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ABSTRACT: The square conservative exponential integral method (SCEIM) is proposed for transport problems on the

sphere. The method is a combination of the square conservation algorithm and the exponential integral method. The main

emphasis in the development of SCEIM is on conservation, positive-definite, and reversibility as well as achieving com-

parable accuracy to other published schemes. The most significant advantage of SCEIM is to change the forward model to

the backward model by setting a negative time step, and the backward model can be used to solve the inverse problem.

Moreover, the polar problem is significantly improved by using a simple effective central skip-point difference scheme without

major penalty on the overall effectiveness of SCEIM. To demonstrate the effectiveness and generality of the SCEIM, this

method is evaluated by standard cosine bell tests and deformational flow tests. The numerical results show that SCEIM is a

time-convergence method as well as a grid-convergence method, and has a strong shape-preserving ability. In the tests of the

inverse problem, the sharp fronts are successfully regressed back into their initial weak fronts and the cosine bells move against

the wind direction and return to the initial position with high accuracy. The numerical results of forward simulations are

compared with those of published schemes, the total mass conservation, and error norms are competitive in term of accuracy.
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1. Introduction

The time integration scheme is an important consideration

in the design of an atmospheric model. Stability, accuracy and

efficiency are obvious requirement for any numerical method,

particularly for numerical weather prediction in an operational

context. Exponential integration methods (EIM) have re-

ceived increased attention as an alternative to multistep and

multistage time integration methods commonly used in con-

junction with finite difference method (FDM) and finite ele-

mentmethods. EIMs are exact for linear systems ofODEs with

constant coefficients and are thus unconditionally stable. EIMs

have the advantage of being accurate and, similarly to tradi-

tional known implicit methods, allowing integration with large

time steps and possessing good stability properties. Beylkin

et al. (1998) extended EIMs to solving nonlinear partial dif-

ferential equations (PDEs) by splitting nonlinear PDEs into

linear and nonlinear parts, this is known as exact treatment of

the linear part (ELP) scheme, whose distinctive feature is the

exact evaluation of the contribution of the linear term of

nonlinear PDEs. An alternative to ELP is the exponentially

fitted Euler method, which require the evaluation of a partic-

ular family of exponential function of matrix, namely, the

u functions, and this method also commonly appears in the

literature, for example, Hochbruck et al. (1998) and Tokman

(2006). Although EIMs offer the potential for high accuracy,

the evaluation can be very computationally expensive due to

requiring computation of the matrix exponential involved in

EIMs. Approximation of such matrix functions or their prod-

ucts with vectors constitutes the main computational cost of an

exponential integrator. This is of particular concern in the so-

lution of PDEs, where the spatial discretization results in very

large matrices. A number of methods have been proposed to

calculate the exponential functions of a matrix (Moler and Van

Loan 1978, 2003). Most of them, however, are of little practical

use for large-scale stiff matrices due to high computational

cost. It is common, however, that only the product of expo-

nential functions of matrix and vectors is required for an im-

plementation of exponential integral. This is the case, for

instance, when the matrix results from a spatial discretization

of the atmosphere or ocean dynamical system. To deal with

this problem, Krylov subspace techniques are among the most

promising methods. The basic idea of the Krylov subspace

techniques is to project a large matrix onto a relatively small

Krylov subspace where calculating the matrix is significantly

less computationally expensive. By taking the advantages of

this method, a variety of efficient Krylov subspace algorithms

have been proposed and developed, such as restarted Krylov

methods (Botchev 2013), block Krylov subspaces (Frommer

et al. 2017; Li et al. 2016), the adaptive Krylov subspaces

methods (Niesen andWright 2012; Gaudreault et al. 2018) and

the exponential propagation iterative methods(Tokman 2006).Corresponding author: Dr. ShifengHao, shifenghao@aliyun.com
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Krylov subspace methods have been successfully used for

the simulation of the shallow-water equations on the sphere

(Clancy and Pudykiewicz 2013). Compared with the rational

functions arising from the implicit approach, EIMs have an

advantage over the traditional implicit approach due to faster

Krylov convergence of exponential functions (Loffeld and

Tokman 2013). This has provided strong motivation for the

further development of these methods.

In the previous investigations, how to improve the compu-

tational efficiency of exponential functions of matrix has al-

ways been the focus of attention. In recent years, more and

more attention has been paid to the positive-definite and

conservation associated with EIMs (Bhatt and Moore 2017,

2019; Clancy and Pudykiewicz 2013). However, these two

problems associated with finite difference method have been

well solved and implemented by many methods. Among them,

the conservation semi-Lagrangian with rational function (CSLR)

scheme constitutes a typical example. With this technique,

the piecewise rational method (PRM) was proposed to solve

problems of mass conservation and positive-definiteness of

semi-Lagrangian advection (Xiao and Peng 2004). For dy-

namic cores of numerical model with explicit schemes based on

Euler equations, The nonlinear renormalization scheme was

proposed to solve the positive-definiteness problem (Bott

1989), which was then greatly improved and applied success-

fully to improve the overpredicted cumulative precipitations of

WRF model (Skamarock and Weisman 2009). In the present

article, we investigate the potential of EIMs for solving trans-

port equation, and emphasis on how to obtain conserving nu-

merical solution that is also everywhere positive. Therefore, we

have to mention an effective algorithm, namely, square con-

servation algorithm (SCA), which was proposed by Zeng and Ji

in 1981. In general, if
Ð
V(›y/›t)dV5 0, where y is a time-

dependent variable in space V, then y is a global conservative

variable. Similarly, the concept of square conservation is that ifÐ
Vy(›y/›t) dV5 0, then y is a global square conservative vari-

able due to y(›y/›t) 5 (1/2)›y2/›t. the atmospheric or oceanic

dynamical equations may be transformed into square conser-

vation systems under some conditions, then symplectic

schemes can be used to solve them, and SCA can also be

adopted to solve Hamiltonian system (Wang et al. 1995).

Computational stability and energy conservation are very im-

portant for a long-time numerical integration. For this reason,

some implicit and explicit schemes with square conservation

have been developed successively, and applied successfully in

numerical simulations of atmospheric and oceanic circulations

(Zeng and Ji 1981; Ji and Zeng 1982; Ji and Wang 1991; Wang

and Ji 1993; Wang et al. 1993, 2004). In recent years, a new

algorithm with generalized square conservation algorithm is

proposed to construct finite difference schemes for evolution

equations, this algorithm can incorporate historical observation

data, and perform very well in the linear advection tests (Gong

et al. 2013a, 2013b). The SCA can be achieved by implicit or

explicit schemes. The implicit schemes are nonlinear iterative

methods, which require a large amount of computational cost,

and the accuracy is not ensured. In contrast, the explicit scheme

proposed by Wang et al. (1993, 1995) possesses notable advan-

tages, but it is difficult to construct a positive-definite dissipative

operator to achieve square conservation. Because the SCA is a

nonlinear conservative algorithm, the finite difference method

with discrete temporal coordinates is themajor reason leading to

difficulty in designing an explicit SCA. However, this is exactly

the problem that can be solved by EIMs, so the aim of the

present article is to develop a square conservative exponential

integral method (SCEIM), which is explicit, conservative and

positive-definite algorithm for transport equation, by combining

SCA, and EIMs without constructing dissipative operator.

2. Square conservative exponential integral
method (SCEIM)

a. Square conservative property of transport equation

The two-dimensional transport equation in conservation

form on a sphere with radius r is given by

›r cosu

›t
52

›ur cosu

r›l cosu
2
›yr cosu

r›u
, (1)

where r is density of a transported scalar, which is everywhere

nonnegative; t is time; u and l are latitude and longitude, re-

spectively; and u and y are components of wind velocity vector

along east and north directions, respectively. The values of r, u,

and y are dependent of t, l, and u. Then the boundary conditions

in u and l directions, respectively, are defined by (ur cosu)jl50[
(ur cosu)jl52p and (yr cosu)ju52p/2[ (yr cosu)ju5p/2 [ 0. Since

r is everywhere nonnegative, we can now set (r*)25 r cosu, then

Eq.(1) can be expressed alternatively as

›r*
›t

5L
lat
(l, u, t)1L

lon
(l, u, t), (2)

where

L
lat
(l, u, t)5

21

2r cosu

�
›ur*

›l
1u

›r*

›l

�
, (3)

L
lon
(l, u, t)5

21

2r

�
›yr*
›u

1 y
›r*
›u

�
. (4)

Here, note that r* is allowed to go negative, but this negativity

is irrelevant because r will always be positive. Multiplying

Eq. (2) by 2r2r*, we can obtain

r2
›(r*)2

›t
5 2r2r*[L

lat
(l, u, t)1L

lon
(l, u, t)] (5)

and then integrating the first term of the right-hand side of

Eq. (5) in l direction with the periodic boundary conditions, it

yields

2r2
ð2p
0

r*L
lat
(l, u, t)dl5

2r

cosu

ð2p
0

›u(r*)
2

›l
dl5 0. (6)

By integrating the second term of the right-hand side of Eq. (5)

in u direction with the homogeneous boundary condition, it

yields

2r2
ðp/2
2p/2

r*L
lon
(l, u, t)du52r

ðp/2
2p/2

›y(r*)2

›u
du5 0. (7)
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From Eqs. (6) and (7), we can obtain

r2
ð2p
0

ðp/2
2p/2

›(r*)
2

›t
dudl5

ð2p
0

ðp/2
2p/2

›r

›t
r2 cosu du dl5 0, (8)

which means that (r*)2 satisfies total mass conservation. Since

(r*)2 is the square of r*, we say ‘‘r* satisfies square conservation.’’

With the definition of r*, r is thus everywhere nonnegative.

b. Square conservation property of discrete
transport equation

To develop a square conservation algorithm for a transported

scalar in discretion form, we consider the spherical mesh with

radius r defined by8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(Dl,Du)5
�p
I
,

p

2J1 1

�
i 2 [0, 2I], j 2 [2J, J]

(l
i
, u

j
)5 (iDl, jDu)

l
2I
[ l

0
[ 0, l

0
2Dl[l

2I21

(l
i
, u

6J
6Du)[ (l

I1i
, u

6J
), i 2 [0, I)

(l
i
, u

6J
6Du)[ (l

i2I
, u

6J
), i 2 [I, 2I]

: (9)

Here, I and J are integers, the indices of the grid points in

l and u directions, respectively, aredenotedby i and j. For any i2 [0,

I 2 1], because of li1I 2 li 5 p, the longitude li line and the

longitudeli1I line compose a closed longitude circle. Figure 1 shows

the sphericalmesh givenby (9).Because ofDu5 p/(2J1 1), we can

havep/22 ju6Jj5 0.5Du, and then ui,6J6 Du5 uI1i,6J, 0% i, I

and uI1i,6J6Du5 ui,6J, I, i% 2I, whichmeans that this spherical

mesh system is a closeddomainwithperiodicboundary conditions in

both l and u directions. It is important to note that both the North

and South Poles, which are singularities in the latitude–longitude

coordinate system, are eliminated in this spherical mesh.

Here we use ‘‘Arakawa unstaggered grid A’’ (Arakawa 1972)

and take second-order spatial central difference scheme as an ex-

ample to demonstrate the square conservationof the discrete r* in

the grid system given by Eq. (9). For any 2P-order spatial central

difference scheme, it can be written as a linear combination like

›fk/›x5 (1/Dx)�P

p51Cp( fk1p 2 fk2p), where fk represents a dis-

crete variable (u, y, r) on the kth grid point in x 2 (l, u) direction

and Cp is coefficient, which can be obtained by solving a

polynomial of order 2P. If P5 1 and C1 5 1/2 then ›fk/›x is a

second-order spatial central difference scheme. Therefore,

the demonstrations for square conservation with higher-

order central difference schemes are similar to that of the

second-order scheme. According to the convention for discrete

systems, we use uij, yij, and rij represent u(li, uj, t), y(li, uj, t), and

r(li, uj, t), respectively. Then Eqs. (2)–(4) can be written using

the second-order spatial central difference scheme as follows:

L
lat
(l

i
, u

j
, t)52

1

2

 
u
i11,j

r
i11,j
* 2 u

i21,j
r
i21,j
*

2rDl cosu
j

1u
ij

r
i11,j
* 2 r

i21,j
*

2rDl cosu
j

!

5
1

2rDl cosu
j

(u
i21/2,j

,2u
i11/2,j

)

 
r
i21,j
*

r
i11,j
*

!
, (10)

L
lon
(l

i
, u

j
, t)52

1

2

«
11
y
i,j11

r
i,j11
* 2 «

21
y
i,j21

r
i,j21
*

2rDu
1 y

i,j

r
i,j11
* 2 r

i,j21
*

2rDu

� �

5
1

2rDu
(y

i,j21/2
,2y

i,j11/2
)

r
i,j21
*

r
i,j11
*

 !
, (11)

›r
ij
*

›t
5

(u
i21/2, j

,2u
i11/2, j

)

2rDl cosu
j

0
@ r

i21,j
*

r
i11,j
*

1
A1

(y
i, j21/2

,2y
i, j11/2

)

2rDu

0
@ r

i,j21
*

r
i,j11
*

1
A,

(12)

where ui6(1/2),j 5 (ui61,j 6 ui,j)/2, yi,j6(1/2) 5 («61yi,j61 6 yi,j)/2,

and the «11 and «21 are two parameters that control the relative

directions of yi,j11 and yi,j21, respectively. Because south wind

is defined positive, when the variables on grids crossing the

north(south)pole are used in Eq. (11), that is to say, if j1 1. J

in Eq. (11), then the «11 is set to be «11 521, otherwise «11 5
1. Similarly, when j2 1,2J then the «21 is set to be «21521

otherwise «21 5 1. From Eq. (12), the transport equation in

discrete form on the sphere can now be written as a differential

equation set:

FIG. 1. Diagram of the latitude–longitude grid system. The NP and

SP denote North Pole and South Pole, respectively.
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›r
G
*

›t
5 [U(t)1V(t)]r

G
* , (13)

where rG* defines a vector, which is set to be rG* 5 fr
ij
*j0#

i# 2I2 1 and2J# j# Jg;U(t) andV(t) represent the transport-
coefficient matrices, which are associated with u and y, re-

spectively. With the definition of (9), we have the periodic

boundary conditions (ur*)2I,j 5 (ur*)0,j, j 2 [2J, J] in

l direction, (yr*)i,6J61 5 (yr*)I1i,J, i 2 [0, I 2 1) and

(yr*)i,6J61 5 (yr*)i2I,J, i 2 [I, 2I] in u direction. Multiplying

Eq. (13) by r*TG , we can obtain

(r
j
*)

T
U

j
r
j
*5 �

2I21

i50

r
i,j
*L

lat
(l

i
, u

j
, t)5 0, (14)

(r
i
*)TV

i
r
i
*5 �

J

j52J

r
i,j
*L

lon
(l

i
, u

j
, t)1 �

J

j52J

r
I1i,j
* L

lon
(l

I1i
, u

j
, t)5 0,

(15)

where

r
j
*5 (r

0,j
* , r

1,j
* r

2,j
* , . . . , r

2I22,j
* r

2I21,j
* )

T
, j 2 [2J, J] (16)

is a vector composed by the discrete r* on the latitude uj;

r
i
*5(r

i,2J
* , r

i,2J11
* , . . . , r

i,J
* , r

i1I,J
* , r

i1I,J21
* , . . . , r

i1I,2J
* )

T
, i2 [0, I)

(17)

is a vector composed by the discrete r*on longitude li and li1I;

U
j
5

21

2rDl cosu
j

0 u
1/2,j

0 0 . . . 0 2u
2I21/2,j

2u
1/2,j

0 u
111/2,j

0 . . . . . . 0

0 2u
111/2,j

0 u
211/2,j

. . . . . . 0
: : : : . . . . . . . . . . . . . . .
. . . : : . . . . . . . . . . . . . . .

0 . . . . . . 0 2u
2I2211/2,j

0 u
2I23/2,j

u
2I21/2,j

0 0 : : 0 2u
2I23/2,j

0

2
666666666664

3
777777777775

(18)

and

V
i
5

21

2rDu

0 2y
i,2J21/2

0 0 . . . 0 y
i,2J11/2

y
i,2J21/2

0 2y
i,2J23/2

0 . . . . . . 0

0 y
i,2J23/2

0 2y
i,J25/2

. . . . . . 0
: : : : . . . . . . . . . . . . . . .
. . . : : . . . . . . . . . . . . . . .

0 . . . . . . 0 y
i1I,2J23/2

0 2y
i1I,2J21/2

2y
i,2J11/2

0 0 : : 0 y
i1I,2J21/2

0

2
666666666664

3
777777777775

(19)

are transport-coefficient matrices of rj* and ri*, respectively,

which compose the U(t) and V(t). From Eqs.(13)–(15), the

corresponding relation can then be derived as

r2DuDl�
2I21

i50
�
J

j52J

 
›(r

i,j
*)

2

›t

!
5 �

2I21

i50
�
J

j52J

�
›r

i,j

›t
Ds

�
5 0, (20)

where Ds 5 r2 cosujDuDl is an area of grid cell on latitude uj.

Therefore, we can draw a conclusion that Eq. (13) is global

square conservative. From another point of view, it can be seen

that thoseUj andVi are antisymmetricalmatrices, according to the

property of antisymmetric matrix, U(tn) 1 V(tn) is also antisym-

metric, that is to say we can have (rG*)
T[U(tn)1V(tn)]rG* 5 0, by

which the square conservation property of the transport equation

can be preserved in discretization form.

c. Semianalytical solution of transport equation

Let Dt be the temporal increment, tn 5 nDt, and rG*(tn) is a

vector at time tn, where n is an integer. Then, the analytical

solution of Eq. (13) is given by

r
G
*(t

n11
)5 e

Ð tn11

tn
U(t)1V(t)½ �dt

r
G
*(t

n
) . (21)

Because U(t) and V(t) are dependent of time, the right-hand

side of Eq. (21) is usually split into linear part and nonlinear

part, the known methods are ELP method and exponentially

fitted Euler method (see the introduction). In this work, we

considered a second-order leapfrog approximation to the time

integration of Eq. (21), as follows:ðtn11

tn21

[U(t)1V(t)] dt’ 2Dt[U(t
n
)1V(t

n
)] , (22)

where tn is themidtime between tn21 and tn11. Then the approximate

solution to the Eq. (21) can now be written using Eq. (22) as follows:

r
G
*(t

n11
)5 e2Dt[U(tn)1V(tn)]r

G
*(t

n21
) . (23)

The exponential matrix in Eq. (23) is referred as transport

matrix. Comparing with the three time-levels leapfrog scheme

(ELP) proposed by Beylkin et al. (1988), the nonlinear part is
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omitted in Eq. (23) and the error is proportional to Dt2, but
in this way, the properties of square conservation and re-

versibility can be successfully preserved by Eq. (23) because

Eq. (22) is an antisymmetric matrix. By multiplying the inverse

matrix of the exponential matrix of Eq. (23), we can obtain

r
G
*(t

n21
)5 e22Dt[U(tn)1V(tn)]r

G
*(t

n11
) , (24)

which is the inverse function to Eq. (23), and is able to solve the

inverse problem of rG*(tn11). The difference of the two transport

matrices between Eqs. (23) and (24) is the sign of time step. If the

negative time step (2Dt , 0) is adopted, the transport governed

by Eq. (24) is in the opposite time direction to that by Eq. (23).

3. Exponential integral methods

a. Adaptive Krylov subspace method

Apowerful class of methods to solve exponential integration

are the Krylov subspace methods, by which we can seek an

approximation solution to Eqs. (23) and (24). Because Eq. (23)

or (24) is one of the problems of b(t)5 eAtb0 whenA is amA-by-

mA antisymmetric matrix, where b0 [ b(0) is an initial vector,

we can take b(t) 5 eAtb0 as an example to illustrate Krylov

subspace method. Krylov subspace methods are based on the

idea of projecting the matrix A and vector b0 onto a lower-

dimension subspace Km defined by

K
m
5 spanfb

0
,Ab

0
,A2b

0
, � � � ,Am21b

0
g, (25)

where the parameterm is the dimension of Km, the criterion of

m�mA is required because calculating an exponential matrix

inKm subspace with small size is significantly less computationally

expensive. However, the basis vectors of Km defined as (25) are

almost linearly dependent, so Arnoldi iteration is often used

to transform (25) into an orthonormal Krylov subspace whose

m orthonormal basis vectors compose an mA-by-m matrix Bm,

in which the projection of the action of A to this Km is Hm 5
BT

mABm, and then the approximation to eA tb0 is given by

eAtb
0
’ kb

0
kB

m
eHmte

1
, (26)

where Hm is an upperm-by-mHeisenberg matrix, and e1 5 (1,

0, 0, . . . , 0)T is the first vector of BT
mBm.

As we all know, when matrix A is symmetric, Lanczos iter-

ation is more effective then Arnoldi iteration for building Bm

and Hm of Km subspace (Niesen and Wright 2012). By some

modification, the Lanczos iteration can be used to deal with

antisymmetric matrices and build a Km subspace. It related to

the matrix A by the relation Hm 5BT
mABm, if A is antisym-

metric then Hm is both antisymmetric and Heisenberg, which

means that it is an antisymmetric tridiagonal matrix, whose

diagonal elements are zero. Then Lanczos iteration can now be

modify to deal with the antisymmetricA. The ‘‘Algorithm 1’’ in

the appendix shows the modification of Lanczos iteration for

antisymmetric matrix, where Bm(k), k 5 0, 1, ..., m denote the

kth vector of Bm.

Although the modified Lanczos iteration can build Bm and

Hmwhen theA is antisymmetric, the key to this method is to be

able to use an appropriate m, because it controls the accuracy

of Eq. (26), moreover, the criterion of m � mA is needed.

Therefore, the best choice is searching an appropriate m

adaptively under certain condition of error tolerance. The er-

ror estimate of Eq. (26) can be bounded by the inequality of

Eq. (27) (Niesen and Wright 2012; Koskela 2015; Vo and

Sidje 2017):

keAtb
0
2 kb

0
kB

m
eHmte

1
k’ kb

0
kjH

m
(m,m1 1)teTmu1

(tH
m
)e

1
j,

(27)

where u1(tHm) is one of the u-function family (Niesen and

Wright 2012). Note that the etHm is an exponential matrix,

which means that we have to calculate it in each Lanczos it-

eration step, and the dimension of Hm, i.e., m, increases with

the iteration step, so it is not a very economic method to use

Eq. (27) for error estimation. Here, we provide a new adaptive

algorithm for determining the m.

For the problem of b(t) 5 eA tb0, b0 [ b(0),we have the fol-

lowing properties:

dkb

dtk
5Akb, k5 1, 2, 3, . . . , (28)

dk11b

dtk11
5A

dkb

dtk
, k5 1, 2, 3, . . . . (29)

So, the Km given by Eq. (25) can be expressed alternatively as

K
m
5 span

(
b(0),

db(0)

dt
,
d2b(0)

dt2
,
d3b(0)

dt3
, � � � ,d

m21b(0)

dtm21

)
. (30)

On the other hand, we can use a Taylor series ofm2 1 degree

to approximate b(t), as follows:

b(t)5 b(0)1 t
db(0)

dt
1

t2

2!

d2b(0)

dt2
1 � � � 1 tm21

(m2 1)!

dm21b(0)

dtm21
.

(31)

By comparing Eqs. (30) and (31), we can find that Eq. (31) is

actually the projection of b(t) onto subspace Km given by (30),

and the tk/k!jjdkb(0)/dtkjj, where k 5 0, 1, . . . , m, is the size

of projection of b(t) in the direction of vector dkb(0)/dtk, and

tm/m!jjdmb(0)/dtmjj is often used to measure the accuracy of

this Taylor series. However, the Km subspace (30) is an in-

complete orthogonal space, which means that Eq. (31) is un-

able to converge fast. Actually, the action of Lanczos iteration

is to transform subspace (30) into a fully orthogonal and nor-

malizedKm subspace, whose basic vector matrix isBm, in which

the Taylor series of b(t) becomes more efficient and converge

faster than that in the subspace (30). If we could build this

Taylor series then we can determine the dimension of Bm, i.e.,

the dimension of Km subspace adaptively by means of the

Lanczos iteration. According to the ‘‘algorithm 1’’ (lines 7–

12),we can have the recursion equation, as follows:

B
m
(k1 1)5

AB
m
(k)1 kB

m
*(k)kB

m
(k2 1)

kB
m
*(k1 1)k

, 1# k#m2 1,

(32)
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where Bm(0)5b0/kBm
*(0)k and Bm(1)5Ab0/kBm

*(1)k!. Let

F(0) 5 1 and F(1) 5 A, then Eq. (32) can be written alterna-

tively as follows:

F(k1 1)5AF(k)1 kB
m
*(k)k2F(k2 1)

B
m
(k1 1)5

F(k1 1)b
0

kB
m
*(k1 1)k!

; 1# k#m2 1.

8>>><
>>>:

(33)

Because the Bm is orthonormal, we can get a set of fully

orthogonal basis vectors, as follows:

fb
0
,F(1)b

0
,F(2)b

0
, � � � ,F(m2 1)b

0
g. (34)

By comparing Eq. (34) with the Krylov subspace defined by

(25) and (30), the vector kBm
*(k)k!Bm(k)5F(k)b0 can be re-

garded as the term dkb(0)/dtk in the orthonormal Krylov sub-

space whose basic vectormatrix is theBm, so that we can have a

Taylor series of m degree, and then use Eq. (35) as an error

estimate to determine the dimension of Km subspace in

Lanczos iteration:

keAtb
0
2 kb

0
kB

m
eHmte

1
k’ tm

m!
kB

m
*(m)k!,Tol, (35)

where the Tol is the error tolerance, The advantage of this

error estimate is that Eq. (35) can be directly derived out in

Lanczos iterations without need of other extra information.

Then the ‘‘algorithm 1’’ can now be improved to an adaptive

Lanczos iteration for antisymmetricmatrix. See ‘‘algorithm 2’’ in

the appendix. The differences between these two algorithms are

the ‘‘do-loop’’ in line 2 and the adaptive error estimate in line 7.

Despite we can obtain Hm and Bm adaptively, the other

problem that we have to face is the expensive computational

cost of ABm(k) in the ‘‘algorithm 2’’ because it seems that

ABm(k) is a multiplication of the large matrixAwith the vector

Bm(k). However, for a specific problem, the ABm(k) can be

calculated by some formula rather than computing the product

of matrix A and vector Bm(k). Taking the transport Eq. (23)

as an example, let A and b0, respectively, represent [U(tn) 1
V(tn)], and rG*(tn21), and then ABm(k), k 5 1, 2, ..., m, is

equivalent to Eq. (29) whose discrete equation is similar

to Eq. (12), so ABm(k) can be obtained formulaically rather

than using matrix multiplication. It also means that we do not

need to build a very large matrix A, but only need to build am-

by-2I-by-(2J 1 1) array to store Bm and a m-by-m array to

store Hm.

b. Scaling and squaring method

After obtaining the matrix Hm, then eHmt may be efficiently cal-

culated by the well-known scaling and squaring method with the

Padé approximationRqq(�), as follows (Moler andVan Loan 2003):

eHmt/2
S

’R
qq
(H

m
t/2S) , (36)

eHmt/2
s21

5 (eHmt/2
s

)
2
, s 2 [1,S]. (37)

For such methods, there are two key parameters that affect the

accuracy of eHmt, one is the scaling parameter S, which is an

integer and is automatically determined by the restriction

kHt
mk/2S # 1/2, the other is the degree of Padé approximation q,

which can be automatically determined by

8

����Hm
t

2S

����
2q11

q!q!

(2q)!(2q1 1)!
,Tol

q
, (38)

where Tolq is the error tolerance of Eq. (36) and set to be

Tolq5 10215. Eq. (37) is a recurrence formula by which we can

obtain eHmt by repeating matrix multiplication S times after

obtaining eHmt/2S by Eq. (36).

Here, another problem that we have to mention is the ‘‘hump’’

problemassociatedwith the repeatedmultiplication ofmatrices in

scaling and squaring methods. It has been proved theoretically

that the ‘‘hump’’ problem does not exist for normal matrix ex-

ponential (Moler and Van Loan 2003). In an orthonormal Km

subspace, ifA is antisymmetric, that isAT52A, then it is easy to

verify that HT
mHm 5HmH

T
m due to Hm 5 BT

mABm, thus Hm is a

normal matrix. Note that the matrix [U(tn)1 V(tn)] given by (22)

is an antisymmetric matrix as well as a normal matrix, so the

scaling and squaring method is a quite feasible choice. However,

matrix multiplication is computationally expensive when them is

relatively large, so a more effective method is needed to solve

Eq. (37) for higher spatial resolution or 3D transport problems.

4. Central skip-point difference scheme for
polar problem

In latitude–longitude coordinate systems, the meridians con-

verge when approaching the pole and making the longitudinal

grid interval approach zero at the pole where the coordinate

system becomes singular. Therefore, relatively shorter waves can

exist in high latitude regions, and the wavelength in l direction

becomes shorter and shorter as juj increase, especially near the

polar points, which means that a sufficiently largeKm subspace is

required to describe these short waves, and then amount of

computer time is needed. In practice, those shorter waves, how-

ever, are not what we need for solving a specific problem. To deal

with this problem,we attempt to extendEq. (10) to a central skip-

point difference scheme (Zhang et al. 2013) for the discretization

in l direction near the North and South Poles, as follows:

L
lat
(l

i
, u

j
, t)5

1

2d
j

�u
i2Nj , j

1u
i,j

2
,2

u
i1Nj , j

1u
i,j

2

�0@ r
i2Nj ,j
*

r
i1Nj ,j
*

1
A,

(39)

N
j
5

int

 
I

2

cosu
J

cosu
j

!
if(cosu

j
#b)

1 if(cosu
j
.b)

8>><
>>: , (40)

where the function int(�) returns the integer part of its input

argument, Nj is the number of those grids skipped toward the

west or east along the latitude uj, and dj 5 NjrDl cosuj is the
longitudinal distance between (li, uj) and (li1Nj

, uj), which isNj

times the longitudinal distance (rDl cosuj) used in Eq. (10).

The Nj is dependent of j, where j 2 [2J, J]. When Nj 5 1,

Eq. (39) is actually the Eq. (10), while when Nj . 1, Eq. (39) is
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employed to discretize the zonal transport terms of transport

equations in the polar cap regions. Here, the polar cap regions

are defined as the regionswhose latitude satisfy cosuj# b, where

b is a very important critical value, which will be addressed in

section 6. It is important to note thatNJ is I/2, and the ratio of dJ
for latitude uJ to d05 rDl for equator is about p/4, so Eq. (39) is

reasonable and feasible to be applied to the discretization for the

polar problems associated with longitudinal grid distance. In

addition, it can be easily proved that Eq. (39) satisfy square

conservation for rj*. andwe do not need to consider the problems

of transport at the North and South Poles, because both of the

two singularities are not defined in the spherical mesh.

5. Least squares filter method for polar problem

Equation (2) can be written alternatively as follows:

›r1/2

›t
5
1

2
C

ur
r1/2 2

1

2r

�
›yr1/2

›u
1 y

›r1/2

›u
1

›ur1/2

cosu›l
1 u

›r1/2

cosu›l

�
,

(41)

whereCur5 y/rtgu. Eq. (41) is equivalent to Eq. (1) and Eq. (2)

though they have different form. Because the area of a grid

cell is Ds 5 r2 cosuDuDl, we can get Cur 5 2(dDsdt21)/Ds.
Therefore, the Cur is actually the relative change rate of Ds,
which means that r increase when transporting to the higher

latitude region where the Ds is relatively smaller, while

r decrease when transporting to the lower latitude region. The

term (1/2)Curr
1/2 can be negligible in low and middle latitude

regions due to the relatively smaller jtguj, but in high latitude

regions, jtguj becomes more and more important because jtguj
increase rapidly as the juj increase. According to the ho-

mogeneous solution of Eq. (41), r1/2 5 exp
�Ð
(1/2)Cur dt

�
r1/2t50,

Cur . 0 is an unstable condition, namely, the numerical solu-

tion of r1/2 is very sensitive to the error of r1/2 when going

through the polar regions due to the large jtguj there. To sup-

press the error growth caused by the large jtguj, we design a

least squares filter method (LSFM), whose filter function is

given by Eq. (42), where the coordinate origin is set to be at the

north (south) pole, rDu is normalized to be unit 1, and Np is a

parameter that controls the size of area to be filtered:

~r
i,j
5 a

0
1 a

1
x
ij
1 a

2
y
ij
1 a

3
x2ij 1 a

4
y2ij 1 a

5
x
i
y
j

x
ij
5 (J2 jjj1 0:5) cosl

i

y
ij
5 (J2 jjj1 0:5) sinl

i

, for
J2N

p
# jjj# J

0# i# 2I2 1

8>><
>>: . (42)

Taking the implementation of filter for the north polar region

as an example to explain the LSFM, Assume thatNp is known,

the unknown coefficients a0, a1, a2, a3, and a4 in Eq. (42) can be

obtained by minimizing Eq. (43), then we can obtain the so-

lution of Eq. (42). The constraint condition for preserving mass

conservation is Eq. (44), by which the correction coefficientm is

able to be determined. Note that the indices j is from J2Np 1
1 to J in Eq. (44), while j is from J2 Np to J in Eq. (43), which

means that the those r1/2i,j , whose j is from J 2 Np 1 1 to J, are

required to be corrected, and r1/2i,j2Np
is used as a transitional

area between filtered area and unfiltered area. The im-

plementation of LSFM is given by Eq. (45):

J(a
1
� � � a

5
)5 �

J

j5J2Np
�
2I21

i50

1

2
[r1/2i,j 2 ~r

i,j
]
2
, (43)

m2 �
J

j5J2Np11
�
2I21

i50

[~r2ij cosuj]2 �
J

j5J2Np11
�
2I21

i50

(r
i,j
*)2 5 0, (44)

r1/2i,j 5m~r
i,j
, J2N

p
1 1# j# J, 0# i# 2I2 1. (45)

Obviously, NP is an important parameter for LSFM method,

it is associated with the coefficient Cur, which can cause rapid

error growth. The criterion for choosing Np is given by

min

	
E(N

p
)5 �

2I21

i50

(r1/2i,J2Np212 ~r
i,J2Np21

)
2
,N

p
2 [1,MaxN

p
]




C
ur
5

max(jyj)tg[Du(J2MaxN
p
)]

r
5 0:000 18

8>>>><
>>>>:

,

(46)

where the parameter MaxNp can be determined by solving

the equation Cur 5 0.000 18, which is obtained by a number

of numerical tests. That is to say, the errors of r often in-

crease noticeably in the region of jCurj. 0.000 18. However,

how to determine a more accurate boundary of the region

to be filtered needs more specific method. Eq. (46) is an

enumeration algorithm, if Np, respectively, is set to be 1

to MaxNp, then we can obtain {E(1), E(2), . . . , E(MaxNp)}.

Notice that the r1/2i,j2Np21 in Eq. (46) is the neighboring

boundary of Eq. (43), so the idea of Eq. (46) is that mini-

mizing the coupling error between the filtered area and the

unfiltered area. That is to say, the best Np is the one that

make E(Np) smallest.

The primary subject of this paper is the SCEIM, this Least

squares Filter Method is only used to improve the result of

SCEIM by suppressing the error growth associated with polar

problem and we will further investigate it later date.

6. Numerical test

The purpose of the numerical test is to evaluate the SCEIM

method for solving transport equation. The forward model is

constructed on the base of Eq. (23). For the backward mode,

the time step is set to be a negative value. Since SCEIM is

positive-definite, there is no need for any positive-definite

correction techniques. The classical cosine bell tests and de-

formation flow tests are utilized to evaluate SCEIM. In these

tests, the scale factor for the tangential velocity is set to be y05
2p/T as that in Nair and Jablonowski (2008), where T is total

time for simulation and set to be T [ 12 days. The normalized
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l1, l2, and l‘ error norms of the transported scalar for each test

are defined inWilliamson et al. (1992). The numerical model is

compiled in FORTRAN language and run serially on an IBM

computer with an AMD Opteron (TM) processor 6212.

a. Cosine bell test

Advection of a cosine bell is widely used to evaluate nu-

merical scheme considered for global modeling. The cosine

bell is initially specified by Eq. (47), its center is set to be

FIG. 2. The time evolution of error norms of cosine bell tests in the case of various-order spatial central

difference schemes when the spatial resolution is 0.58. The inset tables show the maximum value (Max),

average value (Ave), final value (Fv), average dimension of Km subspace (m), and the computational cost

(Cost) with unit of minutes.
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(lc, uc)5 (p/2, 0) and the z is the distance between (lc, uc) and

(l, u) on the sphere. The driving wind field is given by Eq. (48),

in which a is a parameter for controlling flow orientation:

r(l, u)5

8><
>:

500

�
11 cos

�
3pz

r

��
, z, r/3

0 , z$ r/3

, (47)

	
u
c
5 y

0
r(cosu cosa1 sinu cosl sina)

y
c
52y

0
r sinl sina

. (48)

1) TEST FOR HIGH-ORDER SPATIAL CENTRAL

DIFFERENCE SCHEME

For solving linear problems by means of exponential inte-

grationmethod, the numerical errors are primarily contributed

by the spatial discretization, so it is necessary to investigate the

influence of high-order spatial discretization schemes on the

accuracy and efficiency of the SCEIM. In this test, we choose

Dt 5 60min, MaxNp 5 5, b 5 0.25, and spatial resolution of

0.58. The orders of 10 types of spatial central difference

schemes are from second order to twentieth order. The Fig. 2

shows the evolution of l2 and l‘ of cosine bell tests with these

10 types of spatial central difference schemes. It can be seen

that l2 and l‘ decrease as the order increase, the accuracy be-

came better and better and finally converge to the error norms

of twentieth-order spatial central difference. Both l2 and l‘ of

the second-order scheme are the worst. Compared with the

other schemes, the twentieth-order scheme is obviously the

best. Compared to the test results with fourth-order scheme in

the case of a5 08 and 458, the average l2 and l‘ with twentieth-

order scheme are improved by 5.7 times, 4.9 times, 4.0 times,

and 4.9 times, respectively. For the test with a5 908, though l‘
of twentieth-order scheme is equivalent to that of fourth-order

FIG. 3. The time evolution of relative errors of total mass of tests in the case of (a)–(c) 10 types of spatial central difference schemes,

(d)–(f) 4 types of time step, and (g)–(i) 4 types of spatial resolution. The total mass are 1.523 105, 3.413 105, 1.363 106, and 5.433 106 in

the case of the spatial resolution of 1.58, 1.08, 0.58, and 0.258, respectively.
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scheme, the l2 of twentieth-order scheme is 1/2 times that of

fourth-order scheme, which means that higher-order differ-

ence schemes are helpful to improve polar problems. From the

change of the dimension ofKm subspace and the computational

cost, which are denoted by ‘‘m’’ and ‘‘Cost’’ in the inner table,

respectively, it can be seen that the average dimension of Km

subspace with twentieth-order difference scheme is only m 5

20. Although the computational cost increased from around 5

to 27min, we think such level of computational cost is ac-

ceptable, so we use the twentieth-order spatial central differ-

ence scheme in all of the following tests.

Another property to be evaluated is the total mass conservation

of transported scalar based on SCEIMmethod. Figures 3a–c show

the time evolution of relative error of total mass of cosine bell with

second-order to twentieth-order spatial central difference schemes.

The relative errors are not exceeding 23 10213 for all of the tests.

According to the definition of r*, the density r is calculated by

r5 (r*)2/cosu, so the numerical solution of r based on SCEIM

is not only conservative but also everywhere positive. However, it

seems that relative errors of total mass error are not improved

obviously by the high-order of spatial central difference scheme.

2) TEST FOR CENTRAL SKIP-POINT DIFFERENCE

SCHEME

As mentioned in section 3, if cosuj , b then we use the

central skip-point difference scheme instead of the central

FIG. 4. The time evolution of error norms with various values of

b in the case of spatial resolution (res) of 18. The column names of

the inset table are as in Fig. 2.

FIG. 5. The time evolution of error norms in the case of four types of time steps. The spatial resolution (res) is held

0.58 and the column names of the inset tables are as in Fig. 1.
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difference scheme, so the b is a very important parameter. In

this viewpoint, we use eight values of b to evaluate the effec-

tiveness and efficiency of central skip-point difference scheme

for polar problems. The eight values of b, respectively, are 0.0,

0.1, 0.15, 0.2, 0.25, 0.3, 0.4, and 0.5, in which the b 5 0.0 rep-

resents the spatial central difference scheme. To compare the

central skip-point difference scheme and central difference

scheme under a same condition, we utilize a test with spatial

resolution of 1.08 andDt5 30min to evaluate these two types of

scheme. The longitudinal distance along latitude uJ is dJ 5
0.965 km when b 5 0, while dJ 5 0.965 3 90 5 86.85 km when

b 6¼ 0.0. Figure 4 shows that the l2 and l‘ are the worst when b5
0.0, moreover, the value of m is up to 180, and the computa-

tional cost is more than 56.3min, which is too expensive to

FIG. 6. The time evolution of error norms in the case of four types of spatial resolutions (res). The column names of

the inset table are as in Fig. 1.
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tolerate for this low spatial resolution. In contrast, for other

values of b, the error norms are similar but the computational

cost and them decrease as b increase.We found thatb5 0.25 is

an appropriate value because the computational cost is not

cheaper when b . 0.25. Moreover, it can be seen from the

change of dimension of Km subspace, the m decrease as

b increase from 0.0 to 0.25, but keeps 10 as b increase from 0.3

to 0.5. For the latitude circle where b is 0.25, the longitudinal

distance is 1/4 times that of the equator, and only three grid

points are skipped in the l direction. So, we think b5 0.25 is an

appropriate choice, and it was used in all of the following tests.

3) TEST FOR TIME CONVERGENCE

we performed the time-convergence tests, in which the

spatial resolution is held 0.58 3 0.58 and the forward model is

integrated with 4 types of time step, i.e., 6, 15, 30, and 60min.

The corresponding Courant numbers, respectively, are 0.3125,

0.625, 1.25, and 2.5. For cosine bell test, which is a linear

transport problem, Eq. (23) is an analytical solution whose

error is primarily caused by the spatial discretization and in-

dependent of time. Figure 5 shows that the l2 and l‘with a5 08
and a5 458 are not affected by the change of Dt. However, for

the tests with a5 908, the results are very different, the l2 and l‘
decrease noticeably as the Dt decrease, and converge toward

the l2 and l‘ with Dt 5 6min. This convergence is caused

by the action of LSFM method, because the operation of

LSFM is implemented after each time integration step, that is

to say, if Dt 5 6min then the filter operation is implemented

10 times within a 1-h interval, while the filter operation is only

implemented once when Dt5 60min. It also demonstrates that

action of LSFM is positive and effective and it is very important

for improving the polar problem. For the tests with a5 908,the
most noticeable phenomenon is the two peaks of the evolution

of l2 and l‘ passing through the North Pole and South Pole, and

the peaks also become better and converge as the Dt decrease.
The change of m and the computational cost show that large

time-step Dt can save amount of computation time despite it

require a relatively larger m. However, considering the im-

provement of polar problem associated with the filter frequency,

Dt5 15min is an appropriate choice. Figures 3d and 3e show that

for any type of time step from 6 to 60min, the relative error of

total mass is always within the 10213 order of magnitude.

4) TEST FOR GRID CONVERGENCE

The grid-convergence tests were carried out by using 4 types

of spatial resolution, i.e., 1.58, 18, 0.58, and 0.258, in which Dt 5
60min is used for the tests with a5 08 and a5 458, while Dt5
15min is used for the test with a 5 908 due to polar problems.

When Dt5 60min and Dt5 15min are employed in the case of

spatial resolution of 0.258, the Courant numbers are 5.0 and

1.25, respectively. From Fig. 6 it can be seen that both l2 and l‘
decrease obviously as the spatial resolution increase. When

a 5 08 and a 5 458, the average l2 and l‘ with resolution of

0.258 is only about 1/3 of those with resolution of 0.58, even for

a 5 908, both l2 and l‘ are about 1/2 of those with resolution

of 0.58. The tables in Fig. 6 show the changes of the m and

FIG. 7. The errors (shaded) and numerical solutions (contours) for cosine bell passing through the South Pole

(SP) and the North Pole (NP) in the case of spatial resolution of 0.258. The contour intervals are 100 from 100

to 900.
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computational cost, the m increase as the spatial resolution

increase, thoughm is only 18 in the test with a5 908 due to Dt5
15min, it took our 199min to finish this test with spatial resolution

of 0.258. Figures 3g–i show the time evolution of relative error of

total mass, for any type of spatial resolution from 1.58 to 0.258, the
relative error is always within the 10213 order of magnitude.

To demonstrate the effectiveness of the combination of

SCEIM, central skip-point difference scheme and LSFM for

dealing with polar problem, Fig. 7 shows the error and contour

lines of cosine bell, whose spatial resolution is 0.258 and the

longitudinal grid distance is only 9.65m near pole points. The

top pictures show the cosine bells at 60, 72, and 80 h when going

through south polar, and the bottom pictures show the bells at

204, 216, and 228 h when going through north polar. It can be

seen that each contour lines presents better shape of circle in

vision, even when its center is at the North Pole and South

Pole. The negative errors are observed near the poles, and the

positive errors follow the negative errors in the moving direc-

tion of the cosine bell. Although the error norms, especially l‘,

grow rapidly in polar regions, the shape of the bell is not dis-

torted obviously, and the error norms decrease quickly after its

center passed through the South and North Poles (Fig. 6).

5) TEST FOR INVERSE PROBLEM OF COSINE BELL

The most significant advantage of SCEIM is that it can

change the forward model to the backward model by setting

negative time step. This is an advantage that other known

schemes do not have. For comparison, Fig. 8 shows the errors

and numerical solutions of forward and backward simulations

of cosine bell tests with resolution of 0.258 after one complete

rotation in three directions. In the tests of inverse problem, the

cosine bells rotate with reversed wind and return to their initial

position after 212 days. It can be seen that the simulated

contour lines depicted in the Fig. 8 are very smooth and similar;

the error distribution is related to the moving direction of

the cosine bell, which mainly occurs in the front of cosine bells.

The errors of tests with a 5 908 are quite different and larger

compared with the two others due to the affection of polar

problem, but the maximum error is only 3.8 for both forward

and backward simulations. The error norms and other infor-

mation of backward simulations are given in Fig. 9, which are

identity to those with 0.258 resolution given in Fig. 5. Based on

the above results, we think the backward model based on

SCEIM method can solve the inverse problems of cosine

bell tests.

6) COMPARISON OF SCEIM WITH OTHER

PUBLISHED SCHEMES

We compared these results with those in Baba et al. 2010,

(see their Table 1 and Table 2), and those in Li et al. 2016 (see

their Fig. 4). The error norms of SCEIM are significantly better

(Table 1). Note that Yin–Yang grid system was used to deal

with the polar problem in both Baba’s scheme and Li’s

schemes, however, the SCEIM exhibits competitiveness for the

tests with a 5 908. We also compared the results with those

based on SLICE method proposed by Zerroukat et al. (2004),

which had been compared with the published results from 7

schemes, though the spatial resolution of 2.81258 was used in

FIG. 8. The errors (shaded) and numerical solutions (contours) of forward and backward simulations of cosine

bell tests with resolution of 0.258 after one complete rotation in three directions. The red arrows represent the

moving direction of bells. The contour intervals are 100 from 100 to 900.
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their SLICE, the l1 and l2 of SCEIM with spatial resolution of

18 are less than 1/7 of those of SLICE. For the backward sim-

ulations corresponding to the inverse problems of the cosine

bells, though we have not found any published result in the

literature for comparison, we achieved the quite identical ac-

curacy to that of forward simulations.

b. Deformational flow test

The deformational flow test is also referred to as the

frontogenesis test. The forward model is to simulate the

evolution of frontogenesis, in which a weak front developed

into a sharp front under the force action of vortex flow,

whereas the backward model is to solve the inverse problem

of frontogenesis, namely, how the sharp front is regressed

back into the weak front. The analytical solution for rT is

given by Eq. (49), and the velocity components for defor-

mational flow (u, y) is given by Eqs. (50) and (51) as those in

Nair and Jablonowski (2008):

r
T
(l0, u0, t)5 12 tanh[0:2r sin(l0 2wt)], (49)

FIG. 9. The time evolution of error norms for backward simulation

of cosine bell tests.
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FIG. 10. The errors (colored) and solutions of deformational flow tests with vortex center located at 08, 458N for

(a),(b) exact solutions; (c) the solution of backward simulation whose initial field is (b) and the exact solution is (a);

(d) the solution of forwardmodel whose initial field is (a) and the exact solution is (b); and (e),(f) the time evolution

of error norms of forward and backward simulation, respectively.
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FIG. 11. As in Fig. 10, but for vortex center located at the North Pole.
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(
u
d
5 rw(u0)[sinu

p
cosu2 cosu

p
cos(l2l

p
) sinu]

y
d
5 rw(u0)[cosu

p
sin(l2l

p
)]

, (50)

w(u0)5 y
0

3
ffiffiffi
3

p

2r
sech2(r) tanh(r)

r5 3:0 cos(u0)

8><
>: . (51)

Here (lp, up) is the center of the vortex, which is independent

of time in this stationary setup, and (l0, u0) is a position in a

rotated coordinate system whose north pole is at (lp, up).

1) TEST FOR FORWARD AND BACKWARD SIMULATIONS

The spatial resolution of tests is chosen to be 18 3 18, and the

time step is set to be Dt 5 60min for forward simulation tests

and Dt5260min for backward simulation tests. Two types of

test with stationary vortex were preformed, one is the test with

(lp, up) 5 (08, 458N), the other is the test with (lp, up) 5 (08,
908N). For the latter, the LSFMmethod is not used because the

meridional velocity field given by Eq. (50) is zero, which means

that the coefficientCur5 y/rtgu5 0, thus there is no rapid error

growth for the r in polar region.

First, all of the tests show that the total mass is able to be

accurately maintained, whose relative errors are indeed very

small, not exceeding 1 3 10214 (Figure omitted). Figure 10

shows the test results whose initial vortex is located at

(lp, up)5 (08, 458N). For the forward test, the front is gradually

distorted with growing gradient under the force action of

vortex flow field, and developed into the sharp front shown in

Fig. 10d, which exhibits a very similar structure to the exact

solution depicted in Fig. 10b. To solve the inverse problems of

frontogenesis showed in Fig. 10b, it was used as the initial field

of the backward model and integrated with Dt 5 260min, the

numerical solution of this inverse problem is depicted in

Fig. 10c, whose exact solution is shown in Fig. 10a. It can be

seen from Fig. 10c that the errors are mainly distributed out-

side of the vortex center and near the North Pole, and the

contour lines are not smooth. Nevertheless, the overall shape is

in agreement with the exact solution. Figures 10e and 10f show

that the error norms only grow rapidly in the initial stage, both

the l1 and l2 are smooth, while the l‘ present the shape of wave.

The error norms of forward simulation are similar to those of

backward simulation but little better. Both the forward and

backward simulation have the same dimension of Km subspace

and the computational cost (m 5 11 and Cost 5 21min).

Figure 11 shows the test results with (lp, up)5 (08, 908N). It can

be seen that the results depicted in the Figs. 11c and 11d are in

quite agreement with their exact solutions depicted in Figs. 11a

and 11b, respectively. The error norms shown in Figs. 11e and

11f are better than those in Figs. 10e and 10f, moreover, Cost5
23min andm5 13 are little more than the tests with (lp, up)5
(08, 458N). Note that for the test with (lP, uP) 5 (08, 908), the
zonal advection surround the north polar plays an important

role and the LSFM is not used, it demonstrates that the central

TABLE 2. Comparison of error norms from the published schemes for the deformational flow tests when the vortex center is located at the

North Pole.

Day 6 Day 12 Day 20

l1 l2 l‘ l1 l2 l‘ l1 l2 l‘

SCEIM 18 1.35 3 1024 3.45 3 1024 3.90 3 1023 1.65 3 1024 3.49 3 1024 2.99 3 1023 3.49 3 1023

SLICE-S 2.18258 8.6 3 1024 2.56 3 1023 1.55 3 1022 3.44 3 1023 1.14 3 1022 8.02 3 1022

EPI2 1.08 — — 1.38 3 1023 — — — — — 3.47 3 1023

FIG. 12. The errors (shaded) and solutions (contours) of backward simulations of deformational flow tests whose

initial fields are Figs. 10b and 11b, respectively, but the spatial resolution is 0.258.
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skip grid difference is an effective method to improve the

problem of longitudinal grid distance near polar points.

Table 2 shows the comparison of error norms from SCEIM,

SLICE-S in Zerroukat et al. (2004) and EPI2 in Clancy and

Pudykiewicz (2013), in which EPI2 is also an exponential inte-

gration method, but implemented in an icosahedral model.

Although the error norms of SLICE-S method is resulted from

the test with resolution of 2.18258, the errors of SCEIMmethod

with resolution of 18 is about one order of magnitude smaller

than those of SLICE-S method at day 12 and we also achieved

comparable accuracy of l‘ to EPI2 scheme at the day 6 and 20.

2) TEST FOR GRID CONVERGENCE OF

BACKWARD SIMULATIONS

For the backward tests with spatial resolution of 18, the
larger errors make the contour lines not smooth enough. It is

closely related to the steep gradient in initial field of backward

simulations. If the spatial resolution of the model is not suffi-

ciently high, the errors of the simulated front gradient is worse,

which would lead to the rapid growth of l‘ in the initial stage

(Fig. 10f). Consequently, the spatial resolution of the backward

model is improved to 0.58 3 0.58 and 0.258 3 0.258 to test

whether backward simulations are able to be improved. Figure 12

shows the results of the backward simulations with resolution of

0.258. Compared with the results with resolution of 18 (Figs. 10c
and 11c), the errors depicted in Fig. 12 are significantly

improved by about one order of magnitude, the contours

are smoother and visually identical to the exact solutions.

Figure 13 shows that error norms became better and better as

the spatial resolution increase, and it can be seen from the table

that the average values of l2 with resolution of 0.258 are about

1/7 of those with resolution of 18.

3) TEST FOR TIME CONVERGENCE OF NONLINEAR

TRANSPORT PROBLEMS

It is important to note that the wind vector given by Eq. (48)

for the cosine bell tests and that given by Eq. (50) are both

independent of time, which means that the two kinds of tests

are linear transport problems. The results from Fig. 5 showed

that the SCEIM is very exact when solving linear transport

problems so the error norms are independent of Dt without
considering the influence the polar problems. Therefor it is

necessary to verify the time convergence of SCEIMmethod for

solving nonlinear transport problems. For this purpose, we

choose the moving vortex tests, whose time-dependent wind

field is given by (um, ym) 5 (uc 1 ud, yc 1 yd), in which the

deforming vortices move along the tracks of cosine bells (Nair

and Jablonowski 2008). In order not to be seriously affected by

the polar problems, the moving direction is set to be a 5 0.

Moreover, three Adams–Bashforth schemes are used to line-

arize Eq. (21) and compare them with the leapfrog scheme of

Eq. (23), as follows:

ðtn11

tn

[U(t)1V(t)] dt 5 �
NA

k51

h
k
[U(t

n2k11
)1V(t

n2k11
)] , (52)

where the NA is the order of Adams–Bashforth scheme. The

first-order Adams–Bashforth scheme [AB_O(Dt)], in which

h1 5 1.0, is the familiar Eular difference. For the second-order

scheme [AB_O(Dt2)],the coefficients are set to be h1 5 1.5 and

h2 520.5, respectively. The third-order scheme [AB_O(Dt3)],
in which h1 5 23/12, h2 5 24/3, and h3 5 5/12, is discussed by

Durran (1991). The second-order leapfrog scheme, which is

used in Eq. (23), is denoted by LF_O(Dt2).
Table 3 shows the error norms of moving vortex tests with

the four types of Linearization schemes and various Dt in the

case of 0.258 spatial resolution and twentieth-order spatial

difference scheme. It can be seen that the AB_O(Dt) scheme is

the worst, and the l2 and l‘ are almost 10 times and 6 times as

much as those of AB_O(Dt2) when Dt $ 40min. Although the

first-order scheme has faster time convergence for error norms,

the l2 and l‘ with Dt 5 5min are worse than those of AB_

O(Dt3) with Dt5 60min and LF_O(Dt2) with Dt5 40min. For

the other schemes, although AB_O(Dt2) and LF_O(Dt2) are

both second-order schemes, AB_O(Dt2) is better than

LF_O(Dt2) when Dt 5 60 min is used, while LF_O(Dt2) is

better than AB_O(Dt2) when Dt5 40min is used. In the case of

Dt% 20min, the two second-order schemes have similar accuracy.

By comparingwith the error norms ofLF_O(Dt2), the error norms

of AB_O(Dt3) are better than those of LF_O(Dt2) when

FIG. 13. The time evolution of error norms of backward simulations

of deformational flow tests.
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Dt 5 60min, while their error norms are close to each other for

other time steps. For nonlinear transport problems, these four lin-

earization schemes are all time-convergent schemes, and the third-

order Adams–Bashforth scheme is slightly better than the

second-orderLF_O(Dt2) scheme.However, the third-orderAdams–

Bashforth scheme is the best choice for using large time step.

7. Conclusions

SCEIM has been successfully generalized in a two-dimensional

spherical latitude–longitude coordinate system. The most sig-

nificant advantage of SCEIM is to change the forwardmodel to

the backward model by setting negative time step, which is an

advantage that other published schemes do not have. The main

emphasis in the development of SCEIM has been on conserva-

tion, positive-definite, and reversibility as well as achieving com-

parable accuracy to other published schemes.Moreover, the polar

problem has also been resolved by using a simple effective central

skip-point difference scheme and anLSFMwithoutmajor penalty

on the overall effectiveness of SCEIM.

SCEIM is evaluated by standard cosine bell tests and de-

formational flow tests. The cosine bell tests show that SCEIM

is a time-convergence method as well as a grid-convergence

method, which also demonstrate that SCEIM has a strong

shape-preserving ability. The error norms of the forward sim-

ulations and backward simulations are reasonable and very

similar. The deformational flow tests show that the forwardmodel

can simulate frontogenesis with high accuracy, and the backward

model can solve the inverse frontogenesis problems. The error

norms of the inverse frontogenesis problems are improved sig-

nificantly as the spatial resolution increased, which demonstrate

that the backward model is also a grid-convergence like as the

forward model. For nonlinear transport problems, although

the SCEIM with leapfrog scheme is a time-convergence method,

the third-order Adams–Bashforth scheme is the best choice for

SCEIM when large time step is used
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APPENDIX

Algorithms 1 and 2

a. Algorithm 1: Lanczos Iteration for AntisymmetricMatrix

1: Hm5 0.0;Bm
*(0)5b0;Bm(0)5 b0/kBm

*(0)k !Bm(21)[ 0;
!Hm(21, 0)[ 0

2: do k 5 0, m ! Assume that m is given
3: if A is antisymmetric then
4: Bm

*(k1 1)5ABm(k)2Hm(k, k2 1)Bm(k2 1)

5: Hm(k, k11)5kBm
*(k11)k;Hm(k11,k)52Hm(k,

k11)
6: else if A is symmetric then
7: Hm(k, k)5BT

m(k)ABm(k)

8: Bm
*(k 1 1)5 ABm(k)2Hm(k, k 2 1)Bm(k2 1)2

Hm(k, k) ABm(k)

9: Hm(k, k 1 1)5 kBm
*(k 1 1)k; Hm(k 1 1, k)5

Hm(k, k 1 1)
10: end if
11: Bm(k1 1)5Bm

*(k1 1)/kBm
*(k1 1)k

12: k 5 k 1 1
13: enddo

b. Algorithm 2: Adaptive Lanczos Iteration for
Antisymmetric Matrix

1: Hm 5 0.0; Bm
*(0)5 b0; Bm(0)5 b0/kBm

*(0)k; error5
kBm

*(0)k; Tol 5 1027; k 5 0
2: do while (error . Tol)
3: Bm

*(k1 1)5ABm(k)2Hm(k, k2 1)Bm(k2 1)

4: Hm(k, k1 1)5 kBm
*(k1 1)k;

5: Hm(k1 1, k)52Hm(k, k1 1)

6: Bm(k1 1)5Bm
*(k1 1)/kBm

*(k1 1)k
7: error5 errorkBm

*(k1 1)kt/(k1 1)

8: m 5 k; k 5 k 1 1
9: enddo

TABLE 3. Error norms of moving-vortex tests with four linearization schemes at day 6 and day 12 in the case of 1.0 spatial resolution and

twentieth-order spatial central difference scheme. TheAMandLF represent theAdams–Bashforth and the leapfrog scheme, respectively.

Dt (min)

AM_O(Dt) AM_O(Dt2) AM_O(Dt3) LF_O(Dt2)

l2 l‘ l2 l‘ l2 l‘ l2 l‘

Day 6 60 0.007 04 0.042 28 0.000 70 0.006 05 0.000 36 0.005 32 0.001 61 0.019 93

40 0.004 74 0.029 15 0.000 43 0.005 51 0.000 35 0.005 46 0.000 37 0.004 83

20 0.002 41 0.015 95 0.000 33 0.005 47 0.000 33 0.005 47 0.000 32 0.005 51

10 0.001 24 0.009 51 0.000 33 0.005 30 0.000 32 0.005 30 0.000 33 0.005 46

5 0.000 69 0.006 17 0.000 33 0.005 29 0.000 32 0.005 30 0.000 33 0.005 47

Day 12 60 0.013 52 0.070 21 0.001 51 0.013 55 0.000 95 0.012 62 0.003 78 0.038 65

40 0.009 20 0.050 09 0.001 06 0.012 64 0.000 92 0.012 65 0.001 00 0.011 21

20 0.004 74 0.029 61 0.000 92 0.012 65 0.000 91 0.012 65 0.000 92 0.012 65

10 0.002 52 0.018 81 0.000 91 0.012 65 0.000 91 0.012 65 0.000 91 0.012 60

5 0.001 50 0.013 91 0.000 91 0.012 65 0.000 91 0.012 65 0.000 91 0.012 60
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