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Abstract 

Data from environmental DNA (eDNA) may revolutionize environmental monitoring and 

management, providing increased detection sensitivity at reduced cost and survey effort. 

However, eDNA data are rarely used in decision-making contexts, mainly due to uncertainty 

around (1) data interpretation and (2) whether and how molecular tools dovetail with existing 

management efforts. We address these challenges by jointly modeling eDNA detection via qPCR 

and traditional trap data to estimate the density of invasive European green crab (Carcinus 

maenas), a species where, historically, baited traps have been used for both detection and 

control. Our analytical framework simultaneously quantifies uncertainty in both detection 

methods and provides a robust way of integrating different data streams into management 

processes. Moreover, the joint model makes clear the marginal information benefit of adding 

eDNA (or any other) additional data type to an existing monitoring program, offering a path to 

optimizing sampling efforts for species of management interest. Here, we document green crab 

eDNA beyond the previously known invasion front and find the value of eDNA data 

dramatically increases with low population densities and low traditional sampling effort, as is 

often the case at leading-edge locations. We also highlight the detection limits of the molecular 

assay used in this study, as well as scenarios under which eDNA sampling is unlikely to improve 

existing management efforts. 
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Introduction 

Since the first documented use of environmental DNA (eDNA) methods for detecting 

macro-organisms (Ficetola et al., 2008), the fields of conservation and ecology have seen a wave 

of eDNA studies, with wide ranging applications across a myriad of ecosystems and target taxa 

(Beng & Corlett, 2020; Bohmann et al., 2014; Deiner et al., 2017; Thomsen & Willerslev, 2015). 

Techniques such as quantitative polymerase chain reaction (qPCR), digital droplet PCR 

(ddPCR), and high throughput sequencing (HTS) are increasingly accessible, and can often 

detect trace amounts of DNA in environmental samples (Jerde, 2019). These molecular 

techniques yield high-resolution biological information and are particularly useful where 

traditional monitoring may be infeasible, labor-intensive, or reliant upon diminishing taxonomic 

expertise (Kelly et al., 2014); in some cases, eDNA assays are more sensitive than traditional 

sampling methods in detecting rare individuals (Goldberg et al., 2013; Jerde et al., 2011). 

Together, these attributes make eDNA sampling attractive for detecting rare, cryptic, or elusive 

aquatic species – and in particular, invasive species.  

Early detection and monitoring are key components of successful invasive species 

management strategies (Lodge et al., 2006), and detection at early stages of establishment has led 

to eradications of nascent invasions (Anderson, 2005; Wimbush et al., 2009). However, the effort 

required to detect a species is inversely proportional to its population size (Hayes et al., 2005), 

and so invasion fronts present a particular management challenge. Historically, cost-effective 

management strategies have had to balance high survey costs for small populations and high 

eradication costs if the survey fails to detect an incipient population in the initial stages of 

invasion (Lodge et al., 2006). Genetic approaches may better detect rare individuals, and thereby 

lower costs and improve the sensitivity of surveys for small populations, such as those at 
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invasion fronts (Beauclerc et al., 2019; Harper et al., 2018; Jo et al., 2021; Kuehne et al., 2020; 

Schütz et al., 2020). However, traditional monitoring methods outperform some eDNA assays 

(Rose et al., 2019; Ulibarri et al., 2017), underscoring the importance of side-by-side 

comparisons of detection efficiency.  

Despite the advantages of eDNA for early detection of small populations, few examples 

exist of eDNA methods used to guide decision making. Notable exceptions include the United 

Kingdom’s acceptance of eDNA qPCR results as evidence for the presence of the protected great 

crested newt, Triturus cristatus; there, developers can be prohibited from developing wetlands 

where there have been positive eDNA detections (Biggs et al., 2015; Natural England, 2017). 

Perhaps the best example of management-relevant eDNA surveys focuses on the invasive 

bighead and silver carps (Hypophthalmichthys spp.; often referred to jointly in the United States 

as “bigheaded carp”) (Mize et al., 2019), for U.S. Fish and Wildlife Service (Woldt et al., 2020) 

and U.S. Department of Agriculture (Carim et al., 2016) have protocols that guide field and 

laboratory eDNA methods, as well as outline recommendations for sampling plans and schedules 

to be implemented by regional sampling agencies. 

Typically, however, methodological development outpaces systematic plans for how to 

use DNA evidence to support management decisions. Consequently, managers have been slow to 

adopt eDNA-based approaches in decision making frameworks, (Bohmann et al., 2014; Darling 

& Mahon, 2011) due to gaps in understanding of the dynamics of eDNA in space and time, as 

well as the susceptibility of eDNA methods to false negative detections and false positive 

detections (Darling et al., 2021; Goldberg et al., 2016; O’Donnell et al., 2017; Sepulveda et al., 

2020). Although all sampling methods have potential errors, there are many mechanisms for 

eDNA methods to indicate a false presence, and the fear of a false positive detection is cited as 
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the primary obstacle to adopting eDNA-based methods in species monitoring (Jerde, 2019). Even 

though emerging statistical approaches aim to estimate the probability of false positive error 

(Griffin et al., 2019; Guillera-Arroita et al., 2017), clearly communicating of the meaning of 

false positive errors – and more generally, uncertainty surrounding the meaning of results – to 

managers and the public remains challenging (Darling et al., 2021).  

Previous reviews highlight the “potential” of eDNA methods to dramatically improve 

biodiversity assessments and targeted detection of species of concern, as well as the “potential” 

for unreliability and augmenting of existing uncertainty in environmental management and 

assessment (Beng & Corlett, 2020; Bohmann et al., 2014; Darling & Mahon, 2011; Yoccoz, 

2012). Moving from evaluating the potential value of eDNA data to the practical value of eDNA 

data requires quantitative and meaningful interpretations of available data (Cristescu & Hebert, 

2018; Lacoursière‐Roussel &  Deiner, 2021) , as well as demonstrating the ways in which eDNA 

does – or does not – complement existing management strategies.   

Recent work significantly advances eDNA data interpretation by extending site 

occupancy modeling methods to estimate species presence and absence using eDNA data 

(Schmidt et al., 2013). Such models account for imperfect detection when inferring species 

occupancy and can overcome bias introduced by false negative and false positive detections 

(Hunter et al., 2015; Lahoz-Monfort et al., 2016; Schmelzle & Kinziger, 2016). Occupancy 

estimation has become a standard method for modeling species dynamics, monitoring species 

trends, and informing management (MacKenzie et al., 2002, 2003). The approach has been 

adapted to accommodate violations of model assumptions (Lele et al., 2012) and survey 

scenarios where multiple types of observational error occur (McClintock et al., 2010; Miller et 

al., 2011).   
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Occupancy models suggest that there are two classes of sites, those that are occupied and 

those that are not, and these models assume no unmodelled heterogeneity among sites in the 

probability of detecting a species at a site where it occurs (Royle and Nichols 2003; Altwegg & 

Nichols, 2019). In reality, variation in local abundance of the species between sites is one 

important factor that can induce heterogeneity in detection probability with ecological or genetic 

methods (Royle & Dorazio, 2008), resulting in low estimates of occupancy probability at sites 

where a species is present but rare. Even for a relatively sensitive assay, a low molecular 

detection rate can therefore reflect low abundance, rather than low probability of occupancy.  

Royle and Nichols (2003) aimed to overcome this limitation by describing a modeling 

approach that links heterogeneity in abundance to heterogeneity in detection probability, 

estimating abundance from repeated observations of a species. This heterogeneous detection 

probability model provides a framework for estimating species density based on abundance-

induced variation in detection probability with eDNA methods (Royle & Nichols, 2003). 

Building on this framework, we jointly model observations from both traditional and eDNA 

monitoring methods to estimate local species density. The joint model aids management 

decisions by informing interpretation of molecular detections, the most appropriate use of eDNA 

sampling efforts, and the relative sensitivities of molecular and traditional sampling methods.  

We apply the joint model to eDNA detection data of European green crab, Carcinus 

maenas, in Washington State. Green crab causes massive ecological and economic damage in its 

invaded range; for example, the species has caused the collapses of the soft-shell clam industry 

in Maine (Glude, 1955; Tan & Beal, 2015). Green crab was first detected in Washington waters 

in 1998, after warm El Niño-Southern Oscillation (ENSO) currents spread larvae of California 

populations up to British Columbia, Canada (Behrens Yamada & Hunt, 2000), and the species is 
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now classified as a deleterious species in Washington State because of perceived risks to coastal 

resources (Grason et al., 2018). Washington Department of Fish and Wildlife (WDFW), United 

States Fish and Wildlife Service (USFWS), Washington Sea Grant, several sovereign tribal 

nations, and other concerned citizens have subsequently coordinated to surveil and manage green 

crab along the nearly 3,000 km of Washington’s inland shoreline.  

Traditionally, crab traps have provided much of the quantitative information about the 

position of the green crab’s invasion front in Washington, and the State invests heavily in 

deploying traps throughout likely invasion pathways. Here, we couple this existing dataset with 

qPCR data using a recently developed assay for green crab (Roux et al., 2020), derived from 

water samples collected throughout the region. We combine these data streams to estimate the 

density of green crab across the study sites using the joint model, and we highlight changes in the 

precision of these estimates in the joint model vs. a model that uses only traditional trapping 

data; the difference between the two is the marginal information benefit of eDNA for this 

particular management purpose. This modeling framework offers a path to improve 

interpretation of eDNA data, as well as identify the scenarios under which eDNA sampling will 

most likely improve existing management efforts. 

 

Methods 

i. Joint model description 

We model traditional trap data and eDNA qPCR detections jointly, linking the two 

through a shared species density at each sampling site (Data S1).  

Traditional monitoring methods – here, trapping – relate repeated capture rates to an 

underlying species density. Since previous work analyzing green crab capture in traps found 



   8 
 

 

patchy distribution, with significant local-scale variation within a site (Bergshoeff et al., 2019), 

we modeled the capture process using a negative binomial distribution to account for 

overdispersion. We also conducted a leave-one-out cross-validation approach to evaluate the 

relative predictive accuracy of distribution choices for modeling the capture process based on the 

observed data (Vehtari et al., 2017) (Appendix S1, Data S2). The observed count, Y, of a species 

at site i and trap sample k is drawn from a negative binomial distribution with a mean species 

density, µi, and an overdispersion parameter, Φ (Eq. 1).  

   

 𝑌𝑌𝑖𝑖,𝑘𝑘~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 �µ𝑖𝑖 ,
𝛷𝛷�  (1) 

 

Guided by the principle that the probability of detection with qPCR increases as the 

underlying species density increases, we describe the probability of a true molecular detection, 

p11, at site i as a saturating function of species density, µi, and scaling coefficient, β (Eq. 2). 

 

 𝑝𝑝11,𝑖𝑖 =  µ𝑖𝑖
µ𝑖𝑖+𝛽𝛽

   (2) 

 

Recognizing the susceptibility of eDNA methods to false positive errors (Roussel et al., 

2015; Sepulveda, Nelson, et al., 2020), we incorporate a false positive probability, p10, that 

represents two sources of false positive detections: (1) presence of target DNA in the sample but 

absence of target organism at the associated site, arising from processes like laboratory 

contamination or transportation of target cells from far away locations, and (2) absence of target 

DNA in the sample but a positive molecular detection, arising from non-specific amplification. 
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The false positive probability, p10, contributes to the overall molecular detection probability, p, at 

site i (Eq. 3; p is bounded between 0 and 1).  

 

 𝑝𝑝𝑖𝑖 =  𝑝𝑝10 +  𝑝𝑝11,𝑖𝑖  (3) 

 

We estimate these parameters through repeated molecular observations at each site using 

a species-specific quantitative PCR (qPCR) assay (Roux et al., 2020). Many applications of 

qPCR are interpreted as molecular binary indicators of detection (1) or nondetection (0) 

(Guillera-Arroita et al., 2017; Orzechowski et al., 2019; Schmidt et al., 2013), and the binomial 

distribution is suitable for modeling “successes” in a given number of trials (Hobbs & Hooten, 

2015). The number of positive qPCR detections, K, out of the number of trials, N, in water 

sample j at site i is drawn from a binomial distribution, with a probability of success on a single 

trial, pi (Eq. 4). Due to the hierarchical qPCR data structure, where qPCR triplicates are nested 

within water bottles within sites, we also provide a hierarchical version of the model that 

accounts for membership of qPCR replicates within nested groups (Appendix S2, Data S3). We 

present a simpler model here.  

 

 𝐾𝐾𝑖𝑖,𝑗𝑗~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�𝑁𝑁𝑖𝑖,𝑗𝑗 ,𝑝𝑝𝑖𝑖�  (4) 

 

We implement the model in a Bayesian framework, in which the posterior probability of 

the model parameters (given observed data) is product of the individual likelihood functions at 

site, i, water sample, j, and trap sample, k, as well as the prior probabilities (Eq. 5). A gamma 

distribution was used as the prior distribution for parameters µi, Φ, and β because of its 
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suitability for continuous, non-negative random variables. These priors allow us to incorporate 

existing information into the analysis and help to make the parameters identifiable.  

 

[µ𝑖𝑖 ,𝜙𝜙,𝛽𝛽, 𝑝𝑝10]  ∝���𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(
𝑝𝑝

𝑘𝑘=1

𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

𝑌𝑌𝑁𝑁,𝑘𝑘|µ𝑖𝑖 ,𝜙𝜙) × 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁, 𝑗𝑗,𝐾𝐾𝑁𝑁, 𝑗𝑗|𝑝𝑝10, µ𝑖𝑖 ,𝛽𝛽) × 𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(µ𝑖𝑖|𝛼𝛼𝛼𝛼,𝛽𝛽𝛼𝛼) × 

𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜙𝜙|𝛼𝛼𝜙𝜙,𝛽𝛽𝜙𝜙) × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝10|µ𝑝𝑝10,𝜎𝜎2𝑝𝑝10) × 𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝛽𝛽|𝛼𝛼𝛽𝛽,𝛽𝛽𝛽𝛽)  

 

  (5) 

  

We specified the model within Stan, a probabilistic programming language written in 

C++ that implements full Bayesian statistical inference using Markov chain Monte Carlo, and 

used the package ‘rstan’ (version 2.21.2) as an interface to the R (version 4.1.1) software 

environment (Carpenter et al., 2017; Guo et al., 2020; R Development Core Team, 2021). 

 

ii. Green crab eDNA data collection 

eDNA field sampling 

Twenty sites with varying known presence and abundance of green crab were chosen for 

eDNA sampling (Figure 1, Appendix S3: Figure S1), and given the time scale of the sampling 

effort, all sites were distinct with relation to green crab movement. At each site we collected five 

500 mL surface water samples 1-5 meters apart. All sampling equipment was soaked in 10% 

bleach between sites and thoroughly rinsed in deionized water to prevent cross-contamination. 

Water samples were placed on ice and vacuum-filtered onto a cellulose acetate filter (47 mm 
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diameter, 0.45 µm pore size) within four hours of collection, except for samples from the KVI 

site, where samples were stored at 4°C and filtered 24 hours after collection due to vacuum 

equipment malfunction. Filters were preserved in 900 µL of Longmire buffer (Longmire et al., 

1997; Renshaw et al., 2015) and stored at -80°C for 1-3 weeks before DNA extraction. We 

collected a total of 100 eDNA water samples. 

 

eDNA sample processing 

We extracted DNA from filters using a phenol:chloroform:isoamyl alcohol protocol 

(modified from (Renshaw et al., 2015) and described in (Gallego et al., 2020)). One negative 

control (900 µL of Longmire buffer) was extracted during each set of DNA extractions (n = 3 

total). We quantified DNA purity on a spectrophotometer (Nanodrop, Thermo Scientific, Inc.) 

and DNA concentration on a fluorometer (Qubit, Invitrogen, Inc.) to determine DNA extraction 

success. 

Each eDNA extract was amplified by qPCR using a C. maenas-specific assay developed 

by Roux et al. (2020) that targets a 148 bp fragment of the cytochrome c oxidase 1 (CO1) region. 

Three qPCR replicates were run for each eDNA extract in 25 µL reactions following Roux et al. 

(2020), but we modified the protocol to use TaqPath™ ProAmp™ Master Mix due to its 

relatively high tolerance of inhibitors (Applied Biosystems, A30865). Three negative PCR 

controls containing 2 µL of molecular grade water were included in each reaction, and each 

extraction negative control was run in triplicate. All qPCR reactions were performed on Applied 

Biosystems StepOnePlus Real-Time PCR System an analyzed with StepOne Software v2.3. Any 

DNA template passing the fluorescence threshold in fewer than 38 cycles was considered a 

positive amplification, since 38 Ct is the average Ct value corresponding to the assay’s limit of 
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detection with 50% chance of detection (Roux et al., 2020). The identity of 13 qPCR products 

from four sites were confirmed through unidirectional Sanger sequencing with the forward 

primer; all sequences were unambiguously C. maenas, and no other crabs from the same 

taxonomic family are present in the region (Appendix S4: Table S1).  

In addition to the 20 sites sampled concurrently with trapping efforts, eDNA samples 

from seven sites in Skagit Bay, WA were analyzed using the same sampling, DNA extraction, 

and qPCR procedures (Appendix S4: Table S2). These sites were characterized as unsuitable for 

green crab based on expert opinion and were included as sites of unambiguous crab absence to 

inform the prior on the estimated probability of a false positive molecular detection (p10). Four 

water samples at each of the seven sites were processed at an independent laboratory facility 

(NOAA Northwest Fisheries Science Center), where each water sample underwent triplicate 

qPCR reactions, alongside nine no-template negative controls and three field blank negative 

controls. 

 

Inhibition Testing 

To ensure negative qPCR detections were not systematically due to PCR inhibition, we 

measured potential inhibition occurrence by analyzing the quantification threshold (Ct) deviation 

of a spiked internal positive control. A synthetic (gBlock) positive control was spiked into 

samples with no positive amplifications (Integrated DNA Technologies, Inc.). The double-

stranded 200 bp gBlock oligonucleotide contained green crab-specific primer and probe 

sequences, with three modified bases between the forward primer and probe and two modified 

bases between the probe and reverse primer to identify contamination at the amplification step. 

For sites where all eDNA replicates previously tested negative for green crab, we subsequently 
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tested one eDNA sample per site for inhibition. For sites where some but not all eDNA replicates 

tested negative for green crab, each previously negative eDNA sample was tested for inhibition. 

Each qPCR reaction used 1 µL of environmental DNA extract and 1 µL of the gBlock positive 

control at a final reaction concentration of 0.20 gBlock copies/µL. Three qPCR replicates 

containing 1 µL of the gBlock positive control (without eDNA extract) at a final reaction 

concentration of 0.20 copies/µL was also included in the reaction. Inhibition occurrence was 

measured as the difference in Ct, ∆Ct, between the Ct value of the spiked eDNA sample and the 

mean of the three positive gBlock controls (Ctsample – Ctcontrol) (Volkmann et al., 2007). We 

conservatively considered a ∆Ct greater than two cycles to be evidence of inhibition, considering 

that three cycles – as is common in the literature (Hinlo et al., 2017) -- is almost one order of 

magnitude difference in concentration in an efficient reaction. Each DNA sample underwent 1-3 

passes through a OneStep PCR Inhibitor Removal spin column (Zymo Research Corp.) until 

inhibition occurrence was not detected (Appendix S4: Table S3).   

 

iii. Green crab trapping data 

The Washington State Department of Fish and Wildlife, Washington Sea Grant, U.S 

Department of Fish and Wildlife, and Jamestown S’Klallam Tribe provided data from baited 

traps from a larger green crab monitoring program. Traps were set for an overnight soak and 

collected within 24 hours of placement; any trapped green crabs were counted and subsequently 

removed from the system. Trap types included in the dataset were Gee-brand galvanized steel 

minnow trap (5.08 cm opening, 0.635 cm mesh) and the square Fukui fish trap (1.27 cm mesh), 

which have similar catchability for green crab and mechanisms of trapping.  
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The sampling sites vary with respect to known green crab presence, abundance, and 

trapping effort (Appendix S3: Figure S1). Trapping effort ranged from three to 420 traps set over 

the selected trapping period, and water samples were collected two weeks before or after trap 

collection, with the exception of the Stackpole site (STA) (Appendix S3: Figure S2). At STA, 

only three traps were set during the sampling period, and no green crabs were recovered. To 

reflect the relatively high density of green crab determined through previous, greater trapping 

efforts, trapping data at STA collected eight weeks before eDNA sampling were included in the 

dataset (Appendix S3: Figure S2). Despite trapped crabs being removed from the system, our 

analysis assumed that these removals did not substantially change the relative densities of green 

crab at the sampled sites over the sampling period (Appendix S3: Figure S2).  

 

iv. Joint model application: green crab density estimates 

We fit the joint model to the qPCR and trap observations using weakly informative priors 

for all parameters except the false positive rate of detection, p10, for which we used an 

informative prior from negative control data in Roux et al. (2020) and the eDNA samples from 

sites characterized a priori as unsuitable for green crab. We set the p10 prior at beta(1,28), such 

that the false positive detection probability is likely less than 0.036 (P(p10 < 0.036) = 0.64). For 

ease of model-fitting in Stan, we moved p10 to a log scale, and used moment-matching to convert 

the beta prior into a lognormal distribution (Hobbs & Hooten, 2015). To reflect prior knowledge 

of the presence of green crab at each site beyond the information provided in the trap data, 

different hyperparameters were used for the prior distributions for µ based on green crab 

recovery at the sampled sites from 2017-2021 (Appendix S4: Table S2). The prior distribution 

for µ at sites with a history of trapped green crab was µcrab ~ gamma(0.25, 0.25), and the prior 

distribution for µ at sites without a history of trapped green crab was µnocrab ~ gamma(0.05, 0.05). 
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Priors for the other model parameters were as follows: β ~ gamma(2, 1) and Φ ~ gamma(0.25, 

0.25). 

We ran the joint model via ‘rstan’, with a step size of 0.5 and 4 chains with 500 warm-up 

and 2,500 sampling iterations per chain, and we checked for model convergence through the R-

hat convergence diagnostic and by visually examining the resulting autocorrelation plots and 

chain mixture in the trace plots using the package ‘shinystan’ (Gabry et al., 2018). For 

comparison, we ran a trap-only model (Eq. 1) in the same way. 

As crab density decreases, the probability of a true positive molecular detection 

decreases, and at very low crab densities, the probability of a false positive detection, p10, is 

higher than the associated true positive detection, p11. Here, we defined the crab density 

threshold at which a detection is equally likely to be true or false (p10 = p11) as the critical crab 

density, µcritical. This value was calculated using the model’s posterior distributions of estimated 

parameters, p10 and β, and the relationship between µ and p11 defined in Eq. 2. 

 

v. Robustness Assessments 

A sensitivity analysis was conducted to ascertain the sensitivity of the model’s inferences 

to the specification of the false positive probability, p10, prior distribution. The joint model was 

refit using a set value for p10 under a range of values (0.005-0.055), and all other parameters (β, 

Φ, µi) were estimated. All refitted models were run with a step size of 0.5 and 4 chains with 500 

warm-up and 2,500 sampling iterations per chain and were checked for model convergence.  

We also examined the effect priors had on our inferences by conducting a data cloning 

procedure described by Lele et al. using the package ‘dclone’ (version 2.3-0) (Data S1) (Lele et 

al., 2007; Solymos, 2019). We replicated the qPCR and trapping datasets (n = 10) for each 
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sampled site and used these copies as data input in our model to swamp the posterior 

distribution, which subsequently minimizes the influence of the prior distributions and yields 

estimator outputs that are asymptotically equivalent to maximum likelihood estimators (Lele et 

al., 2007). We evaluated the influence of the prior distributions on our model’s inferences by 

comparing data cloning parameter estimates to our Bayesian parameter estimates. 

We then compared our model’s inferences to parameter estimates derived from an 

occupancy modeling framework. We estimated occupancy parameters using the qPCR detection 

data and the R package, ‘msocc’ (version 1.1.0), which implements a Gibbs sampler to fit 

Bayesian multi-scale occupancy models (Data S1) (Stratton et al., 2020). The occupancy model 

was run with 11000 total MCMC iterations (1000 burn-in iterations), and site-specific sample-

level probabilities of occupancy, θi, and site-specific replicate-level probabilities of occupancy, 

pi, were estimated. Replicate-level probabilities of occupancy, pi,occupancy, were compared to the 

overall probabilities of molecular detection, pi,joint, from the joint model, and a linear regression 

was fit to model the relationship between pi,occupancy and pi,joint using the lm() function in R. 

 

vi. Evaluation of eDNA data’s marginal benefit 

As information increases, uncertainty decreases. We therefore considered a reduction in 

uncertainty around green crab density estimates as a measure of the marginal value of eDNA 

data, relative to the baseline information contained in trap data alone. We quantified precision in 

the estimates of green crab density, µi, using a coefficient of variation (CV; the standard 

deviation of the parameter estimate divided by the mean), to facilitate comparisons of variability 

across green crab densities of differing orders of magnitude (Abdi, 2010). We calculated the 

change in precision (∆CV) in the parameter estimates in the joint model vs. trap-only model as 
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CVtrap – CVjoint, and we analyzed this change in precision as a function of trapping effort. qPCR 

effort remained constant throughout data collection. We captured the resulting exponential trend 

line in the relationship between ∆CV and trapping effort using the method of least squares. 

To evaluate the sensitivity of eDNA vs. trap sampling, we estimated the sampling effort 

necessary to detect a green crab with 90% confidence. A detection refers to either capturing at 

least one green crab in a trap or producing at least one true positive qPCR amplification. For trap 

sampling, we calculated the minimum number of traps necessary to be 90% confident that at 

least one crab would be caught (Eq. 1, given a non-zero expected number of crabs/trap, µ, and 

the model’s median estimate for dispersion parameter, Φ). For eDNA sampling, we defined 

effort as the number of unique water samples, each having triplicate qPCR. We calculated the 

minimum number of water samples, E, necessary to detect the true presence of crab with at least 

90% confidence as binomial(E*N, p11), where N=3. p11 was defined as in Eq. 2 and depends 

upon the underlying true number of crabs/trap, µ, and the model’s median estimate for parameter 

β. Both sampling type analyses were conducted under a range of crab densities, from median 

µcritical – 3.0 crabs/trap. 

 

vii. Simulation study 

We simulated the precision and accuracy of green crab density estimates as a function of 

sampling strategy, given a range of green crab trapping efforts and true species densities. Both 

qPCR data and green crab trap count data were simulated for each of nine green crab densities 

(0, 0.02, 0.05, 0.1, 0.15, 0.25, 0.5, 1, 3 crabs/trap (µsim)) and eleven trapping efforts (3, 4, 5, 7, 

10, 12, 15, 20, 30, 40, 60 traps), for a total of 99 scenarios. The eDNA sampling effort was held 

constant at five biological replicates and three technical replicates for all simulated scenarios. 
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Each scenario made up a different site, isim, in the overall simulated dataset, and we simulated 

each dataset 50 times to capture stochasticity. These scenarios represented the range of green 

crab densities and trapping efforts observed in this study.  

We then used the simulated datasets to estimate the underlying green crab density, µsim, at 

each simulated site, isim, with both the joint and trap-only models. Only parameter µsim for each 

simulated site was estimated by the two models, and parameters p10, β, and Φ were set at the 

joint model’s median estimate derived from collected data. A prior distribution for µ of 

gamma(0.05, 0.05) was used at all simulated sites, and each model was run with 4 chains of 500 

warm-up iterations and 2,500 sampling iterations (Data S4). We calculated the mean change in 

precision (∆CV) of the 50 simulation replicates at each simulated site to determine the effect of 

trapping effort and underlying crab density on changes in estimated crab density precision. We 

calculated model accuracy for each simulation scenario as the proportion of simulation replicates 

that yielded a 90% credibility interval containing the true density, µsim.  

   

Results 

i. Green crab genetic and traditional monitoring data collection 

We detected at least one positive amplification at 13 sites, (1 – 15 amplifications out of 

15 total qPCR replicates per site; five biological replicates x three technical replicates per site; 

Appendix S4: Table S3). In a total of 1274 trap observations (3 - 420 traps set over the sampling 

period; Appendix S3: Figure S2), green crabs were trapped at nine of the 20 sampled sites over 

the sampling period (mean crabs/trap 0 – 6.04). All nine of these sites had positive eDNA 

detections, while four additional sites yielded at least one positive eDNA detection where no 

green crabs were trapped over the sampling period (Figure 1). At two of these four additional 



   19 
 

 

sites, green crabs were recovered in traps over a longer time horizon (2017-2021) than the extent 

of the sampling period (Appendix S4: Table S2). All samples collected at sites characterized as 

unsuitable for green crab produced negative qPCR results, and all no-template (negative) qPCR 

controls and DNA extraction blanks produced negative qPCR results. 

 

ii. Detection of green crab eDNA beyond known invasion front 

Both the joint and trap-only models yielded an R-hat of one for all estimated parameters 

and produced well-mixed chains and low serial autocorrelation, indicating model convergence. 

The median calculated critical crab density, µcritical, or threshold where the true positive 

probability of molecular detection equals the false positive probability of molecular detection 

(p10 = p11) was 0.056 crabs/trap (0.010, 0.12 90%CrI). 

The joint model estimated a relatively high green crab density in a location beyond the 

previously known invasion front (Figure 2) and provided well-constrained estimates of 

parameter values, including the false positive rate (p10 = 0.022, (0.0095, 0.048 90%CrI); Table 

1). Green crab eDNA was detected on Vashon Island, more than 60 km south of the 

southernmost visual observations of the species (Figure 2). The median estimated green crab 

density at the Raab’s Lagoon (RAA) site on Vashon Island was 0.16 crabs/trap (4.0e-61, 0.61 

90%CrI) (Figure 3, Appendix S4: Table S4). The probability that the green crab density at 

Raab’s Lagoon (RAA) was greater than the median µcritical, 0.056 crabs/trap, was 0.64. This 

relatively high density of green crab was similar to density estimates at sites in Whatcom region, 

where historically green crabs have been recovered in traps under high trapping efforts 

(estimated densities 0.065 – 0.59 crabs/trap, Appendix S4: Table S4).  
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The concurrent eDNA and trap sampling meaningfully constrained the lower limit of 

eDNA sampling’s sensitivity relative to trap sampling. At Graveyard Spit Channel, the eDNA 

samples yielded no positive molecular detections, and no green crabs were trapped out of the 86 

traps set during the sampling period. The estimated median green crab density at this site was 

low (0.00049 crabs/trap; 2.4e-18, 0.0079 90%CrI). However, in 2020, 1369 traps were set, and 

three green crabs were recovered (0.002 crabs/trap), and in April 2021, three more crabs were 

recovered at this site, indicating that it is nearly certain that crabs were present in the channel 

during the time of sampling but not detected by eDNA sampling; this appears to be a false 

negative result. 

 Three sampled sites—Indian Island (IND), Jimmycomelately creek (JIM), and KVI 

Beach (KVI)—yielded one positive molecular detection, yet their median estimated crab 

densities were below µcritical, or the crab density at which the false positive probability of 

detection equals the true positive probability of detection, given the estimated crab density 

(Appendix S4: Table S4). The probability that the crab densities were greater than the median 

µcritical was 0.35, 0.017, and 0.096 for IND, JIM, and KVI, respectively. Given the estimated crab 

densities at these sites, these molecular detections were as likely to be a false positive detection 

than a true positive detection. One sampled site, Jimmycomelately creek (JIM), in the Central 

Sound produced one positive qPCR detection, yet the 43 traps set over the sampling period 

recovered zero green crab individuals. During 2020, no green crabs were recovered in traps, but 

in July 2021, nine months after eDNA sampling, five adult green crabs were recovered in in a 

neighboring channel to the site sampled for eDNA.  

 

iii. Robustness Assessments 
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The model refitting procedure using set values for the false positive probability p10 (p10 = 

0.05-0.55) indicated that some parameter estimates were sensitive to p10. Among the four sites 

with at least one positive eDNA detection and no crabs trapped over the sampling period (RAA, 

IND, KVI, JIM), all four µ estimates were sensitive to the value set for p10 during model refitting 

(Appendix S3: Figure S3a, Figure S3c). At these sites, lower values of p10 yielded higher 

estimates of µ, and this effect was strongest for sites with a low trapping effort (RAA, IND, 

KVI) (Appendix S3: Figure S3a, Figure S3c). All other µ estimates at the remaining 16 sites 

were insensitive to the set value of p10 (Appendix S3: Figure S3d). As expected with a lower p10 

and subsequently a more sensitive assay, lower set values of p10 yielded lower estimates of the 

scaling parameter, β (Appendix S3: Figure S3b). 

For the data cloning procedure, all parameter maximum likelihood estimates were within 

the 90% credibility intervals estimated by the Bayesian model. The median maximum likelihood 

estimates of µ (µMLE) were nearly identical to the median Bayesian estimates of µ (µBayes), 

although the median µMLE was slightly higher than the median µBayes at sites with a lower 

trapping effort (Appendix S3: Figure S4). The median maximum likelihood estimate of Φ was 

0.96, which was nearly identical to the median Bayesian estimate of Φ (0.94) (Table 1). The 

median maximum likelihood estimate of β was 2.3, and the median maximum likelihood 

estimate of p10 was 0.012. Both median MLE estimates of β and p10 were lower than their 

respective median Bayesian parameter estimates, yet the median MLE estimates were inside the 

Bayesian 90% credibility intervals (Table 1). 

 The joint model’s inferences were also consistent with parameters estimated from an 

occupancy modeling framework. The site-specific replicate-level probabilities of occupancy, 

pi,occupancy, were consistent with site-specific molecular probabilities of detection, pi,joint, from the 
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joint model (Appendix S3: Figure S5). A linear regression between the two parameters indicated 

that 71.8% of variation in pi,occupancy was explained by pi,joint (F-statistic: 45.9, p-value: 2.40e-6). 

  

iv. Quantifying uncertainty to find the value of eDNA information 

At sites with lower trapping effort, adding eDNA data narrowed the credibility intervals 

for estimated crab density, relative to a model using only trapping data. Moreover, the leading 

edge of an invasion, like the Central and South Sound, often features low densities of the 

invading species; here, the combination of eDNA and trapping data vastly reduced the 

uncertainty associated with low trapping effort in these cases (Figure 4). As the trapping effort 

decreased, the marginal benefit (ΔCV) of eDNA data increased exponentially (Figure 4), 

dramatically increasing the precision of green crab density estimates at sites along the invasion 

front and at sites characterized by low trapping efforts.  

To identify the relative sensitivities of the two sampling methods, we determined the 

sampling effort necessary to detect a green crab with 90% confidence, given the joint model’s 

estimated parameters. This sampling effort was calculated for a range of simulated crab 

densities, from 0.056 crabs/trap (median estimated µcritical) to 3.0 crabs/trap. The detection 

sensitivity -- the probability of capturing at least one crab in one trap or the probability of one 

true positive qPCR amplification in triplicate trials -- was higher for eDNA sampling than for 

trap sampling, suggesting that the information provided by one water bottle is slightly greater 

than the information provided by one trap (Figure 5).  

 

v. eDNA’s greatest marginal benefit at low species densities and trapping effort 
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 Simulations further indicated that the marginal benefit of eDNA data, measured as ΔCV, 

increased as trapping effort decreased for all simulated densities of green crab (Figure 6). 

Importantly, these information benefits tended to be highest at true crab densities (µsim) in the 

range 0.05 – 0.50 crabs/trap, and the information benefit decreased at crab densities higher and 

lower than this range (Figure 6).  

 Both the joint and trap-only models produced accurate estimates of green crab density in 

a diverse set of simulations. For scenarios where µsim > 0, 100% of simulation replicates yielded 

90% credibility intervals of density estimates that contained the true green crab density, µsim. For 

scenarios where µsim = 0, no simulation replicates yielded 90% credibility intervals of density 

estimates that contained the true green crab density, µsim. 

  

Discussion 

Many management and policy decisions have prominent economic and social 

consequences, particularly surrounding invasive or endangered species, which often occur at low 

densities. Finding the leading edge of an invasion front can correspondingly require government 

agencies and others to engage in high-cost sampling that nevertheless has little power to detect 

rare individuals. As eDNA comes to the forefront as a routine sampling technique that can 

ameliorate some of these difficulties, it is important to quantify the value of this new data stream 

and to adequately characterize the uncertainty associated with all kinds of environmental 

sampling. By jointly modeling eDNA and traditional (trap) data for the invasive European green 

crab, we (1) estimate the abundance of the species at its leading edge of invasion, (2) quantify 

uncertainty in both detection methods and show the marginal information benefit of an eDNA 
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data stream, and (3) offer a framework for integrating eDNA into existing data streams and 

survey programs.  

 

Improving interpretation of eDNA data  

Our quantitative approach builds upon previous work adapting occupancy modeling 

approaches to facilitate eDNA data interpretation (Griffin et al., 2019; Lahoz-Monfort et al., 

2016; Pilliod et al., 2013; Schmidt et al., 2013). These previous approaches suggest that there are 

two classes of sites—those that are occupied and those that are not—and crucially, that the 

probability of detecting a species is constant within a given ecological context. This assumption 

can be insufficient in the context of eDNA surveys, where local abundance can induce 

heterogeneity in detection probability (Altwegg & Nichols, 2019; Royle & Nichols, 2003; Royle 

& Dorazio, 2008). The joint model presented here uses the heterogeneity in molecular detection 

probability to estimate species density, rather than occupancy, and operates under the assumption 

that the probability of a true detection increases as species density increases.    

The joint model uses observations from two sampling methods, each generated 

independently from a shared underlying species density. The two data streams inform one 

another: the combined likelihood borrows strength from the sites with greater trapping effort 

over the sampling period to infer detection biases across all locations and to inform species 

density at data-limited sites. The model also reveals the relative sensitivities of the two sampling 

methods and the relative information contributions of eDNA data at varying trap sampling 

efforts. 

In practical application, environmental factors including flow rates, turbulence, 

temperature, water chemistry, and UV light can affect the dilution, persistence, and strength of 
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an eDNA signal (Andruszkiewicz et al., 2017; Barnes & Turner, 2016; Deiner & Altermatt, 

2014; Sansom & Sassoubre, 2017). Quantitatively modeling eDNA detections and integrating 

traditional and new sampling approaches helps to mitigate this challenge by capturing 

uncertainty in how eDNA detections arise from true species presence and density.  

To overcome challenges with parameter identifiability typical of hierarchical models of 

eDNA data (Griffin et al., 2019; Guillera-Arroita et al., 2017), the model uses a Bayesian 

framework and sets plausible bounds on the false positive probability as prior information. 

Recognizing the tendency for Bayesian priors to induce undue influence on the model’s 

inferences (Cressie et al., 2009; Lele & Dennis, 2009), we conduct robustness assessments to 

investigate the effect of prior assumptions. We find that our inferences are largely robust to prior 

specification (Appendix S3: Figure S3 and Figure S4); although at certain sites with a low 

trapping effort, there is not enough information in the data to limit the influence of the specified 

false positive probability prior (Appendix S3: Figure S3). 

Importantly, the joint model’s results can aid appropriate management responses after a 

molecular detection. In management contexts, positive eDNA detections are commonly used to 

prompt non-molecular sampling for corroboration (Sepulveda et al., 2020), as shown in the Great 

Lakes invasive carp eDNA surveillance program (Woldt et al., 2020). However, after a positive 

eDNA detection, managers must decide how intense (and therefore expensive) the management 

response must be, and it is often difficult or impossible to confirm a species’ absence with 

traditional methods (Morrison et al., 2007; Russell et al., 2017). Quantifying uncertainty for any 

given detection method encourages agencies to explicitly set tolerable risk levels for the presence 

of a target species.   
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The results of the joint model offer a framework for inferring a species density threshold, 

µcritical, at which a molecular detection is as likely to be a false positive detection as a true 

positive detection. This value provides an opportunity to investigate the probability that an 

eDNA detection reflects the true presence of a species. For example, two sites yielded one 

positive qPCR detection each, yet the median estimated crab densities are very near zero (0.0013 

and 6.5e-7 crabs/trap at Jimmycomelately creek (JIM) and KVI Beach (KVI), respectively). 

Given the combination of molecular and trapping data in hand, these detections are as likely to 

be false positives than true positives. Further detections by either method would change this 

interpretation, but the ability to quantify uncertainty in this way is valuable. 

 

Quantifying the practical value of eDNA information 

Our framework offers a way to fold genetic surveys into existing management practices, 

therefore moving the contribution of eDNA data to management practices from “potential” value 

to practical value. For the specific example of the green crab assay, the marginal benefit of 

eDNA data – measured as increases in the precision of species density estimates upon the 

addition of eDNA data – is highest at sites with low trapping effort, and this information benefit 

increases exponentially as traditional trapping effort decreases (Figure 4, Figure 6). Thus data-

limited applications particularly stand to gain from molecular surveys. 

Simulations identify a parameter space, or a combination of true green crab density and 

existing trapping effort, where the marginal benefit of eDNA information is highest. These 

simulations suggest that eDNA sampling is most useful at low trapping efforts and a green crab 

density of about 0.05 – 0.50 crabs/trap, a sampling combination in which a true molecular 

detection is likely, and a detection through baited trapping is unlikely. Importantly, as the true 
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green crab density falls below about 0.05 crabs/trap (where the true-detection rate (p11) falls 

below the false-detection rate (p10)), the information benefit of eDNA data decreases. Previous 

work faces similar challenges in detecting green crab eDNA at low densities with existing 

molecular assays, and suggested a different assay was more sensitive during green crab spawning 

periods (Crane et al., 2021).  

Therefore, the joint model not only indicates where the marginal benefit of eDNA 

sampling is highest, but also where marginal benefit of eDNA is negligible, which is valuable 

information for allocating limited monitoring resources. We find eDNA sampling is unlikely to 

improve management at locations with high trapping effort or a high species density (Figure 4, 

Figure 6) – situations in which managers essentially already have the information they seek. For 

example, eDNA samples were collected in Dungeness National Wildlife Refuge, an area rich in 

marine life that contains one of the world’s longest sand spits. The watershed in this area is also 

home of the Jamestown S’Klallam Tribe, providing abundant resources from its tidelands and 

marine waters (Jamestown S’Klallam Tribe, 2007). U.S. Department of Fish and Wildlife 

implements an intense removal trapping procedure in the national refuge. In 2020 in Graveyard 

Spit Channel (GSC), 1369 traps were set, and three green crabs were recovered. The 

combination of high trapping effort and inferred crab densities well below µcritical means eDNA 

sampling would be unlikely to improve the existing survey estimates at this site.  

The veracity of negative results are often of equal importance as confirmation of positive 

detections, and eDNA sampling has previously been used in species eradication campaigns 

(Carim et al., 2020; Davison et al., 2019; Larson et al., 2020). However, the sensitivity of the 

assay we tested here illustrates a case in which the similar rates of detection between traditional 
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and molecular sampling mean that it is difficult to confirm a species’ absence with either method 

(Morrison et al., 2007; Russell et al., 2017). 

Although costs of eDNA-based surveys tend to compare favorably with those of 

traditional capture-based methods (Biggs et al., 2015; Sigsgaard et al., 2015), future work should 

identify the survey regime that maximizes detection probability under a fixed budget. Previous 

cost-efficiency analyses find that eDNA is less cost-efficient at low sample numbers, since costs 

associated with initial investments in reagents and supplies for laboratory analysis are high 

(Smart et al., 2016). However, since traditional sampling requires repeat visits and more time- 

and labor-intensive sampling effort, eDNA sampling has lower field labor and transportation 

costs and can become more cost-effective compared to traditional sampling when examining a 

large number of sites (Khalsa et al., 2020). Such cost comparisons are critical when identifying 

the optimal allocation of survey effort to maximize detection, and future cost-efficiency inquiries 

should consider the role of site-specific characteristics that affect the relative costs of sampling 

methods. 

 

Increasing certainty at the green crab’s invasion front 

By contrast, sites with low trapping effort are likely to benefit from the additional 

information eDNA offers. In the context of green crab, the most notable example of eDNA 

data’s value at the invasion front is the estimation of a relatively high green crab density at a site 

well beyond green crab’s previously known distribution (Figure 2, Figure 3, Appendix S4: Table 

S4). By interpreting the pattern of eDNA signals, the joint model indicates green crab eDNA 

presence with relatively high certainty at Raab’s Lagoon (RAA) on Vashon Island, suggesting 

that the local species density is perhaps low and previously undetectable using traditional 
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monitoring methods implemented at a low effort. We estimate the green crab density at Raab’s 

Lagoon – one of the sites beyond the previously known invasion front – to be 0.16 crabs/trap 

(4.0e-61, 0.61 90%CrI). The probability that the green crab density is greater than the median 

µcritical, or the crab density at which the associated true probability of detection equals the 

estimated false positive probability, is 0.64 (Figure 2, Appendix S4: Table S4). This finding is 

consistent with studies showing that sufficient eDNA sampling applied across large geographic 

areas can reveal unexpected patterns and new occurrences of species missed by traditional 

approaches (Mckelvey et al., 2016; Tucker et al., 2016), and the Bayesian modeling framework 

allows these statements of new occurrences to be tempered by quantified uncertainty (Hobbs & 

Hooten, 2015). However, the model treats molecular detections and trapped adults as 

conceptually equivalent, with a joint estimate of species “density” in units of crabs per trap. This 

is a somewhat imprecise description insofar as molecular detections potentially include larval 

and dead individuals. Depending upon management priorities, detections of larval or dead 

individuals may (or may not) rise to the level of importance of live adult detections. Indeed, 

results of trapping at RAA and KVI in July 2021 suggest that these molecular detections may 

have been larvae, and to date, no adults have been captured at RAA, KVI, or neighboring sites in 

the South Sound through trapping efforts by WSG Crab Team, WDFW, and partners. 

 

False Positives and False Negatives 

 The fear of false positive detections is often cited as the primary hurdle for adopting 

eDNA approaches for species monitoring (Jerde, 2019). However, the term “false positive” can 

be misleading in the eDNA context (Darling et al., 2021): different mechanisms contribute to 

false positive errors, and we can distinguish between errant detection in an individual sample vs. 
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errant detection at an unoccupied site (Chambert et al., 2015; Darling et al., 2021; Guillera-

Arroita et al., 2017). Our model explicitly estimates a molecular false positive probability, which 

incorporates both the probability of a false positive sample and the probability of a false positive 

site through information included in the parameter’s prior distribution and unambiguous 

presence sites with a high trapping intensity. In this study, however, field negative controls 

(clean water collected using the same protocol and equipment as field samples) were not 

collected at all sites, and these negative controls are critical for detecting contamination and 

informing the false positive probability (Goldberg et al., 2016). Future work should include 

separate negative controls at each stage of the eDNA sampling process to help identify sources 

of contamination when it occurs and to properly model the false positive probability. 

Notably, our false positive probability does not include scenarios in which we detect 

nonviable organisms or larval individuals: these are true-positive detections of eDNA present at 

the sampled site. In a management context, molecular detection of larvae alone does not 

necessarily indicate a high probability of invasion. However, with an invasive species with high 

larval-dispersal potential, larval detection beyond the known invasion front has high value for 

management planning and can be used to prioritize areas for assessment and prospecting.  

False negative detections similarly erode an assay’s usefulness in eDNA work, as in 

every other sampling method (Goldberg et al., 2016; Hunter et al., 2019). PCR inhibition can 

mask even high eDNA copy numbers and thereby profoundly affects molecular detection 

estimates (Jane et al., 2015). For example, DNA extracted from turbid water often contains 

humic acid and tannin compounds, created through non-enzymatic decay of the organic material, 

and these compounds can inactivate DNA polymerase and inhibit the PCR amplification process, 

reducing PCR efficiency or causing PCR failure (Albers et al., 2013; Goldberg et al., 2016). No 
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samples included in this analysis were substantially inhibited, but it remains important to test for 

inhibition to guard against an inflated false negative rate in any molecular assay. 

 

Conclusion 

Given the limited resources available to State and tribal government agencies charged 

with controlling invasive species, there is significant value in identifying and implementing 

optimal invasive species management strategies. Applications of eDNA methods represent one 

of the most significant advances in invasive species surveillance in the recent decade, yet 

uncertainty inherent in eDNA sampling means managers are often hesitant to direct management 

actions based solely on molecular evidence. Although previous work identifies the potential for 

DNA-based methods to amplify the uncertainty already associated with invasive species risk 

assessment (Benke et al., 2007; Darling & Mahon, 2011; Sikder et al., 2006), here we 

demonstrate that eDNA increases certainty at data-limited locations, and we highlight scenarios 

under which eDNA sampling is most useful in the context of green crab management. The value 

of eDNA sampling at low species densities and data-limited areas has largely been discussed 

(Crookes et al., 2020; Suarez-Menendez et al., 2020; Villacorta-Rath et al., 2020), but here we 

provide a means to formally quantify this value. 

 The joint model aids eDNA data interpretation and contributes to a growing body of 

analyses providing frameworks for inferring confidence in patterns of eDNA detections (Furlan 

et al., 2016; Guillera-Arroita et al., 2017; Lahoz-Monfort et al., 2016). This approach also offers 

a means to combine eDNA and traditional monitoring methods to make more reliable inferences 

about data-limited sites and provides reassurance to managers and other stakeholders leery of 

adopting a new technology. While environmental DNA methods can support detection of 



   32 
 

 

invasive species at low abundances, improved statistical methods to interpret patterns of 

environmental DNA detections can empower informed management responses. 

 

 

Acknowledgements 

We would like to thank the three anonymous reviewers and the editors of Ecological 

Applications for their constructive feedback that improved the manuscript. This work was funded 

by a grant from Washington Sea Grant, University of Washington, pursuant to National Oceanic 

and Atmospheric Administration Award No. NA18OAR4170095. The views expressed herein 

are those of the authors and do not necessarily reflect the views of NOAA or any of its sub-

agencies. The trapping data used in this study was the product of a huge effort conducted by 

Washington Sea Grant (WSG) Crab Team, WA Department of Fish and Wildlife (WDFW), U.S. 

Department of Fish and Wildlife (USFWS), Jamestown S’Klallam Tribe, and Lummi Nation. 

Allen Pleus (WDFW) and Chelsey Buffington (WDFW) provided valuable management support 

and advice. Alex Stote (WSG), Amy Linhart (WSG), and Bethany McKim (USFWS) provided 

eDNA sampling assistance, and Neil Harrington (Jamestown S'Klallam Tribe) provided valuable 

insight into the history of green crab in Sequim Bay. Dr. Eily Allan and Dr. Zachary Gold 

provided encouragement and helpful comments on manuscript drafts, and Dr. Emily Jacobs-

Palmer provided helpful laboratory advice. Dr. Sarah Brown and Dr. Todd Seamons contributed 

to the study design and interpretation of results.  

  



   33 
 

 

References 

 

Abdi, H. (2010). Coefficient of Variation. In N. Salkind (Ed.), Encyclopedia of Research Design 

(Vol. 1, pp. 169–171). Sage. https://doi.org/10.1049/cp.2010.0161 

Albers, C. N., Jensen, A., Baelum, J., & Jacobsen, C. S. (2013). Inhibition of DNA polymerases 

used in q-PCR by structurally different soil-derived humic substances. Geomicrobiology 

Journal, 30, 675–681. 

Altwegg, R., & Nichols, J. D. (2019). Occupancy models for citizen-science data. Methods in 

Ecology and Evolution, 10(1), 8–21. https://doi.org/10.1111/2041-210X.13090 

Anderson, L. W. J. (2005). California’s reaction to Caulerpa taxifolia: A model for invasive 

species rapid response. Biological Invasions, 7(6), 1003–1016. 

https://doi.org/10.1007/s10530-004-3123-z 

Andruszkiewicz, E. A., Sassoubre, L. M., & Boehm, A. B. (2017). Persistence of marine fish 

environmental DNA and the influence of sunlight. PLoS ONE, 12(9), 1–18. 

https://doi.org/10.1371/journal.pone.0185043 

Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications for 

conservation genetics. Conservation Genetics, 17(1), 1–17. 

https://doi.org/10.1007/s10592-015-0775-4 

Beauclerc, K., Wozney, K., Smith, C., & Wilson, C. (2019). Development of quantitative PCR 

primers and probes for environmental DNA detection of amphibians in Ontario. 

Conservation Genetics Resources, 11, 43–46. 

Behrens Yamada, S., & Hunt, C. (2000). The Arrival and Spread of the European green crab, 

Carcinus maenas in the Pacific Northwest. Dreissena!, 11(2), 1–7. 



   34 
 

 

Beng, K. C., & Corlett, R. T. (2020). Applications of environmental DNA (eDNA) in ecology 

and conservation: Opportunities, challenges and prospects. In Biodiversity and 

Conservation (Vol. 29, Issue 7, p. 2121). Springer Netherlands. 

https://doi.org/10.1007/s10531-020-01980-0 

Benke, K. K., Hamilton, A. J., & Lowell, K. E. (2007). Uncertainty analysis and risk assessment 

in the management of environmental resources. Australasian Journal of Environmental 

Management, 14(4), 241–247. https://doi.org/10.1080/14486563.2007.9725173 

Bergshoeff, J. A., McKenzie, C. H., & Favaro, B. (2019). Improving the efficiency of the Fukui 

trap as a capture tool for the invasive European green crab (Carcinus maenas) in 

Newfoundland, Canada. PeerJ, 7, e6308. 

Biggs, J., Ewald, N., Valentini, A., Gaboriaud, C., Dejean, T., Griffiths, R. A., Foster, J., 

Wilkinson, J. W., Arnell, A., Brotherton, P., Williams, P., & Dunn, F. (2015). Using 

eDNA to develop a national citizen science-based monitoring programme for the great 

crested newt (Triturus cristatus). Biological Conservation, 183, 19–28. 

https://doi.org/10.1016/j.biocon.2014.11.029 

Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., Yu, D. W., & 

de Bruyn, M. (2014). Environmental DNA for wildlife biology and biodiversity 

monitoring. Trends in Ecology and Evolution, 29(6), 358–367. 

https://doi.org/10.1016/j.tree.2014.04.003 

Carim, K. J., Bean, N. J., Connor, J. M., Baker, W. P., Jaeger, M., Ruggles, M. P., McKelvey, K. 

S., Franklin, T. W., Young, M. K., & Schwartz, M. K. (2020). Environmental DNA 

Sampling Informs Fish Eradication Efforts: Case Studies and Lessons Learned. North 



   35 
 

 

American Journal of Fisheries Management, 40(2), 488–508. 

https://doi.org/10.1002/nafm.10428 

Carim, K. J., McKelvey, K. S., Young, M. K., Wilcox, T. M., & Schwartz,  michael K. (2016). A 

protocol for collecting environmental DNA samples from streams (Gen. Tech. Rep. 

RMRS-GTR-355; p. 18 p.). U.S. Department of Agriculture, Forest Service, Rocky 

Mountain Research Station. 

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, 

M. A., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. 

Journal of Statistical Software, 76(1). https://doi.org/10.18637/jss.v076.i01 

Chambert, T., Kendall, W. L., Hines, J. E., Nichols, J. D., Pedrini, P., Waddle, J. H., Tavecchia, 

G., Walls, S. C., & Tenan, S. (2015). Testing hypotheses on distribution shifts and 

changes in phenology of imperfectly detectable species. Methods in Ecology and 

Evolution, 6(6), 638–647. 

Crane, L. C., Goldstein, J. S., Thomas, D. W., Rexroth, K. S., & Watts, W. (2021). Effects of life 

stage on eDNA detection of the invasive European green crab ( Carcinus maenas ) in 

estuarine systems. Ecological Indicators, 124, 107412–107412. 

https://doi.org/10.1016/j.ecolind.2021.107412 

Cressie, N., Calder, C. A., Clark, J. S., Ver Hoef, J. M., & Wikle, C. K. (2009). Accounting for 

uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical 

modeling. Ecological Applications, 19(3), 553–570. 

Cristescu, M. E., & Hebert, P. D. N. (2018). Uses and misuses of environmental DNA in 

biodiversity science and conservation. Annual Review of Ecology, Evolution, and 

Systematics, 49, 209–230. https://doi.org/10.1146/annurev-ecolsys-110617-062306 



   36 
 

 

Crookes, S., Heer, T., Castañeda, R. A., Mandrak, N. E., Heath, D. D., Weyl, O. L. F., MacIsaac, 

H. J., & Foxcroft, L. C. (2020). Monitoring the silver carp invasion in Africa: A case 

study using environmental DNA (eDNA) in dangerous watersheds. NeoBiota, 56, 31–47. 

Darling, J. A., Jerde, C. L., & Sepulveda, A. J. (2021). What do you mean by false positive? 

Environmental DNA, 3, 879–883. 

Darling, J. A., & Mahon, A. R. (2011). From molecules to management: Adopting DNA-based 

methods for monitoring biological invasions in aquatic environments. Environmental 

Research, 111(7), 978–988. https://doi.org/10.1016/j.envres.2011.02.001 

Darling, J., Jerde, C., & Sepulveda, A. (2021). What do you mean by false positive? 

Environmental DNA, 00(1), 1–5. 

Davison, P. I., Falcou-Préfol, M., Copp, G. H., Davies, G. D., Vilizzi, L., & Créach, V. (2019). Is 

it absent or is it present? Detection of a non-native fish to inform management decisions 

using a new highly-sensitive eDNA protocol. Biological Invasions, 21(8), 2549–2560. 

https://doi.org/10.1007/s10530-019-01993-z 

Deiner, K., & Altermatt, F. (2014). Transport distance of invertebrate environmental DNA in a 

natural river. PLoS ONE, 9(2). https://doi.org/10.1371/journal.pone.0088786 

Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière-Roussel, A., Altermatt, F., Creer, 

S., Bista, I., Lodge, D. M., de Vere, N., Pfrender, M. E., & Bernatchez, L. (2017). 

Environmental DNA metabarcoding: Transforming how we survey animal and plant 

communities. Molecular Ecology, 26(21), 5872–5895. https://doi.org/10.1111/mec.14350 

Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using 

environmental DNA from water samples. Biology Letters, 4(4), 423–425. 

https://doi.org/10.1098/rsbl.2008.0118 



   37 
 

 

Furlan, E. M., Gleeson, D., Hardy, C. M., & Duncan, R. P. (2016). A framework for estimating 

the sensitivity of eDNA surveys. Molecular Ecology Resources, 16(3), 641–654. 

https://doi.org/10.1111/1755-0998.12483 

Gabry, J., Stan Development Team, Andreae, M., Betancourt, M., Carpenter, B., Gao, Y., 

Gelman, A., Goodrich, B., Lee, D., Song, D., & Trangucci, R. (2018). shinystan: 

Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian 

Models (2.5.0) [R]. https://cran.r-project.org/web/packages/shinystan/index.html 

Gallego, R., Jacobs-Palmer, E., Cribari, K., & Kelly, R. P. (2020). Environmental DNA 

metabarcoding reveals winners and losers of global change in coastal waters. 

Proceedings of the Royal Society B: Biological Sciences, 287(1940), 20202424. 

Glude, J. B. (1955). The effects of temperature and predators on the abundance of the soft-shell 

clam, Mya arenaria, in New England. Transactions of the American Fisheries Society, 84, 

13–26. 

Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt, J., & Waits, L. P. (2013). Environmental 

DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus 

antipodarum). Freshwater Science, 32(3), 792–800. https://doi.org/10.1899/13-046.1 

Goldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thomsen, P. F., Murphy, M. A., 

Spear, S. F., McKee, A., Oyler-McCance, S. J., Cornman, R. S., Laramie, M. B., Mahon, 

A. R., Lance, R. F., Pilliod, D. S., Strickler, K. M., Waits, L. P., Fremier, A. K., 

Takahara, T., Herder, J. E., & Taberlet, P. (2016). Critical considerations for the 

application of environmental DNA methods to detect aquatic species. Methods in 

Ecology and Evolution, 7(11), 1299–1307. https://doi.org/10.1111/2041-210X.12595 



   38 
 

 

Grason, E. W., McDonald, P. S., Adams, J., Litle, K., Apple, J. K., & Pleus, A. (2018). Citizen 

science program detects range expansion of the globally invasive European green crab in 

Washington State (USA). Management of Biological Invasions, 9(1), 39–47. 

https://doi.org/10.3391/mbi.2018.9.1.04 

Griffin, J. E., Matechou, E., Buxton, A. S., Bormpoudakis, D., & Griffiths, R. A. (2019). 

Modelling environmental DNA data; Bayesian variable selection accounting for false 

positive and false negative errors. Journal of the Royal Statistical Society. Series C: 

Applied Statistics, 377–392. https://doi.org/10.1111/rssc.12390 

Guillera-Arroita, G., Lahoz-Monfort, J. J., van Rooyen, A. R., Weeks, A. R., & Tingley, R. 

(2017). Dealing with false-positive and false-negative errors about species occurrence at 

multiple levels. Methods in Ecology and Evolution, 8(9), 1081–1091. 

https://doi.org/10.1111/2041-210X.12743 

Guo, J., Gabry, J., Goodrich, B., & Weber, S. (2020). Rstan (2.12.2) [Computer software]. 

https://cran.r-project.org/web/packages/rstan/index.html 

Harper, K. J., Anucha, N. P., Turnbull, J. F., Bean, C. W., & Leaver, M. J. (2018). Searching for 

a signal: Environmental DNA (eDNA) for the detection of invasive signal crayfish, 

pacifastacus leniusculus (Dana, 1852). Management of Biological Invasions, 9(2), 137–

148. https://doi.org/10.3391/mbi.2018.9.2.07 

Hayes, K. R., Cannon, R., Neil, K., & Inglis, G. (2005). Sensitivity and cost considerations for 

the detection and eradication of marine pests in ports. Marine Pollution Bulletin, 50(8), 

823–834. https://doi.org/10.1016/j.marpolbul.2005.02.032 



   39 
 

 

Hinlo, R., Gleeson, D., Lintermans, M., & Furlan, E. (2017). Methods to maximise recovery of 

environmental DNA from water samples. PLoS ONE, 12(6), 1–22. 

https://doi.org/10.1371/journal.pone.0179251 

Hobbs, N. T., & Hooten, M. B. (2015). Bayesian Models: A Statistical Primer for Ecologists. 

Princeton University Press. 

Hunter, M. E., Ferrante, J. A., Meigs-Friend, G., & Ulmer, A. (2019). Improving eDNA yield 

and inhibitor reduction through increased water volumes and multi-filter isolation 

techniques. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-40977-w 

Hunter, M. E., Oyler-McCance, S. J., Dorazio, R. M., Fike, J. A., Smith, B. J., Hunter, C. T., 

Reed, R. N., & Hart, K. M. (2015). Environmental DNA (eDNA) sampling improves 

occurrence and detection estimates of invasive Burmese pythons. PLoS ONE, 10(4), 1–

17. https://doi.org/10.1371/journal.pone.0121655 

Jamestown S’Klallam Tribe. (2007). Protecting and restoring the Waters of the Dungeness 

(CWA 319 Plan). 

Jane, S. F., Wilcox, T. M., Mckelvey, K. S., Young, M. K., Schwartz, M. K., Lowe, W. H., 

Letcher, B. H., & Whiteley, A. R. (2015). Distance, flow and PCR inhibition: EDNA 

dynamics in two headwater streams. Molecular Ecology Resources, 15(1), 216–227. 

https://doi.org/10.1111/1755-0998.12285 

Jerde, C. L. (2019). Can we manage fisheries with the inherent uncertainty from eDNA? Journal 

of Fish Biology, November 2019, 341–353. https://doi.org/10.1111/jfb.14218 

Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). “Sight-unseen” detection 

of rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150–157. 

https://doi.org/10.1111/j.1755-263X.2010.00158.x 



   40 
 

 

Jo, T., Ikeda, S., Fukuoka, A., Inagawa, T., Okitsu, J., Katano, I., Doi, H., Nakai, K., Ichiyanagi, 

H., & Minamoto, T. (2021). Utility of environmental DNA analysis for effective 

monitoring of invasive fish species in reservoirs. Ecosphere, 12(6), e03643. 

Keller, A. 2021. Keller_et_al_model_simulations_figures. figshare. Journal contribution. 

https://doi.org/10.6084/m9.figshare.15117102.v2  

Kelly, R. P., Port, J. A., Yamahara, K. M., Martone, R. G., Lowell, N. C., Thomsen, P. F., Mach, 

M. E., Bennett, M., Prahler, E., Caldwell, M. R., & Crowder, L. B. (2014). Harnessing 

DNA to improve environmental management. Science, 344(6191), 1455–1456. 

Khalsa, N. S., Smith, J., Jochum, K. A., Savory, G., & López, J. A. (2020). Identifying Under-Ice 

Overwintering Locations of Juvenile Chinook Salmon by Using Environmental DNA. 

North American Journal of Fisheries Management, 40(3), 762–772. 

Kuehne, L. M., Ostberg, C. O., Chase, D. M., Duda, .J.J., & Olden, J. D. (2020). Use of 

environmental DNA to detect the invasive aquatic plants Myriophyllum spicatum and 

Egeria densa in lakes. Freshwater Science, 39(3), 521–533. 

Lacoursière‐Roussel, A., &  Deiner, K . (2021). Environmental DNA is not the tool by itself. 

Journal of Fish Biology, 98(2), 383–386. https://doi.org/10.1111/jfb.14177 

Lahoz-Monfort, J. J., Guillera-Arroita, G., & Tingley, R. (2016). Statistical approaches to 

account for false-positive errors in environmental DNA samples. Molecular Ecology 

Resources, 16(3), 673–685. https://doi.org/10.1111/1755-0998.12486 

Larson, E. R., Graham, B. M., Achury, R., Coon, J. J., Daniels, M. K., Gambrell, D. K., Jonasen, 

K. L., King, G. D., LaRacuente, N., Perrin-Stowe, T. I. N., Reed, E. M., Rice, C. J., Ruzi, 

S. A., Thairu, M. W., Wilson, J. C., & Suarez, A. V. (2020). From eDNA to citizen 



   41 
 

 

science: Emerging tools for the early detection of invasive species. Frontiers in Ecology 

and the Environment, 18(4), 194–202. https://doi.org/10.1002/fee.2162 

Lele, S. R., & Dennis, B. (2009). Bayesian methods for hierarchical models: Are ecologists 

making a Faustian bargain. Ecological Applications, 19(3), 581–584. 

Lele, S. R., Dennis, B., & Lutscher, F. (2007). Data cloning: Easy maximum likelihood 

estimation for complex ecological models using Bayesian Markov chain Monte Carlo 

methods. Ecology Letters, 10, 551–563. 

Lele, S. R., Moreno, M., & Bayne, E. (2012). Dealing with detection error in site occupancy 

surveys: What can we do with a single survey? Journal of Plant Ecology, 5(1), 22–31. 

Lodge, D. M., Williams, S., MacIsaac, H. J., Hayes, K. R., Leung, B., Reichard, S., Mack, R. N., 

Moyle, P. B., Smith, M., Andow, D. A., Carlton, J. T., & McMichael, A. (2006). 

Biological Invasions: Recommendations for U.S. Policy and Management. Ecological 

Applications, 16(6), 2035–2054. 

Longmire, J., Maltbie, M., & Baker, R. J. (1997). Use of “lysis buffer” in DNA isolation and its 

implications for museum collections. Occasional Papers, Museum of Texas Tech 

University, 163, 1–6. 

MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., & Franklin, A. B. (2003). 

Estimating site occupancy, colonization, and local extinction when a species is detected 

imperfectly. Ecology, 84, 2200–2207. 

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., & Langtimm, C. A. 

(2002). Estimating site occupancy rates when detection probabilities are less than one. 

Ecology, 83, 2248–2255. 



   42 
 

 

McClintock, B. T., Bailey, L. L., Pollock, K. H., & Simons, T. R. (2010). Unmodeled 

observation error induces bias when inferring patterns and dynamics of species 

occurrence via aural detections. Ecology, 91(8), 2446–2454. 

Mckelvey, K. S., Young, M. K., Knotek, W. L., Carim, K. J., Wilcox, T. M., Padgett-Stewart, T. 

M., & Schwartz, M. K. (2016). Sampling large geographic areas for rare species using 

environmental DNA: A study of bull trout Salvelinus confluentus occupancy in western 

Montana. Journal of Fish Biology, 88(3), 1215–1222. https://doi.org/10.1111/jfb.12863 

Miller, D. A., Nichols, J. D., McClintock, B. T., Campbell Grant, E. H., Bailey, L. L., & Weir, L. 

A. (2011). Improving occupancy estimation when two types of observational error occur: 

Non-detection and species misidentification. Ecology, 92(7), 1422–1428. 

Mize, E. L., Erickson, R. A., Merkes, C. M., Berndt, N., Bockrath, K., Credico, J., Grueneis, N., 

Merry, J., Mosel, K., Tuttle-Lau, M., Von Ruden, K., Woiak, Z., Amberg, J. J., 

Baerwaldt, K., Finney, S., & Monroe, E. (2019). Refinement of eDNA as an early 

monitoring tool at the landscape-level: Study design considerations. Ecological 

Applications, 29(6), e01951. 

Morrison, S. A., Macdonald, N., Walker, K., Lozier, L., & Shaw, M. R. (2007). Facing the 

dilemma at eradication’s end: Uncertainty of absence and the Lazarus effect. Frontiers in 

Ecology and the Environment, 5, 271–276. 

Natural England. (2017). Wildlife Licensing Newsletter [Technical Report]. 

O’Donnell, J. L., Kelly, R. P., Shelton, A. O., Samhouri, J. F., Lowell, N. C., & Williams, G. D. 

(2017). Spatial distribution of environmental DNA in a nearshore marine habitat. PeerJ, 

2017(2), 1–24. https://doi.org/10.7717/peerj.3044 



   43 
 

 

Orzechowski, S. C. M., Frederick, P. C., Dorazio, R. M., & Hunter, M. E. (2019). Environmental 

DNA sampling reveals high occupancy rates of invasive Burmese pythons at wading bird 

breeding aggregations in the central Everglades. PLoS ONE, 14, e0213943. 

Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2013). Estimating occupancy and 

abundance of stream amphibians using environmental DNA from filtered water samples. 

Canadian Journal of Fisheries and Aquatic Sciences, 70(8), 1123–1130. 

https://doi.org/10.1139/cjfas-2013-0047 

R Development Core Team. (2021). R: a language and environment for statistical computing. R 

Foundation for Statistical Computing. http://www.R-project.org 

Renshaw, M. A., Olds, B. P., Jerde, C. L., McVeigh, M. M., & Lodge, D. M. (2015). The room 

temperature preservation of filtered environmental DNA samples and assimilation into a 

phenol—Chloroform—Isoamyl alcohol DNA extraction. Molecular Ecology Resources, 

15(1), 168–176. 

Rose, J. P., Wademan, C., Weir, S., Wood, J. S., & Todd, B. D. (2019). Traditional trapping 

methods outperform eDNA sampling for introduced semi-aquatic snakes. PLoS ONE, 

14(7), 1–17. 

Roussel, J. M., Paillisson, J. M., Tréguier, A., & Petit, E. (2015). The downside of eDNA as a 

survey tool in water bodies. Journal of Applied Ecology, 52(4), 823–826. 

https://doi.org/10.1111/1365-2664.12428 

Roux, L. D., Giblot‐Ducray, D., Bott, N. J., W iltshire, K . H., Deveney, M . R., W estfall, K . M ., 

& Abbott, C. L. (2020). Analytical validation and field testing of a specific qPCR assay 

for environmental DNA detection of invasive European green crab ( Carcinus maenas ). 

Environmental DNA, December 2019, 1–12. https://doi.org/10.1002/edn3.65 



   44 
 

 

Royle, J.A., & Nichols, J. D. (2003). Estimating Abundance from Repeated Presence-Absence 

Data or Point Counts. Ecology, 84(3), 777–790. 

Royle, J. A., & Dorazio, R. M. (2008). Hierarchical Modeling and Inference in Ecology: The 

Analysis of Data from Populations, Metapopulations and Communities. Academic Press. 

Russell, J. C., Binnie, H. R., Oh, J., Anderson, D. P., & Samaniego-Herrera, A. (2017). 

Optimizing confirmation of invasive species eradication with rapid eradication 

assessment. Journal of Applied Ecology, 54(1), 160–169. 

Sansom, B. J., & Sassoubre, L. M. (2017). Environmental DNA (eDNA) Shedding and Decay 

Rates to Model Freshwater Mussel eDNA Transport in a River. Environmental Science 

and Technology, 51(24), 14244–14253. https://doi.org/10.1021/acs.est.7b05199 

Schmelzle, M. C., & Kinziger, A. P. (2016). Using occupancy modelling to compare 

environmental DNA to traditional field methods for regional-scale monitoring of an 

endangered aquatic species. Molecular Ecology Resources, 16(4), 895–908. 

https://doi.org/10.1111/1755-0998.12501 

Schmidt, B. R., Kéry, M., Ursenbacher, S., Hyman, O. J., & Collins, J. P. (2013). Site occupancy 

models in the analysis of environmental DNA presence/absence surveys: A case study of 

an emerging amphibian pathogen. Methods in Ecology and Evolution, 4(7), 646–653. 

https://doi.org/10.1111/2041-210X.12052 

Schütz, R., Tollrian, R., & Schweinsberg, M. (2020). A novel environmental DNA detection 

approach for the wading birds Platalea leucorodia, Recurvirostra avosetta and Tringa 

totanus. Conservation Genetics Resources, Table 1, 1–3. https://doi.org/10.1007/s12686-

020-01143-x 



   45 
 

 

Sepulveda, A. J., Hutchins, P. R., Forstchen, M., Mckeefry, M. N., & Swigris, A. M. (2020). The 

Elephant in the Lab (and Field): Contamination in Aquatic Environmental DNA Studies. 

Frontiers in Ecology and Evolution, 8, 609973. 

Sepulveda, A. J., Nelson, N. M., Jerde, C. L., & Luikart, G. (2020). Are Environmental DNA 

Methods Ready for Aquatic Invasive Species Management? Trends in Ecology and 

Evolution, 35(8), 668–678. https://doi.org/10.1016/j.tree.2020.03.011 

Sigsgaard, E. E., Carl, H., Møller, P. R., & Thomsen, P. F. (2015). Monitoring the near-extinct 

European Weather Loach in Denmark based on environmental DNA from water samples. 

Biological Conservation, 183, 46–52. 

Sikder, I. U., Mal-Sarkar, S., & Mal, T. K. (2006). Knowledge-based risk assessment under 

uncertainty for species invasion. Risk Analysis, 26(1), 239–252. 

Smart, A. S., Weeks, A. R., van Rooyen, A. R., Moore, A., McCarthy, M. A., & Tingley, R. 

(2016). Assessing the cost-efficiency of environmental DNA sampling. Methods in 

Ecology and Evolution, 7(11), 1291–1298. 

Solymos, P. (2019). dclone: Data Cloning and MCMC Tools for Maximum Likelihood Methods 

(2.3-0) [R]. https://cran.r-project.org/web/packages/dclone/index.html 

Stratton, C., Sepulveda, A. J., & Hoegh, A. (2020). msocc: Fit and analyse computationally 

efficient multi-scale occupancy models in r. Methods in Ecology and Evolution, 11(9), 

1113–1120. 

Suarez-Menendez, M., Planes, S., Garcia-Vazquez, E., & Ardura, A. (2020). Early Alert of 

Biological Risk in a Coastal Lagoon Through eDNA Metabarcoding. Frontiers in 

Ecology and Evolution, 8(9). 



   46 
 

 

Tan, E. B. P., & Beal, B. F. (2015). Interactions between the invasive European green crab, 

Carcinus maenas (L.), and juveniles of the soft-shell clam, Mya arenaria L., in eastern 

Maine, USA. Journal of Experimental Marine Biology and Ecology, 462, 62–73. 

Thomsen, P. F., & Willerslev, E. (2015). Environmental DNA - An emerging tool in 

conservation for monitoring past and present biodiversity. Biological Conservation, 

183(December), 4–18. https://doi.org/10.1016/j.biocon.2014.11.019 

Tucker, A. J., Chadderton, W. L., Jerde, C. L., Renshaw, M. A., Uy, K., Gantz, C., Mahon, A. 

R., Bowen, A., Strakosh, T., Bossenbroek, J. M., Sieracki, J. L., Beletsky, D., Bergner, J., 

& Lodge, D. M. (2016). A sensitive environmental DNA (eDNA) assay leads to new 

insights on Ruffe (Gymnocephalus cernua) spread in North America. Biological 

Invasions, 18(11), 3205–3222. https://doi.org/10.1007/s10530-016-1209-z 

Ulibarri, R. M., Bonar, S. A., Rees, C., Amberg, J., Ladell, B., & Jackson, C. (2017). Comparing 

Efficiency of American Fisheries Society Standard Snorkeling Techniques to 

Environmental DNA Sampling Techniques. North American Journal of Fisheries 

Management, 37(3), 644–651. 

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-

one-out cross-validation and WAIC. Statistics and Computing, 27, 1413–1432. 

Villacorta-Rath, C., Adekunle, A. I., Edmunds, R. C., Strugnell, J. M., Schwarzkopf, L., & 

Burrows, D. (2020). Can environmental DNA be used to detect first arrivals of the cane 

toad, Rhinella marina, into novel locations? Environmental DNA, 2(4), 635–646. 

Volkmann, H., Schwartz, T., Kirchen, S., Stofer, C., & Obst, U. (2007). Evaluation of inhibition 

and cross-reaction effects on real-time PCR applied to the total DNA of wastewater 

samples for the quantification of bacterial antibiotic resistance genes and taxon-specific 



   47 
 

 

targets. Molecular and Cellular Probes, 21(2), 125–133. 

https://doi.org/10.1016/j.mcp.2006.08.009 

Wimbush, J., Frischer, M. E., Zarzynski, J. W., & Nierzwicki-Bauer, S. A. (2009). Eradication of 

colonizing populations of zebra mussels (Dreissena polymorpha) by early detection and 

SCUBA removal: Lake George, NY. Aquatic Conservation: Marine and Freshwater 

Ecosystems, 19(6), 703–713. https://doi.org/10.1002/aqc.1052 

Woldt, A., McGovern, A., Lewis, T. D., & Tuttle-Lau, M. (2020). Quality Assurance Project 

Plan: EDNA Monitoring of Bighead and Silver Carps (pp. 1–91). U.S. Fish and Wildlife 

Service, USFWS Great Lakes Region 3. 

Yoccoz, N. G. (2012). The future of environmental DNA in ecology. Molecular Ecology, 21(8), 

2031–2038. https://doi.org/10.1111/j.1365-294X.2012.05505.x 

  



   48 
 

 

 

Tables 

Table 1: Parameters estimated by the joint model, with the median and 90% credibility intervals 

(highest density interval calculation) of the 10,000 sampling iterations. Φ is the overdispersion 

parameter in the negative binomial distribution of species counts (Eq. 1), β is the coefficient 

relating species density to true positive molecular detection probability (Eq. 2), and p10 is the 

false positive molecular detection probability (Eq. 3). 

 

Parameter Median Estimate 90% Credibility Interval 
Φ 0.94 0.72, 1.2 
β 2.5 1.6, 3.5 

p10 0.022 0.0095, 0.048 
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Figure Captions 

Figure 1: Environmental DNA and trapping detections of green crab over the sampling period.  

Purple dots indicate sites where green crabs were trapped and eDNA samples yielded at least one 

positive detection. Yellow dots indicate sites where no green crabs were trapped and eDNA 

samples yielded at least one positive detection. Grey dots indicate sites where no green crabs 

were trapped and eDNA samples yielded no positive detections. Sampled sites are labeled with 

site ID and polygons are colored by region. Inset map indicates study location in the context of 

the United States. 

 

Figure 2: Median of the joint model’s posterior distributions of estimated green crab density at 

the 20 sampled sites. Colors indicate the median green crab density (crabs/trap) estimated by the 

joint model. The red lines designate previously identified invasion fronts in 1999, 2012, and 

2020. 

 

Figure 3A: Posterior distributions of estimated green crab density at each of the twenty sampled 

sites. Red boxplots are the estimated densities using the joint model, incorporating both trapping 

and eDNA information, and blue boxplots are the estimated densities using the trap-only model, 

using only trapping information. The lower and upper hinges correspond to the posterior data’s 

first and third quartiles. B. Subset of sites where the joint model’s estimated median green crab 

density ranges between 4.4e-8 and 0.1 crabs/trap. 

 

Figure 4: The difference in the coefficient of variation (ΔCV) in the posterior distributions of the 

estimated green crab densities between a model using only trapping information (trap-only 
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model) and a model using both trapping and eDNA information (joint model). The gray line 

designates the best-fit trend line, ΔCV = 54*exp(-2.94*log(traps)). 

 

Figure 5: The sampling effort necessary to detect a green crab with 90% confidence. Lines 

designate the type of sampling effort (water bottles, traps). 

 

Figure 6: The marginal benefit of eDNA data at each simulated true crab density and trapping 

effort. The information benefit is represented by the difference in the coefficient of variation 

(ΔCV) in the posterior distributions of the estimated green crab densities between a model using 

only trapping information (trap-only model) and a model using both trapping and eDNA 

information (joint model). Each grid cell represents the mean ΔCV for all simulation scenario 

replicates. Note: Both the x and y axes are presented on a non-linear scale. 
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