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[A] Abstract 

There is limited information about Atlantic Sturgeon Acipenser oxyrinchus oxyrinchus spawning 

behavior despite over 100 years of commercial exploitation for their eggs. Spawning return 

intervals for males and females have been estimated in the most general of time spans while 

researchers only established in the last 25 years that sturgeon eggs and larvae are fresh water 

obligates, dispelling the notion that spawning occurred in estuaries. This study analyzes capture 

data from 2013 to 2019 to estimate Atlantic sturgeon spawning return intervals to the York River 

system, a tributary to the Chesapeake Bay in Virginia. Then, using female capture information, 

analyzes the abiotic influences that appear to drive egg deposition. Both males and females 

return to spawn at more frequent intervals than was reported in the literature with males 

returning once every 1.13 years and females returning once every 2.19 years. Three females were 

26 documented returning to spawn in consecutive years; one of them returning five out of six years. 
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27 All females captured on the spawning grounds were gravid with eggs at stage 5 or further 

28 progressed. In all years, 105 fall adult females were caught; 73 were stage 5, 26 stage 6, and 6 

29 stage 7. Of the 26 stage 6 females, 13 were actively releasing eggs when captured. Egg 

deposition is correlated with photoperiod, water temperature, and a drop in barometric pressure 
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in the 24 hours prior to capture. Ten of 13 females releasing eggs were caught during day lengths 

within 20 minutes of the autumn equinox. Females releasing eggs were only captured at water 

temperatures between 21.5 ℃ and 25.1 ℃. This information should provide the foundation of 

predictive models that allow researchers and managers to understand how these endangered 

species are likely to respond to climate change. 

[A] Introduction 

Atlantic Sturgeon Acipenser oxyrinchus oxyrinchus are long-lived, late maturing, iteroparous, 

anadromous fish (Smith 1985; Bemis and Kynard 1997; Dadswell 2006; NMFS 2007; Peterson 

et al. 2008). Sexual maturity varies latitudinally with males maturing slightly younger than 

females in all systems and fish in southern systems maturing as early as 4 years, while taking as 

long as 27 years in northern systems (Scott and Crossman 1973; Peterson et al. 2008). Sexual 

maturity appears more size-dependent than age-dependent (Caron et al. 2002). Spawning 

locations must be sufficiently far above the saltwater interface to allow larvae to drift 

downstream while remaining in freshwater (Bain1997; Markin 2017). 

The interval between spawning events has been reported broadly to span as many as five years 

with females having more non-spawning years than males (Smith 1985; Bain 1997; Caron et al. 

2002; Peterson et al. 2008; Dadswell et al. 2017; Taylor and Litvak 2017). Within these broad 

ranges, northern populations skip spawning more frequently than southern populations (Hilton et 

al. 2016). Managers may interpret all upstream migrations as being motivated by spawning, 

however sub-adults will also move into freshwater reaches for obviously non-sexual reasons 

(Hager 2016). ASMFC (2017) and Kahn et al. (2019) have proposed metrics for confirming 

54 spawning sturgeon populations. Van Eenennaam and Doroshov (1998) and Collins et al. (2000) 

provide detailed descriptions of the female egg maturation process, where some egg stages can 

56 be used to confirm spawning in that system. 
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Atlantic Sturgeon spawn in deep river sections (> 7.6 m; Bain 1997; Caron et al. 2002), often in 

remote upriver regions, making it difficult to know when and where spawning is occurring or if 

it is occurring at all. Because of this, NMFS (2007) suspects Atlantic Sturgeon historically 
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spawned in 35 major rivers. Today it is estimated that between 19 and 27 river systems still 

support spawning (Hilton et al. 2016; ASMFC 2017). Much of what has been published on 

Atlantic Sturgeon reproductive behavior was derived from fisheries dependent data at a time 

when sturgeon were thought to reproduce in estuaries (Dovel and Berggren 1983; Smith et al. 

1984). We now know sturgeon in estuaries are a composition of mixed populations (Waldman et 

al. 1996; Wirgin et al. 2015), confounding previous conclusions about spawning behavior or 

abundance (Smith 1985; Secor 2002; Kahnle et al. 2007). 

Relying on fisheries dependent data, all Atlantic Sturgeon were previously believed to spawn in 

the spring (Smith 1985). As fisheries independent data has been collected, Atlantic Sturgeon 

spawning behaviors appear highly varied, with a number of different reproductive strategies 

employed along the Atlantic Coast. Recent research has documented fall spawning from Georgia 

to Virginia (Collins et al. 2000; Balazik et al. 2012; Hager et al. 2014; Smith et al. 2015; Ingram 

and Peterson 2016). Spring spawning occurs north of the Chesapeake Bay (Bain 1997; Hatin et 

al. 2002; Dadswell et al. 2017, Taylor and Litvak 2017). Dual spawning has been confirmed in 

the Edisto River in South Carolina (Collins et al. 2000). More recently, it was suggested that all 

rivers supported dual spawning (Balazik and Musick 2015), which was not ultimately supported 

with data (Kahn et al. 2019) but it is possible, yet still unconfirmed, that dual spawning takes 

place in the James River, Virginia, the southernmost tributary of the Chesapeake Bay (Balazik 

and Musick 2015). 

Atlantic sturgeon spawning is generally discussed in a broad range from 13 ℃ to 26 ℃ that 

could support spawning from Canada to Georgia (Smith 1985; Kahnle et al. 1998; Peterson et al. 

2000; Caron et al. 2002; Hatin et al. 2007; Wippelhauser et al. 2017). In some rivers, spawning 

temperatures have been produced. Spawning typically occurs between 18 ℃ and 20 ℃ in the St. 

John (Taylor and Litvak 2017; Mitchill et al. 2020). Larvae were captured in the Kennebec River 

when water temperatures were between 23 ℃ and 24 ℃ (Wippelhauser et al. 2017). Peak 
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spawning occurs in the Hudson River when temperatures are between 13 ℃ and 18 ℃ (Kahnle 

et al. 1998). Post-spawn females were documented in the York and James Rivers between 24 ℃ 

and 25 ℃ (Balazik et al. 2012; Hager et al. 2014). Back-calculated spawning temperatures 

derived from captured larvae in the Roanoke River suggest spawning occurs between 24 ℃ and 
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25 ℃ (Smith et al. 2015). The Edisto River supports spawning in the spring and fall with 

documented spawning temperatures between 13 ℃ and 14 ℃ in March and 17 ℃ to 18 ℃ in 

September and October (Collins et al. 2000). 

This study used seasonal sampling to determine when spawning occurred and telemetry 

detections to address Atlantic Sturgeon spawning return intervals. We were able to combine 

sexual stage of telemetered males and females with tracking data to conclude spawning return 

intervals. Opportunistic captures of endangered adult Atlantic sturgeon during the spawning 

season were also correlated with a number of abiotic conditions to infer the factors that induce 

spawning of females. 

[A] Methods 

[C] Study area. – The York River, Virginia, is located along the western edge of the Chesapeake 

Bay, north of the James River, south of the Rappahannock River (Figure 1). The York River is 

formed by the confluence of the Pamunkey River, 150 km long, and the Mattaponi River, 166 

km long. The York River is 55 km long and ranges from oligohaline at the confluence of its two 

main tributaries in West Point, Virginia, to polyhaline at its mouth just east of Gloucester Point, 

Virginia. Atlantic Sturgeon have been confirmed spawning in the Pamunkey River (Hager et al. 

2014) and young of year sturgeon have been incidentally captured in the lower Mattaponi River 

where it meets the Pamunkey River (Tuckey and Fabrizio 2012), however the confluence is low 

salinity and allows movement of young of year between the two. The York River has no 

freshwater reaches and does not support spawning of Atlantic Sturgeon. Though most of the 

length of both the Mattaponi and Pamunkey Rivers are spring-fed and tidal freshwater, their 

lower reaches are oligohaline. 
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[C] Collection methods. – Sampling occurred at river kilometer 74 from late July through mid-

October each year between 2013 and 2019 (see Kahn et al. 2019). Atlantic Sturgeon sampling 

was conducted in the spring and fall but the York River system only supports fall spawning 

(Kahn et al. 2019). Gill nets were custom made, ranging in size from 23 to 36 cm stretch mesh, 
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91 m long but anchored on each bank, sized to extend from surface to river bottom, and set three 

in sequence in a 0.35 km section of river. Because sturgeon are endangered, many were cut out 

of the nets resulting in many nets used over the seven seasons; the shortest was 6.5 m tall, fished 

in 4.9 m of water and the tallest was 7.3 m tall, fished in 6.7 m of water. The three nets were 

always different mesh sizes to have an equal likelihood of catching adult sturgeon of all sizes 

with the largest mesh downstream and smallest mesh in the middle. Temperatures from late July 

to October ranged from 30.3 to 16.7 ℃, but sampling was restricted to times when temperatures 

were below 28 ℃ (Kahn and Mohead 2010). 

[C] Sex determination and staging. – Individuals were sexed during surgery or by applying 

pressure to the ventral surface moving from the anterior to posterior ends, ending at the vent. 

Van Eenennaam and Doroshov (1998) and Collins et al. (2000) produced clear descriptions of 

sexual stages of males and females. Males were non-invasively sexed as “milting” or remained 

sexually unidentified. Female egg stage was defined by Van Eenennaam and Doroshov (1998) 

and the stages observed during this study are: 

Stage 5: migratory nucleus. The ovarian folds are filled with fully grown 

(diameter 2.61 ± 0.12 mm), darkly pigmented oocytes possessing a thick three-

layered envelope with micropyles. The germinal vesicle is displaced to the animal 

pole and the oocyte has a distinct polarized structure, with a higher concentration 

of large yolk platelets and oil droplets in the vegetal hemisphere. 

Stage 6: oocyte maturation. Ovulated (or approaching ovulation) oocytes have 

undergone germinal vesicle breakdown and nuclear material is mixed with the 

cytoplasm. 

Stage 7: postovulatory. The ovaries contain numerous empty postovulatory 

follicles. 
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Only these final three stages are explicitly defined or referenced because this study is specific to 

a freshwater location approximately 39 km upstream of the saltwater interface during the 

spawning season; no earlier egg stages were observed. Stage 6 is discussed later and specifically 

identified either as above or as two phases: eggs released from the ovaries and loose in the body 
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but not being released and eggs actively being released. Most commonly, gravid females did not 

produce gametes with pressure but were confirmed female when transmitters were implanted and 

egg samples were taken at that time. One or two eggs were removed from each female for 

staging. Female reproductive tissue was not biopsied, so when no eggs were found, either 

because the fish was spent or male, sex remained unidentified. Sex was occasionally confirmed 

upon recapture. 

[C] Calculation of spawning return frequency and detections. – To calculate return rates of 

males and females between 2014 and 2019, we relied on telemetry data. Between 2013 and 2017, 

54 acoustic transmitters (Vemco V16P-4H, V16P-6x, or V16-6x) were implanted in sturgeon. 

Incisions were 2 to 4 cm in length, made most often between the 3rd and 4th ventral scutes 

anterior to the anal fins, into which a transmitter was inserted. The incisions were closed using 

Vicryl® dissolvable sutures. After surgery was complete, fish were released approximately 1.5 

km from the capture site to avoid multiple captures in one day. If a fish was captured twice in the 

same day (n = 47), nets were removed for the rest of the day to avoid harassing fish attempting to 

use the sampling location. The deployed transmitters were programmed to transmit a 69 kilohertz 

(kHz) signal every 70 to 150 seconds and had a life span of at least 6 years. When tags ceased 

being detected, they were no longer used to estimate return frequencies. 

The implanted transmitters were passively tracked within the freshwater and saline reaches of the 

York River system year-round from 2014 through 2019. Figure 1 shows passive Vemco VR2W-

69 kHz receiver stations within the York River and the Chesapeake Bay. Seventy receivers 

maintained by Chesapeake Scientific and the US Department of the Navy remained in place for 

the duration of this study. From July to November, additional receivers were placed in the 

Mattaponi and Pamunkey rivers. Because of the narrow width (most locations < 25 m) of the 

Pamunkey and Mattaponi rivers, the receivers acted as gates where every fish that passed a 

receiver would be within a detectable range, verified through range studies presented by Hager 
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(2016). Receivers were placed near the surface, faced downward, and were serviced and 

181 downloaded monthly. 
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Atlantic Sturgeon were determined to be on a spawning run if they moved at least 20 km upriver 
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of the saltwater interface (Van Eenennaam et al. 1996; Kynard and Horgan 2002) and spent at 

least 17 consecutive days in freshwater based on ad-hoc observations. Relying on the detections 

of individuals returning to spawning grounds each year, we used a ratio estimator:

 is the mean proportion of telemetered fish (of each sex separately) to return over the 

duration of the estimate, while Treturn and T(t) represent the total number of individuals of each sex 

that returned to spawn in each year and the total number of individuals of each sex that could 

have returned to spawn in those years, respectively. When transmitters were lost or failed, they 

were removed from this estimate following their final detection. Likewise, fish that were 

detected in another river system were not counted in Treturn and T(t) for that year. The 

Vysochanskij-Petunin inequality (Vysochanskij and Petunin 1989; Andrushkiw et al. 2005) was 

used to calculate 95% confidence limits (CLs) of the return intervals. 

[C] Calculation of factors contributing to egg deposition. – The correlation between abiotic 

factors and female reproductive stage were made qualitatively. For this analysis, we recorded the 

date of capture, photoperiod (sunrise to sunset), water temperature at the sampling location, egg 

stage of females captured, fork length (FL), flow rate, 24 hour change in flow rate, 24 hour 

proportional change in flow rate, barometric pressure, and 24, 48, 72, and 96 hour temperature 

and pressure changes before capture. To understand the factors associated with spawning, we 

primarily considered stage 6 females, with a real focus on those females releasing eggs at the 

time of capture. 

 ������� �� =  T(t) 

where �r 

197 

198 

206 

207 

208 When possible, abiotic conditions were collected onsite, but when measurements could not be 

209 made at the sampling location, we relied on the nearest location. All captured sturgeon were 
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measured to the nearest millimeter FL. Water temperatures were recorded using a HOBO Onset 

U12-015 temperature logger tethered to the river bank and suspended at 1.5 m depth at low tide. 

While temperatures were recorded every 3 hours, we relied on the midday temperature 

measurement for that day. Sunrise and sunset times corresponding to each sampling date were 
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downloaded from the website “timeanddate.com” using the location: Pamunkey Indian 

Reservation (approximately 17 km east). Flow data was obtained from the U.S. Geological 

Survey gage 01673000, from the Pamunkey River near Hanover, Virginia (approximately 20 km 

west). Barometric pressure was obtained from the National Oceanic and Atmospheric 

Administration, National Centers for Environmental Information, from Doswell, Virginia 

(approximately 24 km west). 

[A] Results 

Between 2013 and 2019, 283 male and 105 female Atlantic sturgeon were captured during the 

fall spawning season; many of those captured multiple times during the study. Of the 105 adult 

females, 73 were stage 5, 26 stage 6, and 6 stage 7 (Figure 2). Of the stage 6 females, 13 had 

released eggs into their abdominal cavities without physically expressing eggs, while 13 were 

captured releasing eggs; in the act of spawning. All six stage 7 females expressed eggs with 

pressure, but in 66% of those cases, the eggs were grey and non-viable. 

Spawning frequency was estimated using telemetry tagged males (n = 28) and females (n = 26). 

When calculating spawning return interval in the season following transmitter implantation, 

males returned 115 times out of a possible 130 spawning events between 2013 through 2019 

(Table 1). Females returned 36 times of a possible 79 spawning events. The mean spawning 

return rate for males was every 1.13 years (95% CL, 1.12 – 1.14) with most males returning 

every year and only one male skipping two consecutive years. Females returned on average 

every 2.19 years (95% CL, 1.92 – 2.56) with most spawning every other year, occasionally in 

consecutive years, and only one female skipped three consecutive years (Table 1). 

Actively spawning females (n = 13) provide the greatest insight into the conditions that result in 

spawning at the sampling site. There was no consistent correlation between fish length, time of 
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capture, or the tidal conditions and capture during egg release (Table 2). Actively spawning 

females were always captured near the lead line of the gill net. Two females releasing eggs were 

captured at the downstream end of the deepest pool in the area (6.5 m) and most spawning fish 

were captured in water over 3 m measured from the location captured and not the deepest 
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location sampled by the net that captured them. 

Three of the abiotic drivers considered were correlated with female egg release. First, 

temperature appears to be an important influence on egg release. No females were captured 

releasing eggs outside of the thermal window ranging from 21.5 ℃ to 25.1 ℃ (Table 2). 

Photoperiod is also closely correlated with female egg stage. Ten of the 13 (77%) females 

releasing eggs were captured within 30 minutes of the autumn equinox. The majority of stage 6 

and 7 females (13 of 19, 68.4%) were captured when day length was between 12 hours and 12 

hours, 20 minutes with a peak when sunrise was 06:56 and sunset was 19:00. Finally, for 70% 

(22 of 32) of the females in stage 6 or 7, 77% (10 of 13) of females releasing eggs, and 79% (15 

of 19) of females releasing eggs or spent, the barometric pressure had dropped in the 24 hours 

prior to their capture by an average of -1.422, -2.133, and -2.404 millibars, respectively. There 

was no apparent correlation with female egg stage and fork length (FL), flow rate, 24-hour 

change in flow rate, 24-hour proportional change in flow rate, barometric pressure, and any other 

temporal changes in temperature or barometric pressure. 

[A] Discussion 

Atlantic Sturgeon spawning in the York River occurs in the fall as water temperatures decline 

from summer highs through optimal bioenergetic temperatures (Niklitschek 2001). Sturgeon 

move upriver between July and August and there is a closed spawning population through most 

of September (Kahn et al. 2019). The females in this study were captured throughout the fall 

spawning period and every captured female was gravid with eggs staged as 5, 6, or 7. Similar 

developmental distribution was reported in the Hudson River with females being stage 5 or later 

when upriver (Van Eenennaam et al. 1996). 
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Analysis of telemetry data from 2014 through 2019 reveals a narrower spawning return interval 

with more frequent spawning events than reported by others in more northern systems (Bain 

1997; Billard and Lecointre 2001; Dadswell 2006). York River males return to spawn every one 

to three years, with only one fish ever skipping two seasons, while females return to spawn every 
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one to four years, occasionally returning in consecutive years. In this study, the variables of 

Treturn and T(t) were calculated from the year following transmitter implantation. Because 

transmitters were implanted in Atlantic sturgeon while they were on spawning runs, those values 

could have been calculated to include the year of implantation. As a result, the reported 

spawning return frequencies may slightly under-estimate the true rate. Female return rates, who 

usually skip a year between spawning events, are most likely under-estimated because our 

calculations begin counting their possible returns in the year we would expect them to remain at 

sea. In one exceptional instance, female 14-034 was present on spawning grounds during five out 

of six possible spawning events. She was captured on two of those returns and was stage 5 each 

time. Female 14-054 was also captured in 2014, 2015, and 2017 in stage 5 each year. To our 

knowledge, these are the first documented Atlantic sturgeon females confirmed to be in gravid 

condition on spawning grounds in consecutive years. In captive White Sturgeon A. 

transmontanus, it is possible for a female with stage 5 eggs to retain those eggs until the 

following spawning season (Joel Van Eenennaam, UC Davis, personal communication), so this 

may not be confirmation of a female spawning in consecutive years. 

Female spawning condition changes relatively rapidly in the Pamunkey River. In 2019, female 

17-041 was captured on September 18 and 23. On September 18, her eggs were stage 5 and only 

5 days later she had lost over 27.2 kg of eggs, continued to express eggs with pressure, and still 

appeared roughly ¼ full (Table 2). There is also a close temporal relationship between females in 

stage 6 and stage 7, often caught in the same year at roughly the same time. For this reason, it is 

interesting that 4 of the 6 stage 7 females had grey non-viable eggs. This suggests the transition 

from viable, spawning eggs to non-viable post-spawn eggs may be very rapid, in some cases 

occurring while the female is still on the spawning grounds and prior to outmigration. 

Spawning events are poorly documented for Atlantic sturgeon; typically limited to evidence of a 

single spawning event (Collins et al. 2000; Smith et al. 2015). During this study, it appears 
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temperature, photoperiod, and a drop in barometric pressure in the 24 hours prior to spawning 

are important drivers for egg release. Nineteen adult females were captured either releasing eggs 

or spent, of which 13 were captured when photoperiod was between 12.3 and 12.0 hours. 

Research on other sturgeons has shown photoperiod is also the primary driver for spawning in 
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different systems and at different times of years (Papoulias et al. 2011; Kieffer and Kynard 

2012). Likewise, spawning for many other teleost fish has been linked to photoperiod (Norberg 

et al. 2004; Migaud et al. 2006), and of potential importance for sturgeon caviar production, 

artificially manipulating photoperiod has been shown to increase reproductive rates (Whitehead 

et al. 1978; Carrillo et al. 1989; Campos-Mendoza et al. 2004). 

Water temperature during the fall spawning season (16.7 ℃ to 30 ℃) is closely correlated with 

photoperiod but varies considerably between years. The 32 individuals who were stage 6 or 7 in 

this study were all captured within the same 0.35 kilometer stretch of river at temperatures 

between 20.6 ºC and 25.5 ℃ (Figure 2). Twenty-six of those were caught in water cooler than 25 

℃, two actively releasing eggs at 25.1 ℃, and four with eggs released from the ovarian folds but 

not being expressed at temperatures ranging from 25.1 to 25.5 ℃. The 13 females captured while 

actively releasing eggs were at temperatures between 21.5 ℃ and 25.1 ℃ (Table 2). 

Temperatures above 25 ℃ are associated with high sturgeon egg mortality (Chapman and Carr 

1995; Ingram and Peterson 2016). Thermal windows essential for spawning have been observed 

for Shortnose Sturgeon Acipenser brevirostrum as well (Kieffer and Kynard 2012).  

The narrow temperature range when sturgeon were observed spawning correlates with observed 

optimal growth rates for age-1 Hudson River Atlantic Sturgeon (Niklitschek 2001) and may 

provide more insight into the reasons for egg deposition regardless of spring or fall spawning 

(Markin and Secor 2020). Niklitschek (2001) showed an optimal growth combination of 

temperature and dissolved oxygen (DO) for juvenile Atlantic Sturgeon of roughly 18 to 22 ℃ at 

70 to 100 percent DO saturation, which is the typical DO saturation in the Pamunkey River 

during spawning season. The data collected in this system suggest females release their eggs in 

the temperature range between the upper threshold for optimal egg survival (Chapman and Carr 

1995) and upper threshold for optimal juvenile growth (Niklitschek 2001). The drop in 

barometric pressure observed for every group of stage 6 and 7 combinations may indicate timing 
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is also influenced by the onset of fall storms that would cause water temperature to drop. In that 

way, female Atlantic sturgeon may be able to release their eggs near the upper thermal limits for 

eggs and increase the likelihood of high survival. 

A
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th
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r 
M
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s
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t 
Atlantic Sturgeon appear to time their spawning to maximize larval growth through the entire 

range of optimal temperatures. Baird et al. (2019) showed juvenile green sturgeon predation risk 

from Largemouth Bass Micropterus salmoides and Striped Bass Morone saxatilis decreased with 

growth until nearing zero at 200 to 220 mm total length. Both of these predators are present in 

the Pamunkey River and increasing growth rates at the most vulnerable size may increase the 

likelihood of year class success. Further research will be necessary to understand the predation 

threat from these species in this system as well as from the introduction of the invasive Blue 

Catfish Ictalurus furcatus. 

Identifying the parameters that drive spawning in a single system provides managers with 

justification for protective mitigation within that system. Improving our understanding of the 

factors that drive and thus may limit the species reproductive potential provides data crucial to 

conservation of the entire species. The data presented here could be used to develop predictive 

models of Atlantic Sturgeon spawning given shifts in local weather patterns due to climate 

change. Between 2013 and 2019, the preferred photoperiod for spawning did not fluctuate even 

though the proposed thermal window for spawning expanded by approximately 2 days each year, 

thus extending the potential spawning window by two weeks by 2019. Additional research is 

needed to address population variability of Atlantic Sturgeon genetics, bioenergetics, system-

specific life histories, seasonality of egg release, and seasonally available larval food resources to 

understand how the species is likely to respond to climate change. 
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Fish FL Weight Sex 2013 2014 2015 2016 2017 2018 2019 

ID (mm) (Kg) 

14-012 1995 84.7 Female X - - - - -

14-023 1773 56.8 Female X X X 

14-034 1988 83.6 Female X X X X X 

14-037 1813 61.0 Female X X X 

14-054 1790 58.6 Female X X X X 

15-003 1820 61.8 Female X X 

15-010 1935 76.1 Female X X X 

15-011 1899 71.3 Female X X 

15-020 1855 65.8 Female X X 

15-035 1845 64.7 Female X X X 

15-048 2188 119.9 Female X X X 
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526 

527 
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514 Whitehead, C., N. R. Bromage, J. R. M. Forster, and A. J. Matty. 1978. The effects of alterations 

515 in photoperiod on ovarian development and spawning time in the Rainbow Trout. Annales de 

516 Biologie Animale Biochimie Biophysique 18(4):1035-1043. 

523 

524 

529 

530 

Whippelhauser G.S., J. Sulikowski, G.B. Zydlewski, M.A. Altenritter, M. Kieffer, M.T. 
M

a
n

u
s
c
ri
p

t
Kinnison. 2017. Movements of Atlantic sturgeon of the Gulf of Maine inside and outside of 

the geographically defined distinct population segment. Marine and Coastal Fisheries: 

Dynamics, Management, and Ecosystem Science 9:93–107. 

Wirgin, I., M. W. Breece, D. A. Fox, L. Maceda, K. W. Wark, and T. King. 2015. Origin of 

Atlantic Sturgeon collected off the Delaware Coast during spring months. North American 

Journal of Fisheries Management 35(1):20-30. 

Table 1. Telemetered fish identification numbers, sex, and seasons when a spawning run was 

made (X). Lengths and weights are reported from their initial capture. When an individual was 

believed dead, a “-” was used to note that no spawning run could be made and a “†” represents 

evidence of spawning in a different river. Not all rivers have receiver arrays, so it is also possible 

some of these individuals spawned in unmonitored systems without being detected. 
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16-008 1984 83.1 Female X X 

16-009 1873 68.0 Female X X 

16-010 1592 41.1 Female X 

16-013 1867 t 67.3 Female X X 

16-020 
ip

1984 83.1 Female X X 

16-023 2038 91.6 Female X X X 

16-027 r1881 69.0 Female X X 

17-003 

c
1663 46.6 Female X X 

17-011 2065 96.2 Female X X 

17-016 s1978 79.6 Female X X 

17-019 

u

1636 46.6 Female X X 

17-031 1890 70.1 Female X X 

17-033 1738 54.1 Female X X 

17-036 1858 66.2 Female X X 

17-041 

M
a

n

2150 117.3 Female X X 

17-053 2004 86.1 Female X X 

13-002 1652 34.3 Male X X X X X X X 

13-003 1503 30.7 Male X X X X X X X 

13-004 1541 32.5 Male X X X X X X X 

13-005 r 1298 20.8 Male X X X X X X 

13-007 o1490 33.3 Male X X X X X X 

13-009 

h

1382 24.9 Male X X X X X X X 

13-012 1585 37.6 Male X X X X X X 

13-013 1653 37.9 Male X X X X X X X 

13-015 

A
u

t

1548 28.8 Male X X X X X X X 

14-002 1593 34.0 Male X X X X X 

14-004 1489 30.0 Male X X X X X X 

14-007 1502 30.7 Male X X X X X X 

14-008 1514 30.1 Male X X X X X 

14-009 1572 34.0 Male X † † 

14-013 1624 36.6 Male X X X X X X 
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14-015 1533 32.2 Male X X X X 

14-020 1481 30.0 Male X X X X X 

14-024 1499 30.5 Male X X X X X X 

14-026 1709 40.7 Male X X X X X X 

14-028 
t 

1528 28.7 Male X X X X X X 

14-029 1367 24.9 Male X X X X X 

14-031 

pi1540 32.5 Male X X X X - -

14-032 r1666 38.6 Male X X X - -

14-036 1659 38.2 Male X X X X 

14-043 

c

1634 42.9 Male X X X X 

14-050 

u
s1679 39.2 Male X - - - - -

16-039 1647 37.7 Male X X † 

16-042 1452 28.3 Male X X X X 

M
a

n

Table 2. Physical description of females actively releasing eggs (late stage 6) along with relevant 

biotic and abiotic information. 

531 

532 

534 

535 

ID Fork rDate Time Temp Tide Slack Estimated Estimated River 

length (ºC) tide progression depth (m) morphology 

14- 1880 o9/12/14 1415 24.5 Flood 1500 ½ spent 4 to 5 Mainstem, 

033 confluence h with large 

A
u

t creek 

15- 2225 9/22/15 0830 22.7 Flood 1120 Initiating, 6.5 Center 

048 full of eggs river, deep 

hole 

15- 1867 9/30/15 1115 22.8 Ebb 1300 ¾ spent 6.5 Center 

029 river, deep 

hole 
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1921 

t 

9/6/16 1340 23.5 Ebb 1500 ½ spent 4 to 5 Mainstem, 

confluence 

with large 

creek 

16-

010 

1609
ri
p9/6/16 1625 23.5 Flood 1500 ½ spent 3 to 4 Mainstem, 

confluence 

with small 

creek 

14-

037 

1958 

s
c9/22/16 1700 22.8 Slack 1630 Initiating, 

full of eggs 

3 to 4 Straight, 

thalweg 

16-

013 

1915 

n
u

9/29/16 1145 21.5 Flood 1100 ½ to ¾ 

spent 

3 to 4 Mainstem, 

confluence 

with large 

creek 

17-

031 

M
a1930 9/25/17 1140 23.5 Flood 0910 ½ spent 3 to 4 Mainstem, 

confluence 

with large 

creek 

18-

009 

1900 

o
r 9/17/18 1230 25.1 Slack 1200 ½ spent 2 to 3 Beside 

pool, along 

dropoff 

18-

010 

th

2051 9/17/18 1450 25.1 Ebb 1800 ½ spent 2 to 3 North bank 

along 

dropoff 

19-

016 

A
u1833 9/21/19 0900 21.7 Slack 915 ¼ spent 3 Upstream 

of small 

creek 

17-

041 

2200 9/23/19 1125 23.7 Slack 1155 ¾ spent 3 to 4 Mainstem, 

confluence 

with large 

creek 
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Figure 1. The York River and its tributaries the Pamunkey and Mattaponi rivers. Dots along the 

map represent telemetry receivers and the star represents the upstream sampling station where 

females were collected. 
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545 Figure 2. Correlation between females captured each year from 2014 to 2019 and the declining 

546 temperature from summer to fall. The lines at 25℃ and 20℃ depict the temperatures where 

547 spawning appears to be initiated and terminate 
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