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Abstract Numerous inhomogeneities including station moves, instrument changes, and time of
observation changes in the U.S. Historical Climatological Network (USHCN) complicate the assessment of
long-term temperature trends. Detection and correction of inhomogeneities in raw temperature records have
been undertaken by NOAA and other groups using automated pairwise neighbor comparison approaches,
but these have proven controversial due to the large trend impact of homogenization in the United States.
The new US. Climate Reference Network (USCRN) provides a homogenous set of surface temperature
observations that can serve as an effective empirical test of adjustments to raw USHCN stations. By comparing
nearby pairs of USHCN and USCRN stations, we find that adjustments make both trends and monthly anomalies
from USHCN stations much more similar to those of neighboring USCRN stations for the period from 2004

to 2015 when the networks overlap. These results improve our confidence in the reliability of homogenized
surface temperature records.

1. Introduction

The U.S. Historical Climatological Network (USHCN) is a group of 1218 stations selected from the larger U.S.
Cooperative Observer Program to provide a spatially representative estimate of contiguous U.S. tempera-
tures (CONUS) from 1895 through the present [Fiebrich, 2009]. These stations were selected based on long,
continuous temperature records, rural or small town locations and other factors intended to produce as
unbiased an estimate as possible of long-term climate changes [Quinlan et al., 1987; Menne et al., 2009].
Despite these selection criteria, significant systemic inhomogeneities plague the USHCN. These include time
of observation changes [Karl et al., 1986; Vose et al., 2003], instrument changes [Quayle et al., 1991; Doesken,
2005; Hubbard and Lin, 2006], station location changes [Changnon and Kunkel, 2006], changes in broader
urban form surrounding station locations [Karl et al., 1988; Peterson and Owen, 2005; Hausfather et al.,
2013], and changes in localized station site characteristics [Fall et al., 2011; Menne et al., 2010; Muller et al.,
2013]. Most stations in the USHCN have been subject to three or more of these inhomogeneities during
the past century, and few if any have completely homogenous records [Menne et al., 2009]. These inhomo-
geneities can have large nonsymmetric effects on estimates of U.S. temperature trends. The two largest trend
effects are due to correcting time of observation changes and instrument changes from liquid-in-glass (LiG)
to minimum-maximum temperature systems (MMTSs).

Time of observation changes introduced a large cooling bias due to widespread observation time changes from
afternoon to morning between 1950 and present. This results in a shift from minimum-maximum thermo-
meters occasional double-counting of maximums to a double-counting of minimums, with a net U.S. average
negative bias of about 0.25°C [Vose et al., 2003]. The widespread transition from LiG to MMTS instruments
between 1980 and 2000 also resulted in a cooling bias; MMTS instruments tend to measure maximum tempera-
tures about 0.5°C lower and minimum temperatures about 0.35°C higher than LiG instruments, resulting in a net
negative trend bias of around 0.15°C [Hubbard and Lin, 2006].

The raw USHCN temperature records are adjusted (homogenized) to attempt to remove biases introduced by
these inhomogeneities. Two distinct adjustments are performed on USHCN data: a correction for time of obser-
vation [Karl et al., 1986] and a pairwise homogenization algorithm (PHA) to detect and remove all other biases
[Menne and Williams, 2009]. The adjustments to USHCN records have been evaluated extensively using syn-
thetic data [Williams et al., 2012; Venema et al., 2012], and they generally perform well in removing both regional
and local biases independent of the sign of the bias. Adjusted USHCN trends are also quite similar to results
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from independent reanalysis data sets, while raw USHCN trends are significantly lower [Vose et al., 2012]. Other
independent groups have also found similar results to NOAA using differing automated adjustment
approaches [Rohde et al., 2013]. However, the net effect of adjustments on the USHCN is quite large, effectively
doubling the mean temperature trend over the past century compared to the raw observational data [Menne
et al., 2009]. This has resulted in a controversy in the public and political realms over the implications of much
of the observed U.S. warming apparently resulting from temperature adjustments.

In part, as a response to criticisms of the quality of the USHCN, NOAA began setting up a U.S. Climate Reference
Network (USCRN) in 2001. The USCRN stations are sited in pristine environments in rural areas away from any
potential direct urban influence. Stations include three National Institute of Standards and Technology-calibrated
redundant temperature sensors that make measurements every 2 s and automatically report the data to a cen-
tralized server via satellite uplink. Stations are actively monitored and regularly maintained by NOAA employees.
The USCRN is currently composed of 114 conterminous U.S. stations and has had sufficient station density and
distribution to provide relatively good spatial coverage of the US. since the start of 2004 [Diamond et al., 2013].

The period of overlap between the records is now sufficiently long to effectively assess the impact of
temperature adjustments to USHCN stations using the USCRN as an unbiased reference. The USCRN has been
used to evaluate other observational networks before; for example, Otkin et al. [2005] used the USCRN to
validate insolation estimates, Gallo [2005] examined proximate USCRN station pairs to assess the impact of
microclimate influences, and Leeper et al. [2015] examined absolute temperature and precipitation differ-
ences between proximate U.S. Cooperative Observer Program and USCRN stations.

2. Methods

The USCRN record is homogeneous by design, while the USHCN has large known inhomogeneities. This means
that an effective homogenization algorithm would tend to make the USHCN network trends and anomalies
very similar to those of the USCRN network, and we can use this fact to empirically assess the effectiveness
of homogenization during the period of overlap between the networks. To evaluate the efficacy of USHCN
homogenization with respect to the USCRN, we focus on the period between January 2004 and August 2015
where both USHCN and USCRN networks have reasonably comprehensive spatial coverage of the U.S. We look
at CONUS spatially weighted average temperatures for USCRN and both USHCN raw and adjusted series. We
also examine individual proximate pairs of USHCN and USCRN stations. In all cases we separately perform
the analysis for minimum (fmin), maximum (tmay), and average (t,,g) monthly temperatures.

The adjusted (version 52j) USHCN series contains the same 1218 temperature stations as the raw USHCN series
but uses the full set of around 10,000 temperature stations available in the U.S. for the detection and removal of
inhomogeneities. Included in those 10,000 are the 114 USCRN stations, which raises the possibility that the
adjusted USHCN data and USCRN data may not be completely independent. To ensure that the USCRN stations
can provide an independent empirical test, we generated a variant of adjusted USHCN series that excluded all
USCRN series from the full station population prior to any homogenization. This had relatively little effect for
most stations, as the PHA requires the agreement of the preponderance of neighboring stations to flag inho-
mogeneities. A figure showing the difference between this new without-USCRN adjusted USHCN series and
the standard with-USCRN USHCN adjusted series is available in the supporting information (Figure S1).

To calculate CONUS temperature anomalies, we follow a standard approach of assigning each station to a 2.5 by
3.5 latitude/longitude grid cell, transforming monthly values for each station into anomalies by subtracting the
average for each month over a baseline period (in this case, 2004 through the end of 2014 to reflect the period
of network overlap), averaging the anomalies from all stations within each grid cell, and creating a weighted
average of all grid cells based on the respective land area of each grid cell [U.S. Environmental Protection
Agency, 2013]. We further exclude any grid cell months prior to averaging that do not contain at least one
USHCN raw, USHCN adjusted, and USCRN record to ensure that spatial coverage is comparable between the
resulting records. Trend confidence intervals for the resulting CONUS records are calculated using an ARMA
[1,11 model to account for autocorrelation in the data.

To evaluate proximate pairs of USHCN/USCRN stations, we examine all possible permutations of USHCN and
USCRN station pairs that are within a given distance of each other. We examine distances of 50 mi (80 km),
100 mi (161 km), and 150 mi (241 km), though most of the figures presented herein focus on the 100 mi
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Figure 1. Maximum (fmax), Minimum (tmin), and mean (tayg) CONUS values for USCRN, USHCN raw, and USHCN adjusted
data. (left column) CONUS temperature anomalies for each series. (right column) USHCN raw minus USCRN (in blue), and
USHCN adjusted minus USCRN (in red). CONUS reconstructions are spatially limited to grid cells where values for all three data
sets are present for any given month. For detailed statistics of the data shown, see supporting information Table S1.

(161 km) case (the others are available in the supporting information). We further limit valid station pairs to
those whose record begins prior to January 2006 and ends no earlier than July 2014 and exclude them from
the analysis if they do not have at least 8 years (96 months) of data, ensuring all resulting station pair trends
will be calculated over a period of at least 8 years. These values are chosen in an attempt to maximize both
the overlapping period and the number of station pairs available to evaluate.

These selection criteria result in 191 USHCN/USCRN station pairs (with 68 unique USCRN stations) at a dis-
tance cutoff of 50 mi (80 km), 651 station pairs (75 unique USCRN) at 100 mi (161 km), and 1393 station pairs
(76 unique USCRN) at 150 mi (241 km). Distances are calculated via the spherical law of cosines formula. Each
station pair record is trimmed to include only months where USCRN, USHCN raw, and USHCN adjusted read-
ings are all available, to remove any impact of USHCN adjusted in-filled values when USHCN raw data are not
available. Temperature readings for each station are converted into monthly temperature anomalies over the
full period of overlap between the paired stations. A difference series is calculated by subtracting USCRN
anomalies from USHCN anomalies for each month:

Diff,, = HCN,, — CRN,,

The trends in these pair difference series are calculated using a simple ordinary least squares (OLS) regression.
Mean squared differences between pair anomalies are also calculated to provide an additional metric of var-
iation. The station pair difference time series exhibit some residual autocorrelation (as verified by examining
Durbin’s alternative test for autocorrelation for station pair difference series), with more than half of the pair
differences having significant autocorrelation (p < 0.05) when differencing raw USHCN stations from their
USCRN pair. However, because the measure of interest is the distribution of difference trends between all
pairs preadjustment and postadjustment rather than the uncertainty in difference trends for individual
station pairs, the use of a simple OLS trend calculation rather than a more computationally intensive
approach that explicitly accounts for autocorrelation should have no meaningful effect on the results.
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Figure 2. Maximum (tmax), minimum (tmin), and mean (tayg) trend differences from USHCN-USCRN station pairs within 100 mi
(161 km) of each other for both raw and adjusted USHCN data. (top row) A scatter plot of trend differences (in °C yr71) as a
function of distance between station pairs; (bottom row) the probability density function of station pair trends with kernel
density displayed on the y axis. For detailed statistics of the data shown, see supporting information Table S2.

Additionally, we look at pairs of USCRN/USCRN and USHCN/USHCN stations to determine the variation of anoma-
lies and trends as a function of distance within each network, similar to the approach taken in Gallo [2005]. The
analysis undertaken for these in-network pairs is the same as for between-network pairs, though for distances up
to 2000 mi (3219 km) a random subset of 10,000 USHCN/USHCN station pairs are selected to make the
calculations more tractable. Code used in performing these analyses is available in the supporting information.

3. Results

Over the past 10 years there is relatively little difference between the raw and adjusted USHCN temperature
series in the overall CONUS temperature record. The impact of adjustments over this period is largely trend
neutral due to a lack of detected systemic trend-biasing inhomogeneities. Accordingly, at the CONUS level
the USCRN record does not allow for an effective differentiation between raw and adjusted USHCN series,
as shown in Figure 1.

The CONUS-averaged USCRN and both USHCN series are largely indistinguishable for both minimum and
mean temperatures. These results are similar to those of Menne et al. [2010] and Diamond et al. [2013],
who also found little distinguishable differences between average USCRN and USHCN temperatures.
However, significant differences (p < 0.05) exist for maximum temperatures, where both the raw and
adjusted USHCN series have a lower temperature trend over the 2004-2014 period than the USCRN series.

While CONUS-averaged temperatures show little difference between USHCN adjusted, USHCN raw, and USCRN
series, the same is not true when we look at individual pairs of proximate USCRN/USHCN stations within 100 mi
(161 km) of each other (Figure 2). Here the effect of adjustments is to bring raw USHCN station trends much
closer to their USCRN counterparts for maximum, minimum, and average temperatures. The effect of adjust-
ments is particularly pronounced for more divergent trends. These results hold across pair distance cutoffs of
50 and 150 mi (80 and 241 km) as well (see Figures S5 and S6 in the supporting information).

If adjustments to USHCN data removed all inhomogeneities present in the data, we would expect the trend
differences between USHCN and USCRN stations to constitute a mean-zero normal distribution, with some
variation of trend differences as a function of distance. The probability density functions in Figure 2 show
a clear narrowing of the distribution around zero trend differences, particularly for minimum and mean
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trend variation (green shading) based on pairs of USCRN-only stations within - g tliers, perhaps suggesting that the

150 mi (241 km) of each other, with kernel density displayed on the y axis. differences might be instrumental in

origin rather than a result of station
moves, microsite changes, or other inhomogeneities that would only affect a subset of USHCN stations during
the 2004-2015 period. USCRN stations used platinum resistance thermometers in fan-aspirated solar shields,
while USHCN stations primarily use MMTS instruments with no fan aspiration. Interestingly, the maximum tem-
perature trend bias between USCRN and USHCN stations has the opposite sign as the absolute maximum tem-
perature bias; Leeper et al. [2015] find that fan-aspirated USCRN stations read maximum temperatures as 0.48°C
colder than proximate USHCN stations, and minimum temperatures 0.36°C warmer.

There is also a possibility that the PHA is less effective in detecting (and removing) inhomogeneities near the
end of the record, as postbreakpoint records will be too short to allow reliable detection [Menne and
Williams, 2009]. However, the difference between USHCN and USCRN maximum temperatures increases fairly
monotonically between 2004 and 2015 (Figure S8), suggesting that “end effects” are not responsible for the
failure of homogenization to remove this difference. We also examine how these USCRN/USHCN maximum
temperature differences vary regionally (Figure S9 in the supporting information) and find that the effect is
easily noticeable in the eastern and central U.S. but somewhat smaller in the western U.S.

The variation in trend differences over distances between USHCN adjusted/USCRN pairs is considerably smaller
than that of USHCN raw/USCRN pairs. There is some variation expected with distance, so to test whether
or not adjustments are producing a realistic distribution of trend differences over distance, we compare
them to the distribution of trend
differences between pairs of similarly
proximate USCRN stations, as shown
in Figure 3. Here pairs of stations
within 150 mi (241km) are used
due to the limited number of CRN
stations in close proximity.
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from January 2004 to October 2015. Raw USHCN stations have much greater variation in trends between
station pairs across all distances; the adjustments consistently reduce this variation to the level seen in the
homogenous USCRN stations.

Mean squared differences between USHCN/USCRN station pair anomalies are also calculated (shown in
supporting information Figures S6 and S7). These provide a measure of the difference in anomalies for
individual stations somewhat independent of trend impacts. For minimum, maximum, and mean tem-
perature series of station pairs within 100 mi (161 km) the mean squared difference of the adjusted data
is statistically significantly smaller (p <0.01) than that of the raw data, indicating that adjustments are
making anomalies of USHCN stations more similar to USCRN stations.

4. Conclusions

During the period of overlap between the USHCN and USCRN networks, we can confidently conclude that the
adjustments to the USHCN station records made them more similar to proximate homogenous USCRN
station records, both in terms of trends and anomalies. There are no systematic trend biases introduced
by adjustments during this period; if anything adjusted USHCN stations still underestimate maximum
(and mean) temperature trends relative to USCRN stations. This residual maximum temperature bias warrants
additional research to determine the exact cause.

While this analysis can only directly examine the period of overlap, the effectiveness of adjustments during
this period is at least suggestive that the PHA will perform well in periods prior to the introduction of the
USCRN, though this conclusion is somewhat tempered by the potential changing nature of inhomogeneities
over time. This work provides an important empirical test of the effectiveness of temperature adjustments
similar to Vose et al. [2012] and lends support prior work by Williams et al.[2012] and Venema et al. [2012] that
used synthetic data sets to find that NOAA’s pairwise homogenization algorithm is effectively removing
localized inhomogeneities in the temperature record without introducing detectable spurious trend biases.
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