may be predicted as
unsuitable for forest-land blue oak, that same location
may not be unsuitable for blue oak savannah.

For each species and climate scenario, we mapped
the mean-predicted probability for each FIA plot across
the MCMC samples and refer to this as the
mean-prediction map. That is, for the ith FIA plot, we
found the mean of the predicted probabilities across all
2000 prediction maps,

μi ¼
X2000
k

μi
k=2000, ð14Þ

where μik is the predicted probability at the ith FIA plot
based on the kth MCMC sample. Because the
mean-prediction map is an average of the 2000 prediction
maps, it is possible that patterns expressed in the
mean-prediction map will not be expressed in any indi-
vidual prediction map. Therefore, the mean-prediction
map should be interpreted in parallel with a
corresponding map of prediction uncertainty. We
mapped the standard error (SE) of prediction for each
FIA plot and refer to this as the uncertainty map. That is,
for the ith FIA plot, we found the SE of prediction across
all 2000 prediction maps,

cSE μið Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2000

k
μik − μið Þ2= 2000− 1ð Þ2

r
: ð15Þ

Model assessment

Following model convergence, we evaluated the univari-
ate effective sample size (ESS; Kass et al., 1998; Robert &
Casella, 2004) for each parameter. Because MCMC sam-
ples are autocorrelated, the univariate ESS for a parame-
ter is the effective number of independent samples that
would be produced with the same SE. A conservative
estimate of the overall ESS is the minimum univariate
ESS of all parameters (i.e., the univariate ESS of the
parameter that mixed slowest). The minimum univariate
ESS can then be used to determine if the sampler was
stopped too soon and more MCMC samples are required.
We chose to compare the minimum univariate ESS to a
threshold of 30 effective independent samples for the
slowest mixing parameter.

In addition to MCMC diagnostics (e.g., ESS), model
diagnostics were examined to assess model perfor-
mance and check underlying model assumptions
(Conn et al., 2018). We used area under the receiver
operating characteristic curve (AUC; Hanley &
McNeil, 1982) to assess predictive performance and

used a model check based on Moran’s I (Moran, 1950)
to determine if the CAR models adequately accounted
for spatial autocorrelation. Because occupancy was
unknown at unobserved FIA plots, only observed FIA
plots were used in AUC and Moran’s I model check cal-
culations. The AUC statistic is threshold independent
and measures the model’s ability to discriminate
between occupied and unoccupied sites. An AUC of 1
indicates perfect prediction, while values near 0.5 indicate
that the model is classifying presence or absence at ran-
dom. We calculated AUC for each MCMC sample with the
R package pROC (version 1.17.0.1; Robin et al., 2011). For
the model check, we used Moran’s I to quantify
unaccounted-for spatial autocorrelation in model
“residuals” at eight discrete distance classes. Following
Wright et al. (2019), we defined the “residual” at an FIA
plot as the observed response minus the predicted proba-
bility. Because the calculation of Moran’s I was computa-
tionally intensive, we only considered 100 MCMC samples
(every 20th sample of the 2000 MCMC samples) in our cal-
culations. We grouped pairs of FIA plots by the planar
distance between pairs into one of eight classes: 0–5 km,
5–10 km, 10–15 km, 15–25 km, 25–50 km, 50–100 km,
100–200 km, or >200 km. For each distance class, correla-
tion in model “residuals” was then measured by calculat-
ing Moran’s I for FIA plot pairs within that distance class.
If the CAR model (i.e., spatial component of the model)
adequately accounted for spatial autocorrelation, then we
expect the Moran’s I model check to be near zero for all
distance classes.

Species response curves and optimal
conditions

To identify climate covariates that were significant in the
model, we examined the posterior distribution of the cli-
mate covariate effects (i.e., components of β); covariate
effects were significant if an equal-tailed 90% credible
interval for the posterior mean did not include zero. To
assess whether the estimated species–climate relation-
ships agreed with theory, we examined the species
response curves (i.e., conditional effect of climate
covariates on the species’ response) fit by the MCMC
samples to both univariate and bivariate climate gradi-
ents. Bivariate relationships were considered for climate
covariates associated with an interaction term and uni-
variate relationships were considered for all other climate
covariates. To fit response curves for each MCMC sam-
ple, we held the random effects and any uninvolved
covariates at zero (i.e., the prior mean of the random
effects and the mean of the standardized covariates) and
generated gridded climate data. Climate data for
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univariate relationships were generated as 100 values,
evenly spaced between the climatic extremes of the five
climate data sets; climate data were similarly generated
for bivariate relationships on a 100 × 100 grid. Following
this process, 2000 response curves were fit for each uni-
variate or bivariate relationship.

We then estimated optimal climate conditions for the
species based on the fitted species response curves and
compared these estimates to observed climate conditions
for these species. To estimate optimal conditions for each
MCMC sample, we analytically solved for the inflection
point of each fitted response curve and excluded any
inflection points that were not maxima. Because climate
conditions for an analytical maximum can be unrealistic
(e.g., ppt-warmQ < 0 mm), we further excluded maxima
outside of the climatic extremes of the current or future
climate data. With the resulting set of optima, we esti-
mated the mode of optimal conditions as the value that
maximized a kernel density estimate of the distribution
of optimal conditions; kernel density estimation was
performed with the R package ks (version 1.11.7;
Duong, 2020) for a grid restricted to climate conditions
represented by the optima. For univariate relationships,
we additionally reported the 5th and 95th percentile of
the estimated optimal climate conditions. We did not
estimate optimal conditions for gdd5 because only a lin-
ear term was considered for this covariate.

Climate change impacts on range

We examined the change in the species’ range (geo-
graphic distribution) and range size (area) to evaluate
the impact of future climate scenarios on climatically
suitable habitat. To estimate a species’ range for each
scenario and MCMC sample, we first simulated species
occurrence (presence or absence) at observed and
unobserved FIA plots from the posterior predictive dis-
tributions presented in Equations (11) and (12).
Specifically, for a given scenario and the kth MCMC
sample, the vector of posterior predictive simulations
(PPS) at the FIA plots is

~yk �Bernoulli ~μk
� �

with ~μk � g− 1 ~ηk� �
, ð16Þ

where the vector ~yk ¼ ~yko
0
,~yku

0	 
0
with ~yko and ~yku simulated

from Equations (11) and (12), respectively, with model
parameters from the kth MCMC sample; ~ηk is calculated
as in Equation (13) with ~Xo and ~Xu updated to contain
the climate covariate data corresponding to the specific
climate scenario. We then estimated a species’ range
based on the PPS for that scenario and MCMC sample.
Because estimates of climate change impacts might vary

based on the range estimation method used, we explored
two methods of range estimation: bivariate kernel density
estimation (BKDE) and Voronoi polygons. However,
we found both methods generally produced similar
results for climate change impacts on range size. For
brevity, we therefore focused on the BKDE method and
present the Voronoi polygon method in Appendix S1:
Section S3.

To estimate range with the BKDE method, we first
aggregated PPS to the hexagon level and associated simu-
lations with the hexagon’s centroid to minimize the
impact of clustered FIA plots on range estimates. For
aggregation, we assigned a hexagon-level presence if any
of the FIA plots within that hexagon had a simulated pres-
ence. Kernel density estimation and bandwidth selection
were performed with the R package ks (Duong, 2020). We
used a bivariate Gaussian kernel and a two-stage plug-in
selector with an unconstrained pilot bandwidth for a full
bandwidth matrix (Chac�on & Duong, 2010). The band-
width matrix controls the amount and direction of
smoothing and its choice can substantially impact density
estimation (Gitzen et al., 2006). Our choice of plug-in
selector is better suited to handling complex multimodal
densities (unconstrained) with probability mass concen-
trations not necessarily parallel to axes (full bandwidth)
than constrained pilot bandwidth or diagonal bandwidth
options (Chac�on & Duong, 2010). For each species, we
selected one bandwidth matrix based on observed pres-
ences (aggregated like PPS to the hexagon level), which
was then applied in kernel estimation for all scenarios
and MCMC samples. Fixing the bandwidth matrix in this
manner ensures that uncertainty in range estimates is
solely due to variation in MCMC samples, rather than
also reflecting variation in bandwidth matrix selection.

Following kernel estimation, we extracted the poly-
gons corresponding to the upper 95% contour of the
bivariate kernel density estimate. We restricted these
polygons to the area contained by the union of hexagons
within that species’ data set and further excluded any
potential overlap with the Pacific Ocean, Puget Sound, or
land area outside the PNW region. We then estimated the
range as the resulting polygons and estimated range size
as the summed area of these polygons. This process
resulted in a posterior distribution of range size estimates
for each scenario.

To assess the overall impacts of a future scenario on
range size, we examined the posterior distribution of the
change in range size and relative change in range size
(i.e., change in range size relative to the current estimate
of range size). To obtain samples from these posterior dis-
tributions, for each MCMC sample we calculated change
in range size as the difference between the future and
current range size estimates and relative change as this
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difference divided by the current estimate. We considered
a projected increase or decrease in range size to be signif-
icant if the equal-tailed 90% credible interval for the pos-
terior mean excluded zero.

Although overall change in range size (as a surrogate
for the area of climatically suitable habitat) is informa-
tive, it is not likely to capture all the features of climate
impacts on suitable habitat. For example, it is possible to
project a significant decrease in range size, but the
amount of area that will become climatically unsuitable
and the locations where a shift in suitability is expected
could vary substantially among the 2000 prediction maps.
Similarly, it is possible for a species to maintain the same
range size under a future scenario and yet have no over-
lap with the current range. Therefore, we examined the
area of overlap and change in range estimates between
current and future scenarios. For each MCMC sample,
we calculated the area projected to remain climatically
suitable (range persistence), become climatically suitable
(range expansion), or become climatically unsuitable
(range contraction) by the 2080s; the relationship
between range persistence, expansion, and contraction is
illustrated in Figure 2. We then visualized the relation-
ship between the expansion and contraction and esti-
mated posterior means and equal-tailed 90% credible
intervals for the area of range expansion, contraction,
and persistence. We also estimated posterior means and
equal-tailed 90% credible intervals for these area esti-
mates relative to the current range size estimate (e.g., the

area of range contraction by 2080s relative to the species’
current range size).

RESULTS

In this section, we first report on general model assessment,
parameter significance, and estimated species–climate rela-
tionships. We then present mapped mean-predictions and
uncertainty in predicted climatically suitable habitat for the
current and four future climate scenarios. Finally, we turn
our attention to range size estimates and the projected
impact of climate scenarios on climatically suitable habitat
for the 2080s. To be concise, we use coastal Douglas-fir as
an illustrative example throughout and provide figures for
the four other species in the Appendices.

Model assessment

Summaries of MCMC and model diagnostics are
presented in Table 3. All models had an ESS of at least
31 (univariate ESS) for the slowest converging parameter
and larger univariate ESS for most other parameters.
Additionally, all models had strong predictive perfor-
mance in differentiating between occupied and unoccu-
pied sites with a minimum AUC of at least 0.95 across
MCMC samples. The Moran’s I model check showed that
the models fit well across all eight distance classes we
considered (i.e., model check values near zero, indicating
minimal unaccounted-for spatial autocorrelation in
model residuals). The largest deviation of the model
check from zero was −0.04 for an MCMC sample from
the noble fir model at the 0–5 km distance class, for
which the mean model check value was −0.01.

In all models, all climate covariates had at least one
corresponding regression coefficient that was significant,
except for gdd5 and tmin-coldM (Table 2). For coastal
Douglas-fir, the fixed-effects model form is

− 3:99+0:05 gdd5stdð Þ+ 0:97 tmean-wetQstdð Þ
− 0:66 tmean-wetQstdð Þ2 + 1:19 tmean-warmQstdð Þ
− 0:44 tmean-warmQstdð Þ2 + 0:57 ppt-warmQstdð Þ
− 0:18 ppt-warmQstdð Þ2
+ 0:21 tmean-warmQstd × ppt-warmQstdð Þ,

ð17Þ
where coefficients in Equation (17) have been written
as their posterior means (rounded to the nearest hundredth),
the subscript std indicates that covariates are standard-
ized, and coefficients in boldface were significant; similar
equations for the other four species are provided in
Appendix S1: Section S4.

F I GURE 2 Conceptual relationship between the area of range

contraction, persistence, and expansion. In this example, the

current range size was 310 km2 (i.e., sum of range persistence and

contraction area) and the future range size was 230 km2 (sum of

range persistence and expansion area).
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The posterior mean of ρ was greater than 0.97 in all
models. The posterior mean of σz was smallest in the blue
oak model (1.8) and largest in the white oak model (2.6).
The posterior mean of σv was greater in the noble fir (8.2)
and coastal Douglas-fir (7.2) models than the oak models,
with the next greatest posterior mean in the black oak
model (2.2). There was less variation in MCMC samples
of σv from the oak models than the conifer models, which
had wider equal-tailed 90% credible intervals for the pos-
terior mean. Additional summaries of the posterior densi-
ties for ρ, σz, σv, and the components of β and v are also
presented in Appendix S1: Section S4.

Species–climate relationships

Regression coefficients associated with quadratic terms had
posterior means that were either significantly negative or
not significantly different from zero (i.e., nonsignificant).
Nonsignificant coefficients occurred in the blue oak
(tmin-coldM, ppt-wetQ, and ppt-warmQ, all with negative
posterior means) and white oak (ppt-warmQ, negative;
tmax-warmM and ppt-wetQ, positive) models. Only
tmin-coldM in the blue oak model had nonsignificant coef-
ficients for both linear and quadratic terms.

Presented in Figure 3 are the fitted species response
curves (a–c) for coastal Douglas-fir and the distribution
of optimal conditions (d–e) estimated from the response
curves; similar figures for the other four species are
included in Appendix S1: Section S5. Optimal conditions
were not estimated for gdd5 because only a linear term
was considered for this covariate (Equation 17). The
number of response curves from which optimal condi-
tions could be estimated is shown in Table 4 for all spe-
cies and the distribution of optimal conditions for coastal
Douglas-fir is shown in Figure 3d (tmean-wetQ) and

Figure 3e (the bivariate relationship of tmean-warmQ
and ppt-warmQ, hereafter abbreviated as tmean-warmQ
& ppt-warmQ).

For coastal Douglas-fir, all MCMC samples fit convex
unimodal response curves for the relationships with
tmean-wetQ (Figure 3b) and with tmean-warmQ &
ppt-warmQ (Figure 3c). The mode of optimal tmean-wetQ
conditions was 4.9�C, with 90% of the estimated optima
between 4.1 and 6.2�C (Table 4). The mode of optimal
tmean-warmQ & ppt-warmQ conditions was 21.1�C and
210.9 mm, which was estimated from 80% of MCMC sam-
ples (i.e., the 1592 samples that fit convex unimodal
response curves with maxima within the climatic extremes
of the current or future climate data sets; Table 4).
Although 62% of MCMC samples fit sigmoidal-increasing
response curves to gdd5 (Figure 3a), this covariate was not
significant in coastal Douglas-fir’s model.

All MCMC samples for noble fir and black oak fit con-
vex unimodal response curves for all climate relationships
involving quadratic terms. For black oak’s relationship
with gdd5 (which was not significant in the model), 69% of
MCMC samples fit sigmoidal-decreasing response curves.
All climate relationships for blue oak and white oak had at
least one nonsignificant quadratic term (e.g., ppt-wetQ in
white oak’s relationship with tmean-wetQ & ppt-wetQ).
Consequently, some MCMC samples fit concave unimodal
response curves to univariate relationships or saddled
response surfaces to bivariate relationships (i.e., concave
with respect to the climate covariate with a nonsignificant
quadratic term and convex with respect to the other covar-
iate). However, within the range of climate conditions
within which the species was observed (i.e., present based
on FIA plot data), such response curves were generally sig-
moidal or flat. Approximately half of the fitted response
curves for white oak were concave unimodal for
tmax-warmM (54%) or saddled for tmean-wetQ &

TAB L E 3 Summary statistics of Markov chain Monte Carlo (MCMC) and model diagnostics by species (model), including univariate

effective sample size (ESS) summaries, minimum area under the receiver operating characteristic curve (AUC) across MCMC samples, and

Moran’s I model check summaries.

Model

Univariate ESS

AUC Model checkβ ρ σz σv z v

ABPR 36 (183) 44 36 41 31 (114) 36 (41) 0.96 0.01 (12.8 km)

PSMEM 36 (119) 52 38 98 31 (158) 33 (40) 0.95 0.02 (3.5 km)

QUDO 64 (126) 38 31 175 31 (91) 51 (237) 0.98 0.01 (3.7 km)

QUGA4 70 (115) 45 31 147 31 (89) 49 (136) 0.98 0.00 (3.5 km)

QUKE 83 (205) 47 35 133 34 (273) 67 (115) 0.96 0.01 (3.5 km)

Note: Species include noble fir (ABPR), coastal Douglas-fir (PSMEM), blue oak, (QUDO), white oak (QUGA4), and black oak (QUKE). For the components of
β, z, and v, the univariate ESS of the slowest converging parameter is reported with the median univariate ESS in parentheses. For each model, the distance
class with the greatest absolute mean value of the Moran’s I model check (i.e., mean of 100 MCMC samples) is reported; the mean distance (in kilometers)
between Forest Inventory and Analysis (FIA) plot pairs in that distance class is reported in parentheses.
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F I GURE 3 Fitted species response curves (a–c) and the distribution of optimal conditions (d–e) for coastal Douglas-fir to growing

degree-days (gdd5; a), mean temperature of wettest quarter (tmean-wetQ; b, d), and the bivariate relationship of precipitation and mean

temperature of warmest quarter (ppt-warmQ & tmean-warmQ, respectively; c, e). For the univariate relationships (a–b), response curves fit
by individual Markov chain Monte Carlo samples are shown as gray lines and the mean of these 2000 response curves is shown in red. For

the bivariate relationship in (c), only the mean of the 2000 response surfaces is shown (variation in these surfaces is included in

Appendix S1: Section S5). In (d–e), a kernel density estimator was used to smooth over the optima of response curves from which optimal

conditions could be estimated (i.e., 2000 in d and 1592 in e; Table 4).

TAB L E 4 Summary statistics of optimal climate conditions based on fitted species response curves, including the number of Markov

chain Monte Carlo (MCMC) samples that resulted in a response curve with an optimum (N), the maximum density or mode of those optima

(mode), and, for univariate relationships, the 5th and 95th percentiles (pctl.) of the optima for noble fir (ABPR), coastal Douglas-fir

(PSMEM), blue oak, (QUDO), white oak (QUGA4), and black oak (QUKE).

Species Climate relationship N Mode 5th pctl. 95th pctl.

ABPR tmean-warmQ & ppt-warmQ 1998 (13.4�C, 251.4 mm)

PSMEMa tmean-wetQ 2000 4.9�C 4.1�C 6.2�C

tmean-warmQ & ppt-warmQ 1592 (21.2�C, 210.9 mm)

QUDO ppt-warmQb 446 6 mm 1.2 mm 20.2 mm

tmin-coldMc 1463 −0.2�C −9.4�C 1.0�C

tmean-wetQ & ppt-wetQb 1607 (4.3�C, 615.9 mm)

QUGA4 tmax-warmMb 558 38.4�C 34.9�C 53.1�C

tmean-wetQ & ppt-wetQb 463 (0.4�C, 610.6 mm)

tmean-warmQ & ppt-warmQb 1016 (19.4�C, 28.8 mm)

QUKEa tmax-warmM 2000 34.1�C 33.1�C 37.7�C

tmean-wetQ & ppt-wetM 2000 (5.1�C, 255.2 mm)

Note: Optimal conditions were only estimated from MCMC samples that fit convex unimodal response curves with maxima within the climatic extremes of the

current or future climate data sets.
aOptimal climate conditions were not estimated for gdd5.
bQuadratic term associated with this covariate was not significant in the model.
cNo coefficients corresponding to this covariate were significant in the model.
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ppt-wetQ (52%). Convex unimodal response curves were
fit by the majority of MCMC samples for blue oak to
ppt-warmQ (66%), tmin-coldM (80%), and tmean-wetQ &
ppt-wetQ (95%), and for white oak to tmean-warmQ &
ppt-warmQ (85%). For bivariate relationships, both species
had a convex unimodal response to mean temperature
covariates in all MCMC samples.

Between species, the mode of optimal tmean-wetQ &
ppt-wetQ conditions was slightly warmer and wetter for
blue oak than white oak (Table 4). The mode of optimal
tmean-warmQ & ppt-warmQ conditions was cooler and
wetter for noble fir than coastal Douglas-fir or white
oak, and cooler and drier for white oak than coastal
Douglas-fir. The estimated optimal tmax-warmM condi-
tions were 4.3�C warmer for white oak than black oak.

Mean-prediction and uncertainty maps

For all species and under all future climate scenarios, the
location of climatically suitable habitat generally shifted
upwards in elevation or northward in latitude from the
current mean-predictions as lower elevation or more
southernly latitudes became less suitable (Figure 4). This
trend held for coastal Douglas-fir for which the upward
and northward movement of suitable habitat became
more pronounced as future climate scenarios increased
in severity (Figures 4 and 5); that is, from an intermediate
emission pathway and a median climate projection
(RCP 4.5 CCSM4) to a higher emission pathway and gen-
erally warmer climate projection (RCP 8.5 HadGEM2-ES).
Future prediction uncertainty decreased for coastal
Douglas-fir in the foothills of the Sierra Nevada moun-
tains, where mean-predictions were projected to decrease,
as well as in parts of the northern Cascade Range (hereaf-
ter, Cascades), where mean-predictions were projected to
increase (Figure 5). Conversely, prediction uncertainty
increased for future scenarios in parts of northern
California and western Oregon where mean-predictions
were projected to decrease. As expected, prediction uncer-
tainty was generally lowest where there were many neigh-
boring FIA plots without an observed presence; for coastal
Douglas-fir, this can be seen in the foothills of the eastern
Cascades in Oregon, the Modoc Plateau, and the southern
Sierra Nevada (Figure 5).

For noble fir and black oak, elevation had a stronger
impact on changes to climatically suitable habitat than
latitude (Figure 4). Mean-predictions for noble fir sub-
stantially decreased under all four future scenarios as did
prediction uncertainty (Appendix S1: Figure S14). For
black oak, mean-predictions and uncertainty both gener-
ally increased at higher elevations in the Sierra Nevada,
Northern Coast Ranges, and Klamath Mountains

(Appendix S1: Figure S17). As the severity of future cli-
mate scenarios increased, mean-predictions and uncer-
tainty for black oak progressively decreased along the
western and northern limits of Great Central Valley
and at lower elevations on the west side of the Sierra
Nevada.

For blue oak and white oak, there were both elevational
and latitudinal shifts of climatically suitable habitat under
the future scenarios (Figure 4). As future scenarios
increased in severity, mean-predictions for blue oak pro-
gressively increased at higher elevations and northward
into the Klamath Mountains and progressively decreased
at lower elevations around the Great Central Valley
(Appendix S1: Figure S15). Similarly, for blue oak, uncer-
tainty progressively increased in northern California and
at lower elevations around the Sierra Nevada. Uncertainty
for blue oak progressively decreased around the southern
Great Central Valley and the southern Mojave Desert,
although there were also some areas of increased uncer-
tainty within these locales. For white oak,mean-predictions
decreased throughout most of California and the Columbia
River Basin under all future scenarios, with few areas seeing
increased mean-predictions under the most severe future
climate scenario (Appendix S1: Figure S16). However,
under both CCSM4 scenarios and to a lesser extent the
RCP 4.5 HadGEM2-ES scenario, mean-predictions
increased near the Cascades from the area to the east of
Mt. Adams down through southern Oregon. Changes in
future prediction uncertainty for white oak generally mim-
icked changes in mean-predictions, with increased uncer-
tainty near the Cascades and decreased uncertainty
elsewhere.

Climate change impacts on range

Summarized in Figure 6 are the posterior distributions of
the projected change (in thousand square kilometers)
and relative change (in percentage; i.e., change relative to
the current range size estimate) in range size under the
four future climate scenarios. The posterior distributions
of range size under the current and future scenarios are
shown in Figure 7 (left panel). Additional summaries for
range size metrics are provided in Appendix S1:
Section S3. Note that we hereafter report posterior means
unless stated otherwise.

The range size of noble fir significantly decreased
under all future climate scenarios (Figure 6). Range size
by the 2080s was approximately 9200 km2 under the
mildest scenario (RCP 4.5 CCSM4) and less than 7 km2

under the three more severe scenarios (Figure 7;
Appendix S1: Table S4). Relative to the current range size
estimate, the projected decrease in range size was 78.9%
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under the mildest scenario and nearly 100% under all
other scenarios (Figure 6; Appendix S1: Table S3).

For both coastal Douglas-fir and white oak, range size
significantly decreased under the three more severe

climate scenarios, with no change in range size projected
under the RCP 4.5 CCSM4 scenario. For coastal
Douglas-fir, the smallest significant decrease in range size
was 4.4% under the RCP 8.5 CCSM4 scenario and the

F I GURE 4 Mean-predictions (prob.) for the current scenario and change in mean-predictions (diff prob.) under the four future climate

scenarios (visualized as future value − current value) by elevation (in kilometers) and latitude (�N). Areas where the mean-prediction

increased under that future scenario are shown in yellow, areas that decreased are shown in blue, and areas with similar mean-predictions

are shown in white. CCSM4, Community Climate System Model, version 4.0; HadGEM2-ES, Met Office Hadley Centre Global

Environmental Model, version 2, Earth System; RCP, representative concentration pathway.
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largest decrease was 17.1% under the RCP 8.5
HadGEM2-ES scenario. Climate impacts were greater for
white oak, with significant decreases in range size rang-
ing from 26.8% (RCP 4.5 HadGEM2-ES) to 50.2% (RCP
8.5 HadGEM2-ES).

Unlike the other three species, range size for blue oak
and black oak did not decrease under any future sce-
nario. No significant change in range size was projected
for blue oak, though credible intervals for posterior
means were wide. Relative change in range size for blue
oak varied from −0.8% (RCP 4.5 CCSM4) to 17.2%
(RCP 8.5 HadGEM2-ES). Black oak’s range size signifi-
cantly increased under all future scenarios, with increases
in range size between 17.0% (RCP 8.5 HadGEM2-ES) and
24.7% (RCP 8.5 CCSM4).

The trade-offs between range expansion and con-
traction (in thousand square kilometers) under the
future climate scenarios are illustrated in the right
panel of Figure 7. Posterior means and equal-tailed
90% credible intervals for the area (in thousand square
kilometers) and relative area (in percentage; area rela-
tive to the current range size estimate) of range expan-
sion, contraction, and persistence are included in
Appendix S1: Table S5. In general, less contraction
indicates that more of the range is projected to remain
climatically suitable and persist under that future
scenario.

Climatically suitable habitat for noble fir substantially
decreased under all future climate scenarios, with no sig-
nificant range expansion under any scenario (i.e., zero

F I GURE 5 The current mean-predicted probability of climatically suitable habitat for coastal Douglas-fir (prob.), prediction uncertainty

(SE), and the change in mean-predictions (diff prob.) and uncertainty (diff SE) under the four future climate scenarios (visualized as future

value − current value). Areas where the mean-prediction increased under that future scenario are shown in yellow, areas that decreased are

shown in blue, and areas with similar mean-predictions are shown in white. Similarly, areas that increased or decreased in uncertainty are

shown in red or purple, respectively. CCSM4, Community Climate System Model, version 4.0; HadGEM2-ES, Met Office Hadley Centre

Global Environmental Model, version 2, Earth System; RCP, representative concentration pathway.
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included in the credible interval for the relative area of
range expansion). Expansion was approximately 400 km2

under the mildest future scenario (RCP 4.5 CCSM4) and
less than 1 km2 for all other future scenarios. Although
20.3% of the current range was projected to remain
climatically suitable under the RCP 4.5 CCSM4 scenario,
there was no significant range persistence under the
three more severe future scenarios.

For coastal Douglas-fir, expansion was generally less
under the milder climate model (i.e., CCSM4 being gen-
erally milder with respect to warming than

HadGEM2-ES) and contraction tended to be greater
under the higher emissions pathway (RCP 8.5 being
higher emissions than RCP 4.5). Across the future cli-
mate scenarios, between 81.6% (RCP 8.5 HadGEM2-ES)
and 96.5% (RCP 4.5 CCSM4) of coastal Douglas-fir’s cur-
rent range was projected to remain climatically suitable.
Nevertheless, even under the RCP 4.5 CCSM4 scenario,
for which no significant change in range size was
projected (Figure 6), approximately 6400 km2 of coastal
Douglas-fir’s current range was still projected to become
climatically unsuitable by the 2080s.

F I GURE 6 Box plot summaries for the posterior distributions of the change (in thousand square kilometers) and relative change

(in percentage) in range size between the current and a future climate scenario’s estimate based on the bivariate kernel density estimation

method. Change is calculated as future value − current value and relative change is calculated as (future value − current value)/current

value. Positive values indicate an overall increase in range size by the 2080s and negative values indicate a decrease. Box plot summaries

include the minimum and maximum sample values (indicated by the lower and upper whiskers, respectively), the 5th and 95th percentile

(the lower and upper hinges, respectively), and the posterior mean (middle line segment). The box plot hinges can be interpreted as an

equal-tailed 90% credible interval for the posterior mean; the horizontal black line indicates a value of zero for reference. CCSM4,

Community Climate System Model, version 4.0; HadGEM2-ES, Met Office Hadley Centre Global Environmental Model, version 2, Earth

System; RCP, representative concentration pathway.
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For blue oak, no significant change in total range size
was projected under any future scenario (Figure 6), but
only between 68.5% (RCP 8.5 HadGEM2-ES) and 86.9%
(RCP 4.5 HadGEM2-ES) of its current range was
projected to remain climatically suitable by the 2080s.
The greatest shift in blue oak’s climatically suitable

habitat was projected under the RCP 8.5 HadGEM2-ES
scenario (based on both posterior means and the upper
bound of 90% credible intervals), for which nearly
38,600 km2 of the current range was projected to become
unsuitable and almost 48,700 km2 was projected to
become suitable by the 2080s.

F I GURE 7 The posterior distribution of range size (in thousand square kilometers; left panel) and comparison of range expansion and

contraction (in thousand square kilometers; right panel) for the current and four future climate scenarios. For visibility, axes for noble fir are

visualized on the log1p(x) = ln(x + 1) scale, while axes for all other species are untransformed. In the right panel, each point corresponds to

an individual Markov chain Monte Carlo (MCMC) sample plotted by range expansion (area projected to become climatically suitable; area

within the future range but not the current range) and range contraction (area projected to become climatically unsuitable; area within the

current range but not the future range). Points clustered along the black line of equality between range expansion and contraction represent

MCMC samples with similar range size estimates under the current and a future scenarios. CCSM4, Community Climate System Model,

version 4.0; HadGEM2-ES, Met Office Hadley Centre Global Environmental Model, version 2, Earth System; RCP, representative

concentration pathway.
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Under the RCP 4.5 CCSM4 scenario, white oak was
projected to lose nearly 21,500 km2 of climatically suitable
habitat from its current range, despite no significant
change in range size. There was greater variability among
future scenarios in terms of range contraction than range
expansion. Projected range expansion, contraction, and
persistence were similar under the RCP 4.5 HadGEM2-ES
and RCP 8.5 CCSM4 scenarios (overlapping 90% credible
intervals).

As expected, based on results for black oak’s range size
(i.e., significant increase under all future scenarios), expan-
sion tended to exceed contraction under all future climate
scenarios (i.e., points above the line of equality between
expansion and contraction in Figure 7). Posterior means
for both expansion and contraction increased with increas-
ing severity of the future climate scenario. Credible inter-
vals for contraction area overlapped between future
climate scenarios that were adjacent in severity. As with
all other species, black oak’s current range was projected
to contract under all future climate scenarios. At least
1600 km2 (RCP 4.5 CCSM4) but upwards of 23,300 km2

(RCP 8.5 HadGEM2-ES) of black oak’s current range was
projected to become unsuitable by the 2080s.

DISCUSSION

Modeling approach

We projected climatically suitable habitat for five tree spe-
cies by fitting spatial Bayesian hierarchical models with
MCMC methods. The primary benefits of this modeling
approach included the ability to quantify uncertainty,
accommodate complex model forms with latent variables,
and inspect ecological relationships that would have
been unexaminable with more traditional methods. The
approach allowed us to develop spatially informed rela-
tionships between current climate and species occurrence
with strong predictive performance (AUC > 0.95). We
found evidence of strong autocorrelation (posterior mean
of ρ > 0.97) in all species-specific data sets and minimal
remaining spatial autocorrelation after spatial depen-
dency was incorporated through a CAR model (Moran’s
I model check within 0.04 of 0). Lastly, our modeling
approach allowed us to incorporate climate information
from areas where the species response was unobserved,
which enabled us to obtain more realistic estimates of
uncertainty along the forest/nonforest boundary. This
was especially useful for species that commonly occur in
conditions that bridge the forest/nonforest FIA designa-
tions (blue oak and white oak).

Fitting spatial Bayesian hierarchical models can
be computationally prohibitive for large data sets.

Accordingly, we implemented a variety of strategies from
Ver Hoef et al. (2021) to speed up estimation, including
sparse matrix calculations, simplifying density calcula-
tions for Metropolis–Hastings acceptance weights, and
using lookup tables for inverse and determinate calcula-
tions of Σθ based on different values of ρ. When data sets
included unobserved response data (i.e., blue oak and
white oak), we also increased the sampling rates for zo
and zu to speed up convergence. Although these modifi-
cations substantially improved computational and tempo-
ral efficiency, other unique features of our data sets likely
contributed to a slower model-fitting process than tradi-
tional modeling approaches. Data features that may con-
tribute to longer run times likely include a binary
response, low observed prevalence, and many latent
(spatial) variables for some species. Consideration of
these data features and the availability of computational
resources will be important when weighing the advan-
tages and disadvantages of this modeling approach for
future applications.

Our predictions for future climate scenarios use the
spatial patterning (error structure) observed under the
current climate. By using the spatial random effects (z)
for future predictions, we assumed that the current spa-
tial patterning would hold into the future. We believe this
assumption is reasonable, because of the long-lived, ses-
sile nature of our focal species (trees) and our projection
window of less than 100 years. While it is debatable
whether these exact z values will hold into the future,
this approach has the advantage of retaining the spatial
patterning of over- and underprediction present in the
current data set. Another possible approach is simulating
random errors from the fitted CAR model. Simulating
random errors from the CAR model has the advantage of
acknowledging autocorrelation in predictions but
would “shuffle” areas of over- and underprediction. This
“shuffle” has a greater potential to result in an unrealistic
error patterning under future scenarios than our chosen
method.

Multiple sources of uncertainty are inherently tied to
any predictions of a species’ current or future habitat. In
this study, the characterization of both covariate and pre-
diction uncertainty was made possible by our MCMC
model-fitting approach. This included the ability to
develop credible intervals for parameters, visualize uncer-
tainty of response curves, and map both current and
future prediction uncertainty. We were also able to
obtain samples from the posterior distribution of any sta-
tistic subsequently calculated on our MCMC samples
from the model’s posterior distribution, which enabled us
to obtain credible intervals for that statistic, perform sig-
nificance tests, and provide uncertainty estimates of
change under a future climate scenario. Many of these
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methods for characterizing model and estimate uncer-
tainty are not possible with traditional species distribu-
tion modeling methods and are a unique advantage of
hierarchical models fit with MCMC methods.

One of the goals of this project was to provide a
detailed assessment of potential climate change impacts
on these five species for planning and management
efforts and to demonstrate how uncertainty can be char-
acterized in climate change studies. When projections of
future habitat are of interest, the choice of emission path-
way, AOGCM, and time period will all impact habitat
projections. Because there is inherent uncertainty in fore-
casts of future climate, we presented the results for two
emission pathways each interpreted by two AOGCMs for
the 2080s.

Model interpretation and species–climate
relationship

We interpreted model predictions as the probability of
climatically suitable habitat rather than the species
occurrence, a distinction that has been discussed else-
where in the literature (e.g., Elith & Leathwick, 2009;
Rehfeldt et al., 2014a). Although a location may be
predicted to become suitable for a species, it is possible
that the species will not be able to occupy those locations
because of biotic or abiotic factors not considered in this
analysis (e.g., dispersal rates, disturbance, competition).
Similarly, unaccounted-for factors may also influence
mortality in locations projected to become unsuitable and
widespread mortality of species will likely lag behind
changes in habitat suitability as trees are long-lived and
sessile. Furthermore, in locations where climatically suit-
able habitat is projected to persist, a species may not be
able to occupy those locations, because of differences in
adaptational lags between local populations (Rehfeldt
et al., 2014a).

The species’ response curves estimated by our models
mostly matched the convex unimodal shape we expected
(as reviewed in the Introduction). For some covariates in
the blue oak and white oak models, nonsignificant qua-
dratic terms resulted in response curves that were not
consistently convex unimodal. However, these response
curves still agreed with theory when examined within the
climate conditions in which the species was observed.
The results for blue oak and white oak emphasize the
need for careful model interpretation. For these species,
unaccounted-for factors may have influenced the
species–climate relationships captured by the modeling
data sets. Our data sets lacked observations for these spe-
cies in conditions with low (less than 10%) canopy cover
or stocking, locations hosting the hottest and driest

conditions in which these species grow. Additionally, the
influence of competition and historical management prac-
tices on the current distributions of blue oak and white
oak (Gould et al., 2011; McDonald, 1990; Stein, 1990) is
also likely reflected in the estimated shape of response
curves and, consequently, optimal climate conditions.

For most covariates, the mode of optimal conditions
was within the observed range of conditions for each spe-
cies. There were a few exceptions related to quarterly pre-
cipitation covariates (i.e., ppt-wetQ, ppt-warmQ), for
which the mode was estimated as nearly double the
observed maximum for the species: ppt-warmQ in the
noble fir and coastal Douglas-fir models, and ppt-wetQ in
the blue oak and white oak models. The climate of the
PNW is characterized by a dry period from late spring to
mid-autumn, which aligns with the growing season
(Franklin & Dyrness, 1973). Because plant moisture stress
is high during warm months (Waring & Franklin, 1979), it
is not unexpected that the models for noble fir and coastal
Douglas-fir would identify wetter ppt-warmQ (precipita-
tion during the warmest quarter) conditions as ideal even
though such conditions may not be realizable (Franklin,
1990; Hermann & Lavender, 1990). Similarly for blue oak
and white oak, the wetter ppt-wetQ (precipitation during
the wettest quarter) conditions identified as ideal by the
models may represent sites at which these species are
outcompeted. Although the high drought tolerance of
these oaks allows them to occupy exposed or droughty
sites, they are often outcompeted by conifers (and, for blue
oak, other oak species) at more favorable sites, such as
moist sites with fertile soils (McDonald, 1990; Stein, 1990).

Impact of climate change on suitable
habitat

The results of this study affirm that important tree spe-
cies of the PNW will be impacted by projected changes in
climate by the end of this century. We found that the
location of climatically suitable habitat would shift by the
2080s for all species considered in this study. The percent
of current habitat projected to become unsuitable varied
by species, with some species and climate projections
indicating that future range expansion would not offset
contraction.

Some broad trends were consistent for species across
future climate scenarios. By the 2080s, there was a gen-
eral upward elevational or northward latitudinal move-
ment of suitable habitat for all species. Such elevational
or latitudinal shifts are a common finding in climate
change studies of tree species distributions (Iverson et al.,
2008; McKenney et al., 2007). For most species in our
analysis, projected shifts in suitable habitat were the
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result of both range expansion and contraction. Although
the amount of range contraction varied between species
and future scenarios, all species were projected to experience
some loss of habitat from their current range. Mortality
rates in the areas becoming climatically unsuitable
(i.e., contraction) will generally outpace immigration rates
in areas becoming suitable (i.e., expansion), even when the
total amount of suitable habitat remains constant (Rehfeldt
et al., 2014a). Consequently, near-term realizations of this
shift in climatically suitable habitat may appear as a loss of
habitat and a decrease in range size.

Climate change impacts were projected to be the most
damaging for noble fir. Noble fir was the only species that
was not projected to gain newly suitable habitat under a
future climate scenario. By the 2080s, suitable habitat for
this species was projected to reduce by at least 78.9%
under all four climate scenarios. These findings agree
with other studies that have identified noble fir as highly
vulnerable to climate change (Case & Lawler, 2016;
Crookston et al., 2010; Devine et al., 2012; McKenney
et al., 2007). Although suitable habitat for noble fir may
exist in the 2080s within microrefugia or at higher eleva-
tions not captured by our data set, it is uncertain how
quickly high-elevation tree species will be able to colo-
nize alpine environments (Bell et al., 2014). Therefore,
climate change poses a serious threat to noble fir, whose
current habitat already occurs in isolated patches or
along the western slope and crest of the Cascades.

For coastal Douglas-fir, losses in climatically suitable
habitat were primarily projected at lower elevations to
the south and west of the current range, with habitat
gains projected for the eastside of the Cascades. Although
we projected a significant decrease in range size under
three of the climate scenarios, these estimates are specific
to our study area and do not address impacts on the
Canadian portion of coastal Douglas-fir’s distribution,
where the species has been projected to expand (Mathys
et al., 2017; Rehfeldt et al., 2014a). However, within our
study area, our projections agree with other climate
change studies (Gray & Hamann, 2013; Mathys
et al., 2017; Rehfeldt et al., 2014a). Similar to Rehfeldt
et al. (2014a), the lower climatic suitability we projected
around Puget Sound is likely a reflection of the lack of
climate analogs in the current data set, rather than true
unsuitability of this environment for coastal Douglas-fir.
Nevertheless, we found that up to 18.4% of coastal
Douglas-fir’s current habitat within the PNW was
projected to become climatically unsuitable by the 2080s.

We projected that nearly a third of suitable habitat for
forest land blue oak in the 2080s will exist where blue
oak is not currently present, with much of this new habi-
tat to the north where conifer species are dominant.
These findings agree with other climate change

assessments of blue oak (Brown et al., 2018; Kueppers
et al., 2005; Serra-Diaz et al., 2014), including decreases
in habitat suitability that will primarily occur in locations
to the south of blue oak’s range surrounding the Great
Central Valley. These areas with projected lower suitabil-
ity agree with estimates by Brown et al. (2018) of 2015
dieback from the 2012 to 2015 California drought, which
is notable as our data set predates this drought event. In
California, where blue oak is endemic, the risk of drought
is expected to increase as warmer temperatures lead to
greater evaporative demand (Cook et al., 2015), even in
some areas where increased cold season precipitation is
expected (Neelin et al., 2013).

Second only to noble fir, white oak was projected to
undergo substantial decrease in climatically suitable hab-
itat from climate change. Although not unexpected, our
current predictions of climatically suitable habitat were
somewhat broader than the current observed presence of
this species, including higher suitability throughout the
Columbia Basin. This is likely the result of factors associ-
ated with the contemporary decline of white oak, such as
changes in land use and fire exclusion on wetter sites,
which can promote conifer invasion (Hahm et al., 2018).
However, white oak tends to have greater drought toler-
ance relative to its competitors (Hahm et al., 2018).
Pellatt et al. (2012) also predicted broader current suit-
ability for white oak when predictions were developed
for the northern portion of this species range. Like Pellatt
et al. (2012), we projected that the probability of climati-
cally suitable habitat would increase by the 2080s to the
east of the Cascades. However, unlike Pellatt et al.
(2012), we did not see the same increase in white oak
habitat for southwestern Oregon that they projected for
the 2080s. This could be the result of differences in our
data sets (i.e., our inclusion of white oak observations from
the southern portion of the species’ range). Although some
areas were projected to become climatically suitable under
all scenarios, approximately 58,700–161,700 km2 of forest
land white oak’s current range was projected to become
unsuitable.

Unlike the other four species, we projected that the
amount of climatically suitable habitat for black oak
would significantly increase by the 2080s under all but
the most severe future climate scenario. Similarly,
Lenihan et al. (2008) projected an expansion of hard-
woods, including black oak, in California’s mixed ever-
green forests by the 2080s. Despite these habitat gains,
we projected that approximately 1600–23,300 km2 of
black oak’s current range would become unsuitable.
Because black oak is a poor competitor on moist sites and
becomes increasingly shade intolerant with age, mature
black oaks tend to dominate harsh, dry soil sites that are
vulnerable to moisture stress (appendix 8 of Devine
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et al., 2012, Long et al., 2016). Recent trends (1991–2016)
from California and Oregon found a slight decline in the
basal area (cross-sectional area) of large black oak trees
to be mainly associated with fire-related mortality
(Long et al., 2018). In addition to competition, other
threats, such as Phytophthora ramorum (the sudden oak
death pathogen) in the more cool and humid northwest-
ern extent of black oak’s contemporary range, will
temper what sites black oak can occupy in the future
(Long et al., 2016). Given the elevated cultural and eco-
logical importance of mature, large black oak trees
(Long et al., 2017), the impact of climate change on this
species may be considerable.

CONCLUSION

Rapid changes in climate are projected to shift the loca-
tion of climatically suitable habitat for important tree
species in the PNW by the 2080s. Northward latitudinal
or upward elevational shifts in suitable habitat were
projected for all species. However, the most damaging
impacts were projected for the high-elevation species
examined in this study, noble fir, with a near-total loss
of climatically suitable habitat under most scenarios.
Overall reductions in suitable habitat were also
projected for the portion of coastal Douglas-fir and
Oregon white oak’s ranges within the contiguous
United States. Although gains in climatically suitable
habitat were projected to meet or exceed losses for blue
oak and black oak, other threats to these species exist.
As global and local climates continue to change, suc-
cessful management of natural resources like forests
will continue to depend on an iteratively updated
understanding of the potential impacts of new climate
projections on species distributions. In addition to
obtaining predictions, the spatial Bayesian hierarchical
models fit in this study allowed for uncertainty sur-
rounding current and future predictions and estimates
of change to be characterized. These findings provide a
detailed assessment of the relative pressures these spe-
cies will face in tracking climatically suitable habitat
within this century.
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