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ABSTRACT: The square conservative exponential integral method (SCEIM) is proposed for transport problems on the
sphere. The method is a combination of the square conservation algorithm and the exponential integral method. The main
emphasis in the development of SCEIM is on conservation, positive-definite, and reversibility as well as achieving com-
parable accuracy to other published schemes. The most significant advantage of SCEIM is to change the forward model to
the backward model by setting a negative time step, and the backward model can be used to solve the inverse problem.
Moreover, the polar problem is significantly improved by using a simple effective central skip-point difference scheme without
major penalty on the overall effectiveness of SCEIM. To demonstrate the effectiveness and generality of the SCEIM, this
method is evaluated by standard cosine bell tests and deformational flow tests. The numerical results show that SCEIM is a
time-convergence method as well as a grid-convergence method, and has a strong shape-preserving ability. In the tests of the
inverse problem, the sharp fronts are successfully regressed back into their initial weak fronts and the cosine bells move against
the wind direction and return to the initial position with high accuracy. The numerical results of forward simulations are
compared with those of published schemes, the total mass conservation, and error norms are competitive in term of accuracy.
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1. Introduction (2006). Although EIMs offer the potential for high accuracy,
the evaluation can be very computationally expensive due to
requiring computation of the matrix exponential involved in
EIMs. Approximation of such matrix functions or their prod-
ucts with vectors constitutes the main computational cost of an
exponential integrator. This is of particular concern in the so-
lution of PDEs, where the spatial discretization results in very
large matrices. A number of methods have been proposed to
calculate the exponential functions of a matrix (Moler and Van
Loan 1978, 2003). Most of them, however, are of little practical
use for large-scale stiff matrices due to high computational
cost. It is common, however, that only the product of expo-
nential functions of matrix and vectors is required for an im-
plementation of exponential integral. This is the case, for
instance, when the matrix results from a spatial discretization
of the atmosphere or ocean dynamical system. To deal with
this problem, Krylov subspace techniques are among the most
promising methods. The basic idea of the Krylov subspace
techniques is to project a large matrix onto a relatively small
Krylov subspace where calculating the matrix is significantly
less computationally expensive. By taking the advantages of
this method, a variety of efficient Krylov subspace algorithms
have been proposed and developed, such as restarted Krylov
methods (Botchev 2013), block Krylov subspaces (Frommer
et al. 2017; Li et al. 2016), the adaptive Krylov subspaces
methods (Niesen and Wright 2012; Gaudreault et al. 2018) and
Corresponding author: Dr. ShifengHao, shifenghao@aliyun.com  the exponential propagation iterative methods(Tokman 2006).

The time integration scheme is an important consideration
in the design of an atmospheric model. Stability, accuracy and
efficiency are obvious requirement for any numerical method,
particularly for numerical weather prediction in an operational
context. Exponential integration methods (EIM) have re-
ceived increased attention as an alternative to multistep and
multistage time integration methods commonly used in con-
junction with finite difference method (FDM) and finite ele-
ment methods. EIMs are exact for linear systems of ODEs with
constant coefficients and are thus unconditionally stable. EIMs
have the advantage of being accurate and, similarly to tradi-
tional known implicit methods, allowing integration with large
time steps and possessing good stability properties. Beylkin
et al. (1998) extended EIMs to solving nonlinear partial dif-
ferential equations (PDEs) by splitting nonlinear PDEs into
linear and nonlinear parts, this is known as exact treatment of
the linear part (ELP) scheme, whose distinctive feature is the
exact evaluation of the contribution of the linear term of
nonlinear PDEs. An alternative to ELP is the exponentially
fitted Euler method, which require the evaluation of a partic-
ular family of exponential function of matrix, namely, the
¢ functions, and this method also commonly appears in the
literature, for example, Hochbruck et al. (1998) and Tokman
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Krylov subspace methods have been successfully used for
the simulation of the shallow-water equations on the sphere
(Clancy and Pudykiewicz 2013). Compared with the rational
functions arising from the implicit approach, EIMs have an
advantage over the traditional implicit approach due to faster
Krylov convergence of exponential functions (Loffeld and
Tokman 2013). This has provided strong motivation for the
further development of these methods.

In the previous investigations, how to improve the compu-
tational efficiency of exponential functions of matrix has al-
ways been the focus of attention. In recent years, more and
more attention has been paid to the positive-definite and
conservation associated with EIMs (Bhatt and Moore 2017,
2019; Clancy and Pudykiewicz 2013). However, these two
problems associated with finite difference method have been
well solved and implemented by many methods. Among them,
the conservation semi-Lagrangian with rational function (CSLR)
scheme constitutes a typical example. With this technique,
the piecewise rational method (PRM) was proposed to solve
problems of mass conservation and positive-definiteness of
semi-Lagrangian advection (Xiao and Peng 2004). For dy-
namic cores of numerical model with explicit schemes based on
Euler equations, The nonlinear renormalization scheme was
proposed to solve the positive-definiteness problem (Bott
1989), which was then greatly improved and applied success-
fully to improve the overpredicted cumulative precipitations of
WRF model (Skamarock and Weisman 2009). In the present
article, we investigate the potential of EIMs for solving trans-
port equation, and emphasis on how to obtain conserving nu-
merical solution that is also everywhere positive. Therefore, we
have to mention an effective algorithm, namely, square con-
servation algorithm (SCA), which was proposed by Zeng and Ji
in 1981. In general, if [, (dy/dr)dQ =0, where y is a time-
dependent variable in space (2, then y is a global conservative
variable. Similarly, the concept of square conservation is that if
Jay(ay/at) dQ =0, then y is a global square conservative vari-
able due to y(dy/ar) = (1/2)ay*/ot. the atmospheric or oceanic
dynamical equations may be transformed into square conser-
vation systems under some conditions, then symplectic
schemes can be used to solve them, and SCA can also be
adopted to solve Hamiltonian system (Wang et al. 1995).
Computational stability and energy conservation are very im-
portant for a long-time numerical integration. For this reason,
some implicit and explicit schemes with square conservation
have been developed successively, and applied successfully in
numerical simulations of atmospheric and oceanic circulations
(Zeng and Ji 1981; Ji and Zeng 1982; Ji and Wang 1991; Wang
and Ji 1993; Wang et al. 1993, 2004). In recent years, a new
algorithm with generalized square conservation algorithm is
proposed to construct finite difference schemes for evolution
equations, this algorithm can incorporate historical observation
data, and perform very well in the linear advection tests (Gong
et al. 2013a, 2013b). The SCA can be achieved by implicit or
explicit schemes. The implicit schemes are nonlinear iterative
methods, which require a large amount of computational cost,
and the accuracy is not ensured. In contrast, the explicit scheme
proposed by Wang et al. (1993, 1995) possesses notable advan-
tages, but it is difficult to construct a positive-definite dissipative
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operator to achieve square conservation. Because the SCA is a
nonlinear conservative algorithm, the finite difference method
with discrete temporal coordinates is the major reason leading to
difficulty in designing an explicit SCA. However, this is exactly
the problem that can be solved by EIMs, so the aim of the
present article is to develop a square conservative exponential
integral method (SCEIM), which is explicit, conservative and
positive-definite algorithm for transport equation, by combining
SCA, and EIMs without constructing dissipative operator.

2. Square conservative exponential integral
method (SCEIM)

a. Square conservative property of transport equation

The two-dimensional transport equation in conservation
form on a sphere with radius r is given by

dpcost _ dupcosf  dvpcosh
ot rdA cosf rod

; M

where p is density of a transported scalar, which is everywhere
nonnegative; ¢ is time; # and A are latitude and longitude, re-
spectively; and u and v are components of wind velocity vector
along east and north directions, respectively. The values of p, u,
and v are dependent of #, A, and 6. Then the boundary conditions
in 6 and A directions, respectively, are defined by (up cos6)|,—o =
(up cosB)|r—» and (vp cosh)|g— > = (vp c0s0)|g—~, = 0. Since
p is everywhere nonnegative, we can now set (p*)? = p cosf, then
Eq.(1) can be expressed alternatively as

ap*

o = L. 0.0 + L, (1.0.0), )
where
=1 [dup* ap*
= +
L 0,00 = 5o (M0 %), )
—1 [ dvp* ap*

L = +uv—1. 4
ton(4-6,1) 2r< 0 " ae) @

Here, note that p* is allowed to go negative, but this negativity
is irrelevant because p will always be positive. Multiplying
Eq. (2) by 2%p*, we can obtain

#\2
rz% =277p*[L,, (A, 0,0) + L, (A, 6,0)] Q)

and then integrating the first term of the right-hand side of
Eq. (5) in A direction with the periodic boundary conditions, it
yields

21 w21 2
—r [Tou(p*)
242 ®], = =0.
r Jo p*L, (A, 0,1)dr pv .|o 7Y dr=0 6)

By integrating the second term of the right-hand side of Eq. (5)
in 6 direction with the homogeneous boundary condition, it
yields

/2 /2 2
o &
2r2 J p U(p )
—m/2

P gg=0. (7)

L, (A, 0,1)do = —rji T
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From Egs. (6) and (7), we can obtain

27 pml2 )2 2m (l2
er J a(’,’ ) do dx = J J 92 o560 d6 dh = 0, (¥
0 J-mn at 0 J-m/2

which means that (p*)? satisfies total mass conservation. Since
(p*)?is the square of p*, we say “p* satisfies square conservation.”
With the definition of p*, p is thus everywhere nonnegative.

b. Square conservation property of discrete
transport equation

To develop a square conservation algorithm for a transported
scalar in discretion form, we consider the spherical mesh with
radius r defined by

T T
(A2, 46) = (7’21 ¥ 1)
iel0,21], jel[-J.J]

(A;,0,) = (iAX, jA0)

)
Ay =24,=0, A —AA=A,,
Ap0.,=A0)=(,,,.0.,), i€[0,])
(M,0.,+A0) =, ,,0.,), i€[l2]

Here, I and J are integers, the indices of the grid points in
A and 6 directions, respectively, are denoted by i and j. For any i € [0,
I — 1], because of A;+; — A; = , the longitude A, line and the
longitude A ;. ; line compose a closed longitude circle. Figure 1 shows
the spherical mesh given by (9). Because of A6 = /(2] + 1), we can
have /2 — |0+, = 05A0, and then 0., = A0 = 04,4+, 0=i <1
and 0y, ;+; = A0 = 6;,,I < i = 2], which means that this spherical
mesh system is a closed domain with periodic boundary conditions in
both A and 6 directions. It is important to note that both the North
and South Poles, which are singularities in the latitude-longitude
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FIG. 1. Diagram of the latitude-longitude grid system. The NP and
SP denote North Pole and South Pole, respectively.

difference scheme, it can be written as a linear combination like
dfilox = (1/Ax)2£:1Cp( fitp — fi—p), Where f; represents a dis-
crete variable (1, v, p) on the kth grid point in x € (A, 0) direction
and C, is coefficient, which can be obtained by solving a
polynomial of order 2P. If P = 1 and C; = 1/2 then df;/dx is a
second-order spatial central difference scheme. Therefore,
the demonstrations for square conservation with higher-
order central difference schemes are similar to that of the
second-order scheme. According to the convention for discrete
systems, we use uy;, v, and p;; represent u(A;, 0;, 1), v(A;, 6, 1), and
p(A;, 0;, 1), respectively. Then Egs. (2)—(4) can be written using
the second-order spatial central difference scheme as follows:

coordinate system, are eliminated in this spherical mesh. L, (\,60.,0)= _l (”iﬂ./'pztl,f B ”i—l.jp;k—laf u.. pi*ﬂ’f _ p;k_l‘j )
Here we use “Arakawa unstaggered grid A” (Arakawa 1972) ey 2 2rAA cosf, ¥ 2rAh cos,
and take second-order spatial central difference scheme as an ex- 1 pE L
ample to demonstrate the square conservation of the discrete p*in = 27AN oSO (u,_, g Ui /2,j) (pl* J > R (10)
the grid system given by Eq. (9). For any 2P-order spatial central i i+l
L& 0VnPln ~ 81V 1P Pl ™ Pl
L@, 0}., )= _i( S+ 170 Tt St Ll B v, i T j )

1

. _ %
apijz(“i—llz,j’ ui+1/2,j) Pi-1,

ot 2rAx coso, p;“HJ

_ sk
(vi,j—llz’ vi,j+1/2) Pij-1

2rA6 pz‘H ’ ’

(12)

where ui+y; = (Ui=1j * U;j)/2, Vijzap) = (Ex1Vij=1 = vi))/2,
and the €4 and e_; are two parameters that control the relative
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P

directions of v; ;11 and v;;_1, respectively. Because south wind
is defined positive, when the variables on grids crossing the
north(south)pole are used in Eq. (11), thatis to say, ifj + 1 >J
in Eq. (11), then the e, is set to be 41 = —1, otherwise £, =
1. Similarly, whenj — 1 < —Jthenthe e_j;issettobee_; = —1
otherwise e_; = 1. From Eq. (12), the transport equation in
discrete form on the sphere can now be written as a differential
equation set:
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E3

ps
ot

=[U@® + V(©Olp, (13)
where p¥ defines a vector, which is set to be p§ = {pj}t|0§
i=2I —1and —J =j=J};U(¢) and V(¢) represent the transport-
coefficient matrices, which are associated with u and v, re-
spectively. With the definition of (9), we have the periodic
boundary conditions (up*),;; = (up*)oj, j € [/, J] in
A direction, (Wp*)j+j=1 = WP¥)piy, i € [0, I — 1) and
Wp*)ixy+1 = (Wp*)i—rs i € [, 2I] in 6 direction. Multiplying
Eq. (13) by p3:”, we can obtain

2-1
(R Z piL (A, 0,,1) =0, (14)
0 Uy, 0
Uy 0 Uiy
U ] 0 Uy 0
I 2rAN cosﬂj N
0
L Uar-1n 0 0
and
[0 i—1-172 0
V-1 0 Y
v -1 0 —I-312 0
ae| .
0
Y s+ 0 0

are transport-coefficient matrices of p¥ and p¥, respectively,
which compose the U(f) and V(¢). From Egs.(13)—(15), the
corresponding relation can then be derived as

s $ ()

i=0 j=—J

2I1-1 J

ZZ(”A) o)

i=0 j=—J

where As = 7 cosf;AOAA is an area of grid cell on latitude 6;.
Therefore, we can draw a conclusion that Eq. (13) is global
square conservative. From another point of view, it can be seen
that those U; and V; are antisymmetrical matrices, according to the
property of antisymmetric matrix, U(tn) + V(z,) is also antisym-
metric, that is to say we can have (pG) [U(z,) + V(t.)]pE =0, by
which the square conservation property of the transport equation
can be preserved in discretization form.

c¢. Semianalytical solution of transport equation

Let At be the temporal increment, ¢, = nAt, and p§(t,) is a
vector at time t,, where n is an integer. Then, the analytical
solution of Eq. (13) is given by
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(p*) Vp = 2 pz,] lon(/\r’e t)+ z p1+z]Llon()‘I+z’0 l) 0

(15)
where
* T
= (p(*),j’ pf_jpzj’ s 7p;<1724'p;k171‘/') > € [7]7]] (16)
is a vector composed by the discrete p* on the latitude 6;;
_ % T .
_(Pf,],PT,Hp s apinp;kJr]Jap?l[“],la s 7p;k+]’7]) , L€ [031)
a7

is a vector composed by the discrete p*on longitude A; and A4 f;

0 U1y
0 ... . 0
U1, 0
(18)
0 Uy 2412 0 Uy 3p
0 Uy 3py 0 ]
0 Vi—1+12 |
0 0
“Vis-sn 0
(19)
0 Visr,—s-312 0 “Vikr-i-112
0 Visr—1-112 0 ]
Lot U
&y +V@)ar
pilt,.) = el WOV e

Because U(7) and V(¢) are dependent of time, the right-hand
side of Eq. (21) is usually split into linear part and nonlinear
part, the known methods are ELP method and exponentially
fitted Euler method (see the introduction). In this work, we
considered a second-order leapfrog approximation to the time
integration of Eq. (21), as follows:
t, +
J" UG + V()] de ~ 280[U(,) + V(2 )], (22)
t

n—1

where £, is the midtime between #,—; and #,,+1. Then the approximate
solution to the Eq. (21) can now be written using Eq. (22) as follows:

Pit,1) = 10 VOl ). 23)
The exponential matrix in Eq. (23) is referred as transport
matrix. Comparing with the three time-levels leapfrog scheme
(ELP) proposed by Beylkin et al. (1988), the nonlinear part is
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omitted in Eq. (23) and the error is proportional to A%, but
in this way, the properties of square conservation and re-
versibility can be successfully preserved by Eq. (23) because
Eq. (22) is an antisymmetric matrix. By multiplying the inverse
matrix of the exponential matrix of Eq. (23), we can obtain

—2Ar[U(z,) +V(1,)] (24)

pE,_ ) =e PE,. 1),

which is the inverse function to Eq. (23), and is able to solve the
inverse problem of p§(,+1). The difference of the two transport
matrices between Egs. (23) and (24) is the sign of time step. If the
negative time step (—Ar < 0) is adopted, the transport governed
by Eq. (24) is in the opposite time direction to that by Eq. (23).

3. Exponential integral methods
a. Adaptive Krylov subspace method

A powerful class of methods to solve exponential integration
are the Krylov subspace methods, by which we can seek an
approximation solution to Egs. (23) and (24). Because Eq. (23)
or (24) is one of the problems of b(¢) = e*b, when A is a ma-by-
mp antisymmetric matrix, where by = b(0) is an initial vector,
we can take b(f) = e*'by as an example to illustrate Krylov
subspace method. Krylov subspace methods are based on the
idea of projecting the matrix A and vector by onto a lower-
dimension subspace K,,, defined by

K, =span{b,,Ab,A’b, - - -, A" 'b}, (25)
where the parameter m is the dimension of K,,,, the criterion of
m < mp is required because calculating an exponential matrix
in K,,, subspace with small size is significantly less computationally
expensive. However, the basis vectors of K,,, defined as (25) are
almost linearly dependent, so Arnoldi iteration is often used
to transform (25) into an orthonormal Krylov subspace whose
m orthonormal basis vectors compose an ma-by-m matrix B,,,
in which the projection of the action of A to this K,, is H,, =
B;AB,,,, and then the approximation to e*'b, is given by

e, ~ |b,|B, ee, (26)
where H,, is an upper m-by-m Heisenberg matrix, and e; = (1,
0,0, ...,0)7" is the first vector of B;Bm.

As we all know, when matrix A is symmetric, Lanczos iter-
ation is more effective then Arnoldi iteration for building B,,
and H,, of K,,, subspace (Niesen and Wright 2012). By some
modification, the Lanczos iteration can be used to deal with
antisymmetric matrices and build a K,,, subspace. It related to
the matrix A by the relation H,, = BZ,AB,,,, if A is antisym-
metric then H,, is both antisymmetric and Heisenberg, which
means that it is an antisymmetric tridiagonal matrix, whose
diagonal elements are zero. Then Lanczos iteration can now be
modify to deal with the antisymmetric A. The ““Algorithm 1™ in
the appendix shows the modification of Lanczos iteration for
antisymmetric matrix, where B,,,(k), k = 0, 1, ..., m denote the
kth vector of B,,,.

Although the modified Lanczos iteration can build B,,, and
H,,, when the A is antisymmetric, the key to this method is to be
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able to use an appropriate m, because it controls the accuracy
of Eq. (26), moreover, the criterion of m < mja is needed.
Therefore, the best choice is searching an appropriate m
adaptively under certain condition of error tolerance. The er-
ror estimate of Eq. (26) can be bounded by the inequality of
Eq. (27) (Niesen and Wright 2012; Koskela 2015; Vo and
Sidje 2017):

&b, — [, [1B,,e%e, | = [Ib,[[H,,(m.m + )ie}p,(H, )e, |
@7)

where ¢(tH,,) is one of the ¢-function family (Niesen and
Wright 2012). Note that the eM” is an exponential matrix,
which means that we have to calculate it in each Lanczos it-
eration step, and the dimension of H,,, i.e., m, increases with
the iteration step, so it is not a very economic method to use
Eq. (27) for error estimation. Here, we provide a new adaptive
algorithm for determining the m.

For the problem of b(¢) = e*'by, by = b(0),we have the fol-
lowing properties:

k

%:Akb, k=1,23,..., (28)
d*1b d"b
CEr=ATL k=123 (29)

So, the K,,, given by Eq. (25) can be expressed alternatively as

dt ° df?’ deé O drm!

K, = span{b(o),d"(o) #b(O) FbO) d'"l"(o)}. (30)

On the other hand, we can use a Taylor series of m — 1 degree
to approximate b(¢), as follows:

3 tm—l dm—lb(o)
(m—1) drm1

(3D

db(0) , 2 &b(0) ,

=b(0) +
b)) =bO) + ==+ 5 e

By comparing Egs. (30) and (31), we can find that Eq. (31) is
actually the projection of b(¢) onto subspace K,,, given by (30),
and the £*/k!||d*b(0)/dt"||, where k = 0, 1, ... , m, is the size
of projection of b(f) in the direction of vector d*b(0)/df*, and
"/m!||d"b(0)/dt™|| is often used to measure the accuracy of
this Taylor series. However, the K,, subspace (30) is an in-
complete orthogonal space, which means that Eq. (31) is un-
able to converge fast. Actually, the action of Lanczos iteration
is to transform subspace (30) into a fully orthogonal and nor-
malized K,,, subspace, whose basic vector matrix is B,,,, in which
the Taylor series of b(f) becomes more efficient and converge
faster than that in the subspace (30). If we could build this
Taylor series then we can determine the dimension of B,,,, i.e.,
the dimension of K,, subspace adaptively by means of the
Lanczos iteration. According to the ‘““‘algorithm 17 (lines 7-
12),we can have the recursion equation, as follows:

AB, (k) + B} (k)|IB,, (k — 1)

Balkr D= 1Bk + 1))

y =
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where B,,(0) =by/||B;,(0)]| and B,,(1) = Aby/||Bj,(1)]!. Let
F(0) = 1 and F(1) = A, then Eq. (32) can be written alterna-
tively as follows:

F(k+1) = AF(k) + B (k)| F(k — 1)
s 1l=k=m-—1.
B (k+1)= Fik +1)b,
B, (k+ D!
(33)

Because the B,, is orthonormal, we can get a set of fully
orthogonal basis vectors, as follows:

{by, F(1)by, F(2)b,, - - - , F(m — 1)b,}. 34)
By comparing Eq. (34) with the Krylov subspace defined by
(25) and (30), the vector ||Bf:,(k)||!Bm(k) = F(k)by can be re-
garded as the term d*b(0)/df* in the orthonormal Krylov sub-
space whose basic vector matrix is the B,,,, so that we can have a
Taylor series of m degree, and then use Eq. (35) as an error
estimate to determine the dimension of K,, subspace in
Lanczos iteration:

€*b, — |Ib, B, e"’e

tm
|~%||le(m)\|! <Tol, (35)

ol 1

where the Tol is the error tolerance, The advantage of this
error estimate is that Eq. (35) can be directly derived out in
Lanczos iterations without need of other extra information.
Then the “‘algorithm 1” can now be improved to an adaptive
Lanczos iteration for antisymmetric matrix. See “algorithm 2" in
the appendix. The differences between these two algorithms are
the “do-loop” in line 2 and the adaptive error estimate in line 7.

Despite we can obtain H,, and B,, adaptively, the other
problem that we have to face is the expensive computational
cost of AB,,(k) in the ‘“algorithm 2” because it seems that
AB,,, (k) is a multiplication of the large matrix A with the vector
B,.(k). However, for a specific problem, the AB,,(k) can be
calculated by some formula rather than computing the product
of matrix A and vector B,, (k). Taking the transport Eq. (23)
as an example, let A and by, respectively, represent [U(z,) +
V(t,)], and p§(t,-1), and then AB,(k), k = 1, 2, ..., m, is
equivalent to Eq. (29) whose discrete equation is similar
to Eq. (12), so AB,,(k) can be obtained formulaically rather
than using matrix multiplication. It also means that we do not
need to build a very large matrix A, but only need to build a m-
by-2I-by-(2J + 1) array to store B,,, and a m-by-m array to
store H,,,.

b. Scaling and squaring method

After obtaining the matrix H,,, then e"' may be efficiently cal-

culated by the well-known scaling and squaring method with the
Padé approximation R,(-), as follows (Moler and Van Loan 2003):

H, (/25

e ~ R (H, 1129), (36)

a9

H, 02! _ (MY

e s € [1,8] 37)

For such methods, there are two key parameters that affect the
accuracy of e’ one is the scaling parameter S, which is an
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integer and is automatically determined by the restriction
|H.,|1/25 = 1/2, the other is the degree of Padé approximation g,
which can be automatically determined by

H ¢ 2q+1
m

1g!
25 ki <Tol

29)!(2q + 1)! a’
where Tol, is the error tolerance of Eq. (36) and set to be
Tol, = 10~ . Eq. (37) is a recurrence formula by which we can
obtain eM by repeating matrix multiplication S times after
obtaining e"2* by Eq. (36).

Here, another problem that we have to mention is the “hump”
problem associated with the repeated multiplication of matrices in
scaling and squaring methods. It has been proved theoretically
that the “hump” problem does not exist for normal matrix ex-
ponential (Moler and Van Loan 2003). In an orthonormal K,
subspace, if A is antisymmetric, that is AT = —A, then it is easy to
verify that H\H,, = H,,H] due to H,, = B}, AB,,, thus H,, is a
normal matrix. Note that the matrix [U(¢,) + V(t,)] given by (22)
is an antisymmetric matrix as well as a normal matrix, so the
scaling and squaring method is a quite feasible choice. However,
matrix multiplication is computationally expensive when the m is
relatively large, so a more effective method is needed to solve
Eq. (37) for higher spatial resolution or 3D transport problems.

8' (38)

4. Central skip-point difference scheme for
polar problem

In latitude—longitude coordinate systems, the meridians con-
verge when approaching the pole and making the longitudinal
grid interval approach zero at the pole where the coordinate
system becomes singular. Therefore, relatively shorter waves can
exist in high latitude regions, and the wavelength in A direction
becomes shorter and shorter as || increase, especially near the
polar points, which means that a sufficiently large K,,, subspace is
required to describe these short waves, and then amount of
computer time is needed. In practice, those shorter waves, how-
ever, are not what we need for solving a specific problem. To deal
with this problem, we attempt to extend Eq. (10) to a central skip-
point difference scheme (Zhang et al. 2013) for the discretization
in A direction near the North and South Poles, as follows:

k
Lo (A.0.0)= 1 ("‘i—N/.j+”i.j ui+N/.j+ui,j> Pi=n,j
l 'Rl i — A7 7_ b
A7) 2 2 Pl

(39)

I cosb, .
— if(cosf. =
nt (2 cost.) ( / A)

, (40)
1 if(cos()/. >B)

where the function int(-) returns the integer part of its input
argument, N; is the number of those grids skipped toward the
west or east along the latitude 6;, and d; = N;rA\ cos; is the
longitudinal distance between (\;, 6;) and (A;+n;, 6;), whichis N;
times the longitudinal distance (rAA cosf;) used in Eq. (10).
The N; is dependent of j, where j € [/, J]. When N; = 1,
Eq. (39) is actually the Eq. (10), while when N; > 1, Eq. (39) is
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employed to discretize the zonal transport terms of transport
equations in the polar cap regions. Here, the polar cap regions
are defined as the regions whose latitude satisfy cosf; = 8, where
B is a very important critical value, which will be addressed in
section 6. It is important to note that N, is //2, and the ratio of d;
for latitude 6, to dy = rAX for equator is about 7/4, so Eq. (39) is
reasonable and feasible to be applied to the discretization for the
polar problems associated with longitudinal grid distance. In
addition, it can be easily proved that Eq. (39) satisfy square
conservation for p¥. and we do not need to consider the problems
of transport at the North and South Poles, because both of the
two singularities are not defined in the spherical mesh.

5. Least squares filter method for polar problem
Equation (2) can be written alternatively as follows:

172

ap'? _ " 1<8vp 4 ap'?

l ) ) aup'? . ap'?
a 2w 2r\ a6 a0

cosfor cosfor

(41)

=a,tax,; +a2y +ax +a4y,]+a XY,

B,
x; =il +0.5) CcosA,
Vi (J |j] +0.5) sinA,

Taking the implementation of filter for the north polar region
as an example to explain the LSFM, Assume that N, is known,
the unknown coefficients ay, a1, a,, a3, and a, in Eq. (42) can be
obtained by minimizing Eq. (43), then we can obtain the so-
lution of Eq. (42). The constraint condition for preserving mass
conservation is Eq. (44), by which the correction coefficient u is
able to be determined. Note that the indices j is fromJ — N, +
1 to Jin Eq. (44), while j is from J — N,, to J in Eq. (43), which
means that the those p}’?, whose j is from J — Np + 1to J, are
required to be corrected and p}f_ v, is used as a transitional
area between filtered area and unfiltered area. The im-
plementation of LSFM is given by Eq. (45):

21— 11

~ 2
J(al'“ 5 z z pll/,z i,' } (43)
j=J—Np i=0
2I-1 2I-1
I Z Z (7 coso] — Z > (p5)’ =0, (44)
j=J—Np+1 i=0 j=J—Np+1 i=0
pif =wpy SN, t1=j=J 0=i=2I-1. (45)

Obviously, Np is an important parameter for LSFM method,
it is associated with the coefficient C,,, which can cause rapid
error growth. The criterion for choosing N, is given by

2/-1
. _ 2
mm{E(N,,)= 20 (07 Np1~ Piynp-1) SN, € [1,Mapr]}
max(|v|)tg[A0(] — Mapr)]

ur r

=0.00018
(46)
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where C,, = v/rtgf. Eq. (41) is equivalent to Eq. (1) and Eq. (2)
though they have different form. Because the area of a grid
cell is As = r*cosfAAAN, we can get Cy. = —(dAsdt™')/As.
Therefore, the C,, is actually the relative change rate of As,
which means that p increase when transporting to the higher
latitude region where the As is relatively smaller, while
p decrease when transporting to the lower latitude region. The
term (1/2)Cyp"? can be negligible in low and middle latitude
regions due to the relatively smaller |¢gf|, but in high latitude
regions, |tgf| becomes more and more important because |¢gf)|
increase rapidly as the |6] increase. According to the ho-
mogeneous solution of Eq. (41), p'? = exp[[(1/2)Cy: dt]p}3,
Cyr > 0 is an unstable condition, namely, the numerical solu-
tion of p'? is very sensitive to the error of p'”> when going
through the polar regions due to the large |¢g6| there. To sup-
press the error growth caused by the large |tgf|, we design a
least squares filter method (LSFM), whose filter function is
given by Eq. (42), where the coordinate origin is set to be at the
north (south) pole, rAf is normalized to be unit 1, and N, is a
parameter that controls the size of area to be filtered:

J-N =lj|=J
. (42)

, for
0=i=2I-1

where the parameter MaxN, can be determined by solving
the equation Cy,,; = 0.000 18, which is obtained by a number
of numerical tests. That is to say, the errors of p often in-
crease noticeably in the region of |C,,| > 0.000 18. However,
how to determine a more accurate boundary of the region
to be filtered needs more specific method. Eq. (46) is an
enumeration algorithm, if N,, respectively, is set to be 1
to MaxN,, then we can obtain {E(1), E(2), ..., E(MaxN,)}.
Notice that the P},§2—N,,—1 in Eq. (46) is the neighboring
boundary of Eq. (43), so the idea of Eq. (46) is that mini-
mizing the coupling error between the filtered area and the
unfiltered area. That is to say, the best N, is the one that
make E(N,) smallest.

The primary subject of this paper is the SCEIM, this Least
squares Filter Method is only used to improve the result of
SCEIM by suppressing the error growth associated with polar
problem and we will further investigate it later date.

6. Numerical test

The purpose of the numerical test is to evaluate the SCEIM
method for solving transport equation. The forward model is
constructed on the base of Eq. (23). For the backward mode,
the time step is set to be a negative value. Since SCEIM is
positive-definite, there is no need for any positive-definite
correction techniques. The classical cosine bell tests and de-
formation flow tests are utilized to evaluate SCEIM. In these
tests, the scale factor for the tangential velocity is set to be vy =
27/T as that in Nair and Jablonowski (2008), where T is total
time for simulation and set to be 7 = 12 days. The normalized
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4 -1

Order Max Ave Fv_ m Cost o At=30min
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A
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FIG. 2. The time evolution of error norms of cosine bell tests in the case of various-order spatial central
difference schemes when the spatial resolution is 0.5°. The inset tables show the maximum value (Max),
average value (Ave), final value (Fv), average dimension of K, subspace (m), and the computational cost
(Cost) with unit of minutes.

I1, I, and L. error norms of the transported scalar for each test a. Cosine bell test

are defined in Williamson et al. (1992). The numerical model is Advection of a cosine bell is widely used to evaluate nu-
compiled in FORTRAN language and run serially on an IBM  merical scheme considered for global modeling. The cosine
computer with an AMD Opteron (TM) processor 6212. bell is initially specified by Eq. (47), its center is set to be

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:17 PM UTC



JANUARY 2021

HAO ET AL.

277

10" 18 Order a=0° res=0.5° At=30min

%10~ 1% Order a=45°

res=0.5" At=30min %107 1% Order «=90° res=0.5° At=30min

8 9 10 11 1

* res=0.5° Order=20

1 2 3 4 5 & B 9 10 11 5

6 7 8 8 10 11 12 4 5 6 7 8 9 10 11 1

x10713 Tes x10713

0.5 WM\ il

-0.51

T ,,d,v i *'l'l“‘ ."!-"‘-lr‘

V

a=45" At=30min Order=20

a=900° At= SOmm Or'der =20

thot At . - Lol
i Wt bl
I‘u m 0 n'|'||\rf'l' l\,

(h)

FIG. 3. The time evolution of relative errors of total mass of tests in the case of (a)-(c) 10 types of spatial central difference schemes,
(d)—(f) 4 types of time step, and (g)—(i) 4 types of spatial resolution. The total mass are 1.52 X 10°,3.41 X 10°,1.36 X 10, and 5.43 X 10%in
the case of the spatial resolution of 1.5°, 1.0°, 0.5°, and 0.25°, respectively.

(Ae, 0.) = (a1/2,0) and the { is the distance between (A, 6.) and
(A, 6) on the sphere. The driving wind field is given by Eq. (48),
in which « is a parameter for controlling flow orientation:

500 {1 + cos (%)} , L<r3

p(A,0) = , (47)
0, (=13
u, = vyr(cosf cosa + sinf cosh sma)
(48)
v, = —v,rsin) sina

1) TEST FOR HIGH-ORDER SPATIAL CENTRAL
DIFFERENCE SCHEME

For solving linear problems by means of exponential inte-
gration method, the numerical errors are primarily contributed
by the spatial discretization, so it is necessary to investigate the
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influence of high-order spatial discretization schemes on the
accuracy and efficiency of the SCEIM. In this test, we choose
At = 60 min, MaxN,, = 5, B = 0.25, and spatial resolution of
0.5°. The orders of 10 types of spatial central difference
schemes are from second order to twentieth order. The Fig. 2
shows the evolution of [, and L. of cosine bell tests with these
10 types of spatial central difference schemes. It can be seen
that /; and L. decrease as the order increase, the accuracy be-
came better and better and finally converge to the error norms
of twentieth-order spatial central difference. Both /, and /.. of
the second-order scheme are the worst. Compared with the
other schemes, the twentieth-order scheme is obviously the
best. Compared to the test results with fourth-order scheme in
the case of « = 0° and 45°, the average /, and /.. with twentieth-
order scheme are improved by 5.7 times, 4.9 times, 4.0 times,
and 4.9 times, respectively. For the test with « = 90°, though /.
of twentieth-order scheme is equivalent to that of fourth-order
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FIG. 4. The time evolution of error norms with various values of
B in the case of spatial resolution (res) of 1°. The column names of
the inset table are as in Fig. 2.

scheme, the [, of twentieth-order scheme is 1/2 times that of
fourth-order scheme, which means that higher-order differ-
ence schemes are helpful to improve polar problems. From the
change of the dimension of K,,, subspace and the computational

o

|
I

\"ﬁfJ

Time (Days)
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cost, which are denoted by “m” and “Cost” in the inner table,
respectively, it can be seen that the average dimension of K,
subspace with twentieth-order difference scheme is only m =
20. Although the computational cost increased from around 5
to 27 min, we think such level of computational cost is ac-
ceptable, so we use the twentieth-order spatial central differ-
ence scheme in all of the following tests.

Another property to be evaluated is the total mass conservation
of transported scalar based on SCEIM method. Figures 3a—c show
the time evolution of relative error of total mass of cosine bell with
second-order to twentieth-order spatial central difference schemes.
The relative errors are not exceeding 2 X 10~ for all of the tests.
According to the definition of p*, the density p is calculated by
p = (p*)*/cos, so the numerical solution of p based on SCEIM
is not only conservative but also everywhere positive. However, it
seems that relative errors of total mass error are not improved
obviously by the high-order of spatial central difference scheme.

2) TEST FOR CENTRAL SKIP-POINT DIFFERENCE
SCHEME

As mentioned in section 3, if cosf; < B then we use the
central skip-point difference scheme instead of the central

|r l"‘%w ol 0 PR A v A i

Time (Days)

FIG. 5. The time evolution of error norms in the case of four types of time steps. The spatial resolution (res) is held
0.5° and the column names of the inset tables are as in Fig. 1.
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FI1G. 6. The time evolution of error norms in the case of four types of spatial resolutions (res). The column names of
the inset table are as in Fig. 1.

difference scheme, so the B is a very important parameter. In  scheme under a same condition, we utilize a test with spatial
this viewpoint, we use eight values of B to evaluate the effec- resolution of 1.0° and At = 30 min to evaluate these two types of
tiveness and efficiency of central skip-point difference scheme scheme. The longitudinal distance along latitude 6, is d; =
for polar problems. The eight values of B, respectively, are 0.0, 0.965 km when 8 = 0, while d; = 0.965 X 90 = 86.85 km when
0.1, 0.15, 0.2, 0.25, 0.3, 0.4, and 0.5, in which the B8 = 0.0 rep- B #0.0. Figure 4 shows that the /; and /.. are the worst when 8 =
resents the spatial central difference scheme. To compare the 0.0, moreover, the value of m is up to 180, and the computa-
central skip-point difference scheme and central difference tional cost is more than 56.3 min, which is too expensive to
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FIG. 7. The errors (shaded) and numerical solutions (contours) for cosine bell passing through the South Pole
(SP) and the North Pole (NP) in the case of spatial resolution of 0.25°. The contour intervals are 100 from 100

to 900.

tolerate for this low spatial resolution. In contrast, for other
values of B, the error norms are similar but the computational
cost and the m decrease as 8 increase. We found that 8 = 0.25is
an appropriate value because the computational cost is not
cheaper when B > 0.25. Moreover, it can be seen from the
change of dimension of K, subspace, the m decrease as
B increase from 0.0 to 0.25, but keeps 10 as B8 increase from 0.3
to 0.5. For the latitude circle where S is 0.25, the longitudinal
distance is 1/4 times that of the equator, and only three grid
points are skipped in the A direction. So, we think 8 = 0.25is an
appropriate choice, and it was used in all of the following tests.

3) TEST FOR TIME CONVERGENCE

we performed the time-convergence tests, in which the
spatial resolution is held 0.5° X 0.5° and the forward model is
integrated with 4 types of time step, i.e., 6, 15, 30, and 60 min.
The corresponding Courant numbers, respectively, are 0.3125,
0.625, 1.25, and 2.5. For cosine bell test, which is a linear
transport problem, Eq. (23) is an analytical solution whose
error is primarily caused by the spatial discretization and in-
dependent of time. Figure 5 shows that the /; and /., with o = 0°
and a = 45° are not affected by the change of Az. However, for
the tests with & = 90°, the results are very different, the /, and L.
decrease noticeably as the Ar decrease, and converge toward
the , and /. with At = 6min. This convergence is caused
by the action of LSFM method, because the operation of
LSFM is implemented after each time integration step, that is
to say, if At = 6 min then the filter operation is implemented
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10 times within a 1-h interval, while the filter operation is only
implemented once when At = 60 min. It also demonstrates that
action of LSFM is positive and effective and it is very important
for improving the polar problem. For the tests with & = 90°,the
most noticeable phenomenon is the two peaks of the evolution
of [, and /.. passing through the North Pole and South Pole, and
the peaks also become better and converge as the Ar decrease.
The change of m and the computational cost show that large
time-step At can save amount of computation time despite it
require a relatively larger m. However, considering the im-
provement of polar problem associated with the filter frequency,
At = 15 min is an appropriate choice. Figures 3d and 3e show that
for any type of time step from 6 to 60 min, the relative error of
total mass is always within the 107 order of magnitude.

4) TEST FOR GRID CONVERGENCE

The grid-convergence tests were carried out by using 4 types
of spatial resolution, i.e., 1.5% 1°, 0.5°, and 0.25°, in which At =
60 min is used for the tests with @ = 0° and a = 45°, while At =
15 min is used for the test with « = 90° due to polar problems.
When At = 60 min and A¢ = 15 min are employed in the case of
spatial resolution of 0.25°, the Courant numbers are 5.0 and
1.25, respectively. From Fig. 6 it can be seen that both /; and /..
decrease obviously as the spatial resolution increase. When
a = 0° and @ = 45° the average /, and /. with resolution of
0.25° is only about 1/3 of those with resolution of 0.5°, even for
a = 90°, both [, and [, are about 1/2 of those with resolution
of 0.5°. The tables in Fig. 6 show the changes of the m and
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a=0 AL 60min|| «=45 At 60min|| a=90 [FAt 15min
res=0.25° res=0.25° = res=0.25°

0.7 0.8

0.95-

&)

Lerror-s

erro:

)
= -2

error<3.8

7.0 3.0

FIG. 8. The errors (shaded) and numerical solutions (contours) of forward and backward simulations of cosine
bell tests with resolution of 0.25° after one complete rotation in three directions. The red arrows represent the
moving direction of bells. The contour intervals are 100 from 100 to 900.

computational cost, the m increase as the spatial resolution
increase, though m is only 18 in the test with & = 90° due to At =
15 min, it took our 199 min to finish this test with spatial resolution
of 0.25°. Figures 3g—i show the time evolution of relative error of
total mass, for any type of spatial resolution from 1.5° to 0.25°, the
relative error is always within the 10~ ' order of magnitude.

To demonstrate the effectiveness of the combination of
SCEIM, central skip-point difference scheme and LSFM for
dealing with polar problem, Fig. 7 shows the error and contour
lines of cosine bell, whose spatial resolution is 0.25° and the
longitudinal grid distance is only 9.65 m near pole points. The
top pictures show the cosine bells at 60, 72, and 80 h when going
through south polar, and the bottom pictures show the bells at
204, 216, and 228 h when going through north polar. It can be
seen that each contour lines presents better shape of circle in
vision, even when its center is at the North Pole and South
Pole. The negative errors are observed near the poles, and the
positive errors follow the negative errors in the moving direc-
tion of the cosine bell. Although the error norms, especially L.,
grow rapidly in polar regions, the shape of the bell is not dis-
torted obviously, and the error norms decrease quickly after its
center passed through the South and North Poles (Fig. 6).

5) TEST FOR INVERSE PROBLEM OF COSINE BELL

The most significant advantage of SCEIM is that it can
change the forward model to the backward model by setting
negative time step. This is an advantage that other known
schemes do not have. For comparison, Fig. 8 shows the errors
and numerical solutions of forward and backward simulations
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of cosine bell tests with resolution of 0.25° after one complete
rotation in three directions. In the tests of inverse problem, the
cosine bells rotate with reversed wind and return to their initial
position after —12 days. It can be seen that the simulated
contour lines depicted in the Fig. 8 are very smooth and similar;
the error distribution is related to the moving direction of
the cosine bell, which mainly occurs in the front of cosine bells.
The errors of tests with @ = 90° are quite different and larger
compared with the two others due to the affection of polar
problem, but the maximum error is only 3.8 for both forward
and backward simulations. The error norms and other infor-
mation of backward simulations are given in Fig. 9, which are
identity to those with 0.25° resolution given in Fig. 5. Based on
the above results, we think the backward model based on
SCEIM method can solve the inverse problems of cosine
bell tests.

6) COMPARISON OF SCEIM WITH OTHER
PUBLISHED SCHEMES

We compared these results with those in Baba et al. 2010,
(see their Table 1 and Table 2), and those in Li et al. 2016 (see
their Fig. 4). The error norms of SCEIM are significantly better
(Table 1). Note that Yin-Yang grid system was used to deal
with the polar problem in both Baba’s scheme and Li’s
schemes, however, the SCEIM exhibits competitiveness for the
tests with @ = 90°. We also compared the results with those
based on SLICE method proposed by Zerroukat et al. (2004),
which had been compared with the published results from 7
schemes, though the spatial resolution of 2.8125° was used in
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FIG. 9. The time evolution of error norms for backward simulation

of cosine bell tests.

their SLICE, the /; and /, of SCEIM with spatial resolution of
1° are less than 1/7 of those of SLICE. For the backward sim-
ulations corresponding to the inverse problems of the cosine
bells, though we have not found any published result in the
literature for comparison, we achieved the quite identical ac-
curacy to that of forward simulations.

b. Deformational flow test

The deformational flow test is also referred to as the
frontogenesis test. The forward model is to simulate the
evolution of frontogenesis, in which a weak front developed
into a sharp front under the force action of vortex flow,
whereas the backward model is to solve the inverse problem
of frontogenesis, namely, how the sharp front is regressed
back into the weak front. The analytical solution for pr is
given by Eq. (49), and the velocity components for defor-
mational flow (i, v) is given by Egs. (50) and (51) as those in
Nair and Jablonowski (2008):

pr(A',0',1) =1 —tanh[0.2psin(A" — wr)], (49)
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FIG. 10. The errors (colored) and solutions of deformational flow tests with vortex center located at 0°, 45°N for
(a),(b) exact solutions; (c) the solution of backward simulation whose initial field is (b) and the exact solution is (a);
(d) the solution of forward model whose initial field is (a) and the exact solution is (b); and (e),(f) the time evolution
of error norms of forward and backward simulation, respectively.
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FIG. 11. As in Fig. 10, but for vortex center located at the North Pole.
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TABLE 2. Comparison of error norms from the published schemes for the deformational flow tests when the vortex center is located at the

North Pole.
Day 6 Day 12 Day 20
L L L. I L L. L b L.
SCEIM 1° 135%x107% 345x107% 390X 1073 165x107% 349x107* 299x103 3.49 X 1073
SLICE-S2.1825° 86x10°* 256x1073 155%x10°2 344x10° 114x10°2 8.02x10?
EPI2 1.0° — — 1.38 X 1073 — — — —  — 347x107°

u, =rw(#')[sinf cosf — cosf cos(A —A )sinf]
, P . P P , (50)
v, =rw(0 )[cos@l7 sin(A — /\P)]
3V3
w(#') = v, =—sech’(p) tanh
(#) = v sech?(p) tanh(p) -
p=3.0cos(0)

Here (A, 0,,) is the center of the vortex, which is independent
of time in this stationary setup, and (A, #') is a position in a
rotated coordinate system whose north pole is at (A, 6,,).

1) TEST FOR FORWARD AND BACKWARD SIMULATIONS

The spatial resolution of tests is chosen to be 1° X 1°, and the
time step is set to be At = 60 min for forward simulation tests
and At = —60 min for backward simulation tests. Two types of
test with stationary vortex were preformed, one is the test with
(Ap, 0p) = (0°, 45°N), the other is the test with (A,, 6,) = (0°,
90°N). For the latter, the LSFM method is not used because the
meridional velocity field given by Eq. (50) is zero, which means
that the coefficient C,,, = v/rtgh = 0, thus there is no rapid error
growth for the p in polar region.

First, all of the tests show that the total mass is able to be
accurately maintained, whose relative errors are indeed very
small, not exceeding 1 X 10 (Figure omitted). Figure 10
shows the test results whose initial vortex is located at
(Ap,6,) = (0°,45°N). For the forward test, the front is gradually

At=—60min Res=0.25°
t=0h 7 (0°,45%)
A
&
05 ob
3 o
o 9 0.002
A
o -0.001
-0.002

distorted with growing gradient under the force action of
vortex flow field, and developed into the sharp front shown in
Fig. 10d, which exhibits a very similar structure to the exact
solution depicted in Fig. 10b. To solve the inverse problems of
frontogenesis showed in Fig. 10b, it was used as the initial field
of the backward model and integrated with Ar = —60 min, the
numerical solution of this inverse problem is depicted in
Fig. 10c, whose exact solution is shown in Fig. 10a. It can be
seen from Fig. 10c that the errors are mainly distributed out-
side of the vortex center and near the North Pole, and the
contour lines are not smooth. Nevertheless, the overall shape is
in agreement with the exact solution. Figures 10e and 10f show
that the error norms only grow rapidly in the initial stage, both
the /; and [, are smooth, while the L. present the shape of wave.
The error norms of forward simulation are similar to those of
backward simulation but little better. Both the forward and
backward simulation have the same dimension of K,,, subspace
and the computational cost (m = 11 and Cost = 21 min).
Figure 11 shows the test results with (A, 8,) = (0°,90°N). It can
be seen that the results depicted in the Figs. 11c and 11d are in
quite agreement with their exact solutions depicted in Figs. 11a
and 11b, respectively. The error norms shown in Figs. 11e and
11f are better than those in Figs. 10e and 10f, moreover, Cost =
23 min and m = 13 are little more than the tests with (A,,0,) =
(0°, 45°N). Note that for the test with (Ap, 0p) = (0°, 90°), the
zonal advection surround the north polar plays an important
role and the LSFM is not used, it demonstrates that the central

At=—60min % Res=0.25°
t=0h o, (0°,90°)
o
4 IS
05 od
0.0002
[+
- l-o.0001
l-0.0002

FIG. 12. The errors (shaded) and solutions (contours) of backward simulations of deformational flow tests whose
initial fields are Figs. 10b and 11b, respectively, but the spatial resolution is 0.25°.
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skip grid difference is an effective method to improve the
problem of longitudinal grid distance near polar points.
Table 2 shows the comparison of error norms from SCEIM,
SLICE-S in Zerroukat et al. (2004) and EPI2 in Clancy and
Pudykiewicz (2013), in which EPI2 is also an exponential inte-
gration method, but implemented in an icosahedral model.
Although the error norms of SLICE-S method is resulted from
the test with resolution of 2.1825°, the errors of SCEIM method
with resolution of 1° is about one order of magnitude smaller
than those of SLICE-S method at day 12 and we also achieved
comparable accuracy of L. to EPI2 scheme at the day 6 and 20.

2) TEST FOR GRID CONVERGENCE OF
BACKWARD SIMULATIONS

For the backward tests with spatial resolution of 1°, the
larger errors make the contour lines not smooth enough. It is
closely related to the steep gradient in initial field of backward
simulations. If the spatial resolution of the model is not suffi-
ciently high, the errors of the simulated front gradient is worse,
which would lead to the rapid growth of /. in the initial stage
(Fig. 10f). Consequently, the spatial resolution of the backward
model is improved to 0.5° X 0.5° and 0.25° X 0.25° to test
whether backward simulations are able to be improved. Figure 12
shows the results of the backward simulations with resolution of
0.25°. Compared with the results with resolution of 1° (Figs. 10c
and 11c), the errors depicted in Fig. 12 are significantly
improved by about one order of magnitude, the contours
are smoother and visually identical to the exact solutions.
Figure 13 shows that error norms became better and better as
the spatial resolution increase, and it can be seen from the table
that the average values of /, with resolution of 0.25° are about
1/7 of those with resolution of 1°.

3) TEST FOR TIME CONVERGENCE OF NONLINEAR
TRANSPORT PROBLEMS

It is important to note that the wind vector given by Eq. (48)
for the cosine bell tests and that given by Eq. (50) are both
independent of time, which means that the two kinds of tests
are linear transport problems. The results from Fig. 5 showed
that the SCEIM is very exact when solving linear transport
problems so the error norms are independent of At without
considering the influence the polar problems. Therefor it is
necessary to verify the time convergence of SCEIM method for
solving nonlinear transport problems. For this purpose, we
choose the moving vortex tests, whose time-dependent wind
field is given by (4., v,) = (e + ug, v + vy), in wWhich the
deforming vortices move along the tracks of cosine bells (Nair
and Jablonowski 2008). In order not to be seriously affected by
the polar problems, the moving direction is set to be a = 0.
Moreover, three Adams—Bashforth schemes are used to line-
arize Eq. (21) and compare them with the leapfrog scheme of
Eq. (23), as follows:

[ [U(t) + V()] dt = kg RIUG L) FVE D) (52)

Ji,

where the N4 is the order of Adams—Bashforth scheme. The
first-order Adams—Bashforth scheme [AB_O(A¢)], in which
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FIG. 13. The time evolution of error norms of backward simulations
of deformational flow tests.

hy = 1.0, is the familiar Eular difference. For the second-order
scheme [AB_O(A#)],the coefficients are set to be h; = 1.5 and
h, = —0.5, respectively. The third-order scheme [AB_O(A#)],
in which hy = 23/12, h, = —4/3, and h; = 5/12, is discussed by
Durran (1991). The second-order leapfrog scheme, which is
used in Eq. (23), is denoted by LF_O(A#).

Table 3 shows the error norms of moving vortex tests with
the four types of Linearization schemes and various At in the
case of 0.25° spatial resolution and twentieth-order spatial
difference scheme. It can be seen that the AB_O(Af) scheme is
the worst, and the /, and /. are almost 10 times and 6 times as
much as those of AB_O(Af,) when At = 40 min. Although the
first-order scheme has faster time convergence for error norms,
the [, and [, with Ar = Smin are worse than those of AB_
O(A#) with At = 60 min and LF_O(A#) with At = 40 min. For
the other schemes, although AB_O(A#?) and LF_O(Af?) are
both second-order schemes, AB_O(AF) is better than
LF_O(A) when Ar = 60min is used, while LE_O(A#?) is
better than AB_O(AF) when At = 40 min is used. In the case of
At = 20 min, the two second-order schemes have similar accuracy.
By comparing with the error norms of LF_O(A#), the error norms
of AB_O(Af) are better than those of LF_O(AF) when
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TABLE 3. Error norms of moving-vortex tests with four linearization schemes at day 6 and day 12 in the case of 1.0 spatial resolution and
twentieth-order spatial central difference scheme. The AM and LF represent the Adams-Bashforth and the leapfrog scheme, respectively.

AM_O(Af) AM_O(AP) AM_O(AP) LE_O(AA)
At (mln) lz lgc lz lx 12 loo 12 loo

Day 6 60 0.007 04 0.04228 0.00070 0.006 05 0.00036 0.00532 0.001 61 0.01993
40 0.004 74 0.02915 0.00043 0.005 51 0.00035 0.005 46 0.00037 0.004 83

20 0.002 41 0.01595 0.00033 0.005 47 0.00033 0.005 47 0.00032 0.005 51

10 0.00124 0.009 51 0.00033 0.005 30 0.00032 0.005 30 0.00033 0.005 46

5 0.000 69 0.006 17 0.00033 0.00529 0.00032 0.005 30 0.00033 0.005 47

Day 12 60 0.01352 0.07021 0.001 51 0.01355 0.00095 0.01262 0.00378 0.038 65
40 0.00920 0.050 09 0.001 06 0.012 64 0.00092 0.01265 0.001 00 0.01121

20 0.004 74 0.029 61 0.00092 0.01265 0.00091 0.01265 0.000 92 0.01265

10 0.002 52 0.018 81 0.00091 0.01265 0.00091 0.01265 0.00091 0.012 60

5 0.00150 0.01391 0.00091 0.01265 0.00091 0.01265 0.00091 0.01260

At = 60min, while their error norms are close to each other for
other time steps. For nonlinear transport problems, these four lin-
earization schemes are all time-convergent schemes, and the third-
order Adams-Bashforth scheme is slightly better than the
second-order LE_O(A#*) scheme. However, the third-order Adams-
Bashforth scheme is the best choice for using large time step.

7. Conclusions

SCEIM has been successfully generalized in a two-dimensional
spherical latitude-longitude coordinate system. The most sig-
nificant advantage of SCEIM is to change the forward model to
the backward model by setting negative time step, which is an
advantage that other published schemes do not have. The main
emphasis in the development of SCEIM has been on conserva-
tion, positive-definite, and reversibility as well as achieving com-
parable accuracy to other published schemes. Moreover, the polar
problem has also been resolved by using a simple effective central
skip-point difference scheme and an LSFM without major penalty
on the overall effectiveness of SCEIM.

SCEIM is evaluated by standard cosine bell tests and de-
formational flow tests. The cosine bell tests show that SCEIM
is a time-convergence method as well as a grid-convergence
method, which also demonstrate that SCEIM has a strong
shape-preserving ability. The error norms of the forward sim-
ulations and backward simulations are reasonable and very
similar. The deformational flow tests show that the forward model
can simulate frontogenesis with high accuracy, and the backward
model can solve the inverse frontogenesis problems. The error
norms of the inverse frontogenesis problems are improved sig-
nificantly as the spatial resolution increased, which demonstrate
that the backward model is also a grid-convergence like as the
forward model. For nonlinear transport problems, although
the SCEIM with leapfrog scheme is a time-convergence method,
the third-order Adams-Bashforth scheme is the best choice for
SCEIM when large time step is used
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APPENDIX

Algorithms 1 and 2

a. Algorithm 1: Lanczos Iteration for Antisymmetric Matrix

1: H,=0.0; B (0)=hy; B,,(0)=by/||B}(0)] ! B,,(—1) = 0;
'H, (=1, 0) =0

2:do k=0, m! Assume that mis given

3: if Ais antisymmetric then

a: B* (k + 1) = AB,,(k) — H,(k, k — 1)B,,(k — 1)

5: H,.(k, k+1)=||B} (k+1)|; Ha(k+1, k) =—H, (k,

k+1)

6: else if A is symmetric then

7: H,.(k, k) = B, (k)AB,, (k)

8: B! (k + 1) = AB,,(k) —H,(k, k — 1)B,,(k— 1) —
H,.(k, k) AB,,(k)

9: H,(k, k+1)=|Bi(k + 1)|; Hp(k + 1, k) =
H,(k, k+ 1)

10: end if

11: B,.(k + 1) =B (k + 1)/|BX (k+1)|

12: k=k+1

13: enddo

b. Algorithm 2: Adaptive Lanczos Iteration for
Antisymmetric Matrix

1: H, = 0.0; B} (0)=hy; B, (0)=hy/|B}(0)|; error=
IBE(0)]|; Tol =10""; k=0

: dowhile (error > Tol)

B} (k+1)=AB,,(k) — H,(k, k —1)B,,(k—1)

H,(k, k+1) = [Bl(k + 1)

H,.(k+1, k)= —H,(k, k+ 1)

B,u(k + 1) = Bl (k + 1)/|B}(k + 1)]

error = error|| B} (k + 1)||¢/(k + 1)

m=k; k=k+1

: enddo

O 0 J o U b W N
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