
Improving National Blend of Models Probabilistic Precipitation Forecasts Using Long

Time Series of Reforecasts and Precipitation Reanalyses. Part I: Methods

THOMAS M. HAMILL ,b,c DIANA R. STOVERN,a,b AND LESLEY L. SMITHa,b

a Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
b NOAA/Physical Sciences Laboratory, Boulder, Colorado

c IBM/Weather Company, Andover, Massachusetts

(Manuscript received 8 November 2022, in final form 27 February 2023, accepted 1 March 2023)

ABSTRACT: This article describes proposed revised methods for the statistical postprocessing of precipitation amount
intended for the NOAA’s National Blend of Models using the Global Ensemble Forecast System version 12 data
(GEFSv12). The procedure updates the previously established procedure of quantile mapping, weighting of sorted mem-
bers, and dressing of the ensemble. The revised method leverages the long reforecast training dataset that has become
available to improve quantile mapping of GEFSv12 data by eliminating the use of supplemental locations, that is, training
data from other grid points. It establishes improved definitions of cumulative distributions through a spline-fitting
approach. It provides updated algorithms for the weighting of sorted members based on closest-member histogram statis-
tics, and it establishes an objective method for the dressing of the quantile-mapped, weighted ensemble. Verification statis-
tics and case studies are provided in the accompanying article (Part II).

KEYWORDS: Ensembles; Forecast verification/skill; Forecasting techniques; Numerical weather prediction/forecasting;
Probabilistic Quantitative Precipitation Forecasting (PQPF); Statistical forecasting

1. Introduction

On 20 September 2020, the National Oceanic and Atmo-
spheric Administration’s (NOAA’s) Global Ensemble Fore-
cast System, version 12 (GEFSv12) was implemented. Many
improvements were made to this ensemble prediction system
with this implementation, including a new atmospheric dy-
namical core applied at ;1/48 grid spacing, improved stochas-
tic physics, improved ensemble-based data assimilation, and
updated physical parameterizations. The GEFSv12 system
provides 31-member real-time ensemble forecasts initialized
at 0600, 1200, and 1800 UTC to 116-day lead time. Once
daily, from 0000 UTC initial conditions, the forecasts are inte-
grated to 135 days. The GEFSv12 system configuration and
basic verification is described in more depth in Zhou et al.
(2022).

To facilitate a more comprehensive statistical postprocess-
ing and forecast verification, the GEFSv12 implementation
was accompanied by the production of a 20-yr set of reanaly-
ses and reforecasts covering 2000–19, using a very similar data
assimilation system as is used in real time and using the same
GEFSv12 system. The reanalyses are retrospective gridded
analyses of the weather suitable for initializing the forecast, and
the reforecasts are retrospective forecasts using a statistically
consistent version of the forecast model. Previous-generation
reforecasts for the GEFS system were described in Hamill et al.
(2004, 2006, 2013).

While the real-time medium-range GEFSv12 ensemble is
produced four times daily with 31 members, the accompany-
ing reforecasts were produced only once per day, initialized at
0000 UTC,1 with 5 members generated to116-day lead. Once
per week, an 11-member ensemble forecast was generated to
135-day lead. The reanalysis was described in Hamill et al.
(2022), and the reforecasts were described in Guan et al.
(2022). Primary applications for these reforecast datasets in-
clude the calibration of 6–10- and 8–14-day forecasts for the
Climate Prediction Center and the calibration of forcings for
NOAA’s Hydrologic Ensemble Forecast System (HEFS;
Demargne et al. 2014). Many more applications are in devel-
opment and technology transfer to the National Weather
Service (NWS), including week-2 fire-weather potential post-
processed forecasts (Worsnop et al. 2021), subseasonal hurri-
cane potential for the Atlantic basin (Switanek et al. 2023),
week-2–4 precipitation forecasting (Scheuerer et al. 2020),
and the application discussed in this paper, the statistical post-
processing of precipitation forecasts for the NWS National
Blend of Models (NBM).

The intent behind the NBM (Craven et al. 2020) is to pro-
duce improved numerical guidance by combining and cali-
brating guidance from multiple prediction systems, both those
from NOAA and when available from other agencies, includ-
ing the U.S. Navy, the Canadian Meteorological Centre, and
the European Centre for Medium-Range Weather Forecasts
(ECMWF). The hope is that such centrally produced guid-
ance will be of sufficient quality and detail that forecasters
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will, in most cases, see no need to manually modify the guid-
ance, sparing much of their time to concentrate on more im-
portant work activities. In the earlier version of the NBM
precipitation algorithm, even if reforecasts were available, the
precipitation calibration algorithm utilized a short training da-
taset comprising the most recent 60 days of forecasts and pre-
cipitation analyses. The procedures that were developed for
this were built around quantile mapping (Voisin et al. 2010;
Hopson and Webster 2010; Maraun 2013), and the NBM ap-
plication of this was described in Hamill et al. (2017, hereafter
H17) and Hamill and Scheuerer (2018, hereafter HS18). The
quantile-mapping technique, when incorporating data from
“supplemental locations,” were able to provide forecasts with
improved probabilistic skill and reliability relative to the raw guid-
ance. An additional calibration element, the variable weighting of
dressed, sorted members based on closest-member histogram sta-
tistics (HS18) further improved forecast skill and reliability, espe-
cially for probabilistic forecasts with higher thresholds.

Despite the improvement of the postprocessed forecasts
relative to raw guidance, the use of supplemental locations to
increase training data sample size tended to reduce the
amount of terrain-related precipitation detail in the western
United States (J. Craven 2021, personal communication), and
the use of the last 60 days of training data reduced NBM fore-
cast skill and reliability in transition from warm to cool sea-
sons, and vice versa. Figure 1 shows an example of why this
happens, using data from one particular location, the “Game
Farm” weather station at Cornell University, Ithaca, New
York. Figure 1a shows the cumulative distribution functions
(CDFs) of the 24-h accumulated GEFSv12 reforecasts and
observations for August 2000–19, and Fig. 1b shows these for
October 2000–19. As reflected in the differences between cu-
mulative distributions, a large over-forecast bias of moderate
precipitation was evident in August, where precipitation was

more convective in nature. This overforecast bias was more
muted in October, when precipitation was more stratiform in
character. For example, a 10-mm forecast in August would be
statistically adjusted with quantile mapping to a value of;5 mm.
In October, the same 10-mm forecast would be adjusted to
;8 mm. Hence, the existing NBM procedure which leverages
August data in the calibration of October forecasts may be mak-
ing inappropriate statistical modifications.

This article describes a proposed adaptation to previously de-
scribed NBM precipitation postprocessing methods. For the
sake of software continuity and maintainability, the method is
designed to provide tractable modifications to the existing algo-
rithm, and only for GEFSv12 data, where the reforecasts were
available. Other conventional postprocessing procedures (e.g.,
Sloughter et al. 2007; Ben Bouallègue 2013; Scheuerer and
Hamill 2015) machine-learning procedures such as discussed in
Schumacher et al. (2021) or M. Ghazvinian, Y. Zhang, D. J. Seo,
T. M. Hamill, and N. Fernando (2022, unpublished manuscript)
may advance the skill beyond that of the algorithm discussed
here, though such methods may lack the ease of interpretability
of the current algorithm. Still, given their improved skill, espe-
cially for heavier precipitation events, one of these might be a
candidate for a future incorporation into the NBM.

The proposed adaptation for the GEFSv12 system contin-
ues the previous use of quantile mapping, but the CDFs uti-
lized in the quantile mapping are now generated through a
more sophisticated spline-fitting procedure that leverages the
lengthy reforecasts and high-resolution precipitation analyses.
With two decades of daily forecasts potentially available, the
use of supplemental locations can be abandoned; there should
be adequate sample sizes from a time series of forecasts and
precipitation reanalyses at each particular grid point to esti-
mate the precipitation CDFs. Further, there is no need to use
training data from a previous season; data from a coincident

FIG. 1. (a) August and (b) October empirical cumulative distribution functions of 0–1-day accumulated GEFSv12
reforecast data at the grid point nearest to Ithaca, NY, and 24-h observed total precipitation at the Ithaca Game Farm
station using 2000–19 data.
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season is readily available spanning the decades in question.
Additional refinements are also described for the weighting of
the sorted ensemble members before determining probabilities
and for the dressing of weighted, quantile-mapped members.
GEFSv12 reforecasts and coincident precipitation analyses will
be used for the 2002–19 period (the precipitation analyses were
not available prior to 2002). Raw and quantile-mapped forecasts
will be compared using a larger ensemble of preproduction “retro”
forecasts spanning December 2017–November 2019, and the prob-
abilistic forecast skill from raw, quantile-mapped, quantile-mapped
and weighted, and quantile-mapped, weighted, and dressed
(Roulston and Smith 2003) forecasts will be evaluated.

The research hypothesis is that the quantile mapping and
rank-dependent weighting using the coarser-resolution refor-
ecast data and finer-resolution precipitation analysis data will
improve skill and reliability and provide a statistical downscal-
ing. A more specific research hypothesis underlying the use of
quantile mapping applied on a gridpoint basis is that precipi-
tation forecast biases have a strong dependency on the loca-
tion on the analysis grid, a possibly nonlinear function of
precipitation forecast amount, and may vary with forecast
lead time, phase of the diurnal cycle, and of the month of the
year. This would then permit adjustments for the tendency of
some numerical prediction systems to perhaps overforecast
light precipitation and underforecast heavier amounts; to ad-
just for possible diurnally dependent biases due to errors in
the timing of convective initiation, or biases that differ be-
tween predominantly convective precipitation (warm season)
and stratiform (cool season). If analyzed data used in the
quantile mapping are at a higher spatial resolution than the
forecast, an implicit statistical downscaling is possible. Biases
could depend upon other factors such as the forecast wind di-
rection, the thermodynamic stability, the mode of convection,
and other factors that are not accounted for in the quantile-
mapping procedure, and that is a potential limitation of this
approach, one not quantified here.

Below, section 2 will describe the data and evaluation met-
rics to be used in this study. Section 3 provides a brief review
of this previously defined methodology, discusses general al-
gorithmic differences in the new approach, and then provides
a detailed explanation of the revised quantile-mapping method
using cubic splines as well as revised weighting and dressing.
Section 4 provides some brief conclusions. An accompanying
article, Stovern et al. (2023, hereafter Part II, will provide the
evaluation of forecasts using the revised procedure.

2. Reforecast and precipitation analysis data

a. Reforecasts

Reforecast data from the GEFSv12 system were used in
this project for building quantile-mapping relationships. To
align with the period where precipitation analysis data were
available, reforecasts from 1 January 2002 to 31 December
2019 over the contiguous United States (CONUS) and sur-
rounding areas were used, with five-member reforecasts avail-
able each day from 0000 UTC initial conditions; section 3b will
describe how calibration of the other cycles uses the 0000 UTC

data in a way that facilitates estimation of diurnally dependent
biases. For this NBM application, we used the forecasts to
110-day lead time, with accumulated precipitation saved every
6-h period. These precipitation data for each of the five refore-
cast members were converted to netCDF2 files, with separate
files for each forecast lead time and each calendar month.
These data and code are available for others to use at ftp://ftp.
cdc.noaa.gov/Projects/GEFSv12/NBM/and https://github.com/
ThomasMoreHamill/GEFSv12_NBM, respectively. A given
netCDF file for a given lead time and month contained all the
ensemble forecasts during the 2002–19 period. As precipitation
forecast bias characteristics can vary from one month or one
season to the next, saving data separately for each month facili-
tated a month-by-month estimation of the CDFs used in the
quantile-mapping process. Similarly, forecast bias may be diur-
nally dependent and dependent on the forecast lead, hence sav-
ing data for different lead times in different files. The five
members from the reforecast included the control and the first
four perturbed forecasts. These data were downloaded from
the grib data store at Amazon web Services, https://noaa-gefs-
retrospective.s3.amazonaws.com/index.html before spatial sub-
setting and conversion to netCDF format.

The GEFSv12 grid for this project surrounded CONUS,
with the domain from longitude 138.58 to 59.258W every
0.258, and from latitude 19.258 to 57.258N every 0.258. This
domain was large enough to include basins in Canada and
Mexico that flow into rivers touching the United States,
given presumed interest in using this product for hydrologic
prediction.

See Zhou et al. (2022) for more documentation on the
GEFSv12 system and its performance, and Guan et al. (2022)
for information on the new reforecasts.

b. Precipitation analyses

For the precipitation analyses, given that the high-resolution
Climatology-Calibrated Precipitation Analyses (CCPA; Hou
et al. 2014) only became available in 2002, the precipitation anal-
ysis record covered the 2002–19 period. The overall gridded pre-
cipitation analysis used in these analyses was a combination of:
1) CCPA on the National Digital Forecast Database (NDFD)
grid, a 2345 (x) 3 1597 (y) grid surrounding the CONUS on a
Lambert-conformal projection with a grid spacing of approxi-
mately 3 km, and 2) Multi-Source Weighted-Ensemble Precipita-
tion analyses, version 2.60 (MSWEP; Beck et al. 2019), originally
on a 0.058 latitude–longitude grid (;4.2 km at 408 latitude), inter-
polated to the 3-km NDFD grid. One or the other analysis was
used for any given point. The combined analyses used CCPA for
grid points inside the CONUS land boundary, interpolated
MSWEP outside, and MSWEP for very few selected grid points
with missing CCPA data inside the CONUS. CCPA data were
also used in the Columbia River basin of Canada and tributaries
of the Rio Grande River in Mexico. The combination of precipi-
tation analyses allowed for a relatively seamless product from
land to ocean.

2 Documentation on the netCDF format can be found at https://
www.unidata.ucar.edu/software/netcdf/docs/netcdf_documentation.html.
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c. Retrospective preproduction forecast data

“Retro” forecast data were preproduction GEFSv12 simu-
lations conducted from 1 December 2017 to 30 November 2019,
initialized every day at 0000 UTC, with a few case days missing.
These data were used to generate closest-member histogram and
dressing statistics and compare probabilistic forecasts of the raw
and quantile mapped algorithm, described later. As with the
real-time GEFSv12, the retro ensemble consisted of 31 members,
larger than the reforecast ensemble. The 6-hourly ensemble
accumulated precipitation forecasts were extracted on the
same 0.258 grid as was used for the reforecast processing previ-
ously described.

Though overlapping in time with the reforecast training
data, these data could be considered somewhat independent,
in that initial conditions for the reforecast were generated
from a lower-resolution reanalysis (Hamill et al. 2022) whereas
the retro runs used the operational initial conditions generated
at the time with a higher-resolution version of the forecast
model. The retro-run data are also described in Hamill et al.
(2022, section 4d). Subsequent figures will also show that
the calibration statistics, including the spline-fitted CDFs, the
closest-member histogram statistics, and dressing statistics had
little variation between cross-validation samples, indicating
that a more formal separation of training and verification data
would likely have little impact.

3. Quantile-mapping, weighting, and dressing
methodology

a. Overview of previous methodology and differences
with the new method

HS18 described for the National Blend of Models precipitation
postprocessing a multistep procedure that could be applied to
individual ensemble prediction systems. Each coarser-resolution
forecast member nearest to the finer-resolution analyzed point
and each forecast at a stencil of surrounding points was quantile
mapped to provide estimated values of the analyzed state. CDFs
used in the quantile mapping were determined from gamma dis-
tributions fitted to the empirical distribution for points with pre-
cipitation greater than zero precipitation, with some modification
described in HS18 for exceptionally wet forecasts (see section
3.b.2 of HS18). Parametric representations of the CDFs used in
the quantile mapping were estimated separately for forecasts and
analysis grids, separately for each forecast lead time (forecasts)
or time of the day (analyses), separately for each forecast and
analysis grid point, and for each day in the test period, with each
day using the previous 60 days of training data.

As 60 previous days at one location would not have pro-
vided a sufficient sample to accurately estimate the CDFs,
“supplemental locations” were identified for each grid point
and each lead time/time of day and each month. These sup-
plemental locations defined the locations of other grid points
with similar analyzed precipitation climatologies and terrain
characteristics, and the training sample used to estimate
CDFs used data not only from the grid point in question but
also from its defined supplemental locations.

After the quantile mapping and before determination of
probabilities, for each case day and each grid point the quantile-
mapped members were sorted and weighted using “closest-
member histogram” statistics (HS18 and section 3d, below)
and then dressed with a Gaussian probability distribution
whose standard deviation depended on forecast amount.
HS18 also described the synthesis into a multisystem blended
forecast product.

The general equation for determining probability distribu-
tions from the weighted, quantile-mapped, dressed ensemble
in the revised algorithm is as follows:

F(x) 5 ∑
n325

(i)51
h(i) 3 FN

(
x 2 R[x̃f(i)]

)2
2s2

(i)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭, (1)

where F(x) is the cumulative probability associated with the
precipitation amount x, (i) is the sorted ensemble member in
the n-member ensemble including quantile-mapped members
enlarge from a surrounding array of 5 3 5 stencil points. The
application of and rationale for the stencil are described in
section 3c, below. The term h(i) is the closest-member histo-
gram weight for this sorted member; FN{?} is a Gaussian-
distributed kernel of probability density, where x̃f(i) is the
quantile-mapped value and R[ ? ] is a regression correction to
the quantile-mapped value based on objectively defined dress-
ing statistics. The term s2

(i) is the variance of the dressing ker-
nel. Details on all the constituent terms of this equation are
described in depth later.

Table 1 provides a summary of the algorithmic changes made
in processing the new GEFSv12 data relative to the procedure
in HS18. All aspects of the HS18 algorithm were re-evaluated in
light of the larger training sample sizes made possible with refor-
ecasts and precipitation analyses from 2002 to the present. The
long time series of reforecasts and high-resolution precipitation
analyses permitted making several improvements to the quantile-
mapping procedure of HS18. First and foremost, the use of
supplemental locations was discarded with the availability of long
time reforecast and precipitation analysis time series. CDFs
instead were estimated only using the data at the forecast or anal-
ysis grid point in question, estimated with a spline-fitting proce-
dure. Sample sizes to populate CDFs were further enlarged by
using a 3-month period centered on the month of interest.
Changes were also made to refine the closest-member histogram
weighting and dressing components. We now discuss in more de-
tail the algorithmic changes.

b. Revised quantile mapping

The implementation of quantile mapping discussed here re-
quires the estimation of CDFs of precipitation identified sepa-
rately for each grid point, for each month, for each forecast
lead time (forecast), or for the time of day (analysis). Reading
in a long time series of past forecasts and observations/analyses
on high-resolution grids every time we seek to apply quantile
mapping would be slow and computationally burdensome.
Hence, this procedure had a separate training phase, where a
compact representation of cumulative distributions was esti-
mated, followed by a prediction phase, where the real-time
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forecasts were corrected using those compact representations of
the cumulative distributions.

Define the CDF of the ith member of an ensemble forecast
at a particular grid point, lead time, and time of year as

Ff (xf
i ) 5 pf

i 5 P(Xf # xf
i ), (2)

where xf
i is the ith member’s forecast raw precipitation

amount and Xf is a random variable drawn from the climato-
logical distribution of forecast precipitation amount appropri-
ate to this location, lead time, and time of year. The term
Ff (xf

i ) defines the percentile pf
i in this cumulative distribution

associated with this forecast precipitation amount. The CDF
for the analyzed amount Fa(xa) is defined similarly. There is
an inverse distribution function, the quantile function, which
maps percentile back to a precipitation amount. For example,
with the precipitation forecast, this quantile function is

xf
i 5 Ff21(pf

i ), pf
i 2 [0, 1]: (3)

The quantile-mapping procedure generates a bias-corrected
(and potentially downscaled) precipitation amount x̃fi condi-
tional on the forecast precipitation amount:

x̃fi 5 Fa21[Ff (xf
i )]: (4)

That is, the percentile of the CDF for this grid point’s ensem-
ble member forecast amount is determined, and then the esti-
mated analyzed amount is determined from the analyzed
amount associated with the same percentile.

We envision the operational implementation of this algo-
rithm for 0000, 0600, 1200, and 1800 UTC cycles using only
0000 UTC cycle reforecasts. To do this, when quantile map-
ping the forecasts from cycles other than 0000 UTC initializa-
tion, the forecast CDF data are shifted. For example, a 6–12-h
forecast from the 1200 UTC cycle will span the 1800–0000 UTC
period, the same as the 18–24-h forecast from the 0000 UTC cycle.
In this case, the fitted CDFs of the 0000 UTC cycle, 18–24-h
forecasts are substituted in the quantile mapping.

Fitted relationships between precipitation and a function of
cumulative probability were determined separately for each grid
point, lead time (forecast) or 6-h accumulation period in the di-
urnal cycle (analysis), and separately for each month. For a
given month, the data from the two surrounding months were
also used, and reforecast and precipitation analysis data from all
years from 2002 to 2019 were used. Following Scheuerer et al.
(2020), we chose to apply a cubic-spline fit to the cumulative
hazard function (CHF) of positive precipitation amounts for
locations providing a sufficient sample size of positive precipita-
tion values. This CHF provided a more linear relationship be-
tween precipitation and (transformed) cumulative probability,
making CDF function-fitting more accurate after back transfor-
mation from the CHF to the CDF This procedure also ensured
that spline-fitted CDF values were bounded to the interval
[0, 1]. For a CDF Ff (xf

i ), the CHF was defined as

H(xf
i ) 52log[1 2 Ff (xf

i )]: (5)

For the forecast, cubic splines were used to estimate the CHF
value given the precipitation amount. The implicit forecast

TABLE 1. Changes between the postprocessing methodology discussed in Hamill and Scheuerer (2018) and those developed for
GEFSv12 with its reforecasts.

System characteristic Method in Hamill and Scheuerer (2018) Method in this paper

Forecast training data GEFS version 10 and other models, last
60 days of forecasts

GEFS version 12 reforecasts, 2002–19; data for a
given month uses that month and surrounding
months; weighting and dressing statistics used
Dec 2017–Nov 2019 retro forecast data

Analyzed training data CCPA over CONUS, 1=88 Merged CCPA and MSWEP precipitation
analyses on the ;3-km NDFD grid surrounding
the CONUS

CDFs used in quantile mapping Fraction zero and gamma distribution for
positive values

Fraction zero and (i) a spline fit for positive
precipitation values when there were a large
number of positive precipitation samples, or
(ii) fitting with a gamma distribution (smaller
number of positive samples)

Treatment of extreme
precipitation

Quantile mapping to the 90th percentile,
regression correction between the 90th
and 99th percentile added to quantile
mapped value; no additional
correction beyond the 99th percentile

Quantile mapping up to the 99th percentile in
distribution of samples with positive
precipitation, raw ensemble plus quantile
mapping at the 99th percentile for ensemble
forecasts greater than he 99th

Stencil size 5 3 5, spacing increasing between points
with lead time

5 3 5, spacing increasing between points with lead
time

Closest-member histogram
weighting

Stratified into three categories of
precipitation amount

Stratified into seven categories of precipitation
amount

Dressing of quantile-mapped
member forecasts with
Gaussian error distribution

Dressing distribution standard deviation
is a linear function of the quantile-
mapped member amount

Different dressing statistics for lowest,
intermediate, and highest members, all of which
vary as a function of quantile-mapped member
amount
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percentile associated with this precipitation amount was then
estimated through a back transformation of Eq. (5). With the
analyzed data, the spline function was used to estimate the
precipitation amount given the value of cumulative hazard as-
sociated with the particular forecast percentile.

To estimate the forecast CHF spline function for a particu-
lar tuple of (location, lead time, and month of the year), the
climatological time series of reforecast data for a particular lo-
cation was first sorted. The proportion of values in this sample
with zero precipitation was denoted as the fraction zero (FZ).
An empirical CDF was generated for the sorted positive sam-
ples using the Hazen plotting position (Wilks 2011, Table 3.2).
From this, the empirical CHF of positive precipitation amounts
was then generated using Eq. (5). If there was a “sufficient”
number of positive precipitation samples, a cubic-spline func-
tion was then created to estimate CHF given precipitation
amount. With reforecast data and its 5 members, sufficient was
somewhat arbitrarily defined as more than or equal to 100 pos-
itive samples. With less than 100 samples but more than 10
samples, a gamma distribution was fit instead, following HS18.
With 10 or fewer samples, no quantile mapping was applied to
the raw data for this point. After this training phase, the spline
coefficients were stored to disk for later use in quantile map-
ping the real-time forecast. The final estimated CDF consisted
of a point mass FZ at zero precipitation and a CDF of positive
values starting at FZ and weighted by (12 FZ):

Ff (xf
i ) 5

FZ, if xf
i 5 0

FZ 1 (1 2 FZ) 3 xf
i , if xf

i . 0
:

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)

For the analysis data, data collection was similar, involving
determination of an analyzed fraction zero, the sorting of pos-
itive data, and then determination of an empirical CDF and
CHF. However, as opposed to the forecast, where the spline
function was used to predict cumulative hazard given precipi-
tation amount, the spline function fitting for the analyzed data
predicted the precipitation amount given the hazard function.
The spline fitting procedure for analyzed data also defaulted
use of simpler approaches with few samples. For more than 10
but fewer than 50 analysis samples, gamma distributions were
fit. For 10 or fewer samples, no quantile mapping was applied.
The fitted spline coefficients were again stored to disk.

More interior knots used in the spline fitting permits a
closer function fit to the empirical data, but more knots may
be unhelpful and the resulting spline fit may replicate distribu-
tional noise on top of a signal when fewer precipitation sam-
ples are available. The procedure thus defined a variable
number of knots based on the number of samples with posi-
tive precipitation. For the forecast, if there were more than
100 nonzero precipitation values (nz), the integer number of
interior knots was defined as min (9, nz/30). For the analyzed
data, which had 1/5 the number of samples without the 5-member
ensemble of forecast values, the number of interior knots was
defined as max [min (9, nz/30), 3]. That is, the number of knots
was at least 3 and no more than 9, with values in between de-
termined by the sample size. The upper limit on the number of
knots constrained possible overfitting to the data.

The knot locations of the cubic spline were chosen to pro-
vide more closely spaced knots toward higher precipitation
amounts, where large quantile mappings are possible and
function precision is desired. Since both cumulative probabil-
ity and beta distributions (Wilks 2011, section 4.4.4) are de-
fined on the interval [0, 1], given the flexibility of the beta
distribution to assume characteristics from U shaped to flat to
skewed to near-Gaussian, we chose to define a beta distribu-
tion so that, when divided into intervals with equal probabil-
ity, the interval boundaries would be closer together near 1.0
than near 0.0. Through trial and error, a beta distribution was
chosen with parameters a 5 3.5 and b 5 1.0. The pdf f(z) of a
beta distribution is

f (z) 5 G(a 1 b)
G(a) 1 G(b)
[ ]

za21(1 2 z)b21; 0 # z # 1; a, b . 0:

(7)

As an example of how this helps objectively set more knots for
higher precipitation values, let us presume that the algorithm de-
scribed above determined that for this sample size, eight interior
knots were appropriate. Figure 2 illustrates this beta-distribution
pdf and how this pdf was divided into 8 1 1 5 9 separate bins
with equal probability. The choice of beta parameters with
a . b allowed us to specify values of z closer together at high
values. For a forecast, these values of z then define the cumula-
tive probability values whose associated precipitation amount
were used to define the interior knots.

An example of empirical and fitted distributions of positive pre-
cipitation values are shown in Figs. 3 and 4, using July–August–
September forecast and analyzed data at Ithaca, New York, for
118–24-h lead forecasts. These data would be used for quantile
mapping of August forecasts. For the forecasts in Fig. 3, based on
the number of samples with positive precipitation, nine interior
knots were chosen following the process illustrated in Fig. 2. The
interior knots are denoted by the locations of the black dots in
Fig. 3b, which are closer together at the higher percentiles. The
empirical CDF was transformed to the empirical CHF shown
with the dashed red line in Fig. 3a. A spline was fit to provide co-
efficients to predict a simpler fitted CHF, which is shown with the
thick blue curve using the full training dataset. Finally, the fitted
CHF can be inversely transformed back to a CDF; the fitted blue
curve in Fig. 3b represents this. The fit to the empirical data is so
close that the underlying empirical distribution in red is nearly to-
tally hidden in the plot. Figure 4 shows related data for coincident
analyses at this location.

Figure 3 also plots 18 cross-validated replications of the
forecast CHF and CDF, leaving one year of data out of the
training sample in each replication. The cross-validated curves
are difficult to see and generally overlap each other to a great
extent, with more detail shown in the inset boxes. While there
appears to be some spread in the cross validations of CHF for
large precipitation amount in Fig. 3a, after transformation
back to CDF in Fig. 3b, these differences are minor. The simi-
larity of CDFs after cross validation illustrates that the simpli-
fication to overlap the reforecast training data and the retro
prediction data, while undesirable, should have little effect on
the results.
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Figure 5 shows the final fitted CDFs of the forecast and
analyses when the fractions zero were included, which differ
between forecast and analyses. With the inclusion of fraction
zeros, which was smaller for the forecast, the forecast was
conditionally biased to be wetter than analyzed for light to
moderate precipitation amounts. For example, a 5-mm fore-
cast was associated with approximately the 91st percentile of
the fitted forecast distribution. This 91st percentile was at ap-
proximately 2.5 mm in the analyzed distribution. Hence, the
quantile-mapping process adjusted the 5-mm forecast to;2.5 mm
in the analyzed data.

Typically the empirical and fitted CDFs are very flat at high
precipitation amounts, and the quantile mappings can be very
sensitive to a small mis-estimation of the slope. Accordingly,

we adapted the conservative methodology of HS18 to
limit possibly unphysical mappings at the highest amounts.
Let qf10:99 represent the quantile, the precipitation amount
associated with the 99th percentile in the spline-fitted
distribution of positive forecast precipitation amounts. We
limit the possible quantile mappings of very heavy events
by constraining the quantile mapping beyond the 99th
percentile to the sum of the quantile mapping at 99th per-
centile plus the amount the forecast is larger than the 99th
percentile:

x̃fi 5
Fa21[Ff (xf

i )] if xf
i # qf1

0:99

Fa21[Ff (qf1
0:99)] 1 xf

i 2 qf1
0:99 if xf

i . qf1
0:99

:

{
(8)

FIG. 2. Illustration of a beta distribution on the interval [0, 1] with parameters a 5 3.5 and
b 5 1.0. Dashed red lines denote the definition of eight values that divide the integrated beta dis-
tribution probability density into nine equal partitions. They also define the percentiles of the
CDF used as knot locations.

FIG. 3. (a) Forecast cumulative hazard functions, with empirical (red), spline fitted (blue), and 18 different spline
fitted, leave-one-year-out cross validated (dashed light blue). Data presented here are July–August–September Ithaca,
NY, data for 18–24-h precipitation forecasts with positive amounts. Dots indicate the precipitation amounts of the
interior spline knots. (b) Corresponding empirical and fitted forecast CDFs as a function of the 6-hourly positive pre-
cipitation amount. Dots again represent spline interior knot locations. Inset boxes for dashed gray region show more
detail on the cross-validated spline fits.
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c. Use of stencil of surrounding points

Following H17 and HS18, interpolated forecasts at a stencil
of 5 3 5 grid points surrounding the location where a quantile
mapped forecast is desired are used. This procedure will both
enlarge the quantile-mapped ensemble sample size and help to
account for the potential of systematic overconfidence of the
position of precipitation features in the ensemble prediction
system, considering forecast information from nearby points.
The potential benefit of using the stencil in regions of complex
terrain is explained graphically in Fig. 3 of H17 using a smaller,
33 3 stencil.

Consider the production of 124-h quantile-mapped ensem-
ble member forecasts at the red point in Fig. 6a. For each
forecast member and each point in the surrounding stencil,
both black and red points, the percentile in the cumulative
forecast distribution is determined relative to its local forecast
climatology using the previously described spline-fitting pro-
cedure. For any given ensemble member’s forecast, this then
produces 25 estimates of forecast percentiles.

Since we desire a predictive distribution at the red center
point (with possibly an analyzed climatology that is distinct
from those at the surrounding points), in the quantile-mapping
procedure, the 25 forecast percentiles collected across the sten-
cil points become 25 estimates of the analyzed percentile at the
central location, the red dot. As implied in Fig. 4, there is a
back transformation from percentile to the quantile-mapped
precipitation amount using the fitted analyzed distribution at
that central point. In this way, forecasts at each stencil point are
rendered consistent with the analyzed climatology at the red
point.

This same basic procedure for quantile mapping using a
stencil of surrounding points is applied independently for each
ensemble member interpolated to each output analysis grid
point in the domain. The result is a 25-fold increased ensemble
of quantile mapped forecast values with which to estimate
probabilities; hence the summation over n3 25 in Eq. (1).

The spacing between stencil grid points on the ;3-km anal-
ysis grid is defined as a function of lead time in hours:

s 5 12 1 int
L
18

( )
, (9)

where int refers to the integer value of the quotient,
rounded down, and L is the lead time in hours. Units are
in terms of grid points, which are 0.258 apart. An example
of how the stencil size increases with lead time is shown in
Figs. 6a and 6b. The separation between points is larger for

FIG. 4. As in Fig. 3, but for analyzed July–August–September positive precipitation samples of 1800–0000 UTC accu-
mulated precipitation amounts at Ithaca, NY. No cross validations were plotted.

FIG. 5. Fitted CDFs from Figs. 3b and 4b, now including frac-
tion zero, that would implicitly be used in quantile mapping
for 0000 UTC initialized 18–24-h forecasts near Ithaca, NY.
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longer lead forecasts, presuming that larger positional errors
are more likely at longer lead times. Several experiments
were conducted with stencils of various separations; the
choice reflected in Eq. (9) represents the approximate opti-
mal from these tests in terms of probabilistic skill and com-
promises between forecast reliability and resolution (Wilks
2011, section 8.4.3).

d. Closest-member histograms and estimations of event
probability

As described in HS18, closest-member histogram statistics
objectively reweight the sorted, quantile-mapped ensemble of
forecasts before determining the probabilities, ameliorating
amount-dependent spread deficiencies and remaining biases
and thereby improving reliability. Closest-member histograms
are very similar in character and interpretation to rank histo-
grams (Hamill 2001); the former populates a histogram based
on the rank of the sorted member closest to the observed, the
latter determines the rank of the observed relative to a sorted
ensemble. Closest-member histograms are more relevant to
the weighting and dressing of sorted members. These histo-
grams were generated from the December 2017–November
2019 31 3 25 quantile-mapped members from the ensemble
retro run. Statistics were pooled over the CONUS under the
assumption that the prior quantile mapping corrected loca-
tion-dependent biases. Histograms for a given month were
populated with data from the calendar month of interest and
the surrounding two calendar months. The histograms were
generated by determining which member of the sorted ensem-
ble was nearest to the analyzed state. In the case of ties such
as zero analyzed precipitation and multiple forecast members

with zero, the closest-member rank was randomly assigned
among the ties.

With the lengthier reforecast and precipitation reanalysis
data, it was possible to stratify the closest-member histograms
into a larger number of categories based on the ensemble-
mean amount. This was helpful because the histogram charac-
teristics varied significantly with ensemble-mean amount
(Fig. 7). Closest-member histograms were populated for cate-
gories 1) 0:01mm, x̃

f
# 0:1mm, 2) 0:01mm, x̃

f
# 0:5mm,

3) 0:5 mm, x̃
f
# 2:0 mm, 4) 2 mm, x̃

f
# 6 mm, 5) 6 mm

, x̃
f
# 15mm, and 6) 15 mm, x̃

f
, where x̃

f
denotes the

quantile-mapped ensemble mean.
The sample closest-member histograms in Fig. 7 had a U

shape indicating a lack of spread and with other shape charac-
teristics that vary with ensemble-mean amount, much akin to
rank histograms (Hamill 2001); the U shape is somewhat dis-
guised by the use of a logarithmic y axis. For larger ensemble-
mean amounts such as Fig. 7f, there was an oscillation in the
histograms at higher sorted ranks, with peaks at fractional
rank 28/31, 29/31, 30/31, and 31/31 and relative minima in be-
tween. Likely this was caused by an interaction between the
use of a stencil of surrounding grid points to enlarge the origi-
nal ensemble and the characteristic of precipitation forecast
features to be larger in scale than the span of the stencil.
If, say, 30 of the 31 original members were forecasting a
quantile-mapped mean at the center point of .15 mm, but
the remaining member forecast was 5 mm at the stencil center
point, it is unlikely that any other quantile-mapped member
in the 5 3 5 stencil would have a forecast . 15 mm, thereby
contributing to closest-member histogram ranks between
30/31 and 31/31. The oscillations are thus a real characteristic
of the use of a stencil in the postprocessing algorithm and not

FIG. 6. Illustration of the stencil of surrounding grid points used to enlarge quantile mapping
ensemble size, and how this varies as a function of forecast lead time. Quantile-mapped values
are sought at the analysis point (red). Percentiles of the forecast are determined at each of the
25 points in the stencil and quantile mapped to the analysis point. Stencil for the (a) 24- and
(b) 240-h forecast.
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a coding bug. The online supplemental material for this article
provides closest-member histograms for many more lead times
and months of the year for comparison.

While Fig. 7 does not show confidence intervals, these were
computed using statistics from a leave-one-day-out cross vali-
dation. For each day of the month in question across the two
years in the retro period, a cross-validated estimate of the
closest-member histogram was generated without data from
the day in question. The 5th and 95th percentiles of the cross
validated were very small for this lead time, so small they
would not show distinctly on the plot, and hence they were
omitted. They are shown in plots in the online appendix,
where at long leads the confidence intervals are larger. In gen-
eral, the small confidence intervals suggest that a formal
separation of training and validation data would have little
practical effect on the result.

For many lead times past the first several days of the fore-
cast, there were not always stable closest-member histogram
statistics for ensemble means above 15 mm. This was a limita-
tion of the algorithm, though the verification results presented
in Part II show that the technique still improves probability
forecasts of exceeding 25 mm. We have also explored simpler
alternative fits for these high precipitation amounts using beta
distributions and have informally found improved precipita-
tion forecasts of extreme amounts using the closest-member

histograms derived from fitted beta distributions. However,
we determined it was beyond the reasonable scope of this arti-
cle to present these results, so they are saved for possible
future research.

e. Objective dressing statistics

Equation (1) showed that the postprocessing algorithm de-
scribed here provides the final probabilistic forecast based on
a sum of weighted probability distributions that are a function
of the quantile-mapped forecast amounts. This is known as
a “dressed” ensemble. Roulston and Smith (2003; see their
appendix) provide a theoretical justification for including a
dressing of exchangeable ensemble members as part of a post-
processing algorithm. Dressing statistics are ideally developed
from objective statistics comparing the closest member to the
analyzed value.

The proposed algorithm here expands upon the dressing
concept by objectively developing dressing statistics for
sorted, quantile-mapped members, with separately estimated
dressing statistics for the lowest, intermediate, and highest
sorted quantile-mapped members. Intermediate members are
all those except the lowest and highest sorted members. The
assumption underlying this step is that location-dependent
amount biases have already been ameliorated with quantile

FIG. 7. Sample closest-member histograms for 6-h accumulated precipitation ending at172-h lead time accumulated over retro forecast
samples in December–January–February. Histograms are presented for different categories of quantile-mapped ensemble-mean precipita-
tion amount. Closest-member histograms for ensemble-mean precipitation, 0.01 mm are not shown (and assumed uniform).
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mapping, and the dressing statistics can be calculated based
on data pooled across the CONUS.

Dressing statistics for a given lead time were calculated by
comparing a set of sorted, quantile-mapped members to the
contemporaneous analyzed values across the CONUS grid.
Ensemble forecasts from the retro forecast period were used.
Using pooled domain statistics gathered by comparing the an-
alyzed data to quantile-mapped, 25-fold enlarged retro fore-
casts at each forecast lead time, we determined an empirical
mean and standard deviation of the dressing statistics for low-
est, intermediate, and highest-ranked ensemble members,
binned into categories based on the closest-member precipita-
tion amount.

Suppose the lowest sorted quantile-mapped member was
closest to the analysis for that point; the precipitation amount
was then noted. Over many samples where the lowest sorted
member was the closest, statistics were thus gathered for esti-
mating the dressing mean and standard deviation as a func-
tion of difference between the quantile-mapped precipitation
amount. Similarly, statistics were populated for samples where
the intermediate-ranked sorted members were the closest and
where the highest sorted member was closest. Figure 8 illustrates
these dressing statistics for January and the 172-h lead time.
These were actually populated with December 2017, January–
February 2018, December 2018, and January–February 2019
31-member (325) retro forecast data.

Of particular interest are the dressing statistics of the lowest
and highest sorted ensemble members. It is possible that the
mean of the distribution of analyzed points when the lowest
member was closest to the analysis would not be centered on
the analyzed value but instead be somewhat lower. Similarly,
it is possible that the distribution of analyzed points when the
largest member was closest was higher than even that largest
member.

Consider first the dressing statistics for the subset of sam-
ples where the lowest sorted forecast member was determined
to be the closest to the analyzed value. The mean of the ana-
lyzed values given lowest member was closest was indeed on
average smaller than the value of that lowest sorted quantile-
mapped ensemble member itself. As the raw data were noisy,
we then fitted a weighted-least squares regression to the data
to predict a simpler linear model for dressed mean and stan-
dard deviation as a function of closest-member precipitation
amount. The weighted-least squares regression line for the
mean shows that the regressed mean for the dressing distribu-
tion of the lowest sorted member is roughly 75% of the mag-
nitude of the quantile mapped value. For example, when the
quantile mapped value of the lowest member is 4 mm, the

FIG. 8. Empirical and fitted objective dressing statistics for January
forecasts and the 172-h lead time using quantile-mapped retro fore-
cast data from December–January–February, classified by (a) lowest
sorted member, (b) intermediate-ranked member, and (c) highest

$−
sorted member. Solid lines red (dressing mean) and blue (stan-
dard deviation) are empirical dressing statistics as a function of
the best-member precipitation amount. Dashed lines are the
fitted weighted least squares regression relationship to the em-
pirical data. The diagonal light-gray line is the 1-to-1 line for
comparison. The heavier, darker gray line is the sample size per
bin, with bins every 0.2 mm.
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FIG. 9. Retro GEFSv12 precipitation forecast and analyzed data. The GEFSv12 forecasts were initialized at
0000 UTC 4 Mar 2019, and 154- to 160-h forecasts are shown, aligning with the analyzed precipitation during
the verification period, 0600–1200 UTC 6 Mar 2019. (a) Raw ensemble probability of exceeding 25 mm 6 h21.
The black contour is the analyzed 25-mm contour, reproduced from (f). (b) As in (a), but for quantile-mapped
forecasts. (c) As in (b), but with closest-member histogram weighting included. (d) As in (c), but with dressing
included. (e) Raw ensemble-mean precipitation analysis. (f) Combined CCPA/MSWEP precipitation analysis.
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mean of the dressed distribution is close to 3 mm. Similarly, in
Fig. 8c where the largest sorted member was determined to
be the best member, the mean of the dressing distribution was
larger than that largest member. For example, suppose the
highest sorted member of the ensemble was 15 mm. The fitted
dressing relationship for this member indicates the mean of
the dressed distribution should be closer to 20 mm.

Taken together, the dressing of these two outlying sorted
members together with closest-member histogram weighting
slightly increased the spread of the predictive distribution,
ameliorating ensemble overconfidence, as will be shown in
Part II.

When the closest member was an intermediate-ranked
member (Fig. 8b), which is any member other than largest or
smallest, the objective dressing statistics predicted a mean
nearly centered on the quantile-mapped amount, perhaps 1%
larger. In these cases, this best member was likely closely
bracketed by other forecast members with nearly similar
amounts, and hence the predicted mean of the dressing distri-
bution for that selected best member is very close to the
quantile-mapped amount itself, and the dressing distribution
has a small standard deviation. If one examines Fig. 8b
closely, the mean of the dressed distribution is slightly larger
than predicted. While not confirmed, we strongly suspect that
this is because of the right-skewed nature of precipitation and
even precipitation dressing statistics. It might be slightly pref-
erable to fit, say, a gamma distribution rather than Gaussian.
This was not attempted here.

4. A sample forecast

Figure 9 provides an example forecast and the impact
of calibration for an atmospheric river landfall in southern
California in March 2019. The multipanel figure shows raw,
quantile mapped (QM), quantile-mapped and closest-histogram
weighted (QM, W), and quantile-mapped, weighted, and
dressed (QM, W, D) forecast probabilities for 25 mm 6 h21.
While the forecasts were not improved in the maxima over the
southern Sierra Nevada range, the coastal maximum east of
Santa Barbara, California, is enhanced up through the quantile
mapping; apparently local accentuation of precipitation is
common along the coast. The probabilities were also slightly
increased with closest-member histogram weighting along the
coast, but little change is visible as a result of the last step,
dressing.

5. Discussion and conclusions

This article describes adaptations to previously described
NBM precipitation postprocessing methods that are intended
to transfer to operational use in the National Weather Service
under its National Blend of Models program. The intent is to
provide GEFSv12 probability forecasts with more appropriate
spatial detail, reduced error, and improved reliability, forecasts
that improve enough to lessen the necessity of forecasters to
make manual modifications to the objectively generated guid-
ance. The second part of this series of articles, Part II, pro-
vides results that will show that these objectives were mostly

accomplished, providing comprehensive verification and more
case studies.
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