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ABSTRACT

Spatietemporal modeling estimates a species distribution function thestametarvariation population density
over space and time. Recent studies show that the approach may predifsepateh hotspots in species
distribution, but have not addressed whether seasonal hotspots aableeising commonly available fishery
data. In this study, we analysed the seasonatgraporal distributionf pelagic sharks in the western and
central NorthrPacific using fishery catch rateba generalized linear mixed model with sgatioporal effects.
Different spatial distribution patterns were observed betweeharospecies. The hotspots of shortfin mako
(SFM) appeared in the vicinity of the coastal and offshore waters otdafdaeKuroshicOyashio transition
zone (TZ), while the hotspots of blue shark (BSH) were widely distriboLtteglareas from the TZ to the watsr
theEmperor Seamouhain SFM distribution changes seasonally with clear +zaitith movement, which
follows higher sea.surface temperatures (SST). Hovpeatredspring and summer water temperature was still
colderthan those in fall and wintdaut not as cold as for BSH, which did not show seasortiakouth
movement. BSH exhibits seasonaleastt movement apparently unrelated to temperaturspatiafishing
effortby season.generally follows the seasonal movement of temperature possigyafkimore vulnerable
to the fishenghan BSHThese findings could be used to reduce the castua bycatch sharks and to better
manage the spatial distributioffishingfor targeted sharks.

KEYWORDS: blue shek, hotspotsshortfin mako, spatitemporal distributioyspatietemporal modetemplate

model builder
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INTRODUCTION

Spatietemporal patterns of areas of high fish density (also called hotspetbgea estimated using
fisherydependent datand distribution mode{Suet al, 2011; Changt al, 2012; Cambiet al, 2013; Cosandey
Godinet al, 204; Yasudaet al, 20L4;Wardet al, 2015; Thorsoat al, 2016. Distribution models linked to
environmental factorg particular, sea surface temperature (3% demonstrated the importance of the role
thatthe environmenplaysin determininggatial patterné~elipeet al, 2011; Eriksenet al, 2012; Howell and
Auster,2012; Siderst al, 2013)A growing body okvidenceexists that links shifts in distribution to temperature
increases (e.g. climate chang®r(yet al, 2@5; Kishiet al, 2009 Cheungetal., 201QKishi et al, 2010
Cheunget al, 2013Itoet al, 2013 Yoonet al, 2015. Species temperatypeeferencehave been attributetb
highersurvival andeproductive succesamet al, 2008).

Species distributiomodels estimate a distribution function wigeh be linked to environmental
information tgorovide informatioron habitat An understanding of the spatial distribution of a species and any
potential environmental drivers can provtaescientific basier habitat protection and fishery managertiedt
goes beyond simple catch linfi@hanget al, 2012; Warett al, 2015).Extension of simple spatial mositel
includespatietemporamodellingallows forestimaibn ofthe temporalariation in a poputn range and density
Spatiaitemporal.medels can be used to estimate population abundance indices usisigtistica tools such as
likelihood functions and sampling desigRstitgas1998; Bez, 2002; Nishida and Chen, 2004:Breta and
Niklitschek, 2007; Kristensest al.,2014;Petitgast al, 2014; Thorsoet al, 201%, ¢). Recent studigSheltoret
al., 2014, Thorsestal, 201%H) showthat the approach may yield more precise, biologically reasonable, and
interpretable estimates of abundancedbammory usedmethods such as a generalized linear model (GLM,;
McCullaghandNelder, 198pand spatially stratified generalized linear mixedeh(GLMMs; Stroup, 2012 In
addition, spatigiemporal models magducebias associated with sample seleciat fill in the spatial gaps
associated witfishendependent dafglvalteret al, 2014 Thorsoret al, 2016.

Spatietemporatonsiderations are especially important éagic sharks because tiafign exhibit
spatial patterns.insize and age (Nakano, 1994; Nakano and SeKIr2@88patterns arise from differences in the
spatial distribution-of different cohorts, perhajsrag from the biological partitioning of available habitat. Such
segregation is thought to reduce intraspecific cannibalisnoammkttion (Nakano, 1994). Shortfin mako (SFM)
(Isurus oxyrinchysand blue shark (BSHyfionace glaucpare widelycaughin theNorth PacifiqHiraokaet al,
2016; Ohshimet al, 201§. Juveniles and subadults of these species (maig§dBem precaudal length
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(PCL)0-20 years old for SFM and-@80 cm PCL/@ years old foBSH) are primarily caught by Japanese
commercial shallovget longliners in the western and central North Pacific. The spatialitisisiof these
commercial fisherieshange seasonattprresponding tthe seasonal movement of the target spediegrily
swordfish Kiphias gladiuj(Ishimura and By, 2013; Hiraokat al, 2016) AlthoughBSHis occasionallalso
targeted, SFM iBxclusively anontarget bycatch speciésthe North Pacifichie standardized catch stéBSH
arehigher tharthoseof SFM (Clarkeet al, 2013), indicatinghat either the population sizeR$His larger than
that of SFM or the SEM is less likely to be caught in commercial fiskarg Thecommerciafishery dataovers
a wide range afreas (245°N and 133-180°) and seasomspvidingenoughnformationto estimate seasonal
changes in the species distribution function for juveniles arabisits of SFM anBSHin the western and central
North Pacific.

Previous studies (Hiraokdaal, 2016; Ohshimet al, 2016) have attemptedsiandardize CPUE BISH
and SFMusing thecommercial fisheries datdiraokaet al (2016)andOhshimeet al (2016) usedtandard
methods suchas GLMor generalize@dditivernodel (GAM; Wood, 200% Recent developmentsspatio
temporaimodelling such as thoggoposed byrhorsoret al (201%), may provide an improvement over
conventional timeseries and spatially stratified mod@sause éstimatethe density in unsampledeady
imputation (Carruthert al, 2011) Accounting for unsampled statiamgoroviding mae information to poorty
sampled areas mbglpreduce biases caused by the spatial and temporal heteragjditfish and fishery.
SFpatiotemporal modelling magisoimprovethe proportionalitpetweerCPUE and trupopulatiorabundance
by allowing for proper areas weighting of the index rather than data \g@ighithhoc area weighitigatare
common irtypicalGlM CPUE analyses.

In this study;we sought to answer the following questionshi)s the spatial distribution &Mand
BSH, and does it vary predictably among seasongti@)spatial distribution associated with seasonal changes
in SST?(does temperature explain seasonal variation in distribution, or ia urstantial component of seasonal
distribution shift theis unexplained by temperaturef)d (Sareseasonal patterns stable enough to recommend
spatial management that changes arseagspnt® protect bycatch shark species? We addressed these questions
by applying a spatittmporal regression approach usirggeneralized linear mixed model to generate spatial maps
of the distribution et.eatch rates and to fill in spatial gaps of theyilependent catch rate. We then identified
potential hotspots of the pelagic sharks in the western and centidPadmiit Ocean and compared the spatio
temporal distributions of targeted and-temgeted sharks with SST.
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MATERIALSAND METHODS

Data sources

The available data covered wide areas of the western and central Nirifirigat). The SSTh these areas

ranged between 0°C and3(Qsee hitps://jpodaac.jpl.nasa.gov /dataset/NCRMRblendGLOB-AVHRR_Ol,
accessed8Jan2017). ' The original SST data hasesolution of 0.25 x 0.25 degree square per day. The data were
averaged by year and threenth quarters with a resolution of 1 x 1 degree square. The region of threandster
centralNorth Pagiit was broadly defined as the Oyashio (cold water) Current, the Kiwessmowater) Current,

the KuroshieDyashio transition zone (TZihd Mixed water regionBif. 1), which is one of the main oceanic
features of the North Pacific (Roden, 1991, Yastidg 1996200Q Yoshinariet al, 2001; Inouet al, 2003

Yasuda, 2003).. The Kuroshio and Oyashitentsneet in the Pacific east of Japan and a coropieanic

feature associated with warm and cold fronts and eddies of various scateiiagipedZ and Mixed water region
(e.g, Reid,1965; Kawai, 1972; Hasunuma, 1978he western North Pacificereforgorovides an important

habitat for many species of epipelagic nektonic fishesquids that are highly migratory between subtropical and
subarctic areas (Pearey, 1991). The Emperor Sea@iminis located in the central North Pacific{86°N and
approximately 170°E), representing another oceatirdebat has a high potential for biological resources due to
the interaction.of ocean currents and complex topography (Boehlert, 1986, 1988asams (quarters (Qp1)
were defined asdollows: Q1 was spring fiéamto Mar; Q2 was summer frodyor. to Jury Q3 was fall from Jul

to Sep and Q4 was winter fro@ct to Dec.

Weanalyzedatch and effort data of Japanese shalletdongliners operating in the North Pacific (north
of the equator) from20160 2014 to estimate the seasonal digidh of pelagic sharks in recent years. Data from
these years can provitheestimates of spatiemporal distribution for the species. Thdagetet data used in this
study included information on species of sharks, catch number, amowt ¢fefhter of hooks), number of
branch lines between floats (hooks between floats: HBF) as a proxy frgjiggiration, and location (latitude
and longitudgof set, with a resolution of 1 x 1 degree square. Only the sisaltalata were used in the analysis.
The shallowset datgs usedecause fishermen change the depth of the gear to change the target sjigcies, and
identified by theaumber of HBERwhich determines the fishitgpth (Nakanet al, 1997). We defined the
shallowset fisheryby.the use afanall number of HBF (8 hookd. The hooks of the regular longline gear are
estimated to hang at the depth around 50 to 120 m (8talKi977).

Spatietemporal model

This article is protected by copyright. All rights reserved



143 We developed a model that accounts for both seasonal and interaraduiliiznmarthe distribution of shark

144  species in the Pacific Ocean, while accounting for differencasplisg intensity between locations, seasons and
145  yearsWe also included linear and quadratic terms for SST as spatial covaiiettesemtassumed to impact

146  dersity. We used ahierarchical spaisnporal model for this task, so that we could explicitty decomposecearia
147  into components representing amgagr and withiryear variation. We then used the model to predict density at
148  unsampled locations and timiesprovide a beststimate of the distribution of species. Sgatioporal modelling

149  of CPUE datassumethat species density at nearby locations should have similar déinséyesduring each

150  time interval. The correlation between statistical stefititade and longitude) in a given time interval (governed
151 by fixed effects that are estimated from the degglhen used to estimate catch rates in a period (year and quarter)
152 for all stations, including stations that do not have data in a given pegidioel\compagkhese predictions with

153  temperature datafor each species, to evaluate whether each specgsehaisite preferences and also what

154  regions of the Pacific each species prefers during each season.hAltieviays analyses have ussioy

155  dependent catch rate data for species distribution modelling@iergoret al, 2016, this study is the first in our

156  knowledge to model both withiand amongyear (i.e., seasonal and interannual) shifts in distribution usiig spat
157  temporal models for fishedependerdata.

158

159  Model description

160  The spatigemporal model estimated thengityd (S t, g) in each statios(latitude and longitude with a resolution
161  of 1 x 1 degree'squarggarquartet (signifying a threemonth quarter, whete= 1 in signifies Q1 2010 arnd 20

162 signifies Q4014)and quarteq (signifying a threemonth quarter, wherg= 1 in signifies Q1 and=4in

163  signifies Q4)Wemedelled the temporal variation at the scalenahidh intervals, given that both species showed

164  strong variable/distributions among seasons and years. iaohystarquarterand quartenad the density:

165 d(s,tyq) =exp (do(t, q) +y(s) +6(s,t) + w(s,q) + Z’,Zl Bjx; (s, t)), @
166  whered, (t, q) represents temporal variation (the intercept for eaclyyeget and quartey), y (s) represents
167  spatial variation (the average density in statietative to the average statiofl).s, t) andw (s, q) represents

168  spatictemparal variation (additional variation in density for@tetand yeaquartett, and for statiosand quarter

169 g, respectivelyafter accounting for purely spatial and temporal variato; represents the impact of

170 covariatg with valuex; (s, t) on density for statian andyearquartert. Spatial variatiory (s) is modeled as a
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171 Gaussian random field &), whichreduceso a multivariate normal distribution (MVN) when evaluated at a

172 finite set of stations (Thorsanal, 201%):

173 y~MVN(O, 0-); ’ Rspatial)1 (2)

174 whereg, is the marginal standard deviati@®)of spatial variatiory and R g4+ I Spatial correlation for the
175  random field:

176 Rgpatiar(s,s’) = Matérn (@) ®

177 wheresands are the location of 2 spatial statianglefines the rate at which correlations drop with increasing
178  distance, and Matérrgg)|) is the Matém correlation function, which calculates the conreladitweely at

179  stationsands given theirdistancegs|. We used the Matérn correlation function becpresgous research

180  demonstrated how the probability of GRFs could be calculated effigmeth this assumption (Diggle and

181  Ribeiro, 2007; Ro&reta and Niklitschek, 200Zndgrenet al, 2011). GRF ia convenient statistical approach
182  forimplementing a-2limentional smoother for a response variable (in this case, catapasiaédimensions

183  (Thorsoret al, 201%). The spatiadlemporal variatiorq (s, t), wasmaodeled by combining the GRF spatial

184  variation with firstorder autoregressive process for temporal variation at each site:
185 VeC(G)NMVN(O' 092 ) Rspatial X RARl)a (4)
186  wherevec(0)is the vectorized value of matfixoy is the margingbD of spatietemporal variatio®, & is the

187  Kronecker product wheredfis anmx n matrix andB is ap x g matrix, then the Kronecker proddct®) B is the

188  mpx ngblock matrix:

apq B e alnB

189 AR B= ‘ P, ©)
a.1B - a;,B

190  andR g, is thetemporal component of variaimcgpatistemporal variatio®:

191 Rup (67 = P't_t/ , 6)

192  wherep is aparameter governing autocorrelation &tidi$ the difference in time among samples in-geartet.

193  The other spatidémperal variationy (s, g) wasmodeled by the same method8 &s t). In the following, we

194 included a quadratic effect of sea surface temperate, SSit;(e.2 wherex, (s, t) is average SST and

195 x,(s,t) is SSTFsquared for that station and ygearter). We estimat@ separat8Dfor spatial ¢,,) and spatio

196 temporal ¢y, and o, ) components, bestimatedhe same decorrelation distancgfér the processes, using the
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197  implicit assumption that dynamiageredefined by a “characteristic scale” tHefineddecorrelation distance for
198  both.Following the parameterization from Lindgedral (2011), we estimat@ magnitude parametgfor each

199  spatial and spatiemporal process, and the corresponaliayinal SDasthen calculated as:
200 o, =1/,/4nnZ, )

201  whereothermarginal SIS (i.e., a4, and o,,) werecalculated similarly (fromy, and 7,,).

202 Expectedcatcty is a function of density arfidhing effortf; (number of hooksy;” = d(s;, t;, q;)f;,
203  andwas then compared with the observed catch (in nungderghei-th observation, in statian yearquartet;,
204  and quarter;. Count data of the sharks typically include many observations witresehicaod a few observations
205  with large values when the sharks were aggregated (Bigeihyvd.999; Ward and Myers, 2005). We used a

206  negativebinomial'distribution:
207 ci~NegBin(ci, c:(1+ ay) + ¢;%a,), )]
208  whereNegBIn(xy) is a negative binomial distribution with meaand variancg (Lindén and Méantyniemi, 2011).

209  We usdthis mearvariance parameterization (rather than rosoramon versions) so that we can estimate two

210 parameters (rather than just one) to govern the-vagance relationship. Parameters representing temporal
211 variation(ch),spatial'covariand@ andr,, ), spatiatemporal covariancg, 1., pe, andp,,), density covariate

212 (prandp,) and residual variatioa{ands,) were estimated as fixed effects while integrating across random effects
213 representing spatial (station) and sgatioporalstation and yeaguarter, and station and quarter) variations (see
214  Supporting infofmation). This integral was approximated using the eapiacoximation, and the fixed effects

215  were estimated.using,gradient information as provided by Template Middel BTMB, Kristensen, 2015

216  whichis an R paekage (R Core Team, 2013) for fitting statisticaMat@dile models to data. It was inspired by

217  ADMB (Fournieret al, 2012). The details of TMB are described on the websdittp:/Mmmw.admb

218  project.org/developersitmbl/, acces2@dan 2017). Further details regarding GRF estimation can be found in

219  Thorsoret al (201%,0).

220 After estimating the fixed effects (year and quarter, eff@$@fand parameters for the randorec)

221 by maximizing the marginal likelihood of the data, the distributiorisFdtand BSH were predicted from the fixed
222  and randontefects. Average quarterly andgearter specific spatial distributions of standardized CPUEs for both
223 species were comeal with those of effort. When vaizing distribution maps in each quarter, we al@slapped

224  theisoclines of the mean observed SST to examine the relationship betveegisttiftogions and seasonal and

225  annual changes of the mean observedI8$Efollowing, we preseetland interpretdmaps of density that
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226  include the effect of fixed effects (e.g., temperature) and randais éffg., residual spatial variation). We defined
227  “preferred habitat” as the locations where the predicted catch rate wastgmediter mean value of each shark.

228  Herethe average catch rate for each quarter was calculated as:

229 (s, )=z Xi1 Yt 1(q = ¢)d(s,t,q), ©

230  whered(s, t, q)'is defined in Eq. (1) (s, q) is the average density at locatidior quarter; averaged over the
231 five instances of that quarter within the 20 modeled inteavals(q = ") is an indicator function that equals one

232 if the quartey associated with tirageriodt is Q and zero otherwise, and where wetgtithe density relativie its
233 average for a given gquarter

* E(S'CI)
234 d*(s, q)=rr——.
(s, ) (-xdsa) 9
S
235 Model convergence was confirmed using the hessian matrix (confinatitiget hessian is positive

236 definite) and by ensuring that the maximum absolute valuefiithgradien of parameters was less thadOQL.

237  The changes inpredicted catch rates were compared among multiple Tabéiels (\We used Akaike

238 Information Criterien(AIC; Akaikgl973) to identify which model had greater support given available data: this
239  modelselectionis appropriate given that TMB implements maximum margitiabiée:estimation. We also

240  interpreedthe importance of including or excluding temperature by recording how mirtivkien of

241  temperature decreasesiti@rginal SDof spatihor spatietemporal variation.

242

243 RESULTS

244 The most complicated model {h2) included purely spatial variation (variation indogpected density among

245  stationghat wasconstant over timgpatietemporalvariation among seasgpariation in logexpectd density that
246  varied by quartgrandspatietemporalariation among all periogegariation in logexpected density for every

247  combination of/quarter and yiahIC identified tis saturated modas the most parsimonious model (Tabknt)

248 the maximungradientwas less th@®001 {he4.73E-08for BSH,1.3&-05for SFM). Including the seasonal

249  component for'spatiemporal variation substantially decreasedrihginalSD of spatial and spatiemporal

250  variation among all periods.g, compare the M (or M-11) with M-6 (or M-12) for two species)Ve therefore

251 usalthesaturated model (M2) to predict the spattemporal maps and to elucidate the seasonal changes of their
252 preference temperature.

253 Seasonal changes of the spatial digidb of SFM showed that there was a strong relationship between
254  the predicted catch rate and SIS resulted in the seasonal pattern of rsaitith movemer(ieft panels in FigR,

255  also see the supplementary matefi&k locations of hotspots were coastal and offshore waters of Japangand thos
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catch rates were high (catch rat fimeghe average) in the water of-25°C throughout all seasdfeft panels in
Fig. 2).For Q1, the predictezhtchrates were higftatch rate =23 times the averayji wide ranges of southern
waters (approximately 385°N and 148E—-180). For Q2, the predicted catch rates were (ofich rate =24

times the averagjm the,coastal waters of Japan, and hotspots appeared along with the-Ky@sihio TZ (33
37°Nand 14615@°E),For Q3, high catch ratesitch rate =-Htimes the averayjerere observed in the coastal
waters of Japan(330°N and 140145°E). For Q4, the hotspdtsitch rate =-23times the averagjappeared in the
offshore areas withan' expansiothie southern and eastern waters4@MN and 1481 70°E).The seasonal pattern
of northrsouth movement was consistent over the years in our study (Fig. 3).

Unlike SFM,' BSH did not show a strong relationship between the predictedataiand SSmid
panels irFig. 2,alsosee the supplementary majefiatontrast, BSH showed seasonaheast movement with
a more westward distribution in Q1 and B@wever, he eastvest movement was less consistent over the years
in our study (Fig. 4)The predictd catch rates throughout all seasons werddaitgin rate =24times the averayje
in the northern waters; wheine SST was 325°C (mid panels ifrig. 2. However, the locations of hotspots
varied throughaut:thewestemnd central North PacifiEor Q1, the predicted catch rates were (ugteh rate =
2-3times the averayjm the offshore waters along with the KurosBigashio TZand Mixed water region (30
37°N and 145163°E) and around the water of Emperor Seanthaih(35-42°N and 168-18C). For Q2,
hotspotgcatch rate=-24times the averayevere observed in nearly the same areas as those in Q1. For Q3,
hotspotgcatch rate =-24times the averayevere mainly observed around the watdt@EmperoiSeamount
Chain(3540°N and 16& -180). For Q4, hotspotgatch rate =-2times the averajevere observed in the
offshore waters-alengwith the Kuroshio extensior383N and 148163°E) and water GtheEmperor
Seamounthain(35-40°N and 168—-18C). The areas of high fishing effarere not necessarily the same as
areas of high catch rates for both species throughout all segbbpsugels in Figf).

The predicted catch rates (relative value to mean value) agairssid@s®H that the SST associated with
high catch rates(mere than 1) vabgadeason and by species (Fig. 5). The high catch rates of SFM were observed
in the water where the SST was bet@%C and 270°C throughout all seasons, while the high catch rates of
BSH were observed in the water where the SST was betw¥ialed2&°C (Table 2, Fig. 5). The high catch
rates of SFMin Q1, Q2, Q3, and Q4 were observed in the water where thesSSF1ia8C, 10.6-21.5C,
14.9-270°C, and 0.4 238°C, respectively (Table 2). The high catch rates of BSH in Q1, Q2, Q3, and Q4 were
observed inthe water where the SST was-83.FC, 65-204°C, 14.9-265°C, an®.4-232°C, respectively
(Table 2). These findings indicated that high catch rates of both shésealn similar wide ranges of SST;
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286 however, the seasonal density plots in Fig. 5 and Table 2 showed that SFi teyedrmer water in

287  comparison with the BSH (i.e. the ranges of SST for SFMWa215°C from the 2575% quantile and those
288  for BSH was 18-198°C). The seasonal density plots also showed that those weikeslyesieewed for all plots
289  of both sharks'especially for SFM (Fig. 5). These findings suggesiSeiithand BSH preferred to stay in the
290 relatively warmer water in each season, and SFM prefesracewater than BSH.

291 SFMweredistributedn thesouthern water around-&Y°Nin Q1 and Q2 when the water temperature
292 was cooler in the northern water arourfiNA@eft panels irFig. 2 andrig. 3) However, the water temperature
293  experienced by SFMwas still cooler in Q1 and Q2 than in the othdrthelf/ear (able 2 andFig. 5). By

294  contrastBSH stayed in the north throughout the yema panels in Fig2andFig. 4 and therefore experienced
295  muchlower temperatures than SFM during Q1 andi@Blé 2 andFig. 5).

296 Comparing the predicted densifyooth species against S&8i$o showed that SFM preferiegrmer

297  water than BSH (see Supporting information).

298

299 DISCUSSON

300 A clear relationship between the seasonal distributibetvio sharkspeciesnd SST exists, but the relationship
301 differed between the two species. SFM preferred the teenpetats of approximately-425°C, making

302 latitudinal movements matching seasonal changes in SST. A similaegnefage in temperatures was

303 documented bigai et al (2015) for juvenile SFM caught by Japanese driftnet and lonsfieeds. Casey and
304  Kohler (1992) documented narrower range eR27C, based on a large tagging study in the western North
305  Atlantic. Within the'preferred temperature, our restitsved SFM to be distributed evenly in both coastal and
306 offshore areas inithewestern North Pacific. This region is chattayihigh productivity, due to the thermal
307 fronts of the Kuroshi@yashio transition zone (Pearcy, 1991; Yastidh 1996; Yasudaet al, 2000; Yasuda,

308  2003). Fronts where warm water and cold water mix, may cause prey to agg@yainental shelves,

309 concentrating predators (Youeial, 2001).

310 BSH were.also found in association with SST. In contr&ttd BSH were foud in association with
311  colder water andisshowed seasonal changes in their spatial distritartiangitudinal direction. Ohshinabal

312 (2016) reported thattiSTat with elevated catch BSHwascolder than those &M, and their results were
313  similar to oursOur study relied odata from dargescale fishery, but more direct tagging observatiodsih

314  and temperatuseccupied byelagic sharks has been studiesialler scale Musylet al (2011) investigated the
315  movement patterns usipgpup satellite archival tags (PSATSs) and showedBtBtand SFM in the Pacific
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Ocean experiencedhvade range of temperatures¥8%f temperatures occupied were from26/C and 9.4
25.0C, respectively). Queire al (2010) recorded the movemeanitBSHin the northeastern Atlantic Ocean
using satellitdinked archival transmitters and showed that vertical movements rammgetddrsurface to a
maximum depth 6f696 m, and water temperatures varied frof© 1024.6C. BSHalso demonstrated a \wid
vertical distribution, inhabiting depths from the surface to a maximum of 1460 sparing water temperatures
from 7.2C1t0.27.2°C (Queiroet al, 2012) Stevens (201Gtudiedhe movements atkhaviouof tenBSHoff
eastern Australia.and shoviket BSH were mainly in 1#200°C. These results supported the temperature
ranges of SFM@arBiSHin our study(Table 2)

Thespatiafishing effortwas distributegh therangeof SST (5-25°C where the mean SST across the
waterwas lower in/QLantligher in Q3 (right panels in Fig. 2). The exceptitthe spatiatiistributionof fishing
effortin the southern'water in @&s caused by Japanese shadietiongliner mainiyargetingswordfish in this
area (Hiraokat al, 2016. The spatial distribution of BSH, which is one of the target spiscemposed tiollow
the distribution of the fishing effort, howeviais wasotobserved in Q1 and Q&id and right panels Idg. 2).

By contrastthe spatialdistribution tifie prelicted CPUES fdBFM followed the spatial distribution of the fishing
effort (eft and right panels iFig. 2). SFMwasthereforanore sensitive to the changes in the SST thanti&$H
resulted in the.clear seasonal nedhbth movemerDur results suggesl that latitudinal shifts in fishing effort and
SFM nominal CRUE coincided, but there was no clear relationship bétigle@ominal CPUE and high fishing
effort longitudinally (see Supporting information). This was becauspakistemporal modelingagoroach can
reduce the biases of the sp#gimporal distribution of catch rate through the standardization of the nofiisial C
Understanding offishery data is complex (Thoeta, 2016, which emphasizes the need for properly
accounting for petential biases before drawing conclusions.

The spatigemporaimodeling approach differs from the more commonly used methods of analyzing
fishery CPUE data (Desidrased, GLM, GLMM) by explicitly considering the spatial and temporalation of
the data (Petitgas,.2001; Shettbal, 2014; Thorsost al, 201%). A primary concern is the spatial correlation
associated with.regions of high or low abundance. Perhaps the greatest advhatsgatiemporal modeling
approach is the ahility to estite density in unsampled regions by imputation (Carnathalr2011). However,
as Thorsoet al (2015) noted, this method may result in biased estimates when fishing effoel&ed with
population abundance (Diggieal, 2010). For bycatch spies, such as SFM, this may not be a problem, while
BSHmay be a problem becalg8His occasionally one of the target species of the Japanese-skallow

longliners, as previously described. Therefore, the dpatjooral modeling approach may eweight data in
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areas with a large amount of data (i.e., areas with targeted fislaitigg to a model that expilicitly accounts for
preferential sampling. However, commercial catch and effort datareetly the only source of information to
map spatigerrporal distribution of pelagic shaik the western and central North Pacific. In addition, the spatio
temporal modeling approach is a better way to reduce the bias anca/eaiused by the fisheries targeting areas
of high abundance than a nonspatial modeling approach. In future work, largestamties in the western and
central North Pacific will be necessary to verify the accuracy of the estiwfahe spatideemporal modeling
approach.

Generalized lineanixed modahg commonly bases the AIC on tmarginal likelihood with the
random effects integrated puhich may lead model selectiorctwoose modelacluding more covariates than is
optimal (Greven.and KneiB010). Hoetinget al (2006) demonstrated that the atigd AIC for a spatitemporal
model was superior ta the standard approach of ignoring spatial cormeltiie selection of explanatory variables.
However, we used a standard AIC because the corrected AIC is sitméastémtiard AIC for large sampies.

The environmeat changesuch as@SSTcan have a large influence on catchalfitpner, 2004,
Maundetet al, 2006)..Several past studies took the impact of environmental variahle€8HUJE of blue sharks
into accountBigelowet al, 1999; WalslandKleiber, 2001; Carvalhet al, 2011; Mitchelet al, 2014.

However, the ehoice of explanatory variables in developing fishery ocqamogetationships depends on the
objectives of the.analysis and the spatiotemporal scales of availallereawital data, e,jime-series
measurements or loigrm (climatological) averageBigelowet al, 1999. Our study used environmental data
(i.e. SST) for 1% 1 spatial and yemiarter temporal scales to clatifg spatial distribution associated with seasonal
changes iISST

The methed proposed here can identify hotspots of pelagic sharks, and thisanfasmsgiful not only
for the management of target species but also to reduce the capture cakchdiscies (Cosand€yodinet al,
2014; Warcet al, 2015). Time and area closures are one of the effective methods tothmtigagects of
bycatch (Dunet al,2011; Cambiet al, 2013), and is particularly effective at protecting vulnerable litanist

stages without overly.constraining a directed fishery.

The marginal'SD of spatial random variation of the best moeiERfMrent to zero for the SFM and
dropped in halffer BSH in comparisons with the model without the station atet caradom effé¢M-11) (Table
1). Thesdindingssuggestethatthe station and quarter random effect had a profound implication, particularly fo
SFM.Theseasonal nortouth movement of SFid maintaira constant rangg SST may have a large impant
the resultd/Vhen SST terms were included in the models (cortigareodels M5 andvi-6 withmodels M11 and
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376  M-12respectivelyfor both speciethe marginal SBof all randomvariatiors droppedor both speciedut more for
377  BSH (Table 1). These findings suggestedgpatiaitemporal variatiosfor BSHweremore influencetty SSTthan
378  those for SFMTheseasonal eastest movement of BSM/ichis apparentiyinrelated to SSay have a large
379  impacton the resultsecausthe mean SST at the high predicted catchwatasioredifferentamong seasons for
380  BSH than for SEM-(Table 2).

381 In thissstudy, werdidnfocuson the annual changes in the abundance. Bdiexilaing the annual

382  abundance inderquireschoosingvhethetthe abundance index is calculated based on the average over all
383  quarters as derived from a specifquarter. If the seasonal chasigehe spatial distributioarenot

384 fundamentally environmentally driven, then it might be reasonable to ereesagmwhen all the fish are in the
385 areato calculate the ind&ke seasonal changes in the predicted CPUES for SFM were more stéiiséan
386  BSH exemplified by aemarkable peak predicted CPUE observed in Q 2 for BSH (see Supporting

387  information).lt may be thaBSH shiftedtheir spatial distribution to northern areas abovél4d other seasons

388  resulting in highepredicted CPUE in Q2 than in other sead8msed on these arguments researchers attempting
389  to produce a standardizaioLindance index of SFiould consider using ordysingle quarter arick BSHan

390 average over all quarters.

391 Spatial. and.temporal changes in the sex, size and age structurepiiét®p is an important factor in
392  abundance indexes because blue sHatkg evidence of size (Nakano and Nagasawa, 1996) and sex segregation
393 (ratio ofBSH male:female, 1.00 : 0.34) (Muciergtsl, 2009).Several previous studidgistenseret al, 2014;

394  Nielseret al,2014; Thorsoet al, 2015a; Jansest al, 2016 Kai et al, 2017 developed the spatiemporal

395  dynamics modelgincorporating the sizstructured populations. In this study, however, we did not explicitly
396  account for the age orlength in the estimated species distribution funcligioh of theex and length data into
397 the model might;permit future analyses to estimate size asgesgfic distributions, and we recommend this line
398  of future researchite-potentially account for the impact of changesamddengtkstructure on the distributidor
399  each species. Additionally, seageand sizespecific relative abundance might provide useful information to
400 understand the life history and stock condition, such as pupping ground, feedidggebstrength of the

401  recruitment. Moreover, it is paible to show the yearly changes of sex angjaggfic spatisemporal maps, as
402  well as annualktrends of the standardized catch rate by sex and age loissesaps might provide the

403  geographical segregation of species by sex, age and size clasgearfito year, and the trends of@giass

404  relative abundance might provide the yearly changes of recruitmesatiiurctu
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An alternative explanation ftire seasonal pattern in spatial distribution is the segregationotisHes.
A schemati®@SHmigration model suggested by Nakano (1994) demonstrated that the nursery laczdasan
the northern areas, and adults mainly occimegLiatorial water to the south of the nursery area. Additionally, it is
reasonable that the parturition and nursery grounds are locageslibdrctic boundary, where there is a large prey
biomass for young shark. In particular, the surroundinfsetEmperor Seamou@irainand other complex
topography may be the sites of aggregations of many highly migrateeg spach as tunas, sharks and marine
mammals that feed on prey aggregations due to high productivity (Boehledt9B834f the migration of the
BSH and SFMiin the north Pacific is not determined by physical envirohimientaation such agesST, lut
by yearly migration route programmed a priori and navigated astronomicadigiiteecould be only a psetido
correlation. We could answer this kind of questions by comparing thgugetar specific change of the migration
root by using the PSATsature work Shiftsin fishermen behaviors targeting bycatch species in some seasons
arepossibilites AiresdaSilvaet al (2008) documented shifting fishing effort toward pelagic sharksiogcurr
during times oflow swordfish abundance in Azorean waters. A similar hataagdbeen hypothesized for some
Japanese longliners when the catch rate of swordfish is low.

In conclusion; SFM and BSH chaddjeeir spatial distribution by seaspossiblyin accordance with
changes in the SSut two species showelfferent spatial distribution patterihe hotspots of shortfin mako
(SFM) appearedin‘the vicinity of the coastal and offshore waters of lisgagwvith KuroshieOyashio transition
zone (TZ), while the hotspots of blue sharkHp&ere widely distributed in the aress the TZ to the water of
TheEmperor Seamou@hain SFM fundamentally chandéheir seasonal distribution latitudinal direction
between north and'sewthd maintained higher SST than BSH, while BSH fundametttalygd their seasonal
distribution longrtudinally between east and west in the northernwiatierapparently unrelated to SST and
maintainedower SST than SFMBFM plainly prefer to stay in slightly higher SST aroune28C, while BSH
prefer to stay in slightly lower SST arounea@°C.The spatial fishing effort by season generally follows the
seasonal movement of temperature possibly making SFM more vulndiabfeskery than BSH. These findings
could be used to.reduce the capture risk of byshtrks and to better manage the spatial distribufishiog for
targeted sharks:
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Tables

Table 1. Summary of the model selection information for two species from twelveamaigiiding the catch rate

predictor as random effect and sea surface temperature (SSTlee ofiparameters, the degarthe

reduction in AIC (AAIC) from the best-fitting model, maximum gradient, marginal standard deviation (SD) of

spatial variation and spatiemporal variatiog M-7 for shortfin mako, M7 andM-10 for blue shark erenot

converged and not shown in the valgesy rows)

Marginal SD Marginal SD

Number of Maximum Marginal SD  of spatio- of spatio-
SpeciesModel Catch rate predictors of random effect (RE) parameters Deviance AAIC gradient ofs_pzfltial temporal temporal
variation (year-quarter) (quarter)
variation variation
Shortfin mako
M-1  Nul 22 16706 831 <0.0001
M-2 Station 24 16374 503 <0.0001 0.706
M-3 Year-quarter and station 25 15937 69 <0.0001 0.925
M-4 Station + Quarter and station 26 15987 120 <0.0001 0.001 0.94¢
M-5 Station + Year-quarter and station 26 15921 54 <0.0001 0.320 0.844
M-6 Station/4 Quarter and station + Year-quarter and station 28 15875 13 <0.0001 0.0003 0.655 0.54
M-7 SST 24 0.578
M-8 Station + SST 26 16273 407 <0.0001 1.251
M-9 Year-quarter and station+ SST 27 15913 49 <0.0001 0.888
M-10 Stationi+ Quarterjand station + SST 28 15974 112 <0.0001 0.001 0.95¢
M-11 Station + Year-quarter and station + SST 28 15898 35 <0.0001 0.314 0.811
M-12 Station=Quarterand station + Year-quarter and station + SST 30 15858 0 <0.0001 0.00004 0.646 0.51
Blue shark
M-1  Null 22 31195 2383 <0.0001
M-2  Station 24 29437 629 <0.0001 1.024
M-3 Year-quarter and station 25 28910 104 <0.0001 1.100
M-4 Station + Quarter and station 26 29105 302 <0.0001 0.433 0.97:
M-5 Station# Year-quarter and station 26 28844 41 <0.0001 0.567 0.764
M-6 Station #Quarter and station + Year-quarter and station 28 28812 13 <0.0001 0.237 0.627 0.61
M-7 SST 24 0.009
M-8 Station+ SST 26 29425 621 <0.0001 0.821
M-9 Year-quarterand station+ SST 27 28889 87 <0.0001 0.966
M-10 Station + Quarter and station + SST 28 0.012
M-11 Station+ Year-quarter and station + SST 28 28824 24 <0.0001 0.471 0.722
M-12 Station+ Quarter.and station + Year-quarter and station + SST 30 28796 0 <0.0001 0.200 0.608 0.t

Table2. Quantiles’of sea surface temperaturenft@re 50% is the median temperature, 0% is the lowest

temperature, and,100% is the highest temperature) of the preferredftsiiotifironako and blue sharks

(defined as locations where the predicted catch rate relative value ta@imea @ach shHawas more than 1.0).

Sea surface temperatli€)
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0% 25% 50% 75% 100%

Shortfin Mako

Quarter 1 9.9 16.3 178 19.0 21.8
Quarter 2 10.0 16.8 186 19.7 215
Quarter 3 149 20.3 22.7 24.9 270
Quarter 4 104 18.1 205 225 238
All quarters 9.9 175 19.2 215 270
Blue shark

Quarter 1 6.3 115 138 158 19.1
Quarter 2 6.5 128 14.7 169 204
Quarter 3 149 198 218 236 26.5
Quarter 4 94 16.1 18.1 20.1 23.2
All quarters 6.3 139 16.7 198 26.5
FigureL egends

Fig. 1. Map of schematic Kuroshio (warm water) and Oyashio (cold water) suiderdshieOyashio Transition
Zone (TZ) Mixedwater regiotetween subarctic current and Kuroshio extension, and Emperor Seahaaunt

in the western and central North Pacific.

Fig. 2. Seasonal changes of the spatial distributions of predictedteathtieeits averagéor shortfin mako and
blue shark (left and.mid figuresContours denote the isothermal lines of sea surface temperatiég( a0
plot thenumber-of heok8ogscale)representing the distribution of available data (right figures).

Fig. 3. Time (garseasen) specific changes of the spatial distributions of predictedabatlativeits average
(logscalejor the data of shortfin mako. Contours denote the isothermal lines ofseatsmperature (°C) and
blue, green, arange, brown, and red limdisate5°C, 10°C, 15°C, 20°C, andZ5 respectivelyThe figures were
plotted using the values derived fr&ie (1).
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Fig. 4. Time (yeaseason) specific changes of the spatial distributions of predictedataklativeits averagéor

blue sharkContours denote the isothermal lines of sea surface tempé@yared blue, green, orange, brown, and
red Inesindicate 5 °C, 10 °C, 15 °C, 20 °C, and 25 °C, respectiabyfigures were plotteding the values derived
from Eq(1).

Fig. 5. Seasonal changegpradicted catch rate (relative value to mean value, such that e lateesht 1.0
represents the mean catch rate) against mean SST (sea surface tempexdamsh¢i@n mako and blue shark
with marginal density plots showing the distribution of temperature in peefebitats (defined as locations
where the catchrate'was greater than the mean). A point in the botiodiicates each station in each quarter

(where quarters are color coded)
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