

1

2

3

4 Article type : Article

5

6

7 **Winter-rearing temperature affects growth profiles, age of maturation, and**

8 **smolt-to-adult returns for yearling summer Chinook Salmon in the upper**

9 **Columbia River basin**

10

11 **¹Deborah L. Harstad*, ¹Donald A. Larsen, ²Joseph Miller**, ²Ian Adams, ¹Dina K.**

12 **Spangenberg, ³Shelly Nance, ⁴Larissa Rohrbach***, ²Joshua G. Murauskas**, and ¹Brian**

13 **R. Beckman**

14

15 **¹Environmental and Fisheries Sciences, Northwest Fisheries Science Center, National Marine**

16 **Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E.,**

17 **Seattle, Washington 98112, USA**

18

19 **²Chelan County Public Utility District No. 1, 327 N. Wenatchee Ave., Wenatchee, Washington**

20 **98801, USA**

21

22 **³Lynker Technologies, under contract to Northwest Fisheries Science Center, National Marine**

23 **Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E.,**

24 **Seattle, Washington 98112, USA**

25

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the [Version of Record](#). Please cite this article as [doi: 10.1002/nafm.10186](https://doi.org/10.1002/nafm.10186)

⁴School of Aquatic and Fisheries Sciences, University of Washington, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, Washington 98112, USA.

*Corresponding author: deborah.harstad@noaa.gov

** Present address: Four Peaks Environmental Science & Data Solutions, 2630 Lemaister Ave., Wenatchee, Washington 98801, USA

*** Present address: Anchor QEA, 23 S. Wenatchee Ave., Wenatchee, Washington 98801, USA

Abstract

In this investigation, we assessed the effects of rearing conditions on survival and demographics for four yearling summer Chinook Salmon *Oncorhynchus tshawytscha* hatchery programs from the upper Columbia River basin over four release years. Juveniles from each hatchery program were initially reared at Eastbank Hatchery near Wenatchee, Washington (which uses groundwater for fish rearing), and experienced similar rearing temperatures until their first autumn in culture. Fish from two of the programs were subsequently transferred to surface water acclimation sites, where they were reared until release the following spring (surface water winter rearing). Fish from the other two programs were overwintered at the Eastbank Hatchery and then transferred to their acclimation and release sites one to two months prior to spring release (groundwater winter rearing). These two rearing strategies resulted in contrasting temperature profiles experienced by the fish, which in turn affected winter growth, age at maturation, and smolt-to-adult survival (SAS). Overall, the two release groups that were overwintered on colder surface water experienced reduced winter growth, reduced minijack rate, and smaller size at release, but achieved a two- to threefold higher SAS compared to the two release groups overwintered on warmer groundwater at Eastbank Hatchery. In addition, based on migration data compiled from fish tagged with passive integrated transponder tags, smaller juveniles tended to mature at older age-classes than larger smolts. We conclude that rearing of yearling hatchery summer Chinook Salmon under more natural thermal regimes (surface water) may result in the return of larger, older adults that have a higher survival rate compared with fish

57 reared under constant or less natural thermal regimes (ground water). These results highlight the
58 importance of the hatchery-rearing environment in shaping the survival and life history of
59 summer Chinook Salmon juveniles released into the Columbia River basin.

60 INTRODUCTION

61 Chinook Salmon *Oncorhynchus tshawytscha* are an ecologically, culturally, and
62 economically valuable species of the Columbia River basin. Their distribution has been reduced
63 to approximately 40% of their historic range in the contiguous USA (Gustafson et al. 2007). In
64 the upper Columbia River basin, habitats available to Chinook Salmon terminate at Chief Joseph
65 Dam, located at river kilometer (RKM) 877, which limits access to more than 500 km of historic
66 spawning habitat (Fulton 1968). Downstream, the Columbia River contains nine major
67 hydropower dams that allow salmon passage but also create a loss of spawning habitat due to
68 inundation of the river. Tributaries often include dams or other anthropogenic structures that
69 limit access for returning adult salmon or have changed available historic habitats. The combined
70 effect of these alterations is a truncation of Chinook Salmon habitats and reduced survival due to
71 mortality associated with dam passage (Haeseker et al. 2012). To mitigate for habitat loss,
72 hatchery programs have been implemented throughout the Columbia River basin to augment
73 wild populations and increase opportunities for tribal, recreational, and commercial fisheries
74 (Lichatowich 1999). Major challenges associated with hatchery culture include designing rearing
75 strategies to optimize survival to adulthood, reducing negative ecological interactions between
76 hatchery and wild fish and developing methods to assess the success or failure of a given strategy.

77 Chinook Salmon life history includes variation in duration of freshwater residency as
78 juveniles and age of maturation. Smolts are generally categorized as either “ocean-type”
79 (subyearling smolts), with short freshwater residencies, or “stream-type” (yearling smolts),
80 which spend a winter in freshwater prior to outmigration. Historically, the upper Columbia River
81 summer- and fall-run Chinook Salmon adults produced primarily subyearling smolts (Myers et
82 al. 1998; Waples et al. 2004; Miller et al. 2011). However, some hatchery programs release
83 smolts as yearlings. Age of maturation ranges from 1 to 6 years after parental spawning (Myers
84 et al. 1998) for upper Columbia River summer- and fall-run Chinook Salmon. Males can mature
85 precociously at age 1 (microjacks), or 2 (minijacks), sometimes forgoing migration to the ocean,
86 or as anadromous adults at age 3 (jacks) - 6 years (Larsen et al. 2013). Overall, females tend to
87 predominate the higher age-classes compared to males, particularly in stream-type Chinook

88 Salmon populations (Healey 1991). The physiological “decision” to mature at a given age is
89 affected by genotype (Hard et al. 1985), environmental conditions that impact growth, and
90 energy stores (Clarke and Blackburn 1994; Shearer and Swanson 2000; Larsen et al. 2006;
91 Shearer et al. 2006), and their interaction (Spangenberg et al. 2014, 2015).

92 In the upper Columbia River basin, summer Chinook Salmon hatchery programs employ
93 a variety of rearing and release strategies including: (a) use of groundwater vs. surface water for
94 rearing, (b) a subyearling vs. yearling smolt release strategy, (c) in-basin vs. out-of-basin rearing
95 relative to release location, and (d) seasonal timing of transfer to off-site acclimation and release
96 facilities. This variety of management approaches has been driven by a combination of water
97 quality and availability, availability of land and facilities, funding, and co-managerial jurisdiction.
98 While these approaches may be challenging to reconcile from a management perspective, they
99 can have profound impacts on the rearing conditions experienced by each population and, in turn,
100 potentially affect the demography and survival to adulthood of respective populations.

101 In this study, we examined how variation in winter-rearing conditions (groundwater vs.
102 surface water) can affect growth, age at maturation, and survival to adulthood of yearling
103 summer Chinook Salmon in the upper Columbia River basin. Fish from all of the hatchery
104 programs examined in this study are part of the same evolutionary significant unit (upper
105 Columbia River summer- and fall-run Chinook Salmon) and limited genetic diversity exists
106 between broodstock for each program (Kassler et al. 2011). In addition, spawning of broodstock,
107 egg incubation and early rearing for each hatchery program is conducted at a single central
108 hatchery facility. The common early rearing across programs within brood year (BY) allowed us
109 to directly compare the effects of variation in timing of transfer to acclimation sites associated
110 with the different release groups (hatchery program by BY combinations). This study combines
111 data on precocious male maturation (previously published in Harstad et al. 2014), hatchery
112 growth data, and publicly accessible coded wire tag (CWT) and passive integrated transponder
113 (PIT) tag data to compare age at return and survival to adulthood for each program across four
114 release years. These collective data provided a unique opportunity to explore how phenotypic
115 plasticity affects fish attributes under different winter rearing regimes. Specifically, these data
116 allowed us to test (1) the effect of winter-rearing environment on fish size and growth rates, (2)
117 the effect of size and winter growth rate on incidence of age 2 male maturation, and (3) the effect
118 of winter-rearing environment on survival to adulthood and age structure at adult return.

119 <A>METHODS

120 Hatchery Rearing

121 This investigation monitored four yearling summer Chinook Salmon hatchery programs
122 from the upper Columbia River basin (Figure 1, Table 1) over four consecutive BYs. For
123 simplicity, we will refer to these hatchery programs by the names of the final acclimation sites:
124 Dryden, Carlton, Similkameen, and Chelan Falls. Each program uses broodstock from a specific
125 population and rears, acclimates and releases fish from distinct locations. A release group
126 consists of fish from a specific program originating from a specific brood year. Broodstock is
127 sourced from three different stocks: Methow-Okanogan (Similkameen and Carlton Programs;
128 broodstock collected at Wells Dam [RKM = 830]), Wells (Chelan Falls Program; broodstock
129 collected at Wells Hatchery [adjacent to Wells Dam]), and Wenatchee (Dryden Program;
130 broodstock collected at Dryden [RKM = 754.028] and Tumwater [RKM = 754.044] diversion
131 dams on the Wenatchee River). Fish from all release groups of each program began rearing,
132 either at the eyed-egg stage (after transport from other facilities) or their parents were spawned,
133 at Eastbank Hatchery adjacent to Rocky Reach Dam (RKM = 763) on the Columbia River in
134 Washington. All groups were reared in traditional raceways after fry emergence. Also, each
135 release group had the same smolt size target at release of 10 fish/lb (45.4 g/fish). But fish from
136 each program experienced differences in the date of transfer to their respective acclimation sites
137 and subsequently, differences in their seasonal water temperature profiles (Figure 2).

138 Fish from the Chelan Falls and Similkameen hatchery programs (surface water winter
139 rearing) were transported to their acclimation sites in the fall, a year post-fertilization, and
140 overwintered in river water prior to release from these sites. Fish from the Dryden and Carlton
141 hatchery programs continued to rear at Eastbank Hatchery for an additional three to four months
142 (groundwater winter rearing) prior to transfer to their corresponding acclimation sites in late
143 winter to early spring. In contrast to the acclimation sites, Eastbank Hatchery uses groundwater
144 that ranges in temperature from 8°C in May to above 14.5°C in November, providing higher
145 winter growth potential compared to fish reared at the ambient surface water temperatures
146 (Similkameen and Chelan Falls). Water temperature data were provided by Chelan County
147 Public Utility District for Eastbank Hatchery, Similkameen, Dryden and Carlton acclimation
148 sites. Water temperature data for Chelan Falls were obtained from Lake Chelan Annual Flow
149 Reports available online (clio.chelanpud.org/lc-Resource-Documents-WaterQuality.cfm).

150 Data Collection

151 We are reporting on three different types of data in this investigation: (1) Program level
152 winter growth rates were determined using monthly batch weights conducted at the rearing
153 facilities in combination with size at release data collected during minijack assessments (see
154 below) for each release group. (2) All release groups were monitored for prevalence of age-2
155 maturation among males (minijack rates) prior to their release from the acclimation sites as
156 yearling smolts. (3) Survival to adulthood and age of return were estimated from CWT
157 recoveries and PIT tag returns for each release group.

158 <C>*Monthly size evaluation.*—Monthly batch weights were collected at Eastbank
159 Hatchery for most release groups by netting approximately 100 fish in each of three grabs and
160 averaging across grabs to calculate fish per pound estimates. Similar size data was also collected
161 at the Chelan Falls acclimation site. These data, in combination with the size data collected
162 during minijack assessment, were used to create growth profiles and to estimate winter-specific
163 growth rates (SGR). Winter SGR (% weight gain/day) was calculated as

164

165
$$\text{Winter SGR} = [(\ln W_2 - \ln W_1) / (t_2 - t_1)] \times 100$$

166

167 where W_1 and W_2 are mean fish weight at time t_1 (October) and t_2 (April), respectively. Monthly
168 size data were not available for the Similkameen fish after they were moved to their acclimation
169 site at the end of October. Therefore, winter growth rates had to be estimated over the broad span
170 of October to April. Growth rate typically increases in the spring as surface water temperatures
171 begin to warm, therefore our wider winter growth window most likely overestimates the true
172 winter growth rate (October - February) of fish from programs on surface water during
173 overwinter rearing, particularly for fish from the Similkameen program which has water
174 temperatures near freezing during this period (Figure 2).

175 <C>*Minijack rates.*—For each minijack assessment, we lethally sampled approximately
176 300 fish from each release group just prior to release from their acclimation sites (dates ranged
177 from 4/6 to 4/29, Table 2). Fish were anaesthetized using a buffered solution of MS-222 (tricaine
178 methanesulfonate: Argent Chemical Laboratories, Redmond, Washington). We measured fork
179 length (FL) to the nearest mm and weight to the nearest 0.1 g; condition factor was calculated
180 from these measures as $K = \text{weight}/\text{length}^3 \times 10^5$. The sex of each fish was determined by

181 visually inspecting gonads. To determine the maturation status of males, blood plasma was
182 collected to measure 11-ketotestosterone (11-KT) levels using an enzyme-linked immunosorbent
183 assay adapted from the method of Cuisset et al. (1994). Whole blood was collected by severing
184 the caudal vein and placed into heparinized Natelson tubes (VWR International, Radnor,
185 Pennsylvania). The blood was then centrifuged for 5 min at 3,000 x g to separate plasma from
186 the whole blood and the plasma was stored at -80°C. The resulting plasma 11-KT data were
187 log₁₀ transformed to detect bimodality in the 11-KT levels according to the method of Larsen et
188 al. (2004). Due to variation in date of sampling and inter-assay variability, the threshold 11-KT
189 value that discriminated maturing males from immature males was evaluated individually for
190 each release group. The mean 11-KT threshold across years and groups was 1.3 ng/mL (range =
191 0.5-2.3 ng/mL).

192 *<C>Survival and age at return estimates.*—Survival to adulthood for fish from each
193 release group was assessed by both CWT and PIT tags. CWTs contain a group code (release
194 group) and PIT tags include an individual code. All fish within each release group were marked
195 with CWTs during hatchery rearing; release numbers across release groups ranged from 53K to
196 931K (Table 3). The CWTs were used to estimate smolt-to-adult survival (SAS), which is the
197 percent of estimated CWTs recovered out of the total number of CWTs released for each release
198 group. To derive SAS, we queried the Regional Mark Information System (RMIS) database
199 (available at www.rmpc.org) maintained by Pacific States Marine Fisheries Commission for
200 survival and harvest contribution estimates on 17 May 2016. SAS estimates from RMIS include
201 contribution to fisheries in addition to adult escapement (hatchery return or recovery on
202 spawning grounds). The few age-2 CWT recovery estimates in the RMIS database were
203 excluded from SAS estimation. Seven of the 14 release groups also included PIT-tagged fish.
204 The number of PIT-tagged fish released by the hatcheries for each release group was obtained
205 from the PIT Tag Information System database (available at www.ptagis.org); PIT-tagging rates
206 ranged from 1 to 18% of total fish released and PIT-tagging dates ranged from July to March,
207 just a month prior to smolt release (Table 3). Returning PIT-tagged adults were detected as they
208 ascended adult fish ladders at Bonneville Dam (RKM = 234) on the Columbia River. Bonneville
209 Dam was chosen as return site because the adult fish ladder has high detection rates for PIT-
210 tagged adult Chinook Salmon (Burke et al. 2006) and is downstream from all spawning reaches
211 for these hatchery programs. These detections were accessed using the Columbia River Data

212 Access in Real Time website (www.cbr.washington.edu/dart). Smolt-to-adult return (SAR) rates
213 were based on these detections and calculated as the percent of PIT-tagged fish that were
214 detected out of the total number of PIT-tagged fish in each release group. Age-2 PIT tag return
215 detections were excluded from “adult” SAR estimates but specific age-2 “minijack” returns were
216 calculated.

217 Age at adult return was also assessed by both CWT and PIT tags. Summary reports of
218 CWT recoveries from the RMIS database include estimated recoveries by age and estimated
219 minimum survival rate for each release group. Age at return for PIT-tagged fish detected at
220 Bonneville Dam was calculated by comparing the return year of the fish to the release year (i.e.
221 age 2 minijacks returned the same year they were released). The PIT tag data is unique compared
222 to CWT data because it allows you to track the fate of individual fish. Individual lengths of fish
223 were recorded at the time of PIT tagging, allowing us to assess relationships between individual
224 size of juvenile fish and age at adult return using the PIT tag return data.

225 Both CWT and PIT tags are known to have different biases that can affect estimates of
226 survival to adulthood and estimates of age at return. Our major goal was to compare
227 characteristics between programs and not to produce precise estimates of survival for any one
228 program. Instead, we endeavored to use all the data available to us (both tag types) to generate as
229 complete a comparison as possible. Since all the fish we considered were from the same
230 evolutionary significant unit and were released at similar times and in similar places, the biases
231 related to each tag type would have affected our assessments similarly; therefore, our
232 comparisons should be valid. However, we clearly delineate here some of the biases inherent to
233 each tag type. Estimates of survival based on CWT recoveries reported to the RMIS database can
234 underestimate survival to adulthood due to inconsistencies of reporting by commercial and
235 recreational fisheries (Hankin et al. 2005) and underestimation of freshwater escapement on
236 spawning grounds (Zhou 2002, Murdoch et al. 2010). Although CWT recoveries derived from
237 the RMIS database may underestimate survival, Hall and Cooper (2013) found that locally
238 derived survival estimates (that included known freshwater harvests that are underreported or not
239 reported to the RMIS database) are still highly correlated with the RMIS estimates. The CWT
240 recovery rates are also skewed toward upper age-classes (age 4+) of Chinook Salmon as these
241 larger fish are targeted in commercial and recreational fisheries and are also more likely to be
242 recovered on spawning ground surveys (Zhou 2002, Murdoch et al. 2010). Estimates of survival

243 based on detections of PIT-tagged fish at Bonneville do not include any commercial or
244 recreational harvest of PIT-tagged fish in the ocean or in the Columbia River downstream of
245 Bonneville Dam. PIT tag model, swimming behaviors and fish size can also affect probability of
246 detection of PIT-tagged fish (Burke et al. 2006). For this study, we used data from both tag types
247 as the results they generate are complementary and provided us the best opportunity to compare
248 characteristics of fish released from these hatchery programs.

249 **Data Analysis**

250 Statistical analyses were conducted using STATA v.12 (StataCorp LP, College Station,
251 TX) or Prism v.6 (GraphPad software, Inc., La Jolla, CA) software. Statistical significance was
252 set at $\alpha = 0.05$. Program, BY, and winter water source were treated as categorical variables in all
253 regression analyses. All other variables (minijack rate, SAS, length, weight, winter SGR) were
254 treated as continuous variables. BY 2007 Dryden fish were infected with high levels of
255 *Renibacterium salmoninarum*, the causative agent of bacterial kidney disease, (D. McCarver,
256 Washington Department of Fish and Wildlife, personal communication). The added stress of this
257 infection may have reduced the potential for initiation of minijack maturation as the peak
258 mortality occurred during January (fish were treated with medicated feed after this outbreak). In
259 previous surveys, we have found evidence of reduced minijack rates in populations infected with
260 bacterial kidney disease (D. A. Larsen, unpublished data). Thus, the minijack rate from this
261 release group was excluded from any regression analyses. These fish were included in the
262 survival to adulthood analyses as we don't have any reason to think that the fish that survived to
263 smolt release were potentially subject to reduced survival (this release group had fewer
264 mortalities during acclimation at Dryden Pond [less than 1%] than the other BYs in this study
265 [1.8-10%]).

266 **<C>Size, winter growth and minijack rate analyses.**—Fish size (g), in October and April,
267 and winter SGR comparisons between hatchery programs were compared using one-way
268 ANOVAs with Tukey's multiple comparisons test with BYs as replicates. The effect of the
269 categorical predictor variable, hatchery program, on the probability of age-2 male maturation
270 was analyzed using logistic regression, excluding females. Post-test comparisons were done
271 using the linear combination "lincom" command in STATA to compare the different minijack
272 levels of different hatchery programs. Simple linear regression was used to examine the

273 relationship between minijack rate and the predictor variables October size, size at release, and
274 winter SGR across release groups.

275 *<C>Survival analyses.*—SAS was used for analyses of survival over SAR because we
276 were able to generate this estimate for all release groups. Nine linear regression models were
277 compared in their ability to predict SAS (Table 4) using Akaike's Information Criterion (AIC) to
278 find the most parsimonious model. Brood year was included as a predictor variable of SAS as
279 year-to-year variation occurs in both freshwater and ocean conditions, such as spill at
280 hydropower dams (Haeseker et al. 2012) or ocean temperatures indexed by the Pacific Decadal
281 Oscillation (Mantua et al. 1997), which may be related to Chinook Salmon survival. Five simple
282 linear regression models (models 1, 2, 4, 6 and 8 in Table 4) were run using the following
283 predictor variables: BY, program, water source (ground vs. surface), minijack rate, and weight at
284 release. Four multiple regression models (models 3, 5, 7 and 9 in Table 4) were run using BY in
285 combination with the other predictor variables from the simple linear regression models to
286 account for BY effect on SAS. Interactions with BY were tested using the “mfpigen” command
287 in STATA, which models interactions between pairs of covariates. The significance of the
288 predictor variables within multiple regression models was determined by Wald tests. These
289 regression models were used to generate linear prediction of SAS estimates for BY, hatchery
290 program, water source, minijack rate, and size at release. Post-test comparisons to compare
291 levels within categorical variables were done using the “lincom” command in STATA.

292 *<C>Age at return and size at PIT-tagging analyses.*—The mean age of return for tagged
293 fish from CWT and PIT tag datasets was compared via a paired *t*-test. We compared size at PIT
294 tagging (FL, mm) by age at return using one-way ANOVAs with Tukey's multiple comparisons
295 tests. We did this analysis on each release group that was tagged late enough to have notable
296 variation in size (SD > 6 mm, Table 3); this omitted two release groups (Similkameen BY 2009
297 and Carlton BY 2009) that were tagged prior to mid-September. The effect of juvenile size
298 (standardized as the percent deviation from mean FL within each release group) on probability of
299 return for each age-class was tested using logistic regression analysis. Standardized length was
300 calculated as

301

$$\text{Standardized length} = (X_{ij} - \bar{X}_i) / \bar{X}_i \cdot 100$$

302

303 where \bar{X}_i is the mean FL for a release group i and X_{ij} is the FL of each individual j within
304 release group i ; this was calculated for individuals within each release group separately. For each
305 age-class analyzed, standardized length of individual fish that returned at that age-class was
306 compared to fish that returned at older age-classes (examples: standardized length of individual
307 fish that returned at age 2 was compared to standardized length of individual fish that returned at
308 ages 3-6; standardized length of individual fish that returned at age 3 was compared to
309 standardized length of individual fish that returned at ages 4-6; etc.). For the returns at older age-
310 classes, the younger age-classes were excluded from analysis because they had previously left
311 the ocean environment and were no longer part of the ocean population that could undergo this
312 physiological “decision” to mature and return to the Columbia River. This approach was more
313 intuitive than using a multinomial logistic regression as separate logistic regression analyses
314 allowed us to test this relationship with size separately for each age at return. Also, analyses were
315 stratified by season of tagging (fall vs. spring) to see if size during these periods also influenced
316 age at return.

317 **<A>RESULTS**

318 **Seasonal Growth**

319 Seasonal growth profiles varied from fish among different hatchery programs (Figure 3a).
320 Similkameen and Chelan Falls fish were reared to larger sizes in October (15-20 g) compared to
321 Carlton and Dryden fish (approximately 10 g). With the exception of Chelan Falls fish, the trend
322 reversed during the winter months, and by time of release, the groundwater winter-reared fish
323 were larger (Carlton averaged 49.1 g, Dryden averaged 43.5 g) than the surface water winter-
324 reared fish at Similkameen (mean = 29.7 g). The winter growth rates reflect this same trend. The
325 Dryden and Carlton fish experienced significantly higher winter growth rates (~0.9% weight
326 gain/day) than fish reared at Similkameen (~0.4% weight gain/day) that experienced the lowest
327 winter temperatures (Figure 3b). These differences in winter growth rates are also reflected in the
328 deviation in size at release from target release sizes across programs (Δ WT, Table 2).
329 Similkameen fish were on average smaller than target size across BYs (Δ WT = -15.8 g), whereas
330 Dryden (Δ WT = -2 g) and Carlton fish (Δ WT = +3.7 g) weights were close to target size. Chelan
331 Falls release groups had the highest average size at release (Δ WT = +8.6 g).

332 **Size, Winter Growth and Minijack Rates**

333 The prevalence of minijacks among males ranged from 4% to 45% across release groups
334 (Table 2) and there were significant differences between hatchery programs for the probability of
335 males maturing as minijacks across years (likelihood ratio [LR] $\chi^2 = 97.05$, df = 3, N = 2112, $P <$
336 0.001; Figure 4a). Overall minijack rates were the highest among the Carlton males
337 (groundwater winter rearing) and lowest among the Similkameen males, which experienced the
338 coldest winter rearing temperatures. Minijack rate was positively correlated with winter SGR
339 ($R^2 = 0.32$, $P = 0.04$; Figure 4b) but was not correlated with October size ($R^2 = 0.06$, $P = 0.45$;
340 Figure 4c) or size at release ($R^2 = 0.25$, $P = 0.08$; Figure 4d).

341 Survival Estimates

342 Survival to adulthood varied across hatchery programs and BYs (Figure 5, Table 3).
343 Overall, the release groups that overwintered at their acclimation sites (Similkameen and Chelan
344 Falls) trended toward higher survival estimates based on both the CWT and PIT tag data (Figure
345 5a, Table 3). Regression of SAS with the categorical predictor variables, program and BY, found
346 both program ($F_{3,7} = 7.94$, $P = 0.012$) and BY ($F_{3,7} = 9.71$, $P = 0.007$) to be significant
347 predictors of survival (Table 4, Model 3). Similkameen fish had the highest survival, threefold
348 higher than the SAS for Dryden and Carlton (Figure 5b). Also, fish from even-numbered BYs
349 demonstrated a three- to fourfold higher survival than fish from odd-numbered BYs across all
350 programs (Figure 5c). Although there were differences in the magnitude of survival estimates
351 derived from PIT tag and CWT data (Table 3), these estimates were highly correlated ($R^2 = 0.98$,
352 $P < 0.0001$).

353 Predicting Survival (SAS)

354 Nine regression models were compared for their ability to predict SAS (Table 4).
355 Predictors included BY, program, winter-rearing water source (surface vs. groundwater), mean
356 weight at release and minijack rate. Due to the even/odd BY survival pattern noted previously
357 (Figure 5c), including BY with the other predictors reduced AIC values compared to models
358 without BY (Table 4). The models with program or winter water source, in combination with
359 BY, were the best predictors of SAS and were approximately equivalent ($R^2 = 0.88$, AIC = 16.7
360 vs. $R^2 = 0.83$, AIC = 18.1; Table 4). Within these models, the predictor variables of hatchery
361 program ($F_{3,7} = 7.94$, $P = 0.012$) and water source ($F_{1,9} = 17.92$, $P = 0.002$) were both
362 significant. The linear predictions of SAS demonstrate that fish from hatchery programs on
363 cooler surface water during winter rearing (Similkameen and Chelan Falls) experienced higher

survival to adulthood (Figure 6a&b) than those reared on groundwater. There were no significant interactions ($P < 0.05$) between BY and other variables (hatchery program, water source, weight or minijack rate; data not shown).

We examined the relationship between survival to adulthood and the attributes of the fish from each release group, minijack rate and size at release. Minijack rate trended towards a negative relationship with SAS but was not significant ($F_{1,11} = 2.17, P = 0.169$; Table 4). When BY was included in the regression model, minijack rate became a significant predictor of survival to adulthood (Wald test: $t = -3.05, P = 0.016$; Figure 6c, Table 4). Including BY also increased the magnitude of the negative slope between minijack rate and SAS ($\beta = -0.044$ vs. $\beta = -0.027$; Table 4). Mean weight at release was not a significant predictor of adult return ($F_{1,12} = 3.56, P = 0.084$; Table 4), even in combination with BY (Wald test: $t = -1.85, P = 0.098$; Figure 6d, Table 4).

Age at Return

The relative abundance of adult returns for each age-class varied by hatchery program and BY in both the PIT tag and CWT datasets (Table 5). Minijacks, because of their small size, are seldom recovered in the fisheries, enumerated returning to hatcheries, or counted on spawning grounds and are missing from the CWT database. Because of this, CWT returns provided a contrasting view of the age of freshwater return compared to PIT tag returns (Figure 7). This size/age-class bias in detection of CWT fish created a significant difference in the maturation schedules (i.e. the proportion of fish returning at each age-class for a hatchery program) generated for the two tag types (paired t -test: $t_6 = 5.05, P = 0.002$; Figure 7) with an average age at return \pm SE of 3.3 ± 0.21 and 4.29 ± 0.05 years for PIT tag and CWT estimates, respectively. The PIT tag data demonstrate that most “adult” returns for Carlton (Figure 7a) and Dryden (Figure 7b) programs were age-2 fish (minijacks) that migrated below Bonneville Dam and were detected ascending the adult fish ladder approximately two months after hatchery release (date of return data not shown). Maturation schedules for Chelan Falls and Similkameen fish, which overwintered on surface water, also included age-2 returns but at much lower relative frequencies (26% and 15% of the returns respectively; Figure 7c-d) than found for Carlton and Dryden fish (62% and 54% of the returns respectively; Figure 7a-b). When minijacks were removed from this comparison, mean age at return was similar for these two tag types (CWT = 4.32, PIT = 4.28; paired t -test: $t_6 = 1.103, P = 0.31$). Although overall survival rates varied

395 significantly between BYs, the relative pattern of age at return (%) within BYs remained
396 relatively consistent (Table 5, Figure 7).

397 **Age at Return and Size at PIT Tagging**

398 Examining the relationship between size of fish at PIT tagging and subsequent return data
399 clearly demonstrates that size during freshwater rearing influences the age of maturation and
400 return across all age-classes (Figure 8). Fish that returned at age 2 tended to be larger as juveniles
401 than fish that returned at subsequent age-classes (Figure 8). This trend was apparent in all release
402 groups that were PIT-tagged in mid-September or later.

403 Logistic regression analysis of standardized fish length at PIT tagging also showed an
404 effect of juvenile size on age of maturation. The probability of return at age 2 was highly
405 influenced by standardized length for both fall ($LR \chi^2 = 52.3, df = 1, N = 959, P < 0.001$) and
406 spring ($LR \chi^2 = 138.7, df = 1, N = 592, P < 0.001$) tagged fish (Figure 9, Table 6) with larger
407 juveniles within a release group having higher probability of returning at age 2. Odds ratios show
408 that a 1% increase in standardized length increases the odds of returning at age 2 by 6-9% (Table
409 6). Similar trends were observed for probability of returning at age 3 and age 4, but odds ratios
410 (Table 6) and slopes of logistic regression curves (Figure 9) were reduced compared to age 2,
411 indicating that the effect was of a smaller magnitude for these age-classes.

412 **<A>DISCUSSION**

413 We found striking differences in age of return and survival to adulthood among
414 genetically similar groups of yearling upper Columbia River basin summer Chinook Salmon that
415 were raised under different hatchery rearing regimes. This investigation clearly demonstrated
416 that variation in acclimation strategies significantly altered the seasonal thermal regimes fish
417 were exposed to and consequently altered the associated seasonal growth profiles of the fish.
418 Fish from hatchery programs that overwintered on cooler ambient surface water temperatures
419 had reduced winter growth compared to fish from programs reared through the winter on the
420 much warmer groundwater. These environmental differences induced significant differences in
421 rate of early male maturation, age at adult return and survival (SAS) among these groups of
422 summer Chinook Salmon.

423 **Rearing Environment and Minijack Production**

424 Summer Chinook Salmon juveniles from programs that overwintered on groundwater had
425 significantly higher incidences of age-2 male maturation at hatchery release than juveniles from

426 programs that overwintered on cooler surface water. The fact that minijack rates were
427 significantly correlated with winter growth rate suggests that winter growth may be an important
428 component of the physiological “decision” to mature in these fish. To our knowledge, this is the
429 first report on drivers for early male maturation for yearling summer-run Chinook Salmon.
430 Previous studies on spring-run Chinook Salmon have suggested a critical “maturation initiation”
431 period in summer-autumn of each year when the maturation decision is made for the following
432 autumn (Silverstein et al. 1998; Shearer and Swanson 2000; Campbell et al. 2003; Larsen et al.
433 2006). In the current investigation, winter growth rate had a stronger relationship with minijack
434 rate than autumn size (mid-October) suggesting that the maturation decision may be delayed in
435 summer Chinook Salmon compared to spring Chinook Salmon in keeping with their inherently
436 later seasonal spawn timing. Similar to the aforementioned studies in spring Chinook Salmon,
437 our data clearly demonstrate that growth in the hatchery during critical seasonal periods can
438 significantly affect rates of precocious male maturation.

439 A consequence of producing a high proportion of minijacks in different release groups is
440 that SAS was negatively correlated with minijack rate. This trend was also observed by Beckman
441 et al. (2017) in Hood River (located in Oregon, Figure 1) spring Chinook Salmon populations
442 that were reared under different hatchery conditions across several BYs. The production of male
443 Chinook Salmon that mature at age 2 in this semelparous species automatically lowers potential
444 “adult” return rates as they have already reached their single opportunity to reproduce and
445 therefore don’t return as full-size anadromous adults.

446 **Rearing Environment and Survival (SAS)**

447 This study demonstrated nearly a threefold difference in adult return rates across hatchery
448 programs that are within close geographical proximity in the upper Columbia River basin.
449 Surprisingly, fish from the program with the highest mean SAS (Similkameen) also had the
450 longest migration distance for both outmigrating smolts and returning adults. In addition, fish
451 from the Similkameen program had the greatest number of hydroelectric dams (nine) to pass in
452 each migration direction. This suggests that differences in the quality of smolts released may
453 play a more significant role in SAS than previously appreciated. Our data suggests rearing
454 strategies can affect survival to adulthood, and highlights how optimizing rearing strategies
455 could improve adult return. Since genetic diversity between the stocks is limited (Kassler et al.
456 2011), differences in adult return are presumed to have resulted predominantly from

457 environmental rearing differences between hatchery programs rather than genotypic differences
458 between stocks. The most apparent environmental difference between these programs results
459 from their strategy for early hatchery rearing (size in the fall) and timing of transfer to surface
460 water acclimation sites. Thus, our data suggests that early hatchery rearing can have a profound
461 effect on fish attributes that ultimately impacts SAS.

462 One of the most common fish attributes measured is size at release. Studies on how smolt
463 size affects post-release survival in Chinook Salmon have provided somewhat varying results.
464 Some investigations have found a positive relationship between smolt size at release and survival
465 to adulthood in both yearling spring Chinook Salmon (Martin and Wertheimer 1989; Claiborne
466 et al. 2011; Beckman et al. 2017) and subyearling fall Chinook Salmon (Connor et al. 2004).
467 Additionally, Zabel and Achord (2004) found higher rates of survival in larger wild juvenile
468 spring Chinook Salmon from the Snake and Columbia River basins. In contrast, other studies
469 have found no effect of juvenile size at release on survival to adulthood (Miller et al. 2013;
470 Feldhaus et al. 2016) or on survival following early ocean entry (Claiborne et al. 2014).
471 Interestingly, the relationship between size at release and SAS was negative in the current
472 investigation. The Similkameen fish were consistently the smallest at release but had the highest
473 SAS. Clarke et al. (2012) had similar results in a hatchery program of yearling spring Chinook
474 Salmon (from the Umatilla River, Oregon, Figure 1) reared on different combinations of
475 groundwater and surface water. They found that release groups that were transferred from
476 groundwater to their acclimation sites for rearing on surface water in either November or January
477 experienced different rearing environments. Fish that were not transferred until January
478 experienced warmer winter-rearing temperatures and higher growth, but paradoxically lower
479 survival to adulthood than fish transferred in November (Clarke et al. 2012). Taken together,
480 these two studies suggest that factors beyond size-selective mortality, such as early male
481 maturation, can drive differences in adult return rates from different Chinook Salmon hatchery
482 programs.

483 Ocean Conditions and Survival (SAS)

484 One unexpected observation in this study was the odd/even BY pattern of survival across
485 all programs with fish from even-numbered BYs (even BY fish also out-migrate in even years)
486 having nearly threefold higher survival rates than those from odd BYs. Maturation schedules are
487 relatively consistent across BYs even as total returns vary severalfold (Table 5, Figure 7). This

488 may indicate that some factor(s) shortly after ocean entry influence survival as all age-classes of
489 return are affected equally (in contrast to conditions affecting survival at older age-classes that
490 would only affect the later returning age-classes). Fish from these yearling summer Chinook
491 Salmon programs enter the ocean in May-June of each year and typically migrate northward
492 (Weitkamp 2010; Teel et al. 2015). The timing of their ocean entry and early migration coincides
493 with the return of adult Pink Salmon *O. gorbuscha* to the Fraser River in Canada and the Puget
494 Sound in odd years. No adult Pink Salmon return to these areas in even years. The presence of
495 high abundances of adult Pink Salmon in odd years has been correlated with reduced prey
496 abundance and reduced growth and survival of other salmon stocks in the Bering Sea and North
497 Pacific (Shiomoto et al. 1997; Sugimoto and Tadokoro 1997; Ruggerone and Nielsen 2004;
498 Springer and van Vliet 2014). We suggest that it is possible that in odd years the juvenile
499 Chinook Salmon from this study encountered reduced prey availability as they migrated
500 northwards off the Canadian Coast due to feeding by adult Pink Salmon returning to their natal
501 streams to spawn. A broader examination of the return rates for yearling summer Chinook
502 Salmon in the upper Columbia River, along with closer examination of ocean conditions, such as
503 the Pacific Decadal Oscillation, are needed to validate this hypothesis and are beyond the scope
504 of this paper.

505 **Rearing Environment and Age at Return**

506 This study demonstrated that growth during the first 1+ year in culture (approximately 18
507 months) has a significant impact on the age of maturation in yearling hatchery summer Chinook
508 Salmon. We demonstrated that within PIT-tagged release groups, the largest individuals at the
509 time of tagging had the greatest probability of returning at younger ages, regardless of whether
510 they were tagged in the fall or spring. This indicates that early rearing effects on size and growth
511 can persist through several annual maturation decision windows in fish that did not mature
512 during previous window(s).

513 One caveat of using PIT tag detections at Bonneville Dam for age at return analyses is
514 that gender-specific data are not available. Sex ratios are often skewed toward females in age-4+
515 adult Chinook Salmon due to the maturation of males at younger ages (Healey 1991). The mixed
516 gender in the age 4-6 PIT tag detections may be diluting our ability to detect size effects in our
517 statistical analyses, particularly for older age-class returns. This may also explain why mean size

518 at tagging is higher for age-4 returns than for age-3 returns for Dryden BYs 2008-2009 (Figure
519 8c&d).

520 Previous studies have shown that growth during freshwater rearing affects the age at
521 which Chinook Salmon mature and return to spawn in both wild (Ruggerone et al. 2009; Tattam
522 et al. 2015) and hatchery-reared populations (Martin and Wertheimer 1998; Ewing and Ewing
523 2002; Clarke et al. 2012; Feldhaus et al. 2016). Salmonid fishes have evolved in environments
524 with strong seasonal variation in temperature and food availability and their physiologically
525 driven life history decisions are responsive to seasonal patterns in energy stores and growth.
526 Beckman et al. (1999, 2017) and Larsen et al. (2006) characterized the catabolic and anabolic
527 phases naturally-rearing spring Chinook Salmon experience in rivers and referred to this
528 dynamic as the “wild fish template”. It stands to reason that when fish experience warmer winter
529 temperatures (i.e. ~14°C October-January) and the accelerated growth that accompanies such
530 conditions, that maturation schedules may also be advanced. Taken together, the findings from
531 this and previous studies demonstrate the profound long-term impacts early rearing and
532 especially unseasonably high growth rates can have on influencing the demography of a given
533 hatchery program.

534 Minijack Production vs. Age 2 Returns

535 The number of minijacks returning to Bonneville Dam represents a subset of the number
536 of minijacks estimated at hatchery release (Larsen et al. 2004; Beckman and Larsen 2005). In
537 addition to potential detection biases of the PIT tag readers for smaller fish (Burke et al. 2006),
538 there are several other factors that can influence the number of minijacks returning to Bonneville
539 Dam. (1) Not all minijacks leave natal streams and some minijacks display partial downstream
540 migration (Beckman and Larsen 2005, Larsen et al. 2010). (2) Mortality of juvenile salmon after
541 hatchery release (e.g. predation, dam turbine mortality) also affects the rate of minijacks that
542 return to Bonneville Dam. Previous work by Beckman and Larsen (2005) has shown that PIT tag
543 detections of Yakima River spring Chinook Salmon (located in Washington, Figure 1) minijacks
544 are much lower than numbers generated by 11-KT surveys of yearling males just prior to smolt
545 release. Minijack detection rates at Bonneville Dam were approximately 0.05% - 0.4% of tagged
546 fish released. Minijack rates from 11-KT analysis prior to release produced minijack rates of 15-
547 33% of the release population. There is a magnitude discrepancy between these two metrics, but
548 they were nonetheless positively correlated (Beckman and Larsen 2005). Although the detection

549 of minijacks returning to Bonneville Dam cannot be used as a substitute for enumeration of
550 minijacks at the hatchery, they can indicate that there are substantial numbers of minijacks
551 originating from a given hatchery program.

552 **CWT and PIT Tags Tell Unique, but Complementary Stories**

553 CWTs and PIT tags have served valuable roles in fisheries management for decades,
554 most notably in the Snake and Columbia River basins. In the current investigation, we used
555 results from both tag types, as the information provided may be both confirmatory (results agree)
556 and complementary (the two tag types may provide different information). We found higher
557 adult return rates were estimated via PIT tag detections at the Bonneville Dam adult ladders
558 compared to rates estimated from CWTs reported in the RMIS database (Table 3). However,
559 these data are confirmatory as we found a high correlation between the two tag types. It is also
560 interesting to note that CWT and PIT tags tell very different stories about age at return besides
561 differing in their estimates of survival. The CWT database is essentially missing any indication
562 of the numerous fish that migrate as smolts and return precociously as minijacks for these
563 summer Chinook Salmon programs. The PIT tag data complements the CWT data as it
564 illuminates a different age-class of returning fish. We encourage others to employ data from both
565 tag types when comparing results from different hatchery programs.

566 **Management Implications**

567 Overwinter rearing conditions and resulting differences in winter growth rates have
568 important implications for hatchery Chinook Salmon. Deviations from the “wild fish template”
569 can significantly alter the maturation schedule of male Chinook Salmon. This investigation
570 demonstrated that producing larger fish for release, via higher winter growth, also produced
571 more precocious males, reduced age of return and did not increase overall survival to adulthood.
572 In fact, the program that had the longest migration distance and smallest mean size at release had
573 the highest survival estimates. A challenge going forward will be to design rearing regimes that
574 avoid unseasonably warm rearing temperatures in the winter or to develop a strategy to
575 manipulate rations in a manner that reduces winter growth without compromising fish health.
576 This study found that fish overwintered on cooler surface water had reduced winter growth, but
577 this may not be feasible for all hatchery programs. Our results strongly suggest that by
578 optimizing winter-rearing strategies, hatchery programs could improve the survival and age
579 structure in yearling summer Chinook Salmon.

580 <A>ACKNOWLEDGMENTS

581 This research was conducted in cooperation with the staff at Eastbank Hatchery,
582 Similkameen Acclimation Facility, Methow Hatchery, Confederated Tribes of the Colville
583 reservation, and Chelan County Public Utility District. Specifically, we thank E. Smith (Frank
584 Orth and Associates, Kirkland, Washington) and A. Fuhrman (NOAA Fisheries, Seattle,
585 Washington) for assistance with field sampling; C. Willard (Chelan PUD) for assistance with
586 CWT and PIT tag files; D. McCarver, J. Penny, C. Morrison, C. Brand, T. Holder, and G. Wiest
587 for assistance with sample collection and providing us valuable space to work. The 11-KT
588 antibody was kindly provided by Dr. R. Schultz. This manuscript was greatly improved by the
589 thoughtful comments of three anonymous reviewers. Financial support was provided by the
590 Bonneville Power Administration under contract project 200203100 administered by D.
591 Docherty and J. Marcotte, and Chelan County PUD agreement 09-102. Reference to trade names
592 does not imply endorsement by the National Oceanic and Atmospheric Administration, National
593 Marine Fisheries Service.

594 <A>REFERENCES

595 Beckman, B. R., W. W. Dickhoff, and W. S. Zaugg. 1999. Growth, smoltification, and smolt-to-
596 adult return of spring Chinook Salmon from hatcheries on the Deschutes River, Oregon.
597 Transactions of the American Fisheries Society 128:1125-1150.

598 Beckman, B. R. and D. A. Larsen. 2005. Upstream migration of minijack (age-2) Chinook
599 Salmon in the Columbia River: behavior, abundance, distribution, and origin.
600 Transactions of the American Fisheries Society 134:1520-1541.

601 Beckman, B. R., D. L. Harstad, D. K. Spangenberg, R. S. Gerstenberger, C. V. Brun, and D. L.
602 Larsen. 2017. The impact of different hatchery rearing environments on smolt-to-adult
603 survival of spring Chinook Salmon. Transactions of the American Fisheries Society
604 146:539-555.

605 Burke, B. J., M. A. Jepsen, K. E. Frick, and C. A. Peery. 2006. Detection efficiency of a Passive
606 Integrated Transponder (PIT) tag interrogator for adult Chinook Salmon at Bonneville
607 Dam, 2005. Report of the National Marine Fisheries Service to the U.S. Army Corps of
608 Engineers, Portland and Walla Walla Districts. Northwest Fisheries Science Center,
609 National Marine Fisheries Service, Seattle, Washington.

610 Campbell, B., J. T. Dickey, and P. Swanson. 2003. Endocrine changes during onset of puberty in
611 male spring Chinook Salmon, *Oncorhynchus tshawytscha*. *Biology of Reproduction*
612 69:2109-2117.

613 Clarke, L. R., W. A. Cameron, and R. W. Carmichael. 2012. Performance of spring Chinook
614 Salmon reared in acclimation ponds for two and four months before release. *North*
615 *American Journal of Aquaculture* 74:65-72.

616 Clarke, W. C., and J. Blackburn. 1994. Effect of growth on early sexual maturation in stream-
617 type Chinook Salmon (*Oncorhynchus tshawytscha*). *Aquaculture* 121:95-103.

618 Claiborne, A. M., J. P. Fisher, S. A. Hayes, and R. L. Emmett. 2011. Size at release, size-
619 selective mortality, and age of maturity of Willamette River Hatchery yearling Chinook
620 Salmon. *Transactions of the American Fisheries Society* 140:1135-1144.

621 Claiborne, A. M., J. A. Miller, L. A. Weitkamp, D. J. Teel, and R. L. Emmett. 2014. Evidence
622 for selective mortality in marine environments: the role of fish migration size, timing, and
623 production type. *Marine Ecology Progress Series* 515:187-202.

624 Connor, W. P., S. G. Smith, T. Anderson, S. M. Bradbury, D. C. Burum, E. E. Hockersmith, M.
625 L. Schuck, G. W. Mendel, and R. M. Bugert. 2004. Postrelease performance of hatchery
626 yearling and subyearling fall Chinook Salmon released into the Snake River. *North*
627 *American Journal of Fisheries Management* 24:545-560.

628 Cuisset, B., P. Pradelles, D. E. Kime, E. R. Kuhn, P. Babin, S. Davail, and F. Le Menn. 1994.
629 Enzyme immunoassay for 11-ketotestosterone using acetylcholinesterase as label:
630 application to the measurement of 11-ketotestosterone in plasma of Siberian Sturgeon.
631 *Comparative Biochemistry and Physiology* 108C:229-241.

632 Ewing, R. D., and Ewing, G. S. 2002. Bimodal length distributions of cultured Chinook Salmon
633 and the relationship of length modes to adult survival. *Aquaculture* 209:139-155.

634 Feldhaus, J. W., T. L. Hoffnagle and R. W. Carmichael. 2016. The influence of size at release on
635 performance of Imnaha River Chinook Salmon hatchery smolts. *North American Journal*
636 *Fisheries Management* 36:363-374.

637 Fulton, L. A. 1968. Spawning areas and abundance of Chinook Salmon, *Oncorhynchus*
638 *tshawytscha*, in the Columbia River Basin - past and present. *United States Fish Wildlife*
639 *Service Special Scientific Report - Fisheries* No. 571.

640 Gustafson, R. G., R. S. Waples, J. M. Myers, L. A. Weitkamp, G. J. Bryant, O. W. Johnson, and
641 J. J. Hard. 2007. Pacific salmon extinctions: quantifying lost and remaining diversity.
642 Conservation Biology 21(4):1009-1020.

643 Haeseker, S. L., J. A. McCann, J. Tuomikowski, and B. Chockley. 2012. Assessing freshwater
644 and marine environmental influences of life-stage-specific survival rates of Snake River
645 spring-summer Chinook Salmon and Steelhead. Transactions of the American Fisheries
646 Society 141:121-138.

647 Hall, M., and M. Cooper. 2013. Appendix D: Methods for calculating a smolt-to-adult return
648 ratio at the Leavenworth National Fish Hatchery. Pages 48-52 in Leavenworth National
649 Fish Hatchery Annual Report, 2009. U.S. Fish and Wildlife Service, Leavenworth, WA.

650 Hankin, D. G, J. H. Clark, R. B. Deriso, J. C. Garza, G. S. Morishima, B. E. Riddell, C. Schwarz,
651 and J. B. Scott. 2005. Report of the expert panel on the future of the coded wire tag
652 recovery program for Pacific salmon. Prepared for the Pacific Salmon Commission.

653 Hard, J. J., A. C. Wertheimer, W. R. Heard, and R. M. Martin. 1985. Early male maturity in two
654 stocks of Chinook Salmon (*Oncorhynchus tshawytscha*) transplanted to an experimental
655 hatchery in southeastern Alaska. Aquaculture 48:351-359.

656 Harstad, D. L., D. A. Larsen, and B. R. Beckman. 2014. Variation in minijack rate among
657 hatchery populations of Columbia River basin Chinook Salmon. Transactions of the
658 American Fisheries Society 143:768-778.

659 Healey, M. C. 1991. Life history of Chinook Salmon (*Oncorhynchus tshawytscha*). Pages 311-
660 393 in C. Groot and L. Margolis, editors. Pacific salmon life histories. University of
661 British Columbia Press, Vancouver.

662 HSRG (Hatchery Scientific Review Group). 2009. Columbia River hatchery reform project final
663 system-wide report. Available: http://www.hatcheryreform.us/wp-content/uploads/2016/05/01_HSRG-Final-Systemwide-Report.pdf (November 2017).

664 Kassler, T. W., S. M. Blankenship, and A. R. Murdoch. 2011. Genetic structure of upper
665 Columbia River summer Chinook and evaluation of the effects of supplementation
666 programs. Cramer Fish Sciences, Report to Habitat Conservation Plan's Hatchery
667 Committee, Gresham, Oregon.

668

669 Larsen, D. A., B. R. Beckman, K. A. Cooper, D. Barrett, M. Johnston, P. Swanson, and W. W.
670 Dickhoff. 2004. Assessment of high rates of precocious male maturation in a spring
671 Chinook Salmon supplementation hatchery program. *Transactions of the American
672 Fisheries Society* 113:98-120.

673 Larsen, D. A., B. R. Beckman, C. R. Strom, P. J. Parkins, K. A. Cooper, D. E. Fast, and W. W.
674 Dickhoff. 2006. Growth modulation alters the incidence of early male maturation and
675 physiological development of hatchery-reared spring Chinook Salmon: a comparison
676 with wild fish. *Transactions of the American Fisheries Society* 135:1017-1032.

677 Larsen, D. A., B. R. Beckman, and K. A. Cooper. 2010. Examining the conflict between
678 smolting and precocious male maturation in spring (stream-type) Chinook Salmon.
679 *Transactions of the American Fisheries Society* 139:564-578.

680 Larsen, D. A., D. L. Harstad, C. R. Strom, M. V. Johnston, C. M. Knudsen, D. E. Fast, T. N.
681 Pearsons, and B. R. Beckman. 2013. Early life history variation in hatchery- and
682 natural-origin spring Chinook Salmon in the Yakima River, Washington. *Transactions of
683 the American Fisheries Society* 142:540-555.

684 Lichatowich, J. 1999. *Salmon without rivers: a history of the Pacific salmon crisis*. Island Press,
685 Washington D.C.

686 Martin, R. M., and A. Wertheimer. 1989. Adult production of Chinook Salmon reared at
687 different densities and released as two smolt sizes. *The Progressive Fish-Culturist*
688 51:194-200.

689 Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis. 1997. A Pacific
690 interdecadal climate oscillation with impacts on salmon production. *Bulletin of the
691 American Meteorological Society* 78:1069-1079.

692 Miller, J. A., V. L. Butler, C. A. Simenstad, D. H. Backus, and A. J. R. Kent. 2011. Life history
693 variation in upper Columbia River Chinook Salmon (*Oncorhynchus tshawytscha*): a
694 comparison using modern and ~500-year-old archaeological otoliths. *Canadian
695 Journal of Fisheries and Aquatic Sciences* 68:603-617.

696 Miller, J. A., D. J. Teel, A. Baptista, and C. A. Morgan. 2013. Disentangling bottom-up and top-
697 down effects on survival during early ocean residence in a population of Chinook Salmon
698 (*Oncorhynchus tshawytscha*). *Canadian Journal of Fisheries and Aquatic Sciences*
699 70:617-629.

700 Murdoch, A. R., T. N Pearson, and T. W. Maitland. 2010. Estimating the spawning escapement
701 of hatchery- and natural-origin spring Chinook Salmon using red and carcass data. North
702 American Journal of Fisheries Management 30:361-375.

703 Myers, J. M., R. G. Kope, G. J. Bryant, D. Teel, L. J. Lierheimer, T. C. Wainwright, W. S. Grant,
704 F. W. Waknitz, K. Neely, S. T. Lindley, and R. S. Waples. 1998. Status review of
705 Chinook Salmon from Washington, Idaho, Oregon, and California. NOAA Technical
706 Memorandum NMFS-NWFSC-35.

707 Ruggerone, G. T. and J. L. Nielsen. 2004 Evidence for competitive dominance of Pink Salmon
708 (*Oncorhynchus gorbuscha*) over other salmonids in the North Pacific Ocean. Reviews in
709 Fish Biology and Fisheries 14:371-390.

710 Ruggerone, G. T., J. L. Nielsen, and B. A. Agler. 2009. Linking marine and freshwater growth in
711 western Alaska Chinook *Oncorhynchus tshawytscha*. Journal of Fish Biology 75:1287-
712 1301.

713 Shearer, K. D., and P. Swanson. 2000. The effect of whole body lipid on early sexual maturation
714 of 1+ age male Chinook Salmon (*Oncorhynchus tshawytscha*). Aquaculture 190:343-367.

715 Shearer, K., P. Parkins, B. Gadberry, B. Beckman, and P. Swanson. 2006. Effects of
716 growth/body size and a low lipid diet on the incidence of early sexual maturation in
717 juvenile male spring Chinook Salmon (*Oncorhynchus tshawytscha*). Aquaculture
718 252:545-556.

719 Shiomoto, A., K. Tadokoro, K. Nagasawa, and Y. Ishida. 1997. Trophic relations in the
720 Subarctic North Pacific ecosystem: possible feeding effect from Pink Salmon. Marine
721 Ecology Progress Series 150:75-85.

722 Silverstein, J. T., K. D. Shearer, W. W. Dickhoff, and E. M. Plisetskaya. 1998. Effects of growth
723 and fatness on sexual development of Chinook Salmon (*Oncorhynchus tshawytscha*)
724 parr. Canadian Journal of Fisheries and Aquatic Sciences 55:2376-2382.

725 Spangenberg, D., D. A. Larsen, R. Gerstenberger, C. Brun, and B. R. Beckman. 2014. The
726 effects of variation in rearing conditions on growth, smolt development, and minijack rate
727 in yearling Chinook Salmon: a hatchery scale experiment. Transactions of the American
728 Fisheries Society 143:1220-1230.

729 Spangenberg, D. K., D. A. Larsen, R. Gerstenberger, C. Brun, D. L. Harstad, S. Nance, L.
730 Rohrbach, and B. R. Beckman. 2015. Stock differences in growth, smolting, and early

731 male maturation in hatchery spring Chinook Salmon: a common-garden experiment.
732 North American Journal of Fisheries Management 35:1090-1100.

733 Springer, A. M. and G. B. van Vliet. 2014. Climate change, Pink Salmon, and the nexus
734 between bottom-up and top-down forcing in the subarctic Pacific Ocean and Bering
735 Sea. Proceedings of the National Academy of Sciences E1880-E1888.

736 Sugimoto, T., and K. Tadokoro. 1997. Interannual-interdecadal variations in zooplankton
737 biomass, chlorophyll concentration and physical environment in the subarctic Pacific and
738 Bering Sea. *Fisheries Oceanography* 6:74-93.

739 Tattam, I. A., J. R. Ruzicka, J. L. McCormick, and R. W. Carmichael. 2015. Length and
740 Condition of wild Chinook Salmon smolts influence age at maturity. *Transactions of*
741 *the American Fisheries Society* 144:1237-1248.

742 Teel, D. J., B. J. Burke, D. R. Kuligowski, C. A. Morgan, and D. M. Van Doornik. 2015. Genetic
743 Identification of Chinook Salmon: stock-Specific Distributions of Juveniles along the
744 Washington and Oregon Coasts. *Marine and Coastal Fisheries: Dynamics, Management,*
745 *and Ecosystem Science* 7:274-300.

746 Waples, R. S., D. J. Teel, J. M. Myers, and A. R. Marshall. 2004. Life-history divergence in
747 Chinook Salmon: historic contingency and parallel evolution. *Evolution* 58:386-403.

748 Weitkamp, L. A. 2010. Marine distributions of Chinook Salmon from the West Coast of North
749 America determined by coded wide tag recoveries. *Transactions of the American*
750 *Fisheries Society* 139:147-170.

751 Zabel, R. W., and S. Achord. 2004. Relating size of juveniles to survival within and among
752 populations of Chinook Salmon. *Ecology* 85:795-806.

753 Zhou, S. 2002. Size-dependent recovery of Chinook Salmon in carcass surveys. *Transactions of*
754 *the American Fisheries Society* 131:1194-1202.

755

756 **LIST OF FIGURES**

757 Figure 1. Map of the upper Columbia River basin showing the central rearing facility (Eastbank
758 Hatchery, open circle symbol) and acclimation sites (numbered triangles) used to rear
759 yearling summer Chinook Salmon juveniles and major dams (black bars) encountered
760 during juvenile outmigration and adult return. 1 = Similkameen Pond, 2 = Carlton Pond,
761 3 = Chelan Falls, 4 = Dryden Pond.

762 Figure 2. Temperature profiles for **(A-B)** groundwater winter-rearing hatchery programs (DRY =
763 Dryden, CARL = Carlton) and **(C-D)** surface water winter-rearing programs (CHF =
764 Chelan Falls, SIM = Similkameen). The arrows represent the time of transfer from
765 Eastbank Hatchery to subsequent acclimation sites where fish were released in April as
766 yearling smolts. To be consistent across this and all figures to follow, the visual scheme
767 for hatchery program is: grey = surface water winter rearing; black = groundwater winter
768 rearing; solid lines/bar/symbols = DRY and CHF; dashed lines or open bars/symbols =
769 CARL and SIM.

770 Figure 3. **(A)** Mean weight (g) during hatchery rearing and **(B)** winter specific growth rate (SGR,
771 % weight gain/day) for October through April for each release). Brood years were used
772 as replicates. Error bars = SE. Different letters represent a statistical difference in one-
773 way ANOVAs with Tukey's multiple comparisons test ($\alpha = 0.05$).

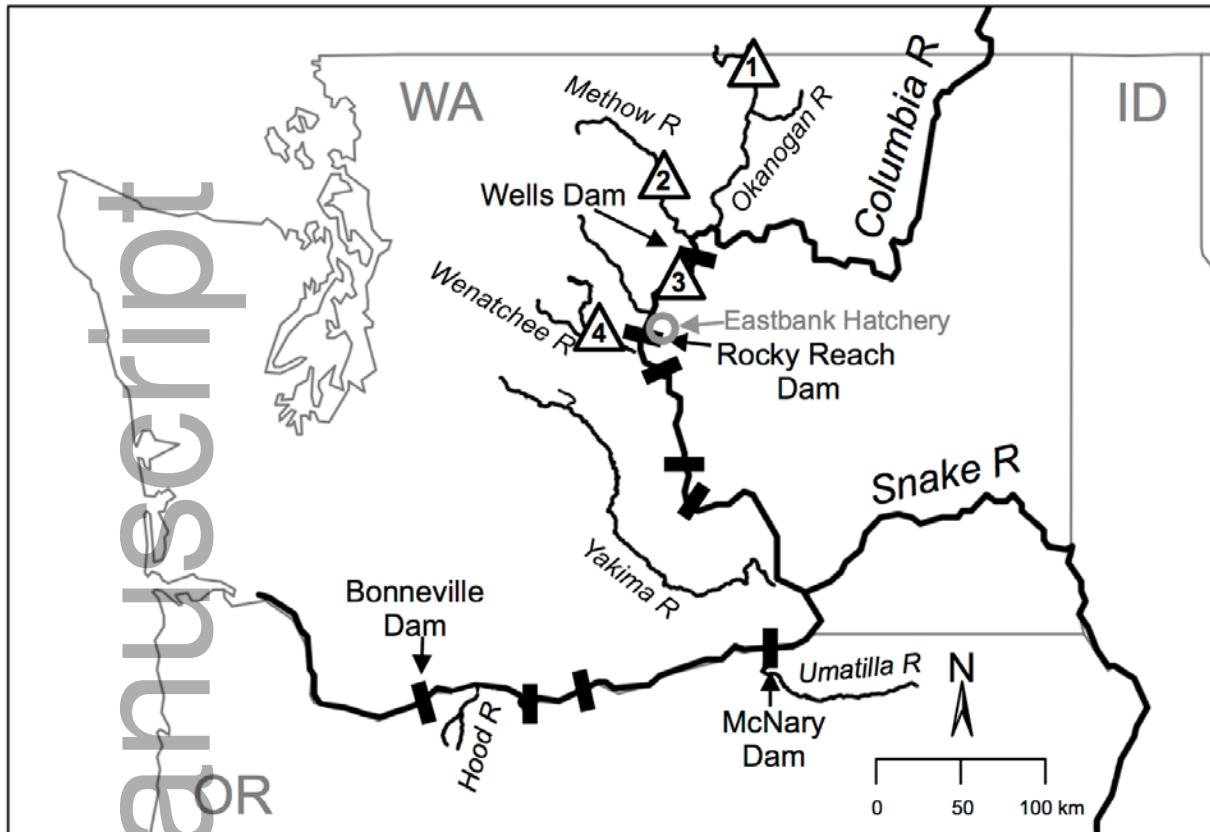
774 Figure 4. **(A)** Mean minijack rate among males for each hatchery program (error bars = SE,
775 different letters represent significant differences between hatchery programs [$\alpha = 0.05$]
776 from logit model: Maturation = $\beta_0 + \beta_1$ [program], likelihood ratio [LR] $\chi^2 = 97.05$, df =
777 3, $N = 2112$, $P < 0.001$, Pseudo $R^2 = 0.04$); and relationship of each release group's
778 minijack rate with **(B)** winter specific growth rate (SGR [% weight gain/day], slope =
779 27.1, $R^2 = 0.32$, $P = 0.04$), **(C)** size in October (slope = -0.75, $R^2 = 0.06$, $P = 0.45$), and
780 **(D)** size at release (slope = 0.55, $R^2 = 0.25$, $P = 0.08$) based on simple linear regression.
781 Dashed lines = 95% CI around regression line. Symbol key: grey open = SIM, grey
782 closed = CHF, black open = DRY, black closed = CARL, circle = BY 2006, square = BY
783 2007, triangle = BY 2008, diamond = BY 2009.

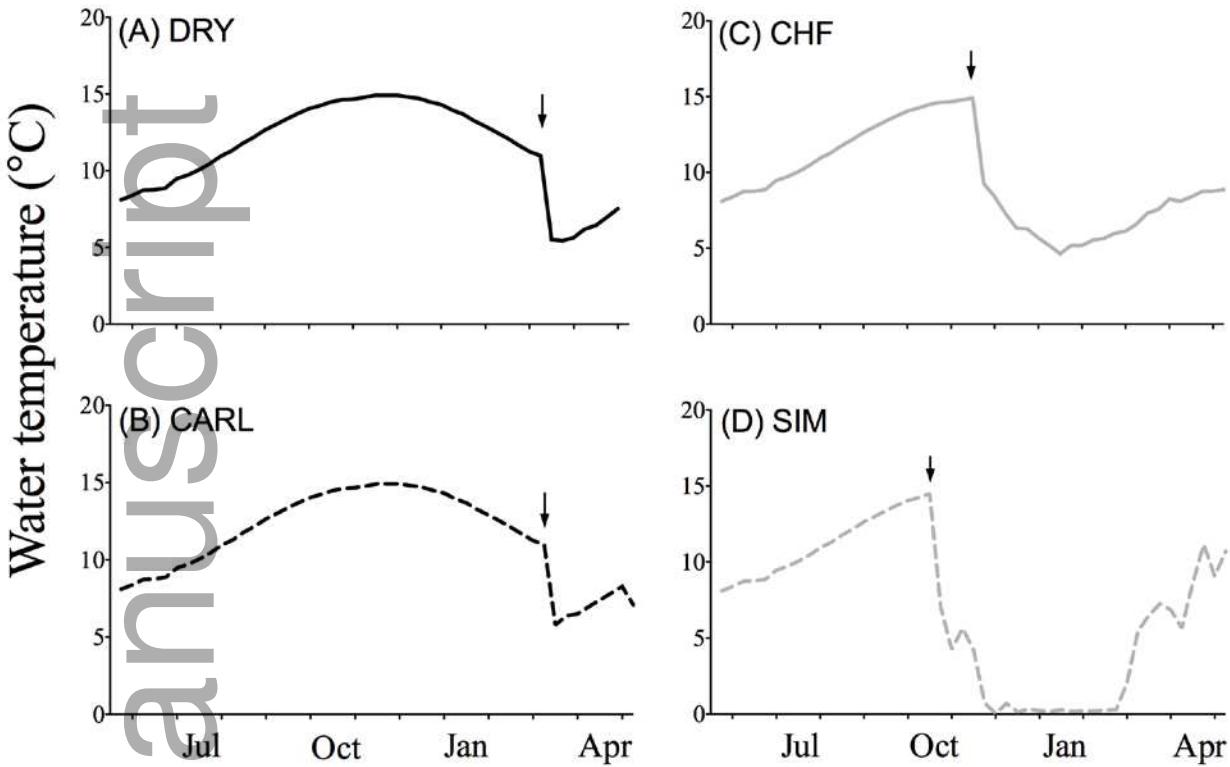
784 Figure 5. **(A)** Percent survival (SAS) based on estimated CWT recoveries for brood years 2006-
785 2009 for summer Chinook Salmon that underwent winter rearing on either groundwater
786 or surface water and the marginal effects of **(B)** program and **(C)** brood year on the
787 linear prediction of survival (Model: SAS = $\beta_0 + \beta_1$ [program] + β_2 [brood year], $F_{6,7} =$
788 8.86, $N = 14$, $P = 0.006$, $R^2 = 0.88$). Error bars = SE. Different letters represent a
789 statistical difference ($\alpha = 0.05$).

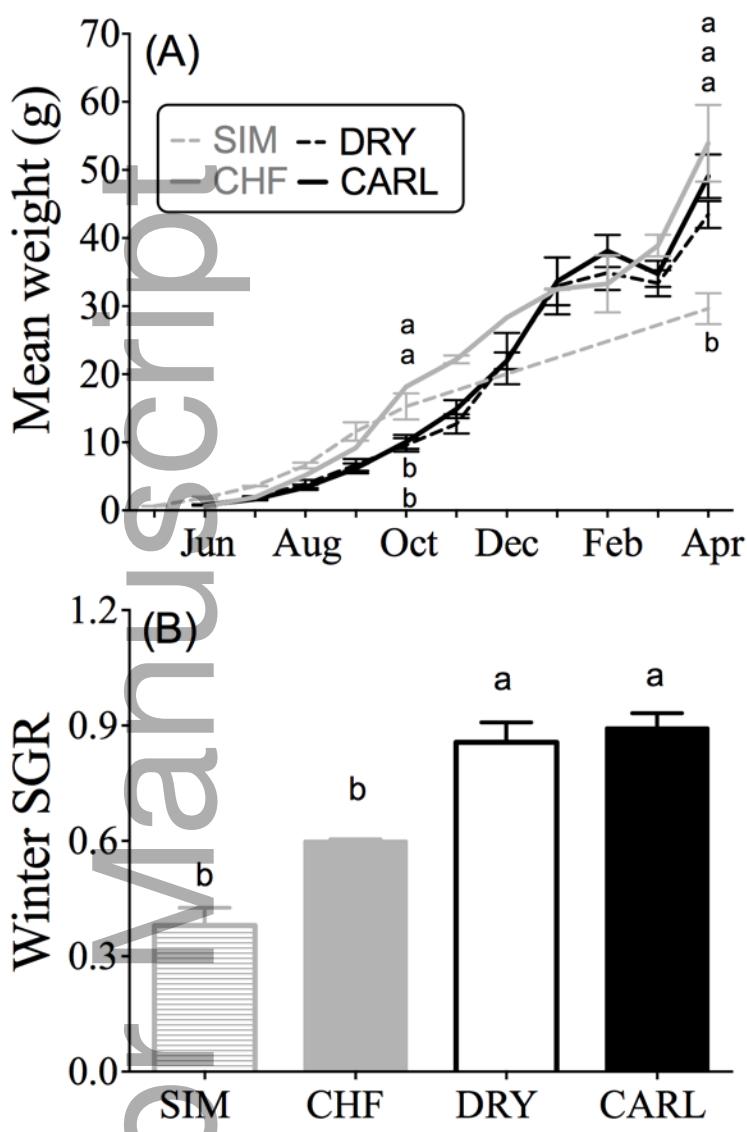
790 Figure 6. Linear prediction of SAS and marginal effects of **(A)** program + brood year, **(B)**
791 winter water source + brood year, **(C)** minijack rate + brood year, and **(D)** weight +

792 brood year. Linear predictions are based on models 3, 5, 7 & 9 from Table 4. Error bars =
793 SE of predicted values.

794 Figure 7. Percent of total returns by age-class based on PIT tag detections at Bonneville Dam (**A-**
795 **D**) and CWT recovery estimates from the RMIS database (**E-H**) for each hatchery release
796 group. Brood years as replicates. Error bars = SE. See Methods for notes on different
797 biases for each tag type.

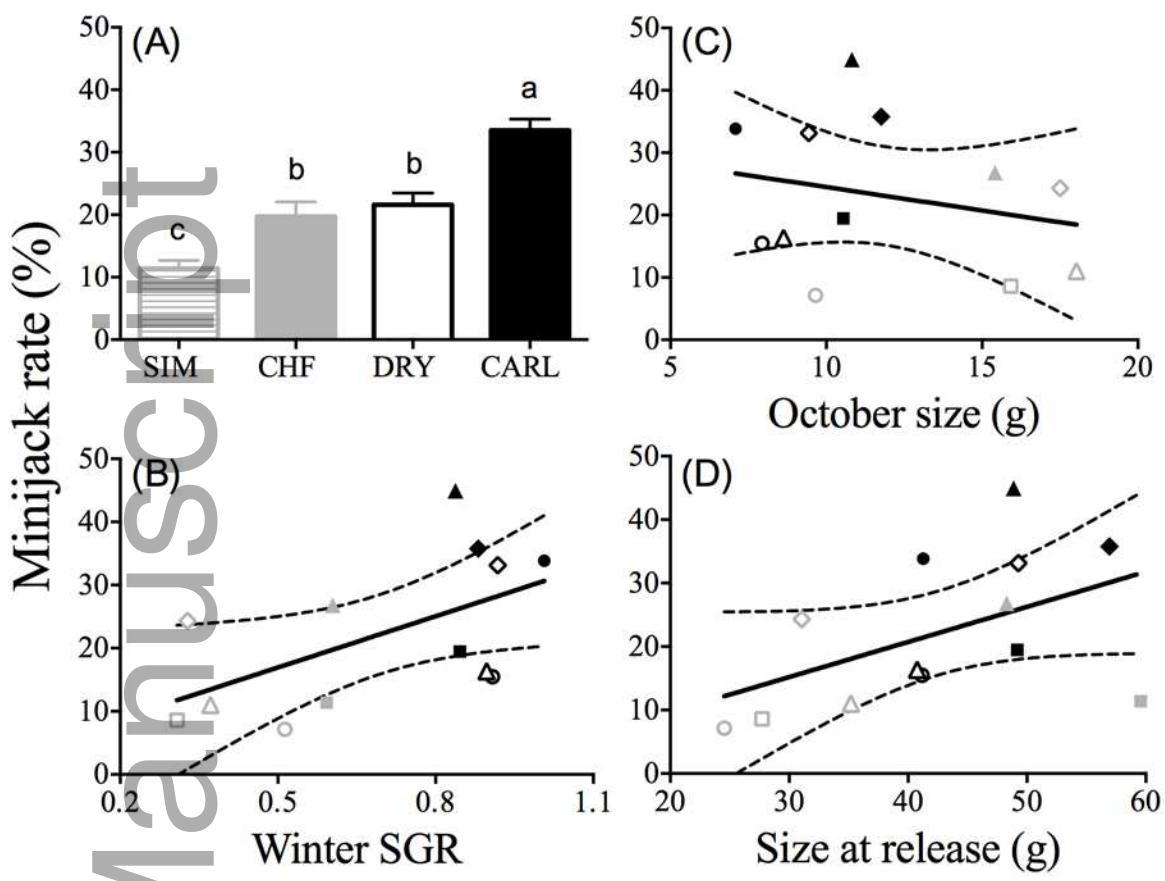

798 Figure 8. Mean size at tagging by age at return for the hatchery release groups that were PIT
799 tagged during the fall (**A-C**) or spring (**D-E**) in this study (brood years 2006 – 2009).
800 PIT-tagging dates and mean size at tagging for release groups are given in Table 3.
801 Similkameen BY 2009 and Carlton BY 2009 were omitted from this figure due to low
802 variation (SD) in size at tagging (≤ 6 mm) and early time of tagging (beginning of
803 September or earlier). Numbers within bars are number of PIT tagged fish detected
804 returning to Bonneville Dam for each age-class. Different letters represent a statistical
805 difference in one-way ANOVAs with Tukey's multiple comparisons test ($\alpha = 0.05$). Error
806 bars = SE.

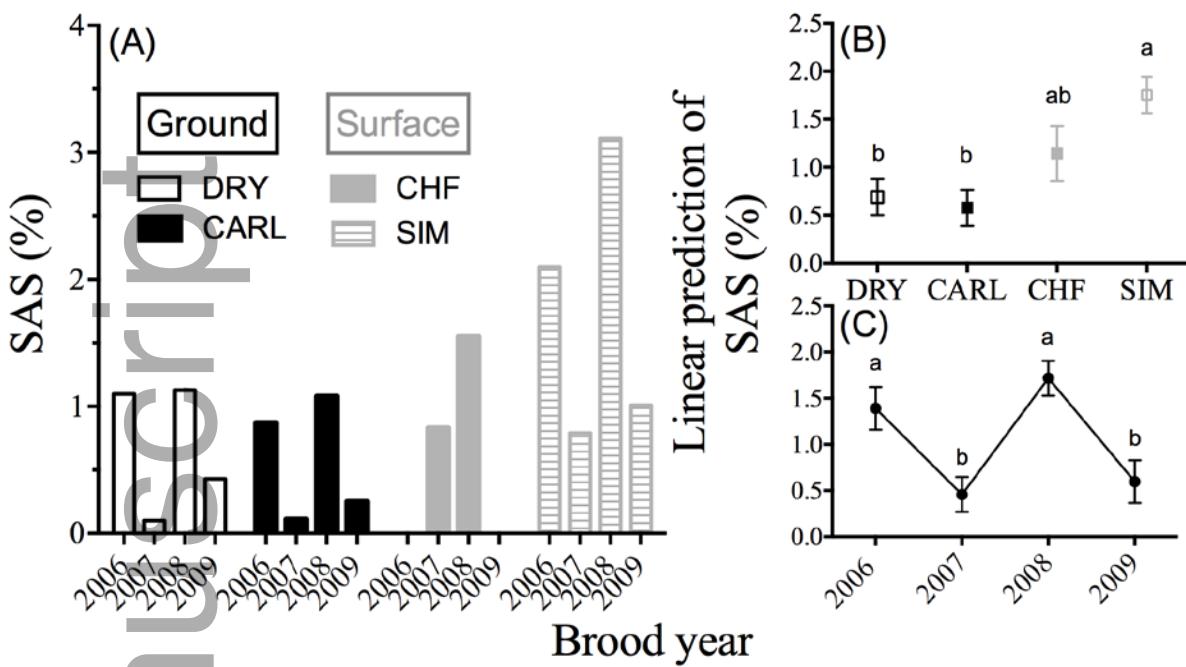

807 Figure 9. Predicted probability of return (p) for age-class (2 – 5) for fish PIT tagged (**A**) during
808 the fall at age 1, or (**B**) during the spring at age 1+ based on logistic regression models
809 with standardized fork length at tagging (percent deviation from the mean length for
810 individual fish; each release group was calculated separately) as the predictor variable.
811 Return data contains both male and female fish that were PIT tagged. Higher age-class
812 return analyses excluded those that had matured and returned at a younger age-class (see
813 Table 6).


Author Manuscript

814
815

FIGURE 1

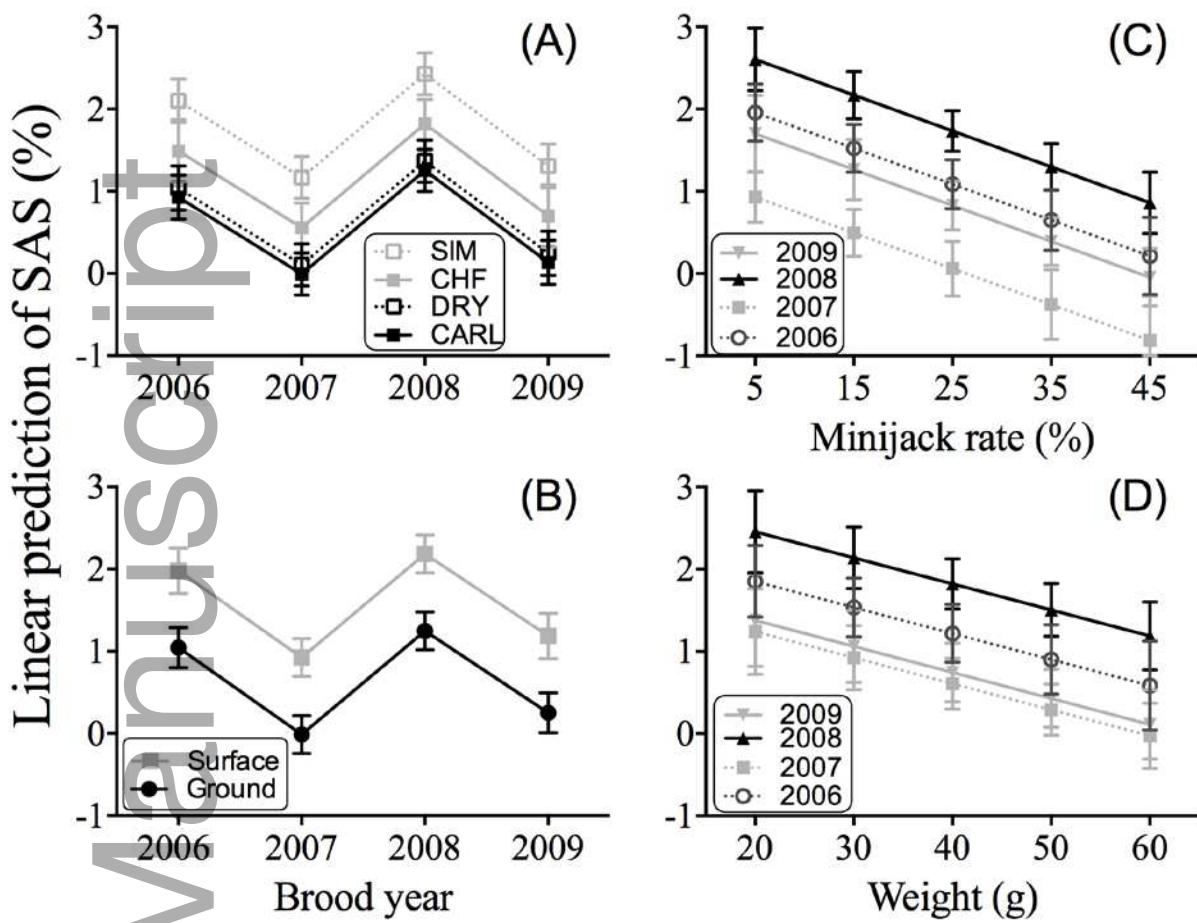



818

819

FIGURE 3

820
821 FIGURE 4
822

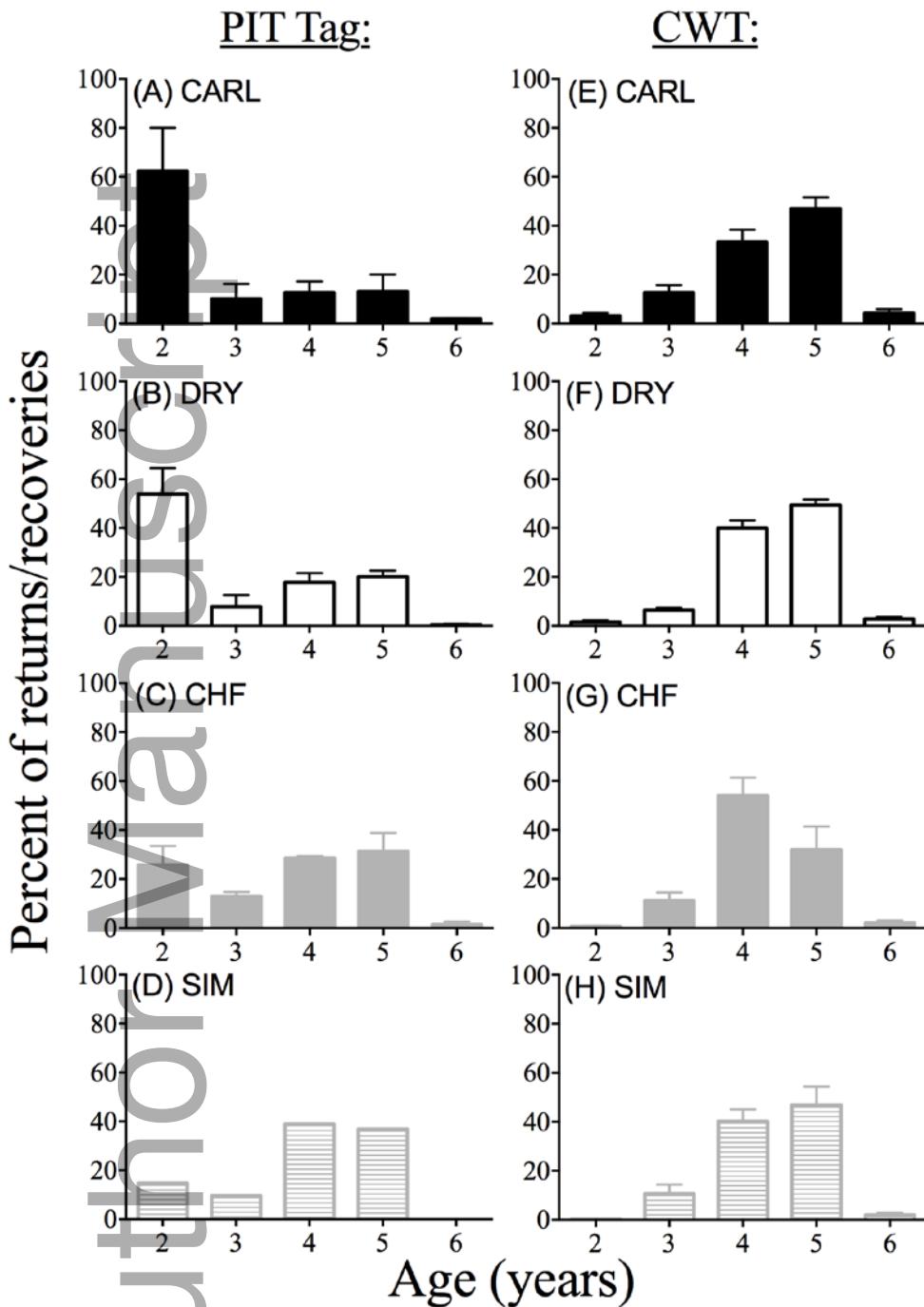


823

824

FIGURE 5

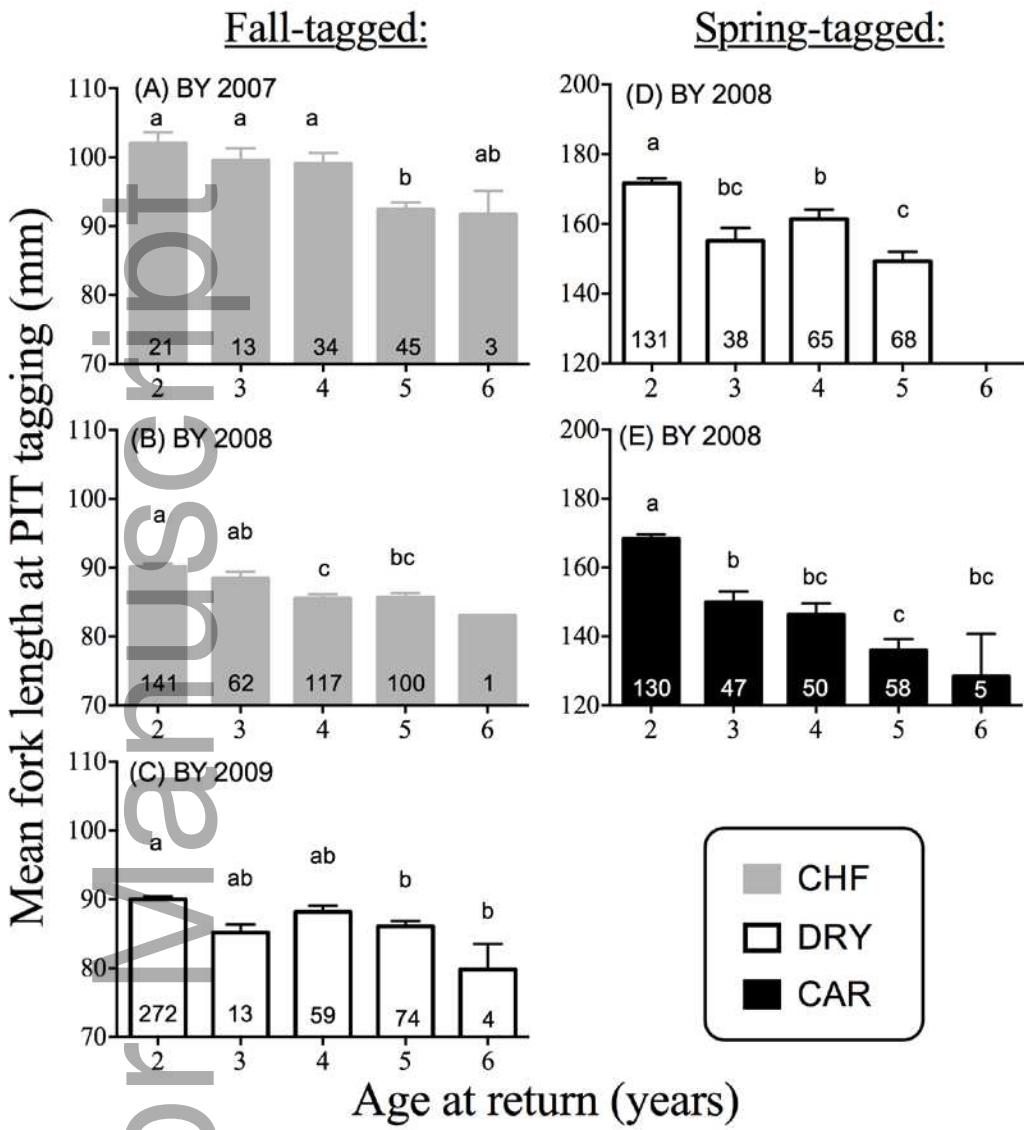
825

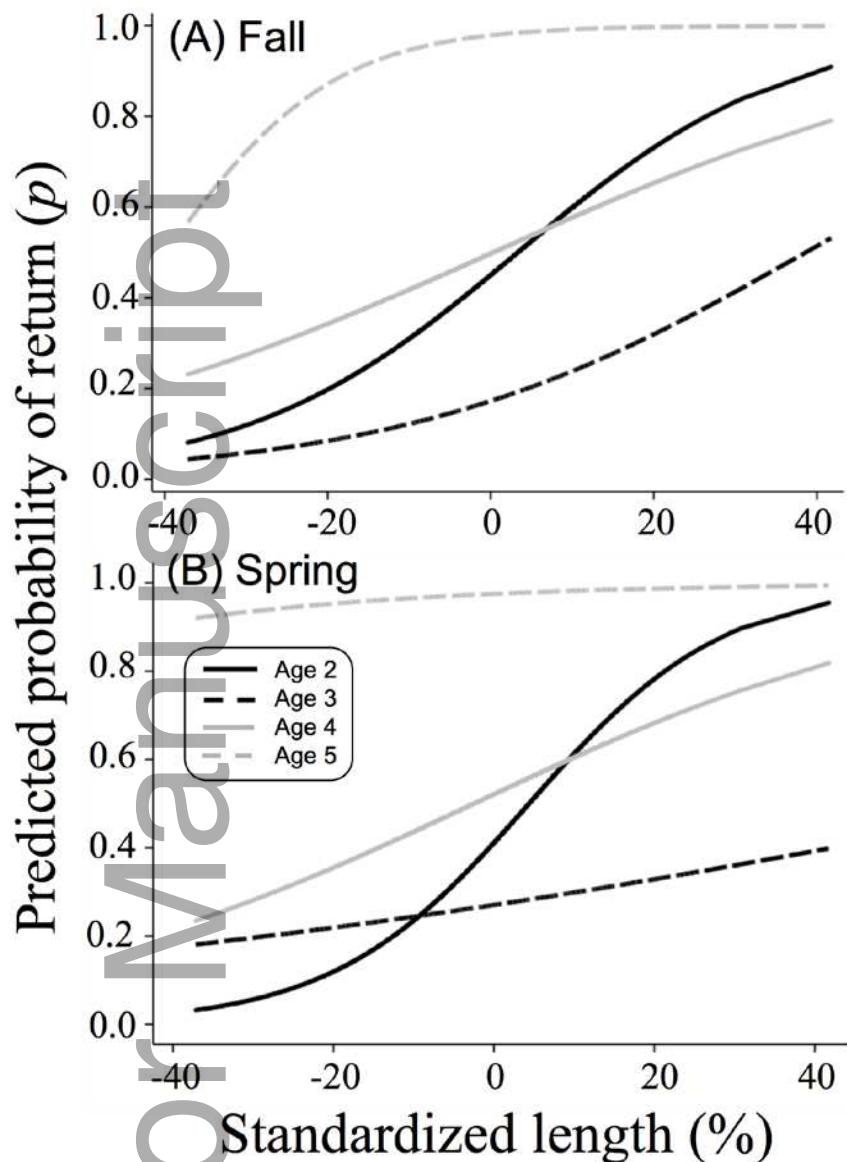


826

827

FIGURE 6


828


829

830

FIGURE 7

831
832 FIGURE 8
833

834

835 FIGURE 9

836

837 TABLE 1. Hatchery stock, brood years (BYs) sampled, acclimation site and release locations of
 838 the upper Columbia River basin yearling summer Chinook Salmon hatchery programs. Fish from
 839 all hatchery programs began their juvenile rearing at Eastbank Hatchery, located near
 840 Wenatchee, Washington and continued rearing there until acclimation (expect for CHF BY 2007,
 841 see footnote). The river kilometer (RKM) designation provides the RKM location on the
 842 Columbia River, followed by the RKM location for the primary tributary and the RKM location
 843 for a secondary tributary (if applicable) separated by period(s).

Program code	Hatchery program ^a	Hatchery Stock	BY	Ponding month	Acclimation site	acclimation site	Month transferred to		Release river (RKM)				
							late Feb/early Mar.	late Nov.					
DRY	Wenatchee Summer Chinook	Wenatchee Wells	2006-2009 2007-2008	June June	Dryden Pond	Chelan Falls, Net Pens ^b	late Feb/early Mar.	late Nov.	Wenatchee R (754.026) Chelan R (810.000)				
	Upper Middle				Chelan Falls, Net Pens ^b								
	Columbia Mainstem Summer												
	Chinook Methow Summer Chinook				Carlton Pond								
CARL	Methow Summer Chinook	Methow- Okanogan	2006-2009	June	Carlton Pond	late Feb/early Mar.	late Oct/early Nov.	late Nov.	Methow R (843.058)				
	Okanagan Summer Chinook												
SIM	Summer Chinook	Methow- Okanogan	2006-2009	May	Similkameen Pond	late Oct/early Nov.	late Nov.	late Nov.	Similkameen R (858.119.008)				

^a Hatchery program names listed above are from the Columbia River hatchery reform project report (HSRG 2009). For ease, we refer to these programs by their acclimation site throughout this article.

^b BY 2007 Chelan Falls fish spent Nov.-Feb. at Turtle Rock facility (RKM = 765) prior to acclimation at Chelan Falls.

844

845

846 TABLE 2. Minijack evaluation brood year (BY), sample date, fork length (FL, mm), weight
 847 (WT, g), coefficient of variation (CV, %), condition factor (K), sample size and minijack rates
 848 (among males) from assessment of each hatchery program just prior to smolt release. Δ WT is the
 849 difference between weight at release and the target size of 45.4 g.

Program code	BY	Sample date	FL (mm)	CV, FL	WT (g)	CV, WT	Δ WT (g)	K	K	N	Minijacks (%)
DRY	2006	4/17/08	154.8	18.3	41.2	54.4	-4.2	1.01	8.1	300	15.5
	2007	4/8/09	150.0	23.3	42.5	66.6	-2.9	1.07	8.5	300	4.1

	2008	4/6/10	152.3	18.0	40.8	51.4	-4.6	1.04	7.8	299	16.3
	2009	4/13/11	162.1	13.1	49.3	40.5	3.9	1.09	6.5	302	33.2
CHF	2007	4/29/09	168.5	16.8	59.6	46.3	14.2	1.14	7.9	226	11.4
	2008	4/27/20	153.9	23.0	48.3	78.2	2.9	1.06	18.9	299	26.8
CARL	2006	4/8/08	154.0	17.5	41.3	55.2	-4.1	1.02	7.2	300	33.9
	2007	4/15/09	158.1	23.0	49.2	65.8	3.8	1.04	9.4	294	19.5
	2008	4/13/10	163.3	13.7	48.9	38.9	3.5	1.05	6.6	299	44.9
	2009	4/12/11	169.8	15.8	57.0	45.1	11.6	1.07	7.5	300	35.8
SIM	2006	4/16/08	126.2	11.9	24.6	35.8	-20.8	1.17	5.6	300	7.1
	2007	4/14/09	133.5	11.5	27.7	33.6	-17.7	1.12	6.3	300	8.6
	2008	4/14/10	140.9	11.7	35.2	35.6	-10.2	1.20	6.0	300	11.0
	2009	4/13/11	137.5	12.4	31.1	35.7	-14.3	1.14	5.4	299	24.3

850

851

852 TABLE 3. Number of CWT and PIT tagged fish released each brood year (BY) for each
 853 population of yearling Summer Chinook Salmon, resulting smolt-to-adult survival (SAS) and
 854 smolt-to-adult return (SAR) estimates, and date and size at PIT tagging (mean FL and SD). SAS
 855 is based on CWT recoveries reported in RMIS database CWT summary report and includes
 856 harvest in addition to escapement. SAR is based on PIT tag detections of returning fish at
 857 Bonneville Dam (RKM = 234) on the Columbia River. Any age-2 recoveries and detections were
 858 removed from these SAS and SAR estimates.

Program code	BY	Size at PIT tagging					
		#CWT released	SAS (%)	#PIT tags released	SAR (%)	PIT-tagging dates	Mean FL (mm)
DRY	2006	931,880	1.10	0			
	2007	453,699	0.10	0			
	2008	859,387	1.13	10,035	1.70	3/1/10 - 3/3/10	153.7 22.3

	2009	828,871	0.43	29,930	0.50	9/7/10 - 9/23/10	85.9	6.8
CARL	2006	417,795	0.87	0				
	2007	426,194	0.11	0				
	2008	373,246	1.08	10,094	1.59	2/16/10 - 2/18/10	145.0	22.9
	2009	239,621	0.25	5,020	0.20	9/1/10 - 9/2/10	78.4	6.0
CHF	2007	53,130	0.83	9,940	0.96	9/15/08 - 9/26/08	92.4	8.2
	2008	98,137	1.55	11,070	2.53	9/14/09 - 9/30/09	86.1	7.5
	2009	597,276	2.10	0				
SIM	2007	508,473	0.79	0				
	2008	341,120	3.11	0				
	2009	522,296	1.01	5,089	1.59	7/26/10 - 7/28/10	69.5	4.8

859

860 TABLE 4. Comparison of regression models predicting smolt-to-adult survival (SAS). Models
 861 are listed from the broadest predictor variable, brood year (BY), to descriptors of rearing
 862 (hatchery program [PROGRAM] and winter-rearing water source [ground vs. surface,
 863 WATER]), to fish attributes (minijack rate [MJ] and mean weight at release [WT]). BY was
 864 added to regression models with program, water source and fish attributes and was significant
 865 within these models (* $P < 0.05$). Interactions with BY were tested but none were significant
 866 (data not shown). Beta (β) is the correlation coefficient for the continuous predictor variables, MJ
 867 and WT.

Model	Predictor variable(s)	β								
		N	df	F	P	R^2	AIC	ΔAIC	MJ	WT
1	BY	14	3, 10	3.17	0.072	0.49	31.5	14.8		
2	PROGRAM	14	3, 10	2.22	0.149	0.40	33.7	17.0		
3	BY, PROGRAM	14	6, 7	8.86	0.006	0.88	16.7	0.0		
4	WATER	14	1, 12	6.38	0.027	0.35	30.9	14.2		

5	BY, WATER	14	4, 9	10.88	0.002	0.83	18.1	1.4	
6	MJ	13	1, 11	2.17	0.169	0.16	31.6	14.9	-0.027
7	BY, MJ	13	4, 8	5.83	0.017	0.74	22.2	5.5	-0.044*
8	WT	14	1, 12	3.56	0.084	0.23	33.2	16.5	-0.037
9	BY, WT	14	4, 9	3.80	0.045	0.63	29.0	12.3	-0.032

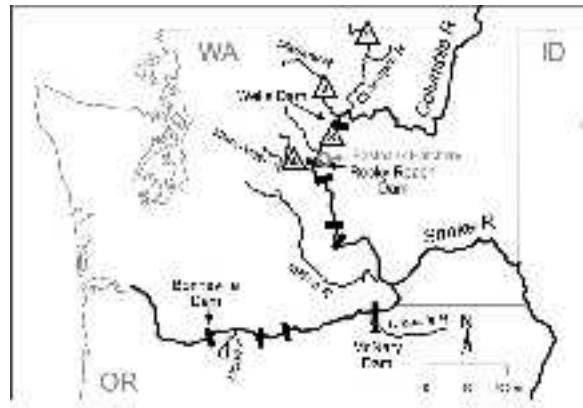
868

869

870 TABLE 5. Survival estimates by age class at return of upper Columbia summer Chinook Salmon
 871 for brood years (BYs) 2006-2009. SAR estimates are percent of PIT tagged fish release that were
 872 detecting returning to Bonneville Dam (RKM 234 on Columbia River). SAS estimates (based on
 873 CWT data) are minimum percent recoveries for each age class from RMIS database.

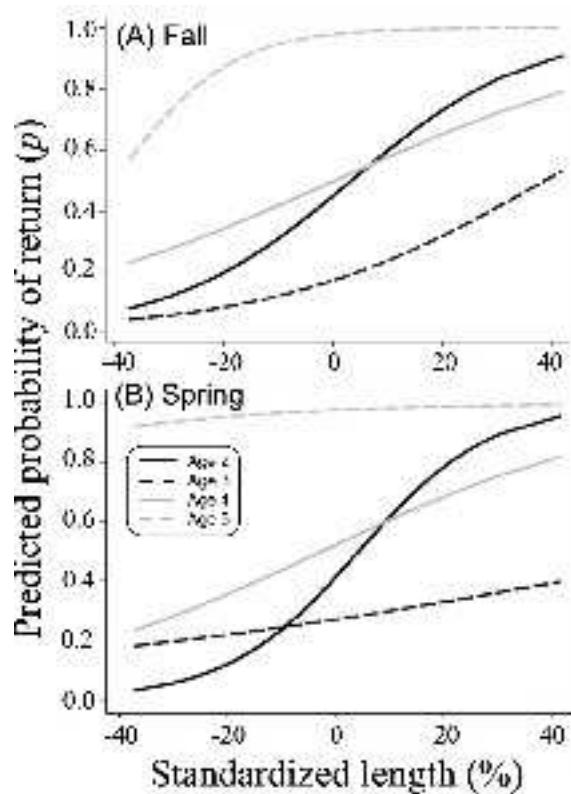
BY	Program code	SAR (%, based on PIT tags)						SAS (%, based on CWTs)						
		Age 2	Age 3	Age 4	Age 5	Age 6	Total	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Total
2006	CARL							0.02	0.07	0.33	0.43	0.04	0.00	0.89
	DRY							0.01	0.07	0.41	0.59	0.03	0.00	1.11
	SIM							0.00	0.09	0.79	1.18	0.04	0.00	2.10
2007	CARL							0.00	0.01	0.02	0.06	0.01		0.11
	CHF	0.21	0.13	0.34	0.45	0.03	1.17	0.01	0.07	0.39	0.35	0.03		0.84
	DRY							0.00	0.00	0.04	0.05	0.01		0.10
	SIM							0.00	0.04	0.24	0.47	0.04	0.00	0.79
2008	CARL	1.29	0.47	0.50	0.57	0.05	2.87	0.00	0.16	0.47	0.43	0.01		1.08
	CHF	1.27	0.56	1.06	0.90	0.01	3.80	0.01	0.23	0.96	0.35	0.02		1.56
	DRY	1.31	0.38	0.65	0.68	0.00	3.01	0.00	0.08	0.55	0.49	0.02		1.13
	SIM							0.01	0.63	1.66	0.81	0.01		3.12
2009	CARL	0.80	0.04	0.08	0.06	0.02	1.00	0.02	0.05	0.09	0.10	0.01		0.27
	DRY	0.91	0.04	0.20	0.25	0.01	1.41	0.00	0.03	0.17	0.21	0.01		0.43
	SIM	0.28	0.18	0.73	0.69	0.00	1.87	0.00	0.13	0.40	0.47	0.01		1.01

874

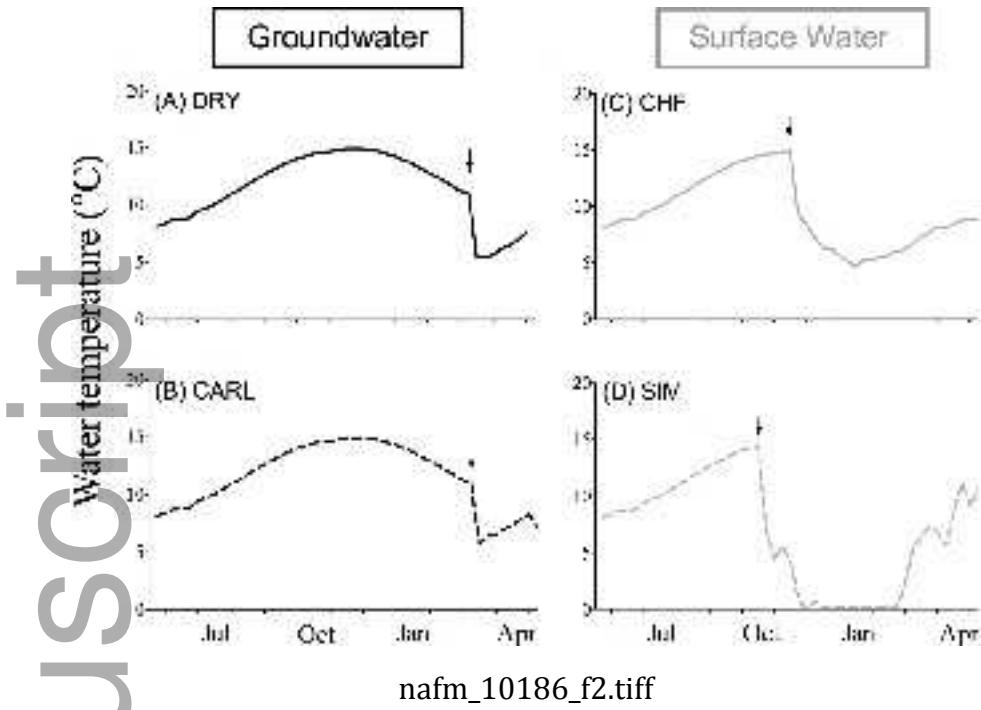

875 TABLE 6. Model summaries for predicted probability of return (p) for age classes 2-5 for fish
 876 PIT tagged (A) during the fall at age 1, or (B) during the spring at age 1+ based on logistic

877 regression models with standardized fork length at tagging, (FL-mean)/mean $\times 100$, as the
 878 predictor variable. These model summaries correspond with the predicted probabilities illustrated
 879 in Figure 9. LR = likelihood ratio; OR = odds ratio. This analyses did not include CARL BY
 880 2009 & SIM BY 2009 as they were PIT tagged in July-early September and had very little
 881 variation in size at tagging.

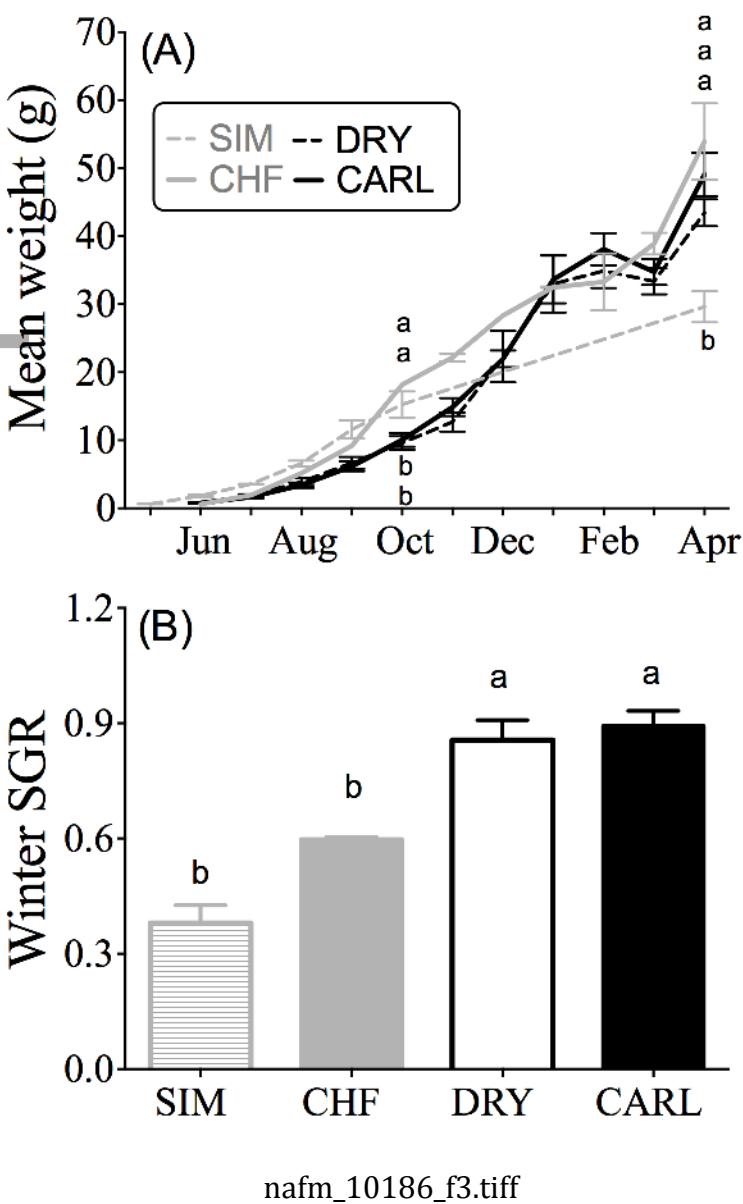
Model	Response variable	Model			Predictor		N, by age class					
		N	df	LR χ^2	P	Pseudo R^2	OR	z	Age 2	Age 3	Age 4	Age 5
A) Fall-Tagged:												
1	<i>p</i> , Age 2	959	1	52.3	0.000	0.04	1.06	7.0	434	88	210	219
2	<i>p</i> , Age 3	525	1	7.9	0.005	0.02	1.04	2.8		88	210	219
3	<i>p</i> , Age 4	437	1	6.9	0.009	0.01	1.03	2.6			210	219
4	<i>p</i> , Age 5	227	1	3.5	0.063	0.05	1.10	1.8				219
B) Spring-Tagged:												
5	<i>p</i> , Age 2	592	1	138.7	0.000	0.17	1.09	9.9	261	85	115	126
6	<i>p</i> , Age 3	331	1	2.6	0.104	0.01	1.01	1.6		85	115	126
7	<i>p</i> , Age 4	246	1	15.3	0.000	0.05	1.03	3.8			115	126
8	<i>p</i> , Age 5	131	1	1.1	0.300	0.03	1.03	1.0				126


882

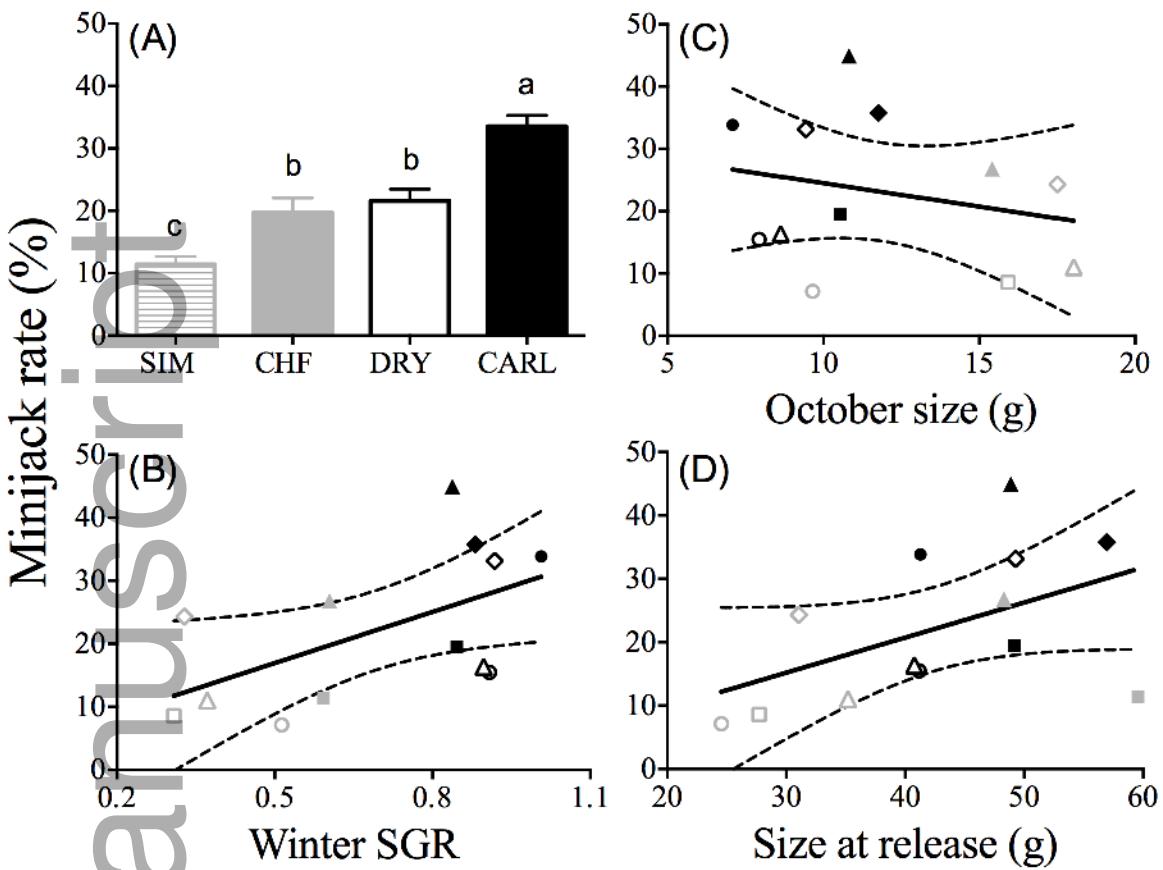
Author Manuscript


nafm_10186_f1_ps_original.tiff

Author Manuscript

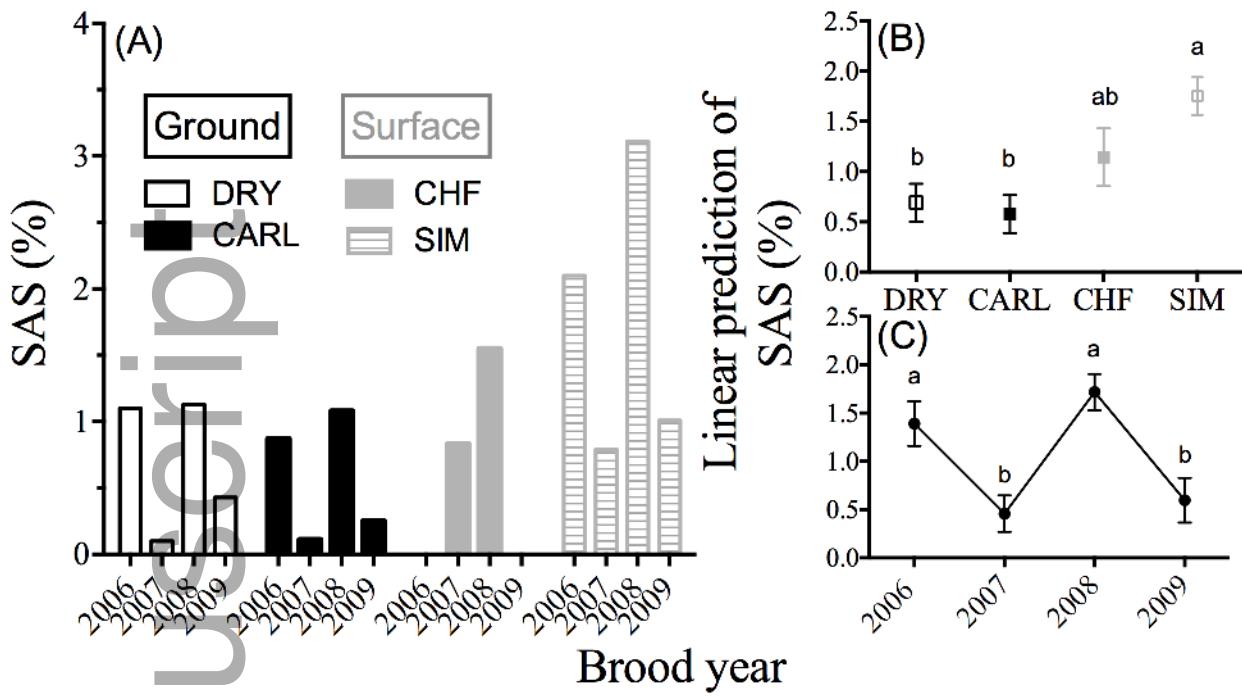

nafm_10186_f9_redo.tiff

Author Manuscript

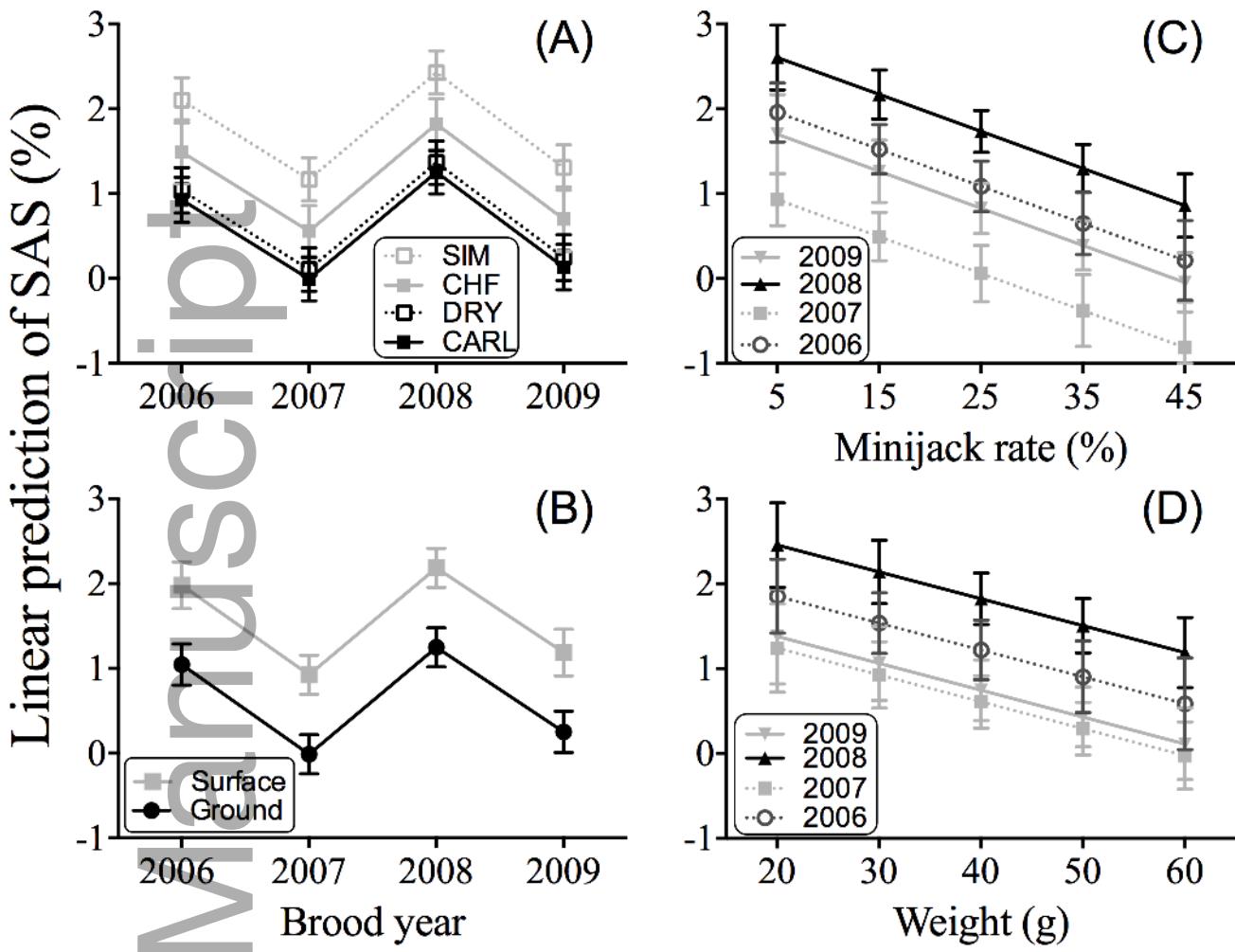


nafm_10186_f2.tiff

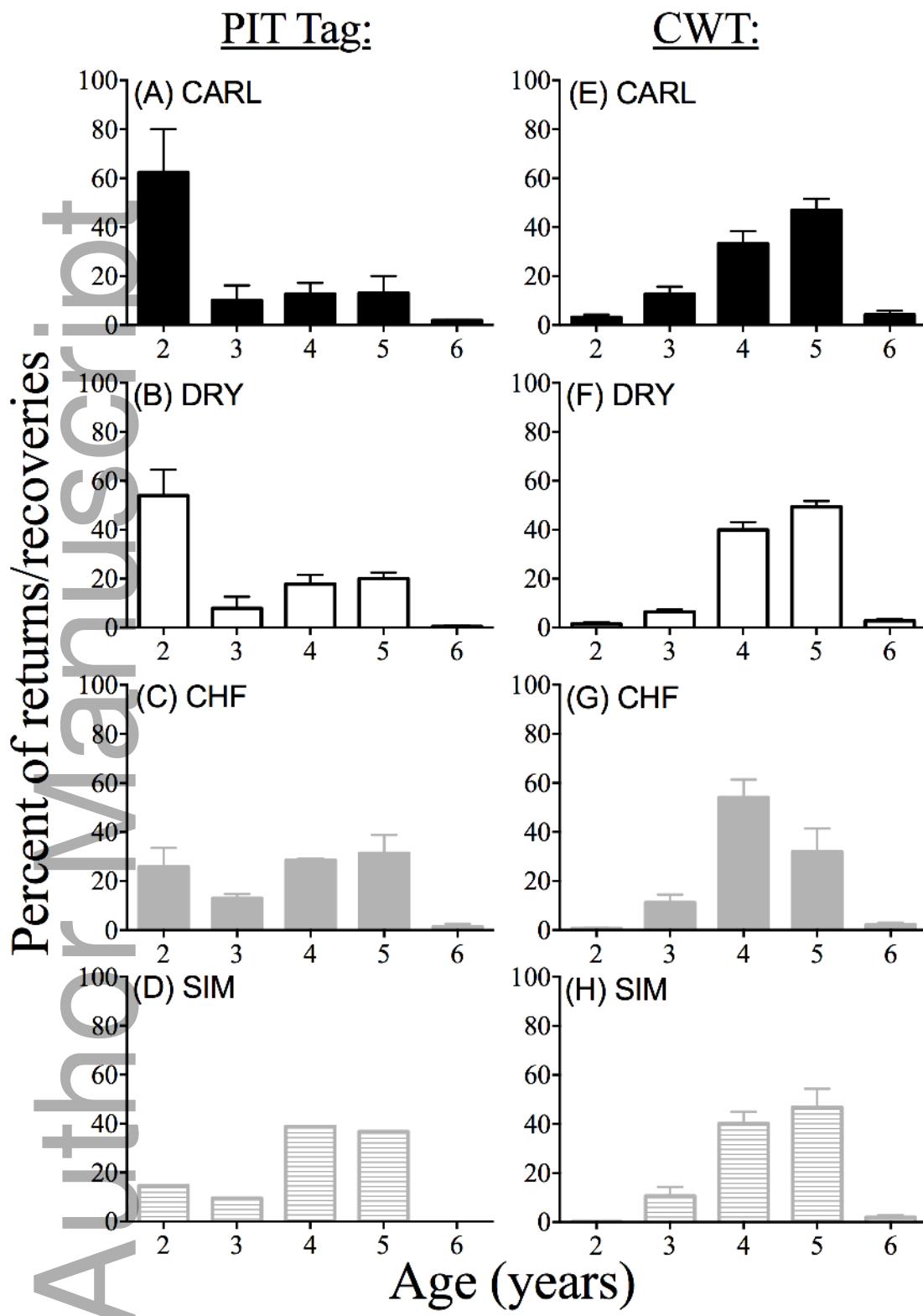
Author Manuscript

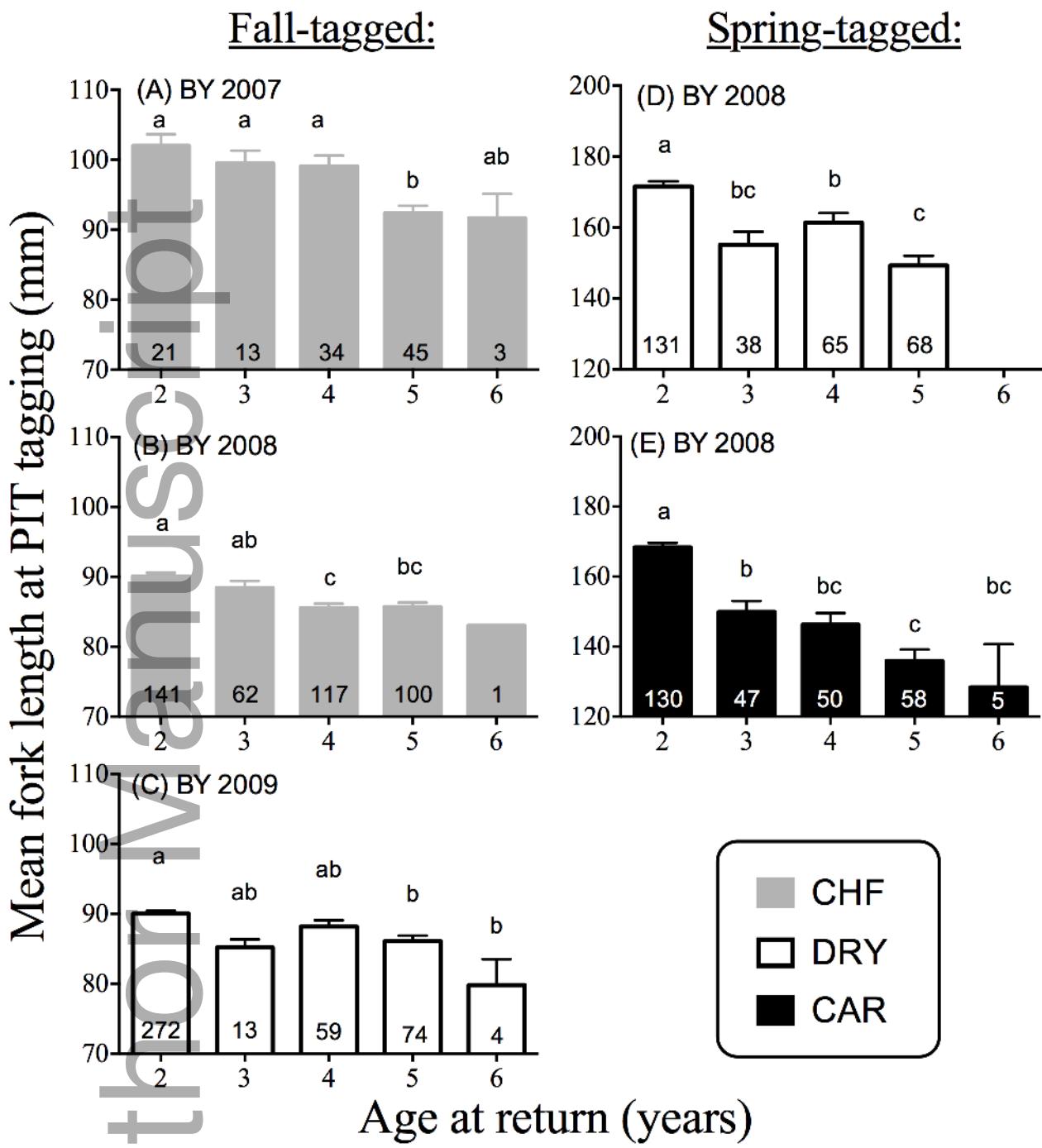


nafm_10186_f3.tiff



nafm_10186_f4.tiff


Author Manuscript


nafm_10186_f5.tiff

nafm_10186_f6.tiff

nafm_10186_f7.tiff

nafm_10186_f8.tiff