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Abstract
Spatio-temporal models are widely applied to standardise research survey data and are increasingly used to generate density

maps and indices from other data sources. We developed a spatio-temporal modelling framework that integrates research
survey data (treated as a “reference dataset”) and other data sources (“non-reference datasets”) while estimating spatially
varying catchability for the non-reference datasets. We demonstrated it using two case studies. The first involved bottom trawl
survey and observer data for spiny dogfish (Squalus acanthias) on the Chatham Rise, New Zealand. The second involved cod
predators as samplers of juvenile snow crab (Chionoecetes opilio) abundance, integrated with industry-cooperative surveys and
a bottom trawl research survey in the eastern Bering Sea. Our integrated models leveraged the strengths of individual data
sources (the quality of the reference dataset and the quantity of non-reference data), while downweighting the influence of
the non-reference datasets via the estimated spatially varying catchabilities. They allowed for the generation of annual density
maps for a longer time-period and for the provision of one single index rather than multiple indices each covering a shorter
time-period.
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Introduction
Resource management requires information about the

dynamics of living marine resources (hereinafter simply
“fishes”) in space and time. Habitat managers typically need
distribution/density maps to designate essential fish habitat
(areas that are essential to fish life history) and design marine
protected areas (Pennino et al. 2016; Grüss et al. 2021a). Fish-
eries managers very often rely on stock assessments, where
population-dynamics models are fitted to multiple sources of
information to evaluate the status of a given fish stock and
deliver management advice (Methot 2009). Indices of relative
abundance or biomass (henceforth simply “indices”) are crit-
ical components of stock assessments, as they determine the
relative abundance trend of the fish stock of interest, thereby
having a substantial impact on predicted stock status and
management recommendations (Hilborn and Walters 1992;
Peterson et al. 2021).

Research surveys, a.k.a. fisheries-independent monitoring
programs, are the preferred data source to produce distri-
bution/density maps and indices (Hilborn and Walters 1992).

In particular, indices are generally considered more reliable
when they are derived from research survey data rather than
from fisheries-dependent data such as commercial catch-per-
unit effort (CPUE) (National Research Council 1998; Maunder
and Punt 2004; Dennis et al. 2015). While research sur-
veys constitute the only source of sampling data for some
non-commercial species, there are many instances where
distribution/density maps and indices can be generated us-
ing other data sources. These other data sources include
fisheries-dependent monitoring programs, such as observer
programs where scientific observers are placed onboard com-
mercial vessels (Scott-Denton et al. 2012; Storr-Paulsen et al.
2012). Other data sources also include more opportunistic
presence-only data coming, inter alia, from citizen science
programs, museum records, and tagging studies (Thorson
et al. 2014; Pirtle et al. 2019). Predators can also be con-
sidered samplers of prey abundance, whereby the stomach
contents of predator species are analysed to produce diet-
based indices for their prey (Ng et al. 2021; Robertson et al.
2022).
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Research surveys typically adopt a stratified sampling de-
sign and a well-defined sampling protocol (in terms of meth-
ods and effort) (Gunderson 1993; National Research Council
2000; Nielsen 2015). These characteristics allow for a sam-
pling process that can be assumed to be constant in space
and time; hence, well-designed research surveys with a con-
sistent sampling protocol can be assumed to have a constant
catchability (i.e., to remove a constant proportion of the stock
of interest by one unit of effort) (Hilborn and Walters 1992;
ICES 2005). With well-designed research surveys with a con-
sistent sampling protocol, the assumption of proportional-
ity between the index derived from sampling data and the
true fish stock size is met such that changes in the index reli-
ably reflect true fish abundance trends (Wilberg et al. 2010).
However, there are multiple instances where the catchability
(a.k.a. detectability) of a given research survey does not re-
main constant over space and(or) time in which case changes
in research survey catch rates likely reflect changes in true
fish abundance that are confounded with changes in catcha-
bility, and this issue then needs to be addressed (Walters and
Maguire 1996; Langseth et al. 2016). Here, we consider three
situations: (Situation #1) the research survey has modified its
sampling design and(or) protocol over time; (Situation #2) the
stock of interest is partly detectable by the gear used in the
research survey and the availability of the fish to the gear
varies over space and time; and (Situation #3) the research
survey area encompasses only a fraction of the spatial distri-
bution area of the stock of interest, and over time, fish move
in and out of the area encompassed by the research survey
(i.e., spatial availability changes among years).

There are many examples of Situation #1 worldwide, where
a given research survey has employed different vessels (e.g., of
different sizes and power; Rademeyer and Butterworth 2013)
or has modified its sampling design and(or) sampling proto-
col over time (Wilberg et al. 2010). To illustrate Situation #2,
we can mention (1) variation in the catchability of the bot-
tom trawl gear with depth as the bottom trawl changes its
shape as more line is let out to reach the bottom, although
noting that warp:depth ratios can be standardised to main-
tain gear parameters (e.g., doorspread and headline height)
within consistent ranges regardless of depth (as is done in
New Zealand research surveys) and (2) vertical availability in
bottom trawl and acoustic research surveys, where the catch-
ability of fishes that exhibit vertical migrations is affected
by their position in the water column at the time and loca-
tion of the bottom trawl or acoustic survey (Godø and We-
spestad 1993; Michalsen et al. 1996; Kotwicki et al. 2018). To
make optimal use of data in Situation #1 (e.g., exploit the
data collected with all research vessels instead of only the
best-performing vessel) and Situation #2 (e.g., exploit bot-
tom trawl and acoustic research survey data), fisheries scien-
tists generally resort to “gear calibration” to account for dif-
ferences in catchability across samples. Gear calibration can
be performed via paired sampling in which samples are col-
lected nearly simultaneously using different vessels, gears, or
vessel–gear combinations to minimise spatio-temporal vari-
ations in catch rates between the vessels, gears, or vessel–
gear combinations (Miller 2013; Rademeyer and Butterworth
2013; Delargy et al. 2022). Paired sampling allows for the

calculation of fishing-power ratios (e.g., a catchability ratio
between a new and old research vessel), which can be em-
ployed to calibrate the catches of the different vessels, gears,
or vessel–gear combinations against one another so that they
are comparable (Cadigan and Dowden 2010; Kotwicki et al.
2017; Delargy et al. 2022). However, paired sampling is costly
and often relies on the availability of several vessels. In ad-
dition, calculating a fishing-power ratio and using this ratio
to adjust data prior to running modelling analyses (e.g., a
stock assessment) fails to propagate uncertainty around the
fishing-power ratio in the modelling analyses. In recognition
of the latter issue, Kotwicki et al. (2018) developed a model
combining bottom trawl and acoustic trawl research sur-
vey data for eastern Bering Sea (EBS) walleye pollock (Gadus
chalcogrammus), which employs environmental data to predict
the vertical overlap between bottom trawl and acoustic trawl.
This model enabled the propagation of uncertainty from the
predicted overlap to an index, and this index derived from
both bottom trawl and acoustic trawl data was more precise
and exhibited less interannual variability than the indices de-
rived from individual data sources (Kotwicki et al. 2018). Yet,
the model of Kotwicki et al. (2018) requires that the bottom
trawl and acoustic trawl data be collected in the same locales
in the same year, thereby limiting the number of years of data
useable in analyses.

Changes in spatial availability among years (Situation #3)
frequently arise when research surveys are restricted geo-
graphically, for logistic or budget reasons, or when research
surveys encompass specific jurisdictional boundaries and the
distribution areas of the fish stocks of interest extend well be-
yond these boundaries. To address Situation #3, many stud-
ies have developed spatio-temporal models integrating the
data collected by different research surveys (e.g., Grüss et
al. 2017, 2018; Dolder et al. 2018; Grüss and Thorson 2019;
Perretti and Thorson 2019; Maureaud et al. 2021; Monnahan
et al. 2021; O’Leary et al. 2022; Thompson et al. 2022). Spatio-
temporal models represent spatial variation (long-term un-
measured spatial variation) and, generally, spatio-temporal
variation (unmeasured spatial variation that varies among
years) at a very fine scale, thereby allowing for the borrow-
ing of information across adjacent locations and time pe-
riods (Shelton et al. 2014; Thorson et al. 2015; Ono et al.
2018). Data integration in spatio-temporal models is possi-
ble via the inclusion of a research survey catchability fac-
tor, which allows for the estimation of fishing-power ratios
relative to a reference survey without the need for expen-
sive paired sampling (Grüss and Thorson 2019; Gonzalez et
al. 2021; Alglave et al. 2022). Through the sharing of infor-
mation across years, locations, and research survey datasets,
integrated spatio-temporal models can increase the precision
of estimates (Grüss and Thorson 2019; Thompson et al. 2022),
better characterise how environmental variables shape spa-
tial fish distributions (Pinto et al. 2019), provide valuable in-
sights into spatial distribution patterns in areas where some
research surveys contribute very little or no observations
(Grüss and Thorson 2019; Thompson et al. 2022), and deliver
indices that cover a longer time period with reduced or better
characterised uncertainty (O’Leary et al. 2020; Monnahan et
al. 2021). Maureaud et al. (2021) and O’Leary et al. (2022) used
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spatio-temporal models integrating research survey bottom
trawl data collected in different jurisdictional areas to track
the density of groundfish species across those jurisdictional
areas. Monnahan et al. (2021) developed a spatio-temporal
model integrating research survey bottom trawl and acous-
tic data for EBS walleye pollock. With this spatio-temporal
model, bottom trawl and acoustic data did not need to cover
exactly the same years, the issue of vertical availability was
handled through the integration of the two data sources, and
the issue of spatial availability was addressed via the estima-
tion of spatial and spatio-temporal variation. Thus, the study
of Monnahan et al. (2021) illustrates how spatio-temporal
models can correct for any of the causes for varying catch-
ability across research survey observations listed at the end
of the second paragraph (i.e., Situations #1, #2, and(or) #3).

Although integrating the data collected by different re-
search surveys is a valuable approach, there are many fish
stocks and regions worldwide for which the information pro-
vided by the available research surveys remain limited. In
those instances, fisheries-dependent monitoring programs
(e.g., observer programs) represent an alternative data source
to research surveys. Compared to research surveys, fisheries-
dependent monitoring programs tend to be less costly, pro-
vide data for a longer time period, are generally conducted
year-round, and very often encompass much broader geo-
graphic areas (Lunn and Dearden 2006; Pennino et al. 2016;
Bourdaud et al. 2017; Zhu et al. 2018; Rufener et al. 2021).
Their sample size is usually much larger than that of re-
search surveys (Pennino et al. 2016; Rufener et al. 2021;
Alglave et al. 2022). However, varying catchability is usu-
ally a much more substantial issue with fisheries-dependent
monitoring programs than with research surveys (Wilberg
et al. 2010). The catchability of fisheries-dependent moni-
toring programs changes considerably over space and time
for multiple complex, and often interacting, reasons. Data
collection in fisheries-dependent monitoring programs is re-
liant on the strategies of fishing vessels, which target spe-
cific species, locations, and time periods (Maunder and Punt
2004; Lynch et al. 2012; Grüss et al. 2018). In addition, fishers
continuously change fishing methods, gears, and behaviours
in response to technological developments, management,
and other constraints (Hilborn and Walters 1992; Robins
et al. 1998; Marchal et al. 2006; van Oostenbrugge et al.
2008; Oliveira et al. 2009; Abbott et al. 2015). Thus, fisheries-
dependent catch rates reflect changes in true fish abundance
that are largely confounded with changes in catchability to
the extent that fisheries-dependent catch rates often stay el-
evated while the fish stock of interest is declining (Harley
et al. 2001; Wilberg et al. 2010). Consequently, variability in
fisheries-dependent catch rates due to variability in catch-
ability needs to be filtered out when predicting densities
via a procedure called “CPUE standardisation” (Beverton and
Holt 1957, Section 12; Maunder and Punt 2004). CPUE stan-
dardisation, in a model designed to produce indices from
fisheries-dependent data, accounts for the technical and be-
havioural characteristics of fishing that influence catchabil-
ity via catchability covariates (Maunder and Punt 2004; Ye and
Dennis 2009). However, the causes of differences in catchabil-
ity among fishing vessels are numerous, complex, and very

often poorly understood such that it is improbable that a
CPUE standardisation model will explicitly account for them
all (Marchal et al. 2007; Wilberg et al. 2010). For this reason,
many CPUE standardisation models include a random vessel
effect that represents myriad latent catchability variables not
explicitly modelled (Thorson and Ward 2014). The random
vessel effect often substitutes any explicit catchability covari-
ates and has revealed to be a critical component for explain-
ing variation in data in CPUE standardisation models fitted to
fisheries-dependent data (Xu et al. 2019; Rufener et al. 2021).
Varying catchability (detectability) is also an important issue
for data other than research survey and fisheries-dependent
monitoring data (opportunistic presence-only data and stom-
ach content data). For example, the catchability of a prey
species by predators as samplers typically depends on the
body length/weight of these predators (Ng et al. 2021).

As stated earlier, the information provided by a com-
bination of different research survey datasets remains in
many instances limited, while individual research surveys
and other individual data sources (e.g., observer programs)
have their strengths and weaknesses. In this context, some
recent spatio-temporal modelling studies have employed a
combination of research survey data and other data sources
to generate distribution/density maps and indices (e.g., Pinto
et al. 2019; Gonzalez et al. 2021; Rufener et al. 2021; Alglave et
al. 2022). For example, the spatio-temporal model of Rufener
et al. (2021) integrated research survey bottom trawl data
with observer data collected onboard commercial bottom
trawlers for western Baltic cod (Gadus morhua). The integrated
model of Rufener et al. (2021) included a monitoring program
catchability effect and a random vessel effect and also origi-
nally accounted for preferential sampling (the likely corre-
lation between sampling locations and fish abundance) for
the observer data. However, Rufener et al. (2021) found that
accounting for preferential sampling when integrating re-
search survey and observer data did not improve the model
nor did it affect parameter estimates, so the preferential sam-
pling component of the model was ultimately dropped.

In this study, we develop and demonstrate a spatio-
temporal modelling framework that integrates research sur-
vey catch rate data with catch rate data from other sources
(observer programs, industry-cooperative surveys, or preda-
tor as samplers). Our modelling framework nominates,
among different data sources, a given research survey as
the reference dataset (i.e., the most reliable dataset) that
is treated as having constant catchability, and the catch-
abilities of the other data sources (non-reference datasets)
are estimated as spatially varying variables. Specifically, our
spatio-temporal modelling framework estimates a fishing-
power ratio for each non-reference dataset relative to the
reference dataset using a spatially varying coefficient model
(Thorson 2019a). By estimating spatially varying catchabil-
ities for non-reference datasets, our modelling framework
properly attributes differences in catch rates among data
sources to differences in catchability rather than differences
in the spatial location of observations (provided that the as-
sumption that the reference dataset has constant catchability
over space is true). In the following, we first detail the devel-
opment, structure, and assumptions of our spatio-temporal
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modelling framework. Then, we demonstrate our modelling
framework using two contrasting case studies. The first case
study involves bottom trawl survey data and data collected
by observers placed onboard commercial bottom trawlers for
spiny dogfish (Squalus acanthias) on the Chatham Rise, New
Zealand. The second case study involves Pacific cod (Gadus
macrocephalus) predators as samplers of juvenile snow crab
(Chionoecetes opilio) abundance, integrated with a small-mesh
industry-cooperative survey and a long-term bottom trawl re-
search survey, in the EBS.

Materials and methods

Development of the integrated spatio-temporal
model

Spatio-temporal models typically express catch rate d at
each site s and in each year t as a function of year intercepts β,
spatial variation (long-term unmeasured spatial variation) ω,
spatio-temporal variation (unmeasured spatial variation that
varies among years) ε, and catchability variables Q (Thorson
2022):

g (d (si, ti )) = β (ti ) + ω (si ) + ε (si, ti ) +
nk∑

k=1

λ (k) Q (i, k)(1)

where i indexes samples; si is the location where sample i was
collected; ti is the year in which sample i was collected; g() is
a link function (e.g., the log-link function); k indexes catcha-
bility covariates; nk is the number of catchability covariates;
and λ (k) is the effect of catchability covariate k. The year in-
tercepts β are treated as fixed effects, while the spatial vari-
ation term ω and the spatio-temporal variation term ε are
both treated as random effects and are both specified as Gaus-
sian Markov random fields following a multivariate normal
(MVN) distribution (see below). Spatio-temporal models can
also include density variables, but we leave this option out
of the present paper for simplicity (see the Discussion sec-
tion). While density covariates can potentially be included in
spatio-temporal models to approximate drivers of the true
underlying fish density, the catchability variables Q (i, k) are
nuisance variables included in spatio-temporal models to fil-
ter out causes of variation in catch rates due to sampling char-
acteristics (Grüss et al. 2019; Ducharme-Barth et al. 2022; Hsu
et al. 2022).

When fitting spatio-temporal models to multiple data
sources (integrated data), analysts typically include an addi-
tional catchability variable M in the model, which specifies
the effect of individual data sources on catch rates to ac-
knowledge catchability differences among the different data
sources (Grüss et al. 2017, 2018; Gonzalez et al. 2021; Rufener
et al. 2021):

g (d (si, ti )) = β (ti ) + ω (si ) + ε (si, ti ) +
nm∑

m=1

δ (m) M (i, m)

+
nk∑

k=1

λ (k) Q (i, k)

(2)

where m indexes data sources; nm is the number of
data sources considered in the spatio-temporal model;

∑nm
m=1 δ (m) M (i, m) is the effect of data sources on expected

catch rates; the design matrix M (i, m) is 1 for the data source
associated with sample i and 0 otherwise; and the data source
effect δ (m) is set up so that δ (m) = 0 for a “reference dataset”,
where this constraint is imposed for the identifiability of the
year intercepts. In this formulation, the effect of data sources
on expected catch rates is treated as a catchability factor,
which analysts will prefer to treat as a fixed effect when work-
ing with several research surveys to avoid the shrinking of
model predictions towards a mean (Grüss and Thorson 2019).

With eq. 2, the analysts need to specify a reference dataset.
When the data sources available include only one research
survey, the survey should be the reference dataset as it is the
most reliable dataset. When working with several research
surveys, it is most appropriate to define the research sur-
vey with the largest sample size as the reference dataset, un-
less that particular survey has gone through more changes
in sampling design and(or) protocol over time than the other
surveys available (Grüss and Thorson 2019; Alglave et al.
2022). Next, the data sources other than the reference dataset
are nominated as the “non-reference datasets”. Because the
data source effect δ (m) is set to 0 for the reference dataset,
it then follows that the specified effect of data sources on
expected catch rates enables the estimation of fishing-power
ratios relative to the reference dataset for the non-reference
datasets within the spatio-temporal model (Monnahan et
al. 2021; O’Leary et al. 2022). This property of the spatio-
temporal model is valuable as it relieves the analysts from
relying on paired sampling experiments, which are expen-
sive and limit the number of years of data useable in analy-
ses. Thus, integrated modelling with spatio-temporal models
can allow for “opportunistic paired sampling”.

The novelty of the present study consists of specifying
the catchability variable M not as a factor that is constant
over space as was the case in previous spatio-temporal mod-
elling studies (e.g., Grüss et al. 2017, 2018; Grüss and Thorson
2019; Maureaud et al. 2021; O’Leary et al. 2022; Thompson et
al. 2022) but rather as a spatially varying term. We achieve
this model feature by employing spatially varying coefficients
(SVCs; Thorson 2019a). Previously, SVCs have been used to in-
corporate spatial variation in the response to density covari-
ates in spatio-temporal models (e.g., Thorson 2019a; Grüss et
al. 2021b; Han et al. 2021; Ducharme-Barth et al. 2022). In
that setting, density variables were specified to have a zero-
centred, spatially varying random effect on fish catch rates,
via a Gaussian Markov random field following an MVN distri-
bution with correlation based on the distance between loca-
tions (Thorson 2019a). In this study, we introduce spatial vari-
ation in response to the catchability of non-reference datasets
in integrated spatio-temporal models. Thus, with the substi-
tution of the data source catchability factor with SVCs ex-
pressing spatially varying catchability for the non-reference
datasets, eq. 2 becomes

g (d (si, ti )) = β (ti ) + ω (si ) + ε (si, ti )

+
nm∑

m=1

ξ (si, m) M (i, m) +
nk∑

k=1

λ (k) Q (i, k)

(3)
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where ξ (si, m) is the additive, zero-centred, spatially varying
impact of data source m at location si, and this impact is set
to 0 for the reference dataset and is estimated for the non-
reference datasets as a random effect following an MVN dis-
tribution:

ξ (m) ∼ MVN
(
0, σ 2

ξ (m) R (κ )
)

(4)

where R (κ ) is the correlation among locations given an es-
timated decorrelation distance κ (Thorson et al. 2015); and
σ 2

ξ (m) is the estimated pointwise variance of the spatially
varying response to non-reference dataset m. With the sub-
stitution of the data source catchability factor with spatially
varying catchabilities, the definition of the reference dataset
becomes even more critical, as one then explicitly assumes
that the catchability of the reference dataset is constant
over space (as opposed to the catchabilities of non-reference
datasets that vary spatially). In other words, spatially varying
catchability is not (and cannot be) estimated for the reference
dataset, which entails that the assumption that the reference
dataset has constant catchability over space is central for util-
ising our modelling framework. Analyses involving a single
dataset typically assume that it has spatially constant catcha-
bility (Thorson et al. 2013); our analysis allows us to relax the
assumption of constant catchability for all datasets but the
reference dataset. Moreover, our modelling framework can
work with research surveys whose sampling design and(or)
protocol have changed over time as long as those changes
are not substantial. Otherwise, research surveys whose sam-
pling design and(or) protocol have changed substantially over
time should be split into several survey series, where individ-
ual survey series were carried out in similar geographic areas,
using similar designs and protocols, and generally shared the
same core stratification for the survey design, with consistent
vessel and gear throughout.

Because the catch rate datasets that one relies upon in fish-
eries science typically include many zeros, we implement the
integrated spatio-temporal model described by eq. 3 as a two-
stage delta (a.k.a hurdle) model (Lo et al. 1992; Stefánsson
1996). To obtain a catch rate d at each site s and in each year t,
the delta modelling approach combines the encounter prob-
abilities estimated by a linear predictor, p (s, t ), with the posi-
tive catch rates estimated by another linear predictor, r (s, t ).
More precisely, our integrated spatio-temporal model is im-
plemented with the “Poisson-link delta” modelling approach
(Thorson 2018), which (1) assumes that groups of fish are ran-
domly distributed in the proximity of sampling such that
one can derive encounter probability as a complementary
log-log link from the predictions of the first linear predictor
of the Poisson-link delta model, n, and (2) expresses positive
catch rate r as the product of the first linear predictor of the
Poisson-link delta model (n) and the second linear predictor
(w), divided by encounter probability. Thus, with the Poisson-
link delta model, catch rate d at each site s and in each year
t is given by d (s, t ) = p (s, t ) × r (s, t ) = n (s, t ) × w (s, t ). Given
the above, our integrated Poisson-link delta spatio-temporal
model specifies the probability that the ith sample would

yield a density D as

f (d (i) = D) =
{

1 − p (i) if D = 0

p (i) × h
(
D|r (i) ; σ 2

r

)
if D > 0

(5)

where h() is the probability density function employed for un-
explained variation in positive catch rate r (i); σ 2

r is residual
catch rate variation; and f (d (i) = D) is the data likelihood
function. Our spatio-temporal model utilises the Gamma dis-
tribution model for h(), as recommended in Thorson et al.
(2021).

When adapting eq. 3 for the Poisson-link delta modelling
approach, (1) the log-link function is used in the two linear
predictors, n and w, and (2) SVCs expressing spatially varying
catchability for the non-reference datasets are included only
in the first linear predictor (Grüss and Thorson 2019):

log (n (si, ti )) = βn (ti ) + ωn (si ) + εn (si, ti )

+
nm∑

m=1

ξ (si, m) M (i, m) +
nk1∑

k1=1

λn (k1) Qn (i, k1)

log (w (si, ti )) = βw (ti ) + ωw (si ) + εw (si, ti ) +
nk2∑

k2=1

λw (k2) Qw (i, k2)

(6)

where k1 indexes catchability covariates in the first linear
predictor; nk1 is the number of catchability covariates in the
first linear predictor; and k2 and nk2 have similar meanings
for the second linear predictor.

As is the case for the spatially varying impact of non-
reference datasets (the ξ term), the spatial variation term ω

and the spatio-temporal variation term ε are both modelled
as Gaussian Markov random fields following an MVN distri-
bution. In addition, for case studies where the spatial distri-
bution of sampling has changed substantially across years,
the spatio-temporal variation term ε can also be modelled
as a first-order autoregressive process. Thus, in each linear
predictor of the Poisson-link delta model, the spatial vari-
ation term ω and the spatio-temporal variation term ε are
modelled as

ω ∼ MVN
(
0, σ 2

ωR (κ )
)

ε (t ) ∼
{

MVN
(
0, σ 2

ε R (κ )
)

i f t = tmin

MVN
(
ρεε (t − 1) , σ 2

ε R (κ )
)

i f t > tmin

(7)

where ρε is first-order temporal autocorrelation, which is set
to 0 if modelling a first-order autoregressive process is not
warranted; σ 2

ω is the estimated pointwise variance of spatial
variation; σ 2

ε is the estimated pointwise variance of spatio-
temporal variation; tmin is the first year in the time series;
and ρε, κ, σ 2

ω , and σ 2
ε are estimated separately for the first

and second linear predictors.
Our model is implemented with the vector autoregressive

spatio-temporal (VAST) modelling platform using R package
VAST (Thorson 2019b). With the VAST modelling platform,
the covariance among locations is estimated separately for
the ξ , ω, and ε terms, classically using the “Mesh model”. In
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the Mesh model, (1) the estimated covariances between loca-
tions are considered to be stationary and to follow the Matérn
distribution presented in Thorson et al. (2015) that accounts
for geometric anisotropy; (2) for computational reasons, a
predictive approach is followed where a triangulated mesh is
constructed around nx “knots”, and covariance is being esti-
mated between those knots (Shelton et al. 2014); and (3) bilin-
ear interpolation is utilised to generate values between knot
positions (Grüss et al. 2020a). It is now also possible to use
a “Barrier model” to estimate covariances among locations
with the VAST modelling platform. This option is suited for
study regions characterised by the presence of physical bar-
riers (i.e., islands and(or) peninsulas), such as the Chatham
Rise. The Barrier model, which was introduced in Bakka et
al. (2019), considers the Matérn correlation as an ensemble of
paths through a Simultaneous Autoregressive model. Briefly,
the Barrier model weakens the dependencies along the paths
that cross land to almost zero so that they do not contribute
to the estimation of the covariance between locations (Bakka
et al. 2019).

Model estimation and evaluation
As is the case with any integrated model, a prerequisite of

our modelling framework is that the different data sources
integrated in our model result from separate measurements
of a common latent (unmeasured) process. Only if the differ-
ent data sources can be assumed to be statistically indepen-
dent and to sample the same fish population can the different
sources share common parameters and, thus, common like-
lihood components (Maunder 2004; Grüss and Thorson 2019;
Monnahan et al. 2021). Under these circumstances, it is pos-
sible to calculate a joint likelihood for the integrated model
as the product of the likelihood components for each data
source, thereby enabling the estimation of the model from a
borrowing of information among the different data sources
(Fletcher et al. 2019).

To estimate the parameters of our spatio-temporal model,
we employed version 3.10.0 of the VAST modelling platform,
whose R code and documentation are publicly available at
https://github.com/James-Thorson-NOAA/VAST (see details in
Supplementary material A). After model fitting, model con-
vergence is confirmed by checking that the gradient of the
marginal log-likelihood is less than 1.10−4 for all fixed effects
and that the Hessian matrix of secondary derivatives of the
negative likelihood is positive-definite. The spatio-temporal
model is then evaluated using a procedure relying on R pack-
age DHARMa (Hartig 2020) that is standard for VAST models
(Supplementary material A).

Demonstration #1: spiny dogfish on the
Chatham Rise

We demonstrated our integrated spatio-temporal mod-
elling framework by applying it to spiny dogfish on the
Chatham Rise (Fig. 1a). Spiny dogfish is an important bycatch
species in New Zealand (NZ) deepwater fisheries (Anderson
et al. 2019; Finucci et al. 2019), and there is an interest in NZ
in better understanding its biomass trends (Baird and Ballara
2022). For the spiny dogfish case study, the Chatham Rise mid-

dle depth bottom trawl (CHAT MD) survey was the reference
dataset, and only one non-reference dataset was considered,
namely the observer data collected onboard commercial bot-
tom trawlers on the Chatham Rise.

The CHAT MD survey was initiated in 1992 and has been
carried out in 27 different years from 1992 to 2022. However,
the CHAT MD data for 2022 were unavailable at the time of
this study. Therefore, this study relies on 26 years of data, and
the last year of CHAT MD data in the present study is 2020.
The CHAT MD is conducted with RV Tangaroa and provides
the most comprehensive time series of relative species abun-
dance at 200–800 m water depths in the NZ exclusive eco-
nomic zone (EEZ). The CHAT MD survey went through some
changes in sampling design in 2010 and 2016. In 2010, the
CHAT MD survey was extended to also sample deeper waters
(800–1300 m) in the north and the east of the Chatham Rise.
In 2016, the duration of the CHAT MD survey was increased
by six days to also include deeper strata to the south and the
west of the Chatham Rise (Stevens et al. 2021). The CHAT MD
survey follows a two-phase random design (Francis 1984) and
has used the same bottom trawl over the entire time series
(see Hurst and Bagley (1994) for a comprehensive description
of the gear). Trawling has followed the standardised proce-
dures described by Hurst et al. (1992) over the entire time
series. At each station sampled by the CHAT MD survey, the
bottom trawl was usually towed for three nautical miles at a
speed over the ground of 3.5 knots (Stevens et al. 2021).

The CHAT MD data were obtained from the Fisheries New
Zealand (FNZ) database trawl (Mackay 2020). One important
detail about the trawl database is that not all the records
included in that database are valid for biomass estimation
(e.g., some bottom trawl hauls were conducted specifically
to complement acoustic measurements for a specific species
rather than for monitoring multiple species to support stock
or habitat assessments). Thus, among the records retrieved
from the trawl database, we identified those that belonged to
the CHAT MD survey series and that were valid for biomass
estimation and could, therefore, be retained in our analyses.
From the retained records, we extracted biomass catch rate
data (in kg·km−2) for spiny dogfish. We cleaned the survey
data using procedures that are standard in NZ (Morrison et
al. 2013; Grüss et al. 2023a). Ultimately, we had 3152 records
in the survey dataset for spiny dogfish (Fig. 1b).

The observer data collected onboard commercial trawlers
were extracted from the FNZ database cod (Sanders and Fisher
2020). The cod database gathers the catch information and
effort information (including doorspread) for observed com-
mercial fishing vessels collected within the FNZ observer pro-
gramme since 1986, as well as the age, length, and biological
information collated by observers. We cleaned the data col-
lected onboard bottom trawlers over the period 1986–2021,
employing procedures that are standard in NZ (Edwards and
Mormede 2023; Grüss et al. 2023a). Area swept (in km2) was
calculated as the product of doorspread (km) and distance
trawled (km), and biomass catch rate was then obtained by
dividing catch (in kg) by area swept. Ultimately, we had a to-
tal of 39 029 records in the observer dataset for spiny dogfish
(Fig. 1b). Thus, for the spiny dogfish case study, we had over 12
times more records in the observer dataset than in the survey
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Fig. 1. Study regions and spatial distribution of the data for the two case studies. (a) Map of the Chatham Rise off New Zealand.
Depth contours are labelled at 200, 500, 1000, 1500, 2000, and 3000 m. Important features are also labelled and include New
Zealand’s South Island and Chatham Island. (b) Spatial distribution of the research survey data (blue dots) and observer data
(red dots) for the Chatham Rise used in the present study. (c) Map of the eastern Bering Sea (EBS) off Alaska. Depth contours are
labelled in 50, 100, and 180 m contours. Important features are also labelled and include the Inner Shelf (0–50 m), Middle Shelf
(50–100 m), Outer Shelf (100–180 m), the Alaska Peninsula, the Pribilof Islands, and St. Matthew Island. (d) Spatial distribution
of the research survey (EBSBT) data for EBS juvenile snow crab (Chionoecetes opilo) (blue dots). (e) Spatial distribution of the data
sources other than research survey data for EBS juvenile snow crab, including industry-cooperative survey (BSFRF) data (green
dots) and Pacific cod stomach (Cod) data (red dots). In panels (a–b), shape file data come from https://data.linz.govt.nz/. In panel
(c), map projection is NAD83/Albers Equal Area.

dataset. Moreover, we had observer data for each individual
year of the period 1986–2021, i.e., we had 36 years of data
in the observer dataset versus 26 years of data in the survey
dataset.

Fisheries-dependent data such as the observer data for
spiny dogfish are characterised by very large catchability dif-
ferences between sampling events because of multiple com-
plex and not well-understood interactions between fish, mis-
cellaneous characteristics of the fishing vessels, and manage-
ment and other constraints at the time of fishing (Hilborn
and Walters 1992; Quinn and Deriso 1999). These catchabil-
ity differences are so substantial that the observer data may
very likely be overdispersed to the extent that the inclusion
of catchability covariates Qn and Qw in eq. 6 may not be suffi-
cient to remove the variation in the data due to technical and
behavioural characteristics of fishing. For this reason, in the
spiny dogfish case study, we substituted the Qn and Qw terms
from eq. 6 with random vessel effects ηn (vi ) and ηw (vi ), respec-
tively (Xu et al. 2019; Rufener et al. 2021; O’Leary et al. 2022).
These random vessel effects followed a normal distribution
with a mean of zero and standard deviation estimated (Xu et

al. 2019; Bell et al. 2021; Ducharme-Barth et al. 2022; Grüss et
al. 2023b), and they were fixed at 0 when sample i came from
the CHAT MD survey rather than from the observer program.

For the spiny dogfish case study, we developed three dif-
ferent VAST models and compared the predictions of the
three models. The three different models were fitted to (1) the
data collected by the CHAT MD survey (survey-only data); (2)
observer-only data; or (3) both survey and observer data (inte-
grated data). In the models fitted to survey-only and observer-
only data, spatially varying catchability was not modelled.
In addition, the random vessel effects were not modelled in
the model fitted to survey-only data. In the three VAST mod-
els (fitted to survey-only, observer-only, or integrated data),
the response variable was biomass catch rate in kg·km−2. In
all three models, spatio-temporal variation was modelled as
a first-order autoregressive process (eq. 7), because the spa-
tial distribution of sampling has changed substantially over
time for both the CHAT MD survey and the observer pro-
gram. Moreover, in all models, we used the Barrier model to
estimate covariances among locations because of the pres-
ence of islands in the study region. Finally, in all models,
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nx = 200 knots were distributed uniformly over a 1 × 1 km
spatial grid for the Chatham Rise, and biomass densities were
predicted across 2000 grid cells covering that spatial grid
(Grüss et al. 2020a). We confirmed that model parameter esti-
mates and predictions were qualitatively similar when speci-
fying more than 200 knots.

We employed the 1 × 1 km spatial grid for the Chatham
Rise to produce density maps from the outputs of the VAST
models. In addition, we generated indices for spiny dogfish
from the outputs of the VAST models. To obtain indices, we
first estimated relative biomasses, B̂ (t ), as

B̂ (t ) =
n j∑

j=1

a ( j) n̂ ( j, t ) ŵ ( j, t )

=
n j∑

j=1

a ( j) exp
(
β̂n (t ) + ω̂n ( j) + ε̂n ( j, t )

)
× exp

(
β̂w (t ) + ω̂w ( j) + ε̂w ( j, t )

)

(8)

where nj is the number of knots (200); a ( j) is the surface area
of knot j (in km2); β̂n (t ) and β̂w (t ) are fixed effects estimated
via maximum likelihood estimation; and ω̂n ( j), ω̂w ( j), ε̂n ( j, t ),
and ε̂w ( j, t ) are random effects set to the value maximising
the joint likelihood conditional on the estimated fixed effects
(Thorson et al. 2015). Indices were then obtained by divid-
ing the indices for each year by the mean value of B̂t over
the relevant time period (i.e., 1992–2020 in the case of the
model fitted to survey-only data and 1986–2021 in the case
of the models fitted to observer-only and integrated data).
For the three models (fitted to survey-only, observer-only, or
integrated data), the VAST indices were compared to the in-
dices computed directly from survey-only data with the Surv-
Calc software (Francis 2009). The SurvCalc indices used in
this study came from Stevens et al. (2021). Because the sam-
pling design of the CHAT MD survey changed in 2010 and
then again in 2016 with the addition of deeper 800–1300 m
strata, SurvCalc indices for the core 200–800 m strata, which
have been consistently surveyed in all years, were employed
(Stevens et al. 2021).

Demonstration #2: juvenile snow crab in the
EBS

We further demonstrated our integrated spatio-temporal
modelling framework by applying it to juvenile (0–20 mm
carapace width) snow crab in the EBS (Fig. 1c). The fishery for
snow crab on the EBS has been one of the most valuable shell-
fish fisheries in the world (Hvingel et al. 2021), although it
crashed in 2020–2021 (Szuwalski 2022). In the EBS, snow crab
has exhibited pronounced fluctuations in stock size since its
monitoring began (Parada et al. 2010; Szuwalski 2019). Pro-
duction in the EBS snow crab fishery reached a peak at the
end of the 1980s, after which snow crab landings have dra-
matically decreased until the early 2000s. The latest stock as-
sessments indicated that the EBS snow crab stock had been
rebuilding, following a series of strong year classes, before
crashing in 2020–2021 (Szuwalski 2019, 2022). Predation by
Pacific cod is hypothesised to be one of the causes of juvenile
snow crab mortality (Livingston 1989; Zheng and Kruse 2006;

Burgos et al. 2013). Livingston (1989) also found that snow
crab recruitment pulses can be tracked with fluctuations in
Pacific cod predation.

In the juvenile snow crab case study, the response variable
of the spatio-temporal model was the numerical catch rate
in numbers of crabs per km2. For that case study, the EBS
bottom trawl (EBSBT) survey was the reference dataset, and
two non-reference datasets were considered: (1) a small-mesh
industry-cooperative survey and the Bering Sea Fisheries Re-
search Foundation (BSFRF) survey and (2) juvenile snow crab
content in the stomachs of 30–59 cm Pacific cod collected in
the EBS. In the second non-reference dataset, which we refer
to as the “Cod” dataset, 30–59 cm Pacific cod predators act as
samplers of juvenile snow crab.

The EBSBT survey is a standardised bottom trawl survey
conducted annually in the EBS by the Alaska Fisheries Sci-
ence Center (AFSC) (Lauth and Conner 2016). The EBSBT sur-
vey takes place during summer, in late May to early August.
It employs a fixed-sampling design, where approximately
376 stations on a regularly spaced 20 × 20 km grid (includ-
ing higher density “corner stations” in areas with historically
high crab abundance) are sampled each year. The EBSBT sur-
vey has taken place from 1989 onward but also in 1982–1988
but did not sample as far northward; hence, data for 1982–
1988 are not used in this study. Each year, the EBSBT sur-
vey begins in the southeast Inner Shelf of the EBS and pro-
gresses towards the northwest Outer Shelf. Stations are sam-
pled using an 83–112 eastern otter trawl, towed at a target
speed of 1.54 m·s−1 for a targeted tow duration of 30 min
(Lauth and Conner 2016). The complete description of the
gear employed in the EBSBT survey can be found in Stauffer
(2004). The EBSBT survey dataset provided us with 11 229
records for juvenile snow crab for the period 1989–2018
(Fig. 1d).

The BSFRF survey is an industry-cooperative survey that
carried out bottom trawl survey selectivity experiments and
generated indices for EBS snow crab and tanner crab (Chio-
noecetes bairdi) during the summers of 2009, 2010, and 2016–
2018. When conducting survey selectivity studies, the BS-
FRF chartered fishing catcher vessels and utilised an exper-
imental trawl to carry out side-by-side tows alongside the
vessels used for the EBSBT survey to assess crab selectivity
in the centre of specified EBSBT survey stations. The BSFRF
survey employed a small-mesh Nephrops trawl and towed at
a target speed of 1 m·s−1 with a targeted tow duration of
5 min with winches locked. Conan et al. (1994) provides a
complete description of the gear. BSFRF gear performance
was monitored with hydroacoustic sensors for trawl spread
and performance. The BSFRF was assumed to capture all
crabs in its path. The indices studies were conducted in-
dependently from the EBSBT survey, where 2–4 tows were
semi-randomly selected in specified EBSBT survey stations.
These experiments were continued from 2006 to 2018, fo-
cusing on tanner crab. While the focus areas for the 2006–
2018 experiments were not fully representative of snow crab
grounds (focusing on tanner crab where snow crab densities
were lower), opportunistic sampling of snow crab occurred.
The BSFRF dataset provided us with 390 records for juvenile
snow crab, including 97 records associated with a catch rate
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of 0 and 293 records associated with a positive catch rate
(Fig. 1e).

The Cod data originate from samples collected at EBSBT
survey stations. Specifically, at each of the stations sampled
by the EBSBT survey, species-specific length stratification is
utilised to select a fraction of the sampled fish for stomach
content analyses, and the results of these stomach content
analyses are then entered in the AFSC’s Groundfish Trophic
Interactions Database (Livingston et al. 2017). For instance,
in the case of Pacific cod, three length categories are con-
sidered: 1–29, 30–59, and 60+ cm. Because of this sampling
stratification, we focus only on a specific Pacific cod length
category in this study, namely the 30–59 cm length category,
which consumes more snow crab than the 1–29 and 60+ cm
length categories (Livingston et al. 2017). The dataset from
the AFSC’s Groundfish Trophic Interactions Database, which
we retrieved from NOAA Fisheries (2021), included stomach
content data for a total of 24 146 (30–59 cm) Pacific cod in-
dividuals collected in 3978 hauls for the years 1981, 1984–
2003, and 2005–2015 (Fig. 1e). Some of the Pacific cod individ-
uals had no snow crab in their stomach. We treated these in-
stances as an observation of zero count for snow crab in those
hauls. The dataset that we retrieved from NOAA Fisheries
(2021) also included predator (Pacific cod) weight data (in kg).
We had a total of 24 536 records in the combined BSFRF-Cod
dataset, i.e., we had around 2.2 times more records in the
combined BSFRF-Cod dataset than in the EBSBT dataset. Also,
the time series for the combined BSFRF-Cod dataset started
earlier than the time series for the EBSBT data (in 1981 ver-
sus 1989 for the EBSBT data) yet did not include any data for
the year 2004. Note that we could have treated each tow as
the sampling unit and worked with average snow crab counts
per tow and average predator weights per tow, as was done
in Grüss et al. (2020b). When analysing stomach content data,
there are rationales for working with average prey counts per
tow or non-averaged prey counts. Working with average prey
counts per tow may be preferred because stomach samples
from the same tow may not be independent (Moriarty et al.
2017; Binion-Rock et al. 2019). On the other hand, the occur-
rence of prey items in fish stomachs is strongly related to
predator length and weight (Livingston et al. 2017; Ng et al.
2021). Thus, analysts may alternatively prefer to work with
non-averaged prey counts and include individual predator
weight as a covariate in models rather than just averaging
prey counts over individual predators with substantially dif-
ferent weights. We elected to treat each individual Pacific
cod as a separate sample of snow crab density. Future studies
could investigate the impacts of utilising average snow crab
counts per tow versus non-averaged snow crab counts in the
VAST models, although the results of the present study will
remain qualitatively unchanged.

For the juvenile snow crab case study, we developed three
different VAST models and compared the predictions of the
three models. The three different models were fitted to (1)
EBSBT survey data (the reference dataset); (2) the other data
sources, i.e., the combined BSFRF-Cod data; or (3) both the
EBSBT data and the other data sources (integrated data). In
the model fitted to the EBSBT survey data only, spatially vary-
ing catchability was not modelled. In the model fitted to the

other data sources, the BSFRF dataset was assumed to be
more reliable than the Cod dataset; therefore, spatially vary-
ing catchability was estimated only for the Cod dataset. In
the model fitted to integrated data, spatially varying catcha-
bility was estimated for both the BSFRF and the Cod datasets.
Moreover, the models fitted to the other data sources and to
the integrated data included the effect of Pacific cod weight
in the first linear predictor via one catchability term Qn (eq. 6)
to account for the fact that the catchability of juvenile snow
crab by Pacific cods as samplers is influenced by the body
weight of the Pacific cod predators. In these specific situa-
tions, the effect of Pacific cod weight on juvenile snow crab
catchability was estimated only for the Cod data in the first
linear predictor so that (1) the Qn term was set to 0 for
the EBSBT and BSFRF data and (2) the Qw term was turned
off in the second linear predictor. The effect of Pacific cod
weight on juvenile snow crab catchability was modelled as
a fixed nonlinear effect using a B-spline with a maximum of
two degrees of freedom; specifically, the B-spline basis func-
tion bs from R package splines was employed (R Core Team
2022).

In the three different VAST models (fitted to EBSBT survey
data, other data sources, or integrated data), spatio-temporal
variation was not modelled as a first-order autoregressive pro-
cess, i.e., the ρε term from eq. 7 was set to 0. Moreover, in all
three models, we used the Mesh model to estimate covari-
ances among locations. Finally, in all models, nx = 100 knots
were distributed uniformly over a 20 × 20 km spatial grid
for the EBS, and numerical densities were predicted across
2000 grid cells covering that spatial grid (Grüss et al. 2020a).
We confirmed that model parameter estimates and predic-
tions were qualitatively similar when specifying more than
100 knots.

From the outputs of the VAST models for juvenile snow
crab, we produced density maps using the 20 × 20 km spa-
tial grid for the EBS, as well as indices (eq. 8). For the three
models (fitted to EBSBT survey data, other data sources, or in-
tegrated data), the VAST indices were compared to the total
recruitment time series estimated by the 2019 EBS snow crab
assessment model (Szuwalski 2019).

Results

Demonstration #1: spiny dogfish on the
Chatham Rise

In the spiny dogfish case study, the model fitted to survey-
only data predicted density to be highest in those areas of
the Chatham Rise where bottom depth is less than 500 m,
particularly in the area close to NZ South Island (Figs. 2 and
3). The spatial density patterns of spiny dogfish predicted
by the model fitted to observer-only data were quite differ-
ent. Specifically, with the model fitted to observer-only data,
high-density areas were predicted to occupy a smaller sur-
face area and to be located mainly on Mernoo Bank. By con-
trast, the spatial density patterns of spiny dogfish predicted
by the model fitted to integrated data were very similar to
those predicted by the model fitted to survey-only data (Figs. 2
and 3). Regarding the predictions made by the model fitted
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Fig. 2. Mean spatial patterns of spiny dogfish (Squalus acanthias) log-density over the period 1986–2021 (in log-kg·km−2) on the
Chatham Rise and their associated standard errors (SEs), predicted by the vector autoregressive spatio-temporal (VAST) models
fitted to research survey data (left panels), observer data (middle panels), or both research survey and observer data (right
panels). In all panels, shape file data come from https://data.linz.govt.nz/.

to integrated data for individual years, we can distinguish be-
tween two situations: (Situation #1) observations were pro-
vided by both the survey and the observer dataset (years
1992–2014, 2016, 2018, and 2020) and (Situation #2) obser-
vations were provided by the observer dataset only (years
1986–1990, 2015, 2017, 2019, and 2021). In Situation #1, the
spatial density patterns predicted by the integrated model
were very similar to those predicted by the model fitted to
survey-only data (Fig. 3). In Situation #2, even in the absence
of survey observations, there were clear differences between
the predictions of the integrated model and those of the
model fitted to the observer-only data, and the predictions
of the integrated model appeared like the predictions that
one would expect with the model fitted to survey-only data
(Fig. 3).

In the model fitted to integrated data, the spatially vary-
ing catchability of the observer program data was estimated
(Fig. 4). The catchability from the observer program data was
predicted to be lowest around Chatham Island, as well as on
Mernoo Bank. It was predicted to be highest in the northern
part of the Chatham Rise, excluding Mernoo Bank, and in the
southwestern corner of the Chatham Rise (Fig. 4).

The three spatio-temporal models (fitted to survey-only,
observer-only, or integrated data) predicted an increase in
spiny dogfish density on the Chatham Rise over time (Fig. 3).
As a result, all three models predicted that the index of spiny
dogfish increased over time (Fig. 5). However, the model fit-
ted to observer-only data and, consequently, the model fit-
ted to integrated data provided an index for spiny dogfish for
a longer time period. Compared to the index derived from
survey-only data, the index derived from observer-only data
agreed less with the SurvCalc index, was more uncertain, and
displayed more interannual variability. The integration of
survey and observer data resulted in an index that, compared
to the index derived from observer-only data, agreed more
with the SurvCalc index, was less uncertain, and exhibited
smaller and more reasonable interannual variability. The de-
grees of uncertainty around the indices derived from survey-
only and integrated data were comparable (Fig. 5). Note that
post 2015, spatio-temporal model indices were always larger
than SurvCalc indices, likely because the CHAT MD survey
expanded to deeper strata to the south and the west of the
Chatham Rise in 2016, but we used SurvCalc indices for the
core strata of the CHAT MD survey.
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Fig. 3. Spatial patterns of spiny dogfish (Squalus acanthias) log-density (in log-kg·km−2) in select years on the Chatham Rise,
predicted by the vector autoregressive spatio-temporal (VAST) models fitted to research survey data (top panels), observer data
(middle panels), or both research survey and observer data (bottom panels). Note that data were for a shorter time period
when using survey-only data, hence the absence of map in the top-left panel. In all panels, shape file data come from https:
//data.linz.govt.nz/.

Demonstration #2: juvenile snow crab in the
EBS

In the juvenile snow crab case study, it was necessary to
turn off the spatio-temporal variation term in the second lin-
ear predictor for the model fitted to the combined BSFRF-Cod
dataset to allow for the convergence of this model. On the
other hand, the model fitted to EBSBT data and the model fit-
ted to integrated data both converged without any problems.

The model fitted to EBSBT data predicted that long-term av-
erage density of juvenile snow crab was highest in the north-
ern part of the EBS Middle and Outer Shelves, particularly
north of St. Matthew Island (Fig. 6). The annual densities pre-
dicted by the model fitted to EBSBT data were, in general, sim-
ilar to the long-term average density predicted by the model
(Fig. 7). Exceptions to this general pattern included years such
as 2004, where high-density areas were also predicted in the
central part of the EBS Middle and Outer Shelves between St.
Matthew Island and Pribilof Islands. The model fitted to the
combined BSFRF-Cod dataset predicted that the density of ju-

venile snow crab was highest in the central part of the EBS
Middle and Outer Shelves between St. Matthew Island and
Pribilof Islands, both on average over all years and in individ-
ual years (Figs. 6 and 7). The long-term average spatial den-
sity patterns of juvenile snow crab predicted by the model
fitted to integrated data were very similar to those predicted
by the model fitted to EBSBT data only (Fig. 6). Regarding the
predictions made by the model fitted to integrated data for
individual years, we can distinguish between two situations:
(Situation #1) observations were provided only by the EBSBT
dataset (year 2004) or by both the EBSBT dataset and the com-
bined BSFRF-Cod dataset (years 1989–2003 and 2005–2018)
and (Situation #2) observations were provided by the com-
bined BSFRF-Cod dataset only (years 1981 and 1984–1988). In
Situation #1, the spatial density patterns predicted by the in-
tegrated model were very similar to those predicted by the
model fitted to EBSBT data only (Fig. 7). In Situation #2, even
in the absence of EBSBT observations, there were clear differ-
ences between the predictions of the integrated model and
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Fig. 4. Spatially varying catchability effect of the observer
program estimated by the vector autoregressive spatio-
temporal (VAST) model for spiny dogfish (Squalus acanthias)
fitted to both research survey and observer data. Shape file
data come from https://data.linz.govt.nz/.

those of the model fitted to the combined BSFRF-Cod dataset,
and the predictions of the integrated model appeared like the
predictions that one would expect with the model fitted to
EBSBT data only. For example, in 1981, the integrated model
predicted that the density of juvenile snow crab was high-
est in the northern part of the EBS Middle and Outer Shelves
(Fig. 7).

In the model fitted to the combined BSFRF-Cod dataset,
the spatially varying catchability of the Cod dataset was es-
timated to be highest in the northern part of the EBS Outer
Shelf and around Pribilof Islands (Fig. 8a). The spatially vary-
ing catchability of the Cod dataset estimated by the inte-
grated model was very different (Fig. 8b). Specifically, in the
integrated model, the spatially varying catchability of the
Cod dataset was estimated to be highest in the central part of
the EBS Outer Shelf and along the Alaska Peninsula (Fig. 8b).
Moreover, the integrated model estimated the spatially vary-
ing catchability of the BSFRF dataset was highest in the cen-
tral part of the EBS Middle and Inner Shelves and in the south-
ern part of the EBS Outer Shelf (Fig. 8c).

The three spatio-temporal models (fitted to EBSBT data,
the combined BSFRF-Cod dataset, or integrated data), all pre-
dicted that the index of juvenile snow crab fluctuated widely
over time (Fig. 9). The indices estimated by the models fitted
to EBSBT data and integrated data were very similar, and both
differed markedly from the index estimated by the model fit-
ted to the combined BSFRF-Cod dataset. For example, over
the period 2008–2018, (1) the models fitted to EBSBT data and
integrated data predicted a large increase in the index until
2017 followed by a massive drop in the index in 2018, while
(2) the model fitted to the combined BSFRF-Cod dataset pre-
dicted low index values until 2012, a slight increase in the in-

dex between 2013 and 2015, and a drop to low index values
afterwards. The index estimated by the model fitted to the
combined BSFRF-Cod dataset was also more uncertain than
the indices estimated by the models fitted to EBSBT data and
integrated data. While the index derived from EBSBT data
and the index derived from integrated data were very sim-
ilar, the primary advantage of the index derived from inte-
grated data was that it covered a longer time period, which
extended back to 1981. There appeared to be a better-lagged
correlation between the indices derived from EBSBT and in-
tegrated data and total recruitment estimated by the snow
crab assessment model than between the index derived from
the combined Cod-BSFRF dataset and total recruitment from
the assessment model (Fig. 9).

Discussion
In the present study, we developed a spatio-temporal

modelling framework that integrates research survey data
(treated as a “reference dataset”) and other data sources
(treated as “non-reference datasets”) while estimating spa-
tially varying catchability for the non-reference datasets.
This framework enables estimating a fishing-power ratio
for each non-reference dataset relative to the reference
dataset, whose variation over space is estimated using SVCs
(Thorson 2019a). By expressing the fishing-power ratio of
non-reference datasets as a function of multiple unmeasured
(latent) variables, SVCs allow our spatio-temporal modelling
framework to attribute some of the residual variance to spa-
tial processes, thereby improving model predictive perfor-
mance (Finley 2011).

The two demonstrations provided in this study (spiny dog-
fish and juvenile snow crab) showed that the estimated spa-
tially varying catchabilities act to substantially downweight
the influence of the non-reference datasets on model predic-
tions (Figs. 4 and 8). Other methods have addressed conflicts
between multiple data sources and have similarly sought to
downweight the influence of non-reference (least reliable or
least critical) datasets, including reweighting methods for
stock assessment models (Francis et al. 2003) and dynamic
factor analysis (DFA; Zhu et al. 2018; Peterson et al. 2021). By
attributing a larger variance to the indices derived from non-
reference datasets, reweighting methods are useful to down-
weight the importance of the non-reference datasets within
a stock assessment, yet these methods are ad hoc and some-
times produce unsatisfactory results (Wilberg et al. 2010).
DFA combines multiple indices into a single “consensus”
index before the stock assessment model is implemented
(Peterson et al. 2021). DFA does have downsides. First, with
DFA, it is necessary to give some implicit weight to the differ-
ent indices and often constituent indices that represent small
or large areas are assigned the same weight. Secondly, resid-
ual variance in constituent indices is not considered, preclud-
ing the propagation of uncertainty from the constituent in-
dices to the consensus index. Our integrated spatio-temporal
model reconciles reference and non-reference datasets with-
out the drawbacks of reweighting methods and DFA. Never-
theless, there may be situations where retaining an index es-
timated by a spatio-temporal model fitted to research survey
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Fig. 5. Indices of relative biomass for the Chatham Rise middle depth (CHAT MD) area predicted by the vector autoregressive
spatio-temporal (VAST) models for spiny dogfish (Squalus acanthias) fitted to (a) research survey data, (b) observer data, or (c)
both research survey and observer data. Also shown in all panels are the SurvCalc indices of relative biomass obtained from
trawl survey data (not for all years of the period 1992–2021 contrary to the VAST indices of relative biomass), which come from
Stevens et al. (2021). In all panels, the shaded areas represent 95% confidence intervals around VAST predictions, while vertical
bars represent 95% confidence intervals around SurvCalc indices of relative biomass.

data is preferable to opting for an index estimated by a spatio-
temporal model fitted to integrated data (e.g., because the
index derived from research survey data displays much less
interannual variability and(or) uncertainty). Therefore, in sit-
uations where enough research survey data are available, we
recommend that fisheries analysts (1) develop both a spatio-
temporal model fitted to research survey data and a model
fitted to integrated data, examine the resulting indices, and
retain the most plausible one according to experts of the fish
stock of interest and (2) when planning to employ an index
derived from integrated data in a stock assessment model,
run sensitivity analyses to compare the impacts of using mul-
tiple indices derived from different data sources versus one
single index derived from integrated data in the stock assess-
ment model (Adkison 2009; Peterson et al. 2021).

In our two case studies (spiny dogfish and juvenile snow
crab), the density maps predicted by the models fitted to
the reference dataset and the integrated data were similar,
and all density maps concurred with the literature. Anderson
et al. (1998) reported that within NZ waters, spiny dogfish
are generally encountered at depths shallower than 500 m.

Bull et al. (2001) studied fish communities on the Chatham
Rise and found that spiny dogfish preferred depths less than
350 m. Regarding EBS snow crab, the stock was reported to
be primarily found in the northern part of the EBS Middle
and Outer Shelves, where juveniles tend to occupy shallower
waters to the north of the adults (Zheng et al. 2001; Liu 2019).
Orensanz et al. (2004) found that Pacific cod predation on
snow crab largely controlled the southern boundary of snow
crab distribution areas in the central part of the EBS Middle
and Outer Shelves. In our two case studies, the model fitted
to non-reference datasets only (observer-only data in the for-
mer case and the combined BSFRF-Cod dataset in the latter
case) provided incomplete insights into the spatial density
patterns of the study species.

While both the integrated model and the model fitted
to the reference dataset delivered accurate density maps,
the integrated model had the advantages of providing an-
nual density maps and an index for a longer time-period in
both case studies. For both spiny dogfish and juvenile snow
crab, for the years with no observations in the reference
dataset, the spatio-temporal model fitted to integrated data
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Fig. 6. Mean spatial patterns of juvenile snow crab (Chionoecetes opilo) density over the period 1981–2018 (in number of fish per
km2) and their associated standard errors (SEs) predicted by the vector autoregressive spatio-temporal (VAST) models fitted to
research survey (EBSBT) data (top panels); industry-cooperative survey (BSFRF) data and Pacific cod stomach (Cod) data (middle
panels); or EBSBT, BSFRF, and Cod data (bottom panels).

predicted spatial density patterns that resembled the spatial
density patterns that one would have expected had the model
been fitted only to reference data (Figs. 3 and 7). This result
stems from the fact that, in the integrated model, informa-
tion is shared between locations, years, and data sources,
while the influence of the non-reference datasets is largely
downweighted via their estimated spatially varying catcha-
bilities. Moreover, in both case studies, the integrated model
estimated indices that displayed less uncertainty and less
interannual variability and agreed more with indices esti-
mated with other tools than the model fitted to non-reference
datasets. Therefore, the present study concurs with many
other previous studies demonstrating the value of integrated
spatio-temporal models to leverage the strengths of several
data sources while correcting as much as possible for the

weaknesses of the individual data sources (e.g., Grüss and
Thorson 2019; Pinto et al. 2019; O’Leary et al. 2020, 2022;
Monnahan et al. 2021; Rufener et al. 2021; Thompson et al.
2022).

In the juvenile snow crab case study, convergence was pos-
sible for the spatio-temporal model fitted to the combined
BSFRF-Cod dataset only when the spatio-temporal variation
term in the second linear predictor was turned off. This re-
sult is because in the model fitted to the BSFRF-Cod dataset,
the BSFRF dataset is defined as the reference dataset (in the
absence of EBSBT survey data), but the BSFRF dataset includes
around 62 times fewer observations than the Cod dataset (390
versus 24 146). With such a great imbalance of observations
between the BSFRF and Cod datasets, the spatio-temporal
model struggled to estimate a fishing-power ratio for the Cod
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Fig. 7. Spatial patterns of juvenile snow crab (Chionoecetes opilo) density (in number of fish per km2) in select years pre-
dicted by the vector autoregressive spatio-temporal (VAST) models fitted to research survey (EBSBT) data (top panels); industry-
cooperative survey (BSFRF) data and Pacific cod stomach (Cod) data (middle panels); or EBSBT, BSFRF, and Cod data (bottom
panels). Note that data were for a shorter time-period when using EBSBT data only, while there were no BSFRF or Cod data for
2004, hence the absence of map in some panels.

dataset and, therefore, needed to be simplified. We faced sim-
ilar issues in a recent unpublished study for the NZ EEZ. In
that unpublished study, we attempted to fit a spatio-temporal
model to 12 different bottom trawl research survey datasets
and the observer program, the CHAT MD survey dataset was
defined as the reference dataset, and a fishing-power ratio
was estimated for the 11 other research survey datasets and
the observer dataset. There were around 40 times fewer ob-
servations in the CHAT MD survey dataset than in all non-
reference datasets combined, and the integrated model (that
included both spatial and spatio-temporal variation terms in
the two linear predictors) did not converge (results not shown
here and not published). We recommend that future studies
seek ways to make integrated models converge when there
is a substantial imbalance between the reference and non-
reference datasets.

The main novelty of the present study consisted of ac-
counting for multiple data sources in an integrated spatio-
temporal model via the estimation of spatially varying catch-
abilities for the non-reference datasets rather than a monitor-
ing program catchability factor. It would be useful for future
studies to further evaluate our integrated spatio-temporal
modelling framework with a simulation experiment. This
simulation experiment would allow for an understanding
of the performance of our integrated spatio-temporal mod-
elling framework in terms of accuracy, error, and confi-
dence interval coverage (Grüss and Thorson 2019; Grüss et
al. 2019; Ducharme-Barth et al. 2022; Charsley et al. 2023).
In addition, future studies should run comparisons of inte-

grated spatio-temporal models, including spatially varying
catchability terms versus a monitoring program catchabil-
ity factor. Such comparisons would identify the situations
where the use of spatially varying catchability terms is fea-
sible (i.e., allows for a converged model) and leads to in-
creased model performance (in terms of precision, accuracy,
and(or) confidence interval coverage). It will be particularly
important to understand whether the use of spatially vary-
ing catchability terms results in better confidence interval
coverage, as a recent spatio-temporal modelling study re-
ported no improvement in confidence interval coverage with
an integrated model accounting for multiple data sources via
a monitoring program catchability factor (Grüss and Thor-
son 2019). Future studies could also investigate the conse-
quences of defining alternative data sources (e.g., alterna-
tive research surveys and(or) observer programs) as the ref-
erence dataset in our integrated modelling framework to
better understand the downweighting at play with the es-
timated spatially varying catchabilities (Alglave et al. 2022).
Moreover, our spatio-temporal models included a spatially
varying catchability term only in the first linear predictor, as
our modelling framework is an expansion of the modelling
framework developed in Grüss and Thorson (2019), which in-
cludes a monitoring program catchability factor only in the
first linear predictor. In addition, preliminary analyses re-
vealed that the inclusion of a spatially varying catchability
term in both the first and second linear predictors resulted
in a net spatially varying catchability effect (the sum of the
spatially varying catchability effects for the first and second
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Fig. 8. Spatially varying catchability effects estimated by the vector autoregressive spatio-temporal (VAST) models for juvenile
snow crab (Chionoecetes opilo) fitted to (a) a combination of industry-cooperative survey (BSFRF) and Pacific cod stomach (Cod)
data or (b–c) a combination of research survey (EBSBT), BSFRF, and Cod data.

linear predictors) that was virtually similar to the spatially
varying catchability effect for the first linear predictor (re-
sults not shown). That being said, future studies could fur-
ther investigate the impacts of including a spatially varying
catchability term in both the first and second linear predic-
tors. Finally, while Rufener et al. (2021) found that account-
ing for preferential sampling had negligible impacts on the
predictions of their integrated spatio-temporal models, two
other studies (Pennino et al. 2019; Alglave et al. 2022) found
that modelling preferential sampling was warranted when
integrating research survey data and fisheries-dependent
data (e.g., spatially referenced logbook data). Therefore,
we recommend further research regarding the representa-
tion of preferential sampling in integrated spatio-temporal
models.

The integrated spatio-temporal models implemented in
this study did not include any environmental or other den-
sity covariates. However, the spatial and spatio-temporal vari-
ation terms of spatio-temporal models account for various
unmeasured processes that influence fish densities (Shelton
et al. 2014; Thorson et al. 2015; Ono et al. 2018). Future stud-
ies could evaluate the impacts of including alternative envi-
ronmental covariates (e.g., bottom temperature, bottom dis-
solved oxygen concentration) in our integrated modelling
framework on the accuracy and precision of spatial predic-
tions (Pacifici et al. 2017; Simmonds et al. 2020; O’Leary et

al. 2022). This future research would be particularly inter-
esting for snow crab, as it was found that snow crab prefer
the coldest parts of the EBS Middle and Outer Shelves and
that in warm years shifts in the distribution of Pacific cod
to those specific areas of the EBS enhances snow crab preda-
tion mortality (Liu 2019). Future versions of our integrated
modelling framework, including environmental covariates,
would also be useful to better understand distribution shifts
in fish stocks in relation to environmental changes. Studies
investigating distribution shifts have typically relied on data
collected by one specific monitoring program (e.g., Dulvy et
al. 2008; Nye et al. 2009; Thorson et al. 2017). Data permit-
ting and revisiting these studies using multiple data sources
may result in more accurate and more precise information
for habitat managers.

In conclusion, we developed an integrated spatio-temporal
model that, by estimating spatially varying catchabilities for
the least reliable data sources (the non-reference datasets),
downweights their influence in model inferences. Integrated
models allow for the generation of annual density maps for a
longer time-period and for the provision of one single index
to stock assessments rather than multiple indices (each usu-
ally covering a shorter time period). When fisheries analysts
fit a model to integrated data, we recommend that they also
fit another model to survey-only data, provided that enough
research survey data are available, and evaluate the indices
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Fig. 9. Indices of relative abundance for juvenile snow crab (Chionoecetes opilo) predicted by the vector autoregressive spatio-
temporal (VAST) models fitted to (a) research survey (EBSBT) data, (b) industry-cooperative survey (BSFRF) data and Pacific cod
stomach (Cod) data, or (c) EBSBT, BSFRF, and Cod data. Also shown in all panels is the total recruitment time series estimated
by the 2019 eastern Bering Sea snow crab assessment model (Szuwalski 2019).

resulting from the two models to retain the most plausi-
ble one according to experts’ opinion. We also recommend
that future research keep exploring the potential and perfor-
mance of the integrated modelling framework developed in
this study, particularly by running comparisons with simpler
integrated models, including a monitoring program catcha-
bility factor in lieu of the spatially varying catchability terms.
Finally, we encourage future applications of our integrated
modelling framework to seek to integrate research survey
data with commercial CPUE data, as well as to leverage more
predators as samplers in integrated models, which currently
constitute a fairly untapped data source in fisheries science
studies (Hatch and Sanger 1992; Ng et al. 2021).
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