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25 Abstract

26 Abundance indices (AIs) provide information on population abundance and trends over time, while AI 

27 variance (AIV) provides information on reliability or quality of the AI. AIV is an important output from 

28 surveys and is commonly used in formal assessments of survey quality, in survey comparison studies, 

29 and in stock assessments. However, uncertainty in AIV estimates is poorly understood and studies on 

30 the precision and bias in survey AIV estimates are lacking. Typically, AIV estimates are “design-based” 

31 and are derived from sampling theory under some aspect of randomized samples. Inference on 

32 population density in these cases can be confounded by unaccounted for process errors such as those 

33 due to variable sampling efficiency (q). Here, we simulated fish distribution and surveys to assess the 

34 effect of q and variance in q on design-based estimates of AIV. Simulation results show that the bias and 

35 precision of AIV depends on the mean q and variance in q. We conclude that to fully evaluate the 

36 reliability of AI, both observation error and variability in q must be accounted for when estimating AIV. A 

37 decrease in mean q and an increase in the variance in q results in increased bias and decreased precision 

38 in survey AIV estimates. These effects are likely small in surveys with mean q ≥ 1. However, for surveys 

39 where q ≤ 0.5, these effects can be large. Regardless of the survey type, AIV estimates can be improved 

40 with knowledge of q and variance in q.

41 Keywords:

42 additional variance, catchability, design-based estimate, fisheries-independent survey, gear efficiency, 

43 variance of variance. 
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66 Introduction

67 One of the main goals of scientific fishery-independent surveys (hereafter referred to as surveys) is to 

68 estimate either the absolute or relative index of abundance to provide information about status and 

69 trends of fish populations (Hilborn and Walters, 1992; Gunderson, 1993). Surveys belong to a group of 

70 methods that are based on the assumption that repeating the same sampling effort over time will lead 

71 to the observation of the same proportion of the population (Cochran, 1997; Schwarz and Seber, 1999). 

72 Surveys are also important because they provide indicators for establishing the ecological health of 

73 ecosystems (Nicholson and Jennings, 2004). Survey-derived abundance indices (AIs) and their variances 

74 (AIVs) are used in a wide variety of studies such as population dynamics (e.g. Sibly et al., 2005), 

75 ecological processes (Aydin and Mueter, 2007; Laman et al., 2015), experimental design (e.g. Overholtz 

76 et al., 2006), stock assessments (e.g. Ianelli et al., 2015), and ecological forecasting (e.g. Perry et al., 

77 2005). The main role of the AIVs is to provide information about the reliability of AIs. For example, AIV 

78 have been used to compare sampling designs (e.g. Pennington and Volstad, 1991; Overholtz et al., 2006) 

79 to evaluate survey design (e.g. Cao et al., 2014), to compare different survey tools (Lingen et al., 1998; 

80 Doyle et. al., 2008), to assess improvement in survey methods (e.g. Smith and Gavaris, 1993, Smith and 
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81 Lundy, 2006; von Szalay et al., 2007), to weight different observations and data sources in integrated 

82 analysis and fishery stock assessments (e.g. Conn, 2010, Francis, 2011), or to achieve optimal effort 

83 allocation in stratified trawl surveys (e.g. Harbitz et al., 1998). However, the reliability (i.e. degree of 

84 both accuracy and precision) of AIV estimates have not been formally assessed. Similarly to AI, the AIV is 

85 just an estimate from the sample, and is itself a random variable. Reliability of the AIV estimate thus 

86 depends on the bias and precision of the AIV estimate.  However, to date, studies on the reliability of 

87 AIV in fishery surveys are generally lacking, except for a few studies on the accuracy of confidence 

88 intervals (CIs) of AIs (e.g. Cadigan, 2011; Schnute and Haigh, 2003; Hoyle and Cameron, 2003) which 

89 indicated that inaccuracy in CI estimations are usually associated with small sample sizes or heavily 

90 skewed survey catch data. Additionally, Cadigan (2011) showed that CI accuracy can depend on 

91 estimation method and choice of catch model used.

92 The most common approach to obtain estimates of AI and AIV from fishery-independent surveys is by 

93 using design-based methods (e.g. Smith, 1990; Folmer and Pennington, 2000; Petitgas, 2001). Survey 

94 sampling designs range from simple to complex (e.g. Cochran, 1977; Lumley, 2004), and can have 

95 correspondingly simple and complex formulas for estimating AI and AIV (e.g. Strand, 2017). A common 

96 attribute of design-based estimators is the assumption that sampling efficiency (q, often also referred to 

97 as survey gear catchability) is constant across time and space (Chen et al., 2004). Sampling efficiency is 

98 defined here as the ratio of the survey estimate of abundance to the true abundance (e.g. Godø, 1994, 

99 Chen et al., 2004) at each sampling location. The assumption of constant q has been shown to be 

100 violated in numerous studies using survey gears (e.g. Aglen et al., 1999; Somerton et al., 2007; Kotwicki 

101 et al., 2005), which is known to cause variance estimates derived from samples alone to represent only a 

102 part of the total variance of the estimate of abundance (e.g. Maunder and Punt, 2004; Hjelvik et al., 

103 2002; Cadigan, 2011). However, despite this knowledge, the effect of a violation of the assumption of 

104 constant q on the design-based AIV estimates is poorly understood and often ignored across numerous 

105 studies and in fishery management applications. 

106 Taking into consideration the wide use of the AIV estimates in fisheries science and management, it is 

107 important to understand the implications of using unreliable AIV estimates and factors affecting 

108 uncertainty in AIV estimates. Therefore, the main goal of this study was to evaluate the effect of varying 

109 q on precision and bias of design-based survey estimates of AIV because, in addition to the well-known 

110 effects of sample size and spatial distribution on AIV estimates, the q value likely influences the 

111 uncertainty in AIV estimates (e.g. Pennington and Godø, 1995; Maunder and Punt, 2004). Variation in q 
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112 has been observed to have a random component (e.g. Munro and Somerton, 2001; 2002), be depth-

113 dependent (Benoít and Swain, 2003), environmentally driven (Somerton et al., 2013), or density-

114 dependent (Kotwicki et al., 2014). The issue of environmentally driven q has been dealt with in the past 

115 using AI standardization methods (Maunder and Punt, 2004). On the other hand, the effects of random 

116 variation in q on AIV estimates have not been studied to date and studies of the effects of density-

117 dependent q are very limited (e.g. Kotwicki et al., 2014). Density-dependent q deserves special 

118 consideration because it can result in hyperstability of AI (i.e. AI detects changes in the population 

119 abundance that are smaller than actual changes in the population abundance; Hilborn and Walters, 

120 1992), which in turn can result in underestimated AIV (Kotwicki et al., 2014) and give a false perception 

121 of high reliability of the hyperstable index of abundance. 

122 In the first part of this study, we attempt to answer the following questions: i. Does the variance in q 

123 propagate to the observed design-based AIV estimates from surveys?, ii. What is the expected relative 

124 bias in design-based AIV estimates due to variation in q?, iii. What is the impact of variation in q on 

125 precision in design-based AIV estimates?, and iv. What is the effect of density-dependent q on bias and 

126 precision of design-based AIV estimates? To provide answers to these questions, we simulated realistic 

127 spatial distributions of walleye pollock (Gadus chalcogrammus, Gadidae; hereafter referred to as 

128 pollock) observed in the eastern Bering Sea (EBS) during bottom surveys. Given a spatial map of 

129 simulated pollock densities (assumed as the “true” species distribution ‒ the quotes are used here and 

130 thereafter because our inference is based on simulated data assumed to be “true”), we sampled this 

131 map to mimic surveys. We used this framework to vary the mean q and the amount of process error 

132 around q at each station and examined how this influenced the bias and precision of AI and AIV 

133 estimates.

134 In the second part of this study, we provide a review of the implications of our findings on the use of AIV 

135 estimates in fisheries science and management. Our study shows a possible strategy to estimate the 

136 accuracy and precision of AIV in presence of variable q and potential effects of variability in q on AIV 

137 estimates. This knowledge should help survey and stock assessment scientists and other fisheries 

138 researchers to make better informed decisions in applications of AIV estimates in fisheries science and 

139 management. 

140 Methods

141 Bottom trawl survey data
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142 The Alaska Fisheries Science Center has been conducting annual surveys in the eastern Bering Sea 

143 between June and July since 1982 over a fixed set of approximately 376 stations (using stratified 

144 systematic survey design) and has used the same standard trawl (83–112 eastern otter trawl) during all 

145 years. Surveys start in the south-eastern corner of the survey area and proceeded westward. Tow 

146 duration is approximately 30 min at 1.54 m·s−1 (3 knots) (see Stauffer [2004] for detail about survey 

147 protocol). The catch per unit effort (CPUE) is estimated using the area-swept method (e.g. Alverson and 

148 Pereyra, 1969) which determines the area-swept by multiplying the distance fished, as indicated by 

149 bottom contact sensor (Somerton and Weinberg, 2001), by the average distance between wing tips 

150 measured using acoustic spread sensors (see Weinberg and Kotwicki, 2008 for details).

151 General outline of the simulation approach

152 To examine the effect of variable sampling efficiency on the design-based estimates of AIV and AI, we 

153 first generated a map of simulated pollock distribution. This map was created by fitting spatio-temporal 

154 models to real EBS pollock data from 2005 to 2014 then drawing values from the distribution of 

155 predicted values. Once the simulated map was created, we then mimicked survey sampling procedure 

156 to generate simulated survey data and to finally estimate AI and AIV. 

157 Simulating pollock distributions

158 Step 1: fitting a spatio-temporal model to the EBS pollock data

159 A spatio-temporal model that accounts for both environmental covariates and spatio-temporal 

160 dependency in catch was fit to the EBS pollock data from 2005 to 2014. The model followed the 

161 approach of Ward et al. (2015) or Ono et al. (2016) in which the analysis combined two models: one that 

162 tracked pollock occurrence and the other which tracked the density (in CPUE units) for tows where 

163 pollock were observed (see Supplementary Material). Fishing depth, surface, and bottom temperature, 

164 as well as sediment size, were included as covariates. Sediment size was estimated and interpolated at 

165 each station from historical data from grabs and dredges (Smith and McConnaughey, 1999). Sediment 

166 data were expressed in units of “phi” (negative log2 of the diameter in mm), where higher values 

167 correspond to smaller particle sizes (Wentworth, 1922). All covariates were modeled up to their 

168 quadratic terms in their original scale except for the depth variable that was log transformed first (in 

169 order to model a right skewed effect on the response variable). This choice was based on plots of raw 

170 CPUE data against each covariate (Zuur et al., 2010). Spatial and temporal dependency were also 

171 included through the use of Mátern covariance function and a first-order autoregressive process (AR1), 
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172 respectively. Pollock occurrence was modeled using a binomial distribution with logit link and pollock 

173 CPUE was modeled using a Gaussian distribution with log link. All models were implemented using the R 

174 package R-INLA (Lindgren et al., 2011; Lindgren and Rue, 2015; Martins et al., 2013) 

175 Step 2: Generating map of simulated pollock distribution

176 Annual maps of pollock distribution within the survey region were generated by calculating the 

177 predicted pollock density (product of predicted pollock occurrence and CPUE conditional on presence) 

178 on a nominal 1 km-grid (Fig. 1). These predictions were based on a single but random Markov chain 

179 Monte Carlo (MCMC) draw from the joint posterior distribution of the parameters (instead of the 

180 parameters’ mean value) in order to account for uncertainty in parameter estimates and to create a 

181 patchier species distribution that is more reflective of “true” distribution as compared to the mean 

182 MCMC prediction. All environmental covariate values at the grid locations were kriged (ordinary kriging) 

183 based on semi-variogram model that best fitted the observed data for mapping purposes (see 

184 Supplementary Material). This was done through the function autofitVariogram in the R package 

185 automap (Hiemstra et al., 2009). All data were first converted into an Albers projection in order to 

186 preserve distances. 

187 Survey simulations

188 One thousand surveys were simulated over modeled pollock distributions (we refer to it as the “true” 

189 distribution for the rest of the study) for each combination of year (n=10), average sampling efficiency (�
190 ; n=12), and variance in sampling efficiency  (n=9; Table 1). This resulted in 1080 combinations �(�)
191 which meant 1,080,000 simulated data sets of annual survey. We considered values of  to address � > 1

192 possibility of fish herding into the path of the trawl by the trawl doors or bridles (Somerton et al., 2007). 

193 To eliminate the effect of sample size on comparisons of AIV and AI estimates across varying values of q, 

194 each simulated survey data set consisted of a constant 376 sampled survey stations assuming simple 

195 random (SR) station allocation. The assumption of SR allocation was chosen to simplify interpretation of 

196 results even though the pollock data that were used for the simulation comes from a stratified survey. In 

197 survey simulations, we followed the often-postulated survey catch process that , where  is ��,� = ��,��� ��,�
198 the catch per unit effort at station i, during survey s and  is the “true” fish density at the station i (e.g. ��
199 Schnute, 1994; Chen et al., 2004). For each simulated annual survey,  was calculated using the  ��,� ��
200 value from the simulated pollock distribution and randomly drawing  from a gamma distribution with ��,�
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201 mean  and variance V(q).  The index of abundance for each annual survey was then estimated by �
202 obtaining the mean CPUE ( ) from all 376 survey stations.��
203 Additionally, 1000 surveys were simulated for 5 values of density-dependent efficiency parameter (a) for 

204 all combinations of year and random  (Table 1), but assuming a ,  resulting in an additional �(�) � = 1

205 450,000 annual survey simulations. Density-dependent sampling efficiency was modelled using the 

206 formula from Kotwicki et al. (2013):

207 ,��,� = (
1��,��� + 

1�) ―1

208 where   is the true density at location i and qi is the sampling efficiency drawn from a gamma ��
209 distribution with mean  and variance V(q). The parameter a represents density dependence of q. When �
210 fish densities are much lower than a, the term 1/a becomes negligible. With increased fish density, a 

211 becomes more influential, resulting in reduced sampling efficiency. For example, at fish density equal to 

212 the value of a, sampling efficiency will be approximately half of the efficiency at the lowest densities 

213 (Kotwicki at al., 2013).

214 Sample variance was estimated for each simulated annual survey using the following formula:

215 ,�2� =
∑�(��,� ―  ��)2�

216 where  is the sample standard deviation of survey s, n in the number of samples in the survey (i.e. ��
217 376),  is the CPUE of the ith sample from survey s, and  is the mean over the 376 survey sample.��,� ��
218 As discussed in the Introduction, sample variance may not be an adequate approximation of the true 

219 variance of AI because of the effect of variable q. True variance of AI from real surveys is impossible to 

220 obtain because it would require conducting multiple surveys over the same population of fish. However, 

221 in the simulation framework, we were able to conduct multiple surveys over the same distribution to 

222 obtain “true” variance estimates under different scenarios.  We defined “true” variance around the 

223 annual index of abundance (given a scenario) as:

224 ,�2� =
∑�( �� ―   ��)
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225 where is a “true” standard deviation of the survey index of abundance, N is the number of simulated �� 

226 surveys (i.e. 1000), and  is the “true” mean fish density estimated from simulated density maps, ��
227 assuming constant  q=1.  is the same for all survey simulations within the same year.��
228 Impact of variable sampling efficiency on abundance indices

229 The effect of variation in survey sampling efficiency on the estimate of AI ( ) was shown by producing ��
230 box-and-whisker plots of AI relative errors (i.e. (  - )/  ) based on the 1000 survey simulations for �� ��  ��
231 each value of simulated  and  presented in multi-panel plots. Box-and-whisker plots were also � �(�)

232 applied to illustrate the effects of  on survey coefficient of variation (CV) derived from the formula �(�)

233 / .  Other variables presented on box-and-whisker multi-panel plots included relative errors in  �2� �� ��
234 estimates (i.e. , where and is the mean over the 1000 simulated survey ), and CVs of (�� ― ��)/�� �� ��
235  (i.e. standard deviation( ) / mean( ). Finally, Box-and-whisker plots arranged in multi-panel plots �� �� ��
236 were used to illustrate the relationship between survey AI and density-dependent efficiency and 

237 between survey CVs and density-dependent efficiency.

238 Results

239 Results indicate that random variability in q can bias an AIV estimate and reduce its precision. The 

240 degree of this effect depends on both the mean and variance of q. We present the result from one 

241 representative year because the results were similar across years. Results are presented for each year 

242 separately in the Supplementary Materials.

243 Random variation in sampling efficiency

244 The relationship between AI relative errors,  , and  indicates that distribution of  may be highly � �(�)  ��
245 skewed to low values indicating that  will likely to be biased low (i.e. unbiased mean, but biased ��
246 median) in the presence of low but variable  (Fig. 2). For example, for  = 0.05 and  = 0.2 the � � �(�)
247 median relative error was equal to -0.5. This bias increased with the decrease of  and increase in . � �(�)
248 However, for  > 0.4, median relative errors were close to 0 indicating unbiased estimates of AI. �
249 The relationship between survey CV (i.e. / ),  and  shows that survey CV depends on �2� �� � �(�)
250 underlying spatial fish distribution and both  and . In Figure 3, for example, in case of a near � �(�)
251 constant q (top left), the survey CV of 0.2 can be attributed to the spatial distribution of the fish. In other 

252 panels in Figure 3, it is apparent that survey CV increases with a decrease of  and increase of . This � �(�)
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253 result indicates that design-based estimates of  capture some variability in the  (i.e.  is not �� � ��
254 independent of ). Survey CVs were high (> 0.3) for surveys which had low but highly variable .�(�)  �
255 The relationship between relative error in  (i.e.  ), , and  shows that estimates of  �� (�� ― ��)/�� � �(�) ��
256 are biased low in surveys where  is low and  is high (Fig. 4). This result indicates that although � �(�)
257 estimates of  capture some variability in  as it was shown on Figure 3, the “true” variance of the AI is �� �
258 still underestimated by , especially in surveys where  is low and  is high. For example, design-�� � �(�)
259 based estimates of from surveys with  = 0.1 and  = 0.2 were underestimated by approximately �� � �(�)
260 40%, but when  > 0.6, median bias in was close to zero.� ��
261 The relationship between CV of ,  and  shows that the precision of  estimates increases with �� � �(�) ��
262 an increase of and decrease of (Fig. 5). Moreover, results also show that there are 2 components � �(�)
263 of  variation. The first component is inherently associated with the “true” fish distribution ��
264 (represented by blue line on Fig. 5) and second component is associated with  and The first � �(�). 

265 component varied between 0.1 and 0.2 between years (see supplementary materials). The influence of 

266 variable  on the estimate of  was stronger than on the relative error in  indicating that survey � �� ��
267 estimates of are more sensitive to the variation in  than the  estimates (Fig. 2 vs. 3). For example, �� � ��
268 for surveys with  and , CV of  was double of what it would’ve been under constant  � = 0.5 �(�) = 0.4 �� �
269 , but  was close to unbiased.��
270 Density-dependent sampling efficiency

271 The relationship between  , CV, density-dependent effects, and when , shows a strong �� �(�) � = 1

272 negative bias in the survey AI (Fig. 6) and survey CV (Fig. 7). Density-dependent effects result in similar 

273 bias across all values of . The effect of was limited to increased uncertainty in the CV �(�) �(�) 

274 estimates and was much smaller that the density-dependent effects.

275 Discussion

276 General conclusions from the simulation study

277 The findings of our study indicate that information about sampling efficiency is necessary to assess the 

278 reliability of AIV and AI from fishery surveys because variation in q can affect both of these estimates. 

279 Although the results of lower precision in AI in response to the V(q) seem evident (Fig. 2), the results of 

280 effect of the V(q) on AIV are not. To the contrary, despite a clear evidence that the variability in q is a 
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281 common feature of majority of surveys (e.g. Aglen et al, 1999; Somerton et al., 2007; Kotwicki et al., 

282 2005) the effects of V(q) on AIV estimates are very poorly understood.  This situation leads, as discussed 

283 in the Introduction, to wide usage of AIV estimates in fisheries science and management with or without 

284 limited consideration for their bias and precision. Our results provide answers to the 4 questions posed 

285 in the Introduction. First, it is apparent that the V(q) only partially propagates to the observed AIV (i.e. 

286 ) estimates from surveys (Figs. 3 and 4) indicating that, in the presence of variable q, it is impossible ��2

287 to obtain unbiased AIV estimate from samples alone. Second, expected relative bias in  estimates ��2

288 due to V(q) can be approximately estimated, as presented here, using knowledge of the V(q) and 

289 simulated fish density distributions (Fig. 4). Third, the precision in AIV estimates depends on both 

290 underlying species’ spatial distribution and V(q) (Figure S7, Fig. 5), and unfortunately, it cannot be 

291 estimated from the observations; however, it can be approximated using simulations. Fourth, density-

292 dependent q has a strong effect on bias and precision of both AIV and AI, and it needs to be corrected 

293 for to obtain reliable estimates of AIV and AI. The correction for density-dependent q can be derived 

294 from auxiliary information about q (e.g. using different types of surveys conducted simultaneously; 

295 Kotwicki et al., 2014) 

296 Our findings also show that when the assumption of a constant q is met, design-based estimates of AIV 

297 and AI are unbiased regardless of the value of . However, after reviewing many studies of  (e.g. � �
298 Somerton et al., 2013; Fraser et al., 2007; Kotwicki and Weinberg, 2005; Kotwicki et al., 2005; Munro 

299 and Somerton, 2001), and many others cited within this manuscript), we conclude that in reality this 

300 condition is likely never met and   is always > 0, which leads to potential bias in design-based �(�)
301 estimates of AIV and AI. The degree of these problems depends on the and its variability.  It appears � 

302 that for surveys with , variation in q has only a small effect on the bias and precision of design-� ≥ 1

303 based estimates. However, for surveys with low q ( ), this effect can be substantial and could � < 0.5

304 result in imprecise and biased design-based estimates of AIV and AI.  Additionally, our results also 

305 indicate that for small  , V(q) can cause the error distribution in AI to be skewed low (Fig. 2). Because �
306 indices of abundance are usually used as time series, this may lead to negative bias in predictions of the 

307 majority of the estimates within time series.

308 Implications for using AIV estimates in fisheries science and management

309 Prevalence of random variation in q.
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310 To assess the potential impact of  and V(q) on results from specific surveys, it is necessary to know �
311 their values. Although estimating these values is believed to be very complex and difficult (e.g. 

312 Somerton et al., 2007), numerous studies have done so.  Values of  have been shown to vary widely �
313 among different survey gear types and species. For example, Fraser et al. (2007) and Kotwicki et al. 

314 (2005) estimated  for a large number of demersal species at different length categories, which ranged �
315 from 0.01 to close to 1. Low values of  are often observed for certain sizes of animals for which survey �
316 gear has poor selectivity. For example, bottom trawls have been found to have low values of  for small �
317 sizes of demersal fauna in the Arctic, while beam trawls have low  for larger animals as indicated by �
318 selectivity ratio (Kotwicki et al. 2017).  Estimates of  > 1 imply that the survey catches considerably �
319 more fish than would be predicted to be in the path of the tow. For example:  catchability > 1 was 

320 estimated for haddock in the North Sea and Ling in New Zealand  (Harley and Myers 2001) and for 

321 species of flatfish from Alaska (Somerton et al., 2007). These high catchability values can be explained by 

322 fish being herded into the path of the trawl from the area beyond the net’s wing tips (Dickson, 1993). 

323 Another example when  > 1 is seen with fish density estimates from combined acoustic and bottom �
324 trawl surveys (Kotwicki et al., 2018), where part of the water column is enumerated by acoustic gear and 

325 the other part by bottom trawl. It was shown that the combined estimate from these two techniques 

326 can have q > 1 due to the existence of an overlap zone sampled by both techniques. On the other hand, 

327 midwater trawl surveys for krill have been shown to have a very small q between 0.003 and 0.06 

328 (Kasatkina, 1991).   

329 Although existing literature rarely reports on the value of V(q), data presented in these studies show 

330 that V(q) can also vary widely between survey gears and species. Some authors report standard 

331 deviations of the  estimates. For example, Somerton et al. (2007) reported mean flatfish herding �
332 efficiency to be about 0.2 with a standard deviation of the mean ranging between 0.04 and 0.16. 

333 Assuming a sample size of 50, this would correspond to a V(q) in the range of 0.01 to 1.3. Kotwicki et al. 

334 (2015) estimated q for pollock acoustic and bottom trawl surveys. For bottom trawl,   = 0.9 with V(q) = �
335 0.2 and for acoustic survey,  = 0.3 with V(q) = 0.4. Variances for midwater trawl q for krill, estimated �
336 from the standard deviations of the  (ranging from 0.01 – 0.30) assuming sample size of 50, would �
337 correspond to a V(q) ranging from 0.005 to 4.5 (Kasatkina, 1991). Mackinson et al. (2005) estimated   of �
338 the dredge used in the sandeel surveys to be in the range of 0.02 – 0.1 with V(q) ranging from 0.004 to 

339 0.21. Because of small values of  in combination with relatively large V(q) in their experiment, we �
340 conclude that design-based variance estimates for the sandeel dredge survey are likely to be grossly 
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341 underestimated (Fig. 5). Given the importance of  V(q) on AIV and AI estimates, we advocate that future 

342 studies of survey gear efficiency should report V(q) alongside the .�
343 Prevalence of density-dependent q

344 In the case of density-dependent q, estimates of AIV and AI may be significantly biased (Fig. 6) and they 

345 may appear overly precise (Fig. 7). This is troublesome because density-dependent q has been observed 

346 in a number of fishery surveys. Godø et al. (1999) found that q for Atlantic cod (Gadus morhua) and 

347 haddock (Melanogrammus aeglefinus) increased with fish density, while others found q decreased with 

348 fish density for capelin (Mallotus villosus; O’Driscoll et al., 2002), Atlantic croakers (Micropogonias 

349 undulatus), white perch (Morone americana; Hoffman et al., 2009), walleye pollock (Gadus 

350 chalcogrammus; Kotwicki et al., 2014), and Atlantic cod (Ono et al., 2018). Kotwicki et al. (2014) showed 

351 that density-dependent  can lead to a hyperstable index of abundance, which in turn can cause bias in �
352 stock assessment outcomes. Stock assessments based on a hyperstable index may fail to track 

353 population changes, which could potentially lead to overfishing (e.g. Hutchings, 1996; Walters and 

354 Maguire, 1996; Erisman et al., 2011). Moreover, the AIV of a hyperstable and density-dependent AI is 

355 likely to be underestimated (Kotwicki et al., 2014) leading to overweighting the influence of this index 

356 relative to other sources of information within the stock assessment model. Our results indicate that 

357 density-dependent q deserves special attention as it can lead to a large underestimation of AIV. Effects 

358 of density-dependent  are much larger compared to the effects of random variability in , and if they � �
359 exist, they need to be corrected for to avoid biases in stock assessments. The procedure to correct AI 

360 estimates for density-dependence has been proposed in Kotwicki et al. (2014), where they used near-

361 bottom acoustic backscatter to derive a correction function for bottom trawl survey density estimates. 

362 They also reported that the AIV corrected for density-dependence was on average 55% higher than the 

363 AIV of not corrected index supporting results presented in this study.  The causes of the density-

364 dependent q are poorly understood and warrant further investigation. However, limited observations by 

365 O’Driscol et al. (2002), Hoffman et al. (2009), and Kotwicki et al. (2014) indicate that q may be affected 

366 by gear avoidance behavior or trawl saturation. Gear saturation has been also known to affect the CPUE 

367 of gear such as pots or traps (Bacheler et al., 2013), longlines (Rodgveller et al., 2011), and gillnets (Li et 

368 al., 2011), indicating that density-dependent effects should be considered when obtaining AIs from 

369 surveys using these gears. The prevalence of density-dependent effects on q in fishery surveys 

370 worldwide is unknown, but given the results of existing studies, we conclude that it may be common 

371 and should be considered in future for all fishery surveys and stock assessments. 
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372 Sampling design considerations for AIV estimation

373 Survey sampling design requires a finite population of unique and identifiable sampling units (e.g. 

374 location swept by trawl gear) for which a number (or weight) of animals is observed and a sampling plan 

375 is used that assigns a known probability of selection to the sampling units (Smith, 1990). It is preferable 

376 that the sampling units are independent and identically distributed, but it is not required as sampling 

377 designs that account for spatial correlation in animal distributions also exist (Petitgas, 2001; Thorson et 

378 al., 2015). However, in reality, the conditions required to obtain unbiased and precise estimates of AIV 

379 (i.e. constant q) are rarely met and it is impossible to assess reliability of these estimates based on 

380 samples alone. This is because sample value depends on two random variables: true fish abundance and 

381 q. Without knowledge of q and V(q), it is impossible to reconcile the effect of these random variables on 

382 sample statistics.

383 Our results indicate that the reliability of AI derived from a fish survey cannot be assessed by the design-

384 based variance estimate alone; but it also needs to take into account variability in . This is not currently �
385 a common practice and analyses of data from fishery-independent surveys are usually confined to the 

386 estimation of AI and associated design-based AIV (e.g. Cochran, 1977; Smith, 1990; NPFMC, 2017). 

387 These estimates are commonly used in fishery stock assessment models, where AIs are used to predict 

388 population trends (e.g. Collie and Sissenwine, 1983; Gavaris, 1988), while AIVs are assumed to measure 

389 the quality of each AI relative to other AIs and are used as weights in the models (e.g. Ianelli et al., 

390 2014). Improvements to survey methodology or design-based methods to obtain abundance estimates 

391 are often judged exclusively by their ability to reduce design-based AIV estimates (e.g. Smith and 

392 Gavaris, 1993; von Szalay, 2003; Pennington et al., 2002). We consider these approaches risky because 

393 they ignore the possible effects of the q and V(q) on the reliability of the AIV estimates. 

394 The problem of underestimating AIV in presence of variable q has been previously acknowledged. For 

395 example, Pennington and Godø (1995) estimated that true AIV was approximately twice as large as the 

396 AIV estimate based on samples alone. A similar increase in AIV was shown when accounting for diurnal 

397 variation in the q for few species caught in the bottom trawl surveys in the Barents Sea (Hjellvik et al., 

398 2002). In fisheries stock assessment models, several approaches have been used to account for this 

399 unknown level of additional AIV. One frequently used method is to model AIV , where  is = �2� + �2��� �2�
400 design-based sampling variance and  is an additional variance, which arises from variable survey �2���
401 catchability (Punt and Butterworth, 2003; Maunder and Punt, 2004). Alternatively, AIV and AI can be 
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402 estimated using a statistical model-based approach by modelling catch process (e.g. Cadigan, 2011; 

403 Chen et al., 2004) or spatio-temporal modelling (e.g. Shelton et al., 2014; Thorson et al. 2015), which 

404 have become the standards used in certain parts of the world (e.g., the US West Coast). Both of these 

405 approaches have been shown to produce more precise estimates of population abundance and an 

406 improvement in variance estimation (Cadigan, 2011, Thorson et al., 2015). However, it remains 

407 unknown whether the variability in q affects these types of model-based estimates of AIV in a similar 

408 manner as the design-based approach because similar to design-based estimation, the majority of the 

409 model-based estimations use CPUE data exclusively and ignore existing knowledge about q.  

410 Implications

411 In this study, we showed that the bias and precision of AIV can be approximated through simulations 

412 when the  and variation in q are known.  Many studies have been performed to estimate q of a survey �
413 gear and predictions of  from these studies have been often useful (Somerton et al. 1999). However, �
414 the majority of them did not make use of estimates of V(q). In cases where the posterior distribution of 

415 q can be obtained, it can be used to propagate V(q) into estimates of AIV and AI (e.g. Kotwicki et al., 

416 2014). Such studies can be performed on existing data from past experiments used to predict . We �
417 advocate that such studies should be undertaken especially for species for which  is estimated to be �
418 low and V(q) is high as these are likely to affect AIV and AI the most.

419 In fisheries stock assessments, estimates of AIV are often used as a measure of precision of the survey 

420 abundance estimates (e.g. Ianelli et al., 2014), assuming that the AI accuracy (or bias) remains constant 

421 over time. Potential sources of bias in AIs can result from multiple processes affecting q such as gear 

422 type, fish behavior, and sampling methodology. When AI is biased but q is constant, survey AI estimates 

423 can still be useful as they track temporal trends in abundance (Pennington and Strømme, 1998). AIs can 

424 be particularly informative if they cover long periods of time (Rose et al., 2000). However, when q 

425 changes over time, it can cause additional variation in the observed abundance trends, which is not fully 

426 reflected in the AIV estimate derived from samples (Kotwicki et al., 2014). In such cases, AIV depends 

427 not only on the underlying population structure and distribution, but also on the variability in q, which 

428 must be accounted for to fully evaluate the reliability of an abundance estimate (e.g., Pennington and 

429 Godø, 1995; Punt and Butterworth, 2003; Maunder and Punt, 2004). 

430 Modern fisheries stock assessment models use multiple sources of information within the framework of 

431 integrated analysis (Fournier et al., 1998; Maunder and Punt, 2013). Data weighting is an important part 
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432 of integrated analysis (Breen et al., 2003; Hulson et al., 2008; Francis, 2011) because the outcomes and 

433 the uncertainty of outcomes drawn from the application of integrated models can be strongly 

434 influenced by the choice of weightings (Deriso et al., 2007). Weightings in stock assessment models are 

435 represented by variance estimates for the corresponding data; however, the estimation of these 

436 weightings can be challenging (Francis, 2011; Maunder and Punt, 2013). These challenges often arise 

437 from incorrect variance estimates or from model misspecifications (Maunder and Piner, 2015). The most 

438 common approach to weighting the AI from surveys is to use design-based AIV estimate (i.e. observation 

439 error) as a measure of the uncertainty (e.g. Method and Wetzel, 2013; Maunder and Piner, 2015). Our 

440 results indicate that in the presence of variable q, this approach may result in overweighting of the AI 

441 influence in stock assessment models. To compensate for this, it is best to estimate AIV by accounting 

442 for V(q) as shown in this study. However, it needs to be done with care as survey inputs such as indices 

443 of recruitment, population age structure, and spatial distribution can also depend on V(q). Therefore, 

444 including a corrected AIV estimate for AI alone can cause overweighting of other inputs, some for which 

445 variance estimates have not been corrected. It was noted previously that down-weighting AI from 

446 surveys because of concerns about catchability may have the undesired effect of down-weighting 

447 perhaps the most valuable data in a stock assessment model (the abundance trend) in lieu of overfitting 

448 compositional data (Francis, 2011). 

449 The information on population abundance and trends in abundance over time provided by AI is also 

450 important for studies other than stock assessments. In these studies, AI is used usually as a relative or 

451 absolute measure of population size and AIV is typically used in the form of CV to assess quality of the AI 

452 estimate. For example: Overholtz et al., (2006) used AI CVs to compare sampling designs between 3 

453 acoustic surveys. Von Szalay et al. (2007) used survey AIV estimates to determine if the information 

454 from additional acoustic sampling can improve bottom trawl survey AI estimates. Survey stratification 

455 (e.g. Smith and Gavaris, 1993) and sample allocations (e.g. Smith and Lundy, 2006; Harbitz et al., 1998; 

456 Smith et al., 2011) are also usually based on AIV estimates without consideration for V(q). Coefficients of 

457 variation derived from AIV are often used to compare reliability of AI estimates derived from surveys 

458 using different tools or sampling designs (Pennington and Volstad, 1991). For example, Lingen et al. 

459 (1998) used CV to compare different survey tools for assessing abundance and distribution of fish eggs. 

460 Doyle et. al. (2008) used CVs to compare four types of sampling gear used to collect shovelnose 

461 sturgeon. Other examples are numerous (e.g. Dressel, 2005; Dissanayake and Stefansson, 2010) as using 

462 CV estimates from observations to assess quality of surveys appears to be a standard among survey 

463 scientists. Unfortunately, these assessments are usually performed without regard for accuracy or 
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464 precision of AIV estimates. We argue that, as with all other statistics, accuracy and precision of AIV 

465 needs to be taken into account when CVs or other precision measures are used for comparisons 

466 between survey gears and modeling methods. To illustrate the danger of using CV estimates derived 

467 from observations alone as a means to choose appropriate survey method, we refer to Figure 7 where it 

468 is apparent that for surveys with strong density-dependent q, CV will likely be lower in comparison to 

469 the CV from surveys that may have higher variability in q but are not density-dependent. In such a case, 

470 using the CVs will lead to an incorrect choice of survey method with density-dependent q. Similarly, an 

471 incorrect choice may also occur when two surveys are not density-dependent but the difference 

472 between CVs is just a matter of chance.       

473 Our results indicate that AIV estimates can be highly imprecise (Fig. 5) and should not be used ad hoc 

474 without scrutiny. Relationship between the CV of AI standard deviation and the V(q) presented in Figure 

475 5 shows that there are clearly 2 components of the variance in the AIV. The first component is inherent 

476 to sampling design and underlying fish distribution and does not depend on variations in q. The second 

477 component contributes additional variance to AIV. This additional variance increases with a decrease in 

478 q and increase in V(q). Because q is likely variable in all fisheries surveys, it is safe to conclude that AIV 

479 derived from samples alone is always an underestimate of the total AIV. The degree of this 

480 underestimation depends on the underlying distribution of q. In addition, the precision of the AIV 

481 estimate can be very low resulting in high uncertainty when AIV estimates are used to compare survey 

482 and modelling methods. Ignoring this uncertainty can lead to the choice of a less reliable method just 

483 because the single AIV estimate for that method, by chance, happened to be lower when compared to 

484 more reliable methods. In stock assessment models, weights assigned to each AI may be spurious 

485 because the underlying uncertainty in the AIV is unknown. This can also lead to overestimating the 

486 reliability of survey abundance estimates in process studies (e.g. survey comparisons, ecosystem 

487 modeling, spatial dynamics studies) and fishery management decisions. In process studies, survey CVs 

488 are often used as a measure of the reliability of abundance estimates (e.g.  Jakobsen et al., 1997; 

489 Francis, 1984; Overholtz et al., 2006), which in the presence of multiple sources of information, can lead 

490 to the wrong choice of data source used in research. Similarly, management decisions are often based 

491 on the most important piece of information available. Surveys with lowest sample CVs are often 

492 perceived as the best (e.g.  Pennington and Volstad,. 1991); however, if CV is biased low due to low or 

493 variable q, it can lead to an erroneous choice of “best” survey. For example, a survey that does not 

494 sample a significant part of a contagious population can result in low AIs with very low AIVs, despite the 

495 true population being much larger.
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496 Merit of AI and AIV estimates is highly dependent on bias and precision of these two statistics. The 

497 precision of an AI should be reflected in the estimate of the AIV given that AIV is adequately precise. 

498 However, in fishery science there is a general lack of studies on the precision of AIV estimates. This is 

499 surprising given the use of AIV estimates across wide range of studies in fisheries. Our study represents 

500 a first look at the effects of the underestimation of AIV uncertainty; however, more studies are needed 

501 to understand the impact of this underestimation. The variance of variance problems have been 

502 undertaken in statistics (e.g. Cho et al., 2005) as well as in applied studies other than fisheries (e.g. 

503 Dieters et al., 1995), and the common use of AIV in fishery science warrants a closer look into the 

504 uncertainty of these estimates.

505 Future directions and challenges

506 This study concentrated on the effects of the variation in q defined as sampling efficiency or gear 

507 catchability. However, there are other sources of uncertainty that could also affect reliability of the AIV 

508 estimates. These include the other two components of survey catchability: vertical and spatial 

509 availability (Edwards, 1968; Harley and Myers, 2001).  The effects of variation in vertical availability (e.g. 

510 Kotwicki et al., 2015) in AIV would be similar to the effects of sampling efficiency presented in this study. 

511 This is because vertical availability can be considered to be part of spatial variation in q when fish 

512 density at a tow site is based on the whole water column and not just the water volume swept by the 

513 trawl. The effect of the variation in spatial availability on the AIV have not been considered in our study. 

514 However, it is important to acknowledge that they should not be ignored for many surveyed species. For 

515 example, in the Bering Sea there is evidence that some groundfish change their spatial distribution in 

516 response to environmental variability, density-dependent effects, and ontogeny (Nichol 1998; Kotwicki 

517 & Lauth 2013; Thorson et al. 2016). If these changes occur within the surveyed area, the derived AI can 

518 provide accurate information about trends in population abundance over time. However, when spatial 

519 distribution changes occur across survey boundaries and the entire population is not available to the 

520 survey, the trend in population abundance estimates is confounded by changes in the proportion of the 

521 stocks enumerated. Similarly to variation in sampling efficiency, ignoring variation in survey spatial 

522 availability can lead to underestimates of AIV estimates for affected species as well as biased trends in 

523 abundance indices (Thorson et al. 2013). 

524 We are not aware of any studies that attempt to account for variation in spatial availability in the 

525 estimation of AIV. This task will likely be more challenging than accounting for sampling efficiency or 

526 vertical availability. Studies on variation in spatial distribution of species outside the surveyed areas are 
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527 generally lacking because of the absence of data from unsurveyed areas. In some instances, data from 

528 the area outside the survey exists. This includes data from surveys performed by neighboring states and 

529 countries, or data from research studies conducted outside survey areas. The major difficulties with 

530 using the data from areas outside standard surveys come from differences in methodology used for 

531 collecting samples. To reconcile these differences, challenging and costly intercalibration studies are 

532 needed (e.g. Smith, 2002). The importance of such intercalibration has recently been increasing due to 

533 climate change and associated shifts in the distribution of species, which often occur across survey 

534 boundaries (e.g. Kotwicki and Lauth, 2013; Thorson et al. 2016). More studies are needed to develop 

535 methods that can determine the impacts of these movements on AIV and AI estimates. 

536 Our approach to obtain “true” variance estimates using simulation has some shortcomings which could 

537 be addressed in future studies. First, the simulated spatial distributions, assumed to be “true”, were 

538 done based on the existing survey data which could have been affected by q. Therefore, it is possible 

539 that the “true” variance estimates were biased because the true fish spatial distribution is unknown. 

540 However, we believe that these potential biases will usually be smaller than biases caused by variable q 

541 and regardless of the ability to predict true distribution incorporating q should produce more reliable 

542 AIV estimate. Future studies are needed to develop methods to simulate and test realistic species spatial 

543 distributions. Second, we have concentrated on describing the effects of variable q on AIV estimates 

544 using a simple random survey approach. This approach was chosen because we believe that the stated 

545 goals of the paper are best presented on that simple example. However, in reality, the majority of 

546 surveys are stratified (e.g. Staufer, 2004); therefore, in practical applications, it is necessary to perform 

547 simulations using correct survey design. Such studies are presently underway at the Alaska Fisheries 

548 Science Center for surveys conducted in the Aleutian Islands, Gulf of Alaska, and Bering Sea. Moreover, 

549 data from some surveys are used to obtain model-based (e.g. Shelton et al., 2014; Thorson et al. 2015) 

550 or model-assisted estimates (e.g. Chen et al., 2004, Cadigan, 2011). The AIV estimates from these 

551 modelling techniques are believed to be more reliable than ones from the design-based estimators; 

552 however, the effect of the random and density-dependent variation in q on these estimates needs 

553 further investigation.   
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Years 2005 – 2014

Mean sampling efficiency ( )� 0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 2.5, 3

Variance in sampling efficiency (V(q)) 0.00001, 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2

Density-dependent efficiency parameter 

(a)

1, 100, 500, 2000, 50000

839

840

841 Figure captions

842 Figure 1. Simulated map of annual pollock density distribution in the EBS between 2005 and 2014. The 

843 map is based on a 1-km nominal grid and simulation runs were only performed within the EBS survey 

844 area. The dots in each map indicate the survey location.

845 Figure 2. Example (2010) of the relationship between relative error of sample derived abundance index 

846 (AI; (i.e.  - )/  ) in relation to survey sampling efficiency ( ; x-axis) and variance in sampling �� ��  �� �
847 efficiency ( ; panels). Grey line represents relative error equal to 0. Note that the abundance index is �(�)
848 mean unbiased, and the effect of the sampling efficiency results in skewed index of abundance 

849 distribution. A
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850 Figure 3. Example (2010) of the relationship between survey coefficient of variation (CV) of the 

851 abundance index ( / ) in relation to survey sampling efficiency ( ; x-axis) and variance in sampling �2� �� �
852 efficiency ( ; panels).�(�)
853 Figure 4. Example (2010) of the relationship between relative error of sample standard deviation (SD) of 

854 abundance index (i.e.  )) in relation to survey sampling efficiency ( ; x-axis) and variance in (�� ― ��)/�� �
855 sampling efficiency ( ; panels). Grey line represents relative error equal to 0.�(�)
856 Figure 5. Example (2010) of the relationship between coefficient of variation (CV) of survey standard 

857 deviation (SD; i.e. standard deviation( ) / mean( ) ) in relation to survey sampling efficiency ( ; x-axis) �� �� �
858 and variance in sampling efficiency ( ; panels). Black line represents expected of SD in case when �(�)
859 sampling efficiency is constant.

860 Figure 6. Example (2010) of the relationship between survey abundance index (AI) in relation to density-

861 dependent sampling efficiency (x-axis) and variance in sampling efficiency ( ; panels). Red line �(�)
862 represents AI in case when sampling efficiency is not density-dependent.

863 Figure 7. Example (2010) of the relationship between coefficient of variation of survey abundance index 

864 in relation to density- dependent sampling efficiency (x-axis) and variance in sampling efficiency ( ; �(�)
865 panels). Red line represents expected CV in case when sampling efficiency is not density-dependent. 
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V(q)=0.8 V(q)=1 V(q)=2

V(q)=0.2 V(q)=0.4 V(q)=0.6

V(q)=1e−05 V(q)=0.01 V(q)=0.1
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