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Abstract. 9 

Geographic convergence during migration influences the extent to which animal populations 10 

may experience carry-over effects across periods of the annual cycle. When most individuals of a 11 

population share geographic areas during a given period, carry-over effects are likely stronger 12 

than when individuals occupy multiple areas. We used genetic data and stable isotope (δ2

Key words.- Bottleneck, Catharus minimus, Colombia, deuterium, migratory connectivity, ND2, 31 

occupancy, South America, stable isotopes. 32 

H) 13 

measurements from feathers and claws to describe the likely breeding and wintering geographic 14 

origins of a long-distance migratory songbird (Gray-cheeked Thrush, Catharus minimus) moving 15 

through northern Colombia in spring and fall migration. Furthermore, we used these data 16 

coupled with regional occupancy surveys to assess whether individuals from various breeding 17 

populations converge during migration, and evaluated whether geographic origin, age, or sex 18 

affected stopover strategies. We found that range-wide breeding populations of Gray-cheeked 19 

Thrush converged in northern Colombia in an area spanning less than 1% of the breeding range, 20 

especially during a prolonged spring stopover in the Sierra Nevada de Santa Marta. Breeding 21 

(but not winter) origin, sex, and age, influenced arrival date and body condition upon arrival at 22 

stopover sites where populations converged. Birds from more northerly breeding latitudes, males 23 

and adults generally arrived earlier and in lower body condition than those with more southerly 24 

breeding origins, females and juveniles. Our work and other studies suggest that areas in 25 

northern Colombia may function as ecological bottlenecks for Gray-cheeked Thrush because 26 

they concentrate individuals from across the breeding range, provide critical resources, and 27 

impose constraints during migration. Future studies quantifying the effects of high-convergence 28 

areas on fitness and survival of individuals and their demographic consequences are required to 29 

assess their roles as ecological bottlenecks. 30 A
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 33 

Migratory animals show high geographic convergence when large proportions of populations 34 

concentrate in the same area during periods of their annual cycle (Iwamura et al. 2013). For 35 

example, geographical constraints may result in large numbers of individuals travelling through 36 

and stopping over in certain regions (e.g. small or narrow land masses, low mountain passes), or 37 

spatial variation in resource availability may force animals to concentrate in a few high-quality 38 

areas to fuel (Buehler and Piersma 2008, Bayly et al. 2017, Cohen et al. 2017). Within these 39 

restricted areas, which may be obligatory stopovers, there may be access to high-quality 40 

resources or safe flyways, but there may also be heightened competition, predation risk, or 41 

exposure to diseases (Buehler and Piersma 2008, Bauer et al. 2016). Therefore, opportunities and 42 

constraints at high-convergence areas may enhance positive or negative carry-over effects, 43 

significantly influencing individual fitness and population dynamics (Webster and Marra 2005, 44 

Boulet and Norris 2006, Betini et al. 2015, Cohen et al. 2018) 45 

 46 

In areas of high geographic convergence, spatial constraints may act simultaneously with 47 

temporal constraints. For instance, during spring migration, animals experience strong time 48 

constraints if they are to reach their breeding grounds on time to obtain the best territories and 49 

mates (Velmala et al. 2015). Yet, migrants must also invest sufficient time accumulating fuel at 50 

stopovers to safely reach their next destination (Hedenström and Alerstam 1997), not become so 51 

heavy that mass hinders their ability to avoid predators (Pomeroy 2006), and not arrive too early 52 

so as to risk starvation in potentially barren breeding areas (Piersma 2002, Alerstam 2011). 53 

Furthermore, because constraints may change over time in relation to food availability or 54 

climate, the timing of passage through a convergence area could be limiting for some 55 

populations but not for others depending on their migratory strategy (Bauer et al. 2016). Any 56 

change disrupting the delicate equilibrium of adaptations involved in migration (e.g. protection 57 

or degradation of a high-convergence area imposing multiple selection pressures on individuals) 58 

could therefore result in a significant boost or toll on survival through carry-over effects on 59 

arrival time to breeding grounds and breeding success (Buehler and Piersma 2008, Iwamura et al. 60 

2013, Piersma et al. 2016, Studds et al. 2017). Determining whether species show high 61 

geographic convergence in their annual cycle is thus an essential first step to identify potential 62 
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ecological bottlenecks for populations, and is central to understanding the ecology and guiding 63 

the conservation of migratory species. 64 

 65 

In birds, high convergence during migration is common among shorebirds (Rogers et al. 66 

2010, Iwamura et al. 2013, Piersma et al. 2016, Studds et al. 2017) and waterfowl (Drent et al. 67 

2007, Hübner et al. 2010), with major consequences for population dynamics via carry-over 68 

effects (Rogers et al. 2010, Iwamura et al. 2013, Piersma et al. 2016, Studds et al. 2017). For 69 

most songbirds, however, we lack information about the range-wide connectivity of populations 70 

(Faaborg et al. 2010, Cresswell 2014, O’Connor et al. 2014) and thus we know little about the 71 

extent to which periods of the annual cycle may represent bottlenecks resulting from high 72 

convergence in particular areas (Rodenhouse et al. 2003, Leyrer et al. 2013, Rockwell et al. 73 

2016, Bayly et al. 2017). Not only do we lack knowledge about geographic convergence, but 74 

also about the constraints that individuals face in areas of high convergence when they exist.  75 

 76 

Because the distance to be travelled and the time spent fueling largely determine the 77 

duration of migration in birds (Alerstam and Lindström 1990, Cohen et al. 2014, Schmaljohann 78 

and Eikenaar 2017), stopover behavior is intricately related to migratory ecology (Alerstam et al. 79 

2003, Alerstam 2011). Depending on total migration distance, the quality and availability of 80 

food, and the energy required to complete migratory flights, birds may attempt either long 81 

stopovers and extensive fueling followed by long flights, or short stopovers with minimal fuel 82 

replenishment followed by shorter flights (Tsipoura and Burger 1999, Buler et al. 2007, 83 

Seewagen et al. 2013). Therefore, individuals from different populations may show different 84 

stopover strategies when they converge in particular areas depending on breeding origin or 85 

wintering destination (Paxton and Moore 2017). Such differences may be temporal, if individuals 86 

from certain populations arrive or leave the stopover before others (Warnock et al. 2004, Bauer 87 

et al. 2016). Alternatively, differences in stopover strategy may have a physiological basis, such 88 

that individuals from different populations differ in body condition on arrival and in their 89 

subsequent fueling behavior (how fast and for how long they gain fuel during stopover) due to 90 

conditions experienced on their breeding or wintering grounds (Battley et al. 2012, Paxton and 91 

Moore 2017).  92 

 93 
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Fuel load on arrival (i.e. the stored energy possessed by birds on arrival at a stopover site) 94 

also likely influences the stopover strategy that individuals adopt (Weber and Houston 1997, 95 

Alerstam 2011). For instance, birds with low fuel on arrival have likely made longer flights and 96 

will require longer stopovers to prepare for the next leg of their journey (Alerstam 2011). 97 

Differences in stopover strategies may also exist between males and females or between adults 98 

and immature birds given that individuals of different sex or age may face dissimilar constraints 99 

or may use areas differing in quality during migration (Cooper et al. 2009, 2011).  100 

 101 

We used an integrative approach to examine geographic convergence of populations 102 

across the annual cycle of the Gray-cheeked Thrush (Catharus minimus), a Nearctic-Neotropical 103 

long-distance migratory songbird in which at least some populations have declined precipitously. 104 

Populations of the western breeding subspecies C. m. aliciae appear stable whereas populations 105 

of the eastern subspecies C. m. minimus have shown recent, drastic declines (Whitaker et al. 106 

2015, FitzGerald 2017, FitzGerald et al. 2017). We combined regional estimates of occupancy 107 

rates based on field surveys with genetic and stable-isotope (δ2

Methods 117 

H) analyses of tissue samples 108 

collected at spring and fall stopover sites in northern Colombia to determine the extent of 109 

geographic convergence at previously identified stopover sites (Bayly et al. 2013, Gomez et al. 110 

2013), and to test the hypothesis that birds may adopt different stopover strategies depending on 111 

their breeding origin and wintering destinations. As with other recent studies unraveling 112 

connections among populations of migratory species (e.g. Norris et al., 2006; Rushing et al., 113 

2013; Stanley et al., 2014; Hostetler et al., 2015), we used stable isotopes and genes to infer 114 

breeding and wintering origins of individuals and then examined potential links between such 115 

origins and the stopover behavior of birds. 116 

Study system.- Gray-cheeked Thrush breed in high-latitude taiga and tundra from eastern Siberia 118 

to Newfoundland in Canada (Lowther et al. 2001, FitzGerald 2017). Subspecies C. m. minimus 119 

breeds in Newfoundland and southeastern Labrador and is listed as threatened under the 120 

Newfoundland and Labrador Endangered Species Act because of precipitous population declines 121 

in recent decades (SSAC 2010, Environment Canada 2014, Whitaker et al. 2015, FitzGerald et 122 

al. 2017). In contrast, C. m. aliciae breeds from Siberia across North America to central Labrador 123 
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and is not known to be declining. Gray-cheeked Thrush follow a loop migration, entering South 124 

America in the fall mainly via the Isthmus of Panama and the Darién region in the north west, 125 

and leaving South America in the spring by crossing the Caribbean Sea from the Sierra Nevada 126 

de Santa Marta (Bayly et al. 2013, Gómez et al. 2013, 2014, 2017). Evidence exists for multi-day 127 

stopovers in both regions and energy accumulated at spring stopovers in northern Colombia fuels 128 

flights in excess of 3000 km (Bayly et al. 2013, Gómez et al. 2017). The winter range of the 129 

species is poorly known, but most available records show birds wintering mainly in Amazonia 130 

and in the northern Andes (Lowther et al. 2001, eBird 2014, Ungvari-Martin et al. 2016).  131 

Furthermore, during 10 years of research along the length of the northern coast of Colombia, we 132 

have not had any records of wintering Gray-cheeked Thrush in that region. However, a recent 133 

tracking study suggests some individuals from Newfoundland spent the winter in northern 134 

Colombia, probably at very low densities (Whitaker et al. in press). There is low but significant 135 

mitochondrial DNA differentiation between subspecies (Topp et al. 2013, FitzGerald et al. 136 

2017), but there is no information regarding potential differences between them in migratory 137 

routes, wintering, or stopover areas. 138 

Fieldwork and sample collection. - We captured several Gray-cheeked Thrush during fall 139 

migration (September – October 2014 and 2015, n = 499) in the Darién region near the 140 

Colombia-Panama border (Reserva Natural Tacarcuna, 08°39′44″N, 77°21′48″W) and during 141 

spring migration (April – May 2015 and 2016, n = 877) in the Sierra Nevada de Santa Marta, 142 

northern Colombia (Hacienda La Victoria, 11°7′19.84″N, 74°5′34.14″W). All birds were banded 143 

and aged according to plumage characteristics as either adult or immature (Pyle 1997, Johnson et 144 

al. 2011). We also measured the wing chord (± 1 mm) and body mass (± 0.1 g) of each 145 

individual to assess body condition. 146 

We used values of stable-hydrogen isotope analyses (δ2H) from feathers and claws to 147 

infer the breeding and wintering origins of birds migrating through northern Colombia. During 148 

spring migration, we clipped the distal ends (~ 1 cm) of the first primary feather (P1) and 149 

(~2mm) of both hallux claws from a subset of captured individuals (n = 326). Because P1 is the 150 

first feather to be molted by adult Gray-cheeked Thrush during the pre-basic molt after the 151 

breeding season (Pyle 1997), it contains the isotopic signature most representative of the 152 

breeding grounds in North America (Hobson et al. 2014). Bird claws grow continuously and tips 153 
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contain the combined isotopic information of the previous 2-4 months pre-capture (Hahn et al. 154 

2014); the claw samples from Gray-cheeked Thrush captured during spring migration were 155 

therefore expected to contain the isotopic signature of the wintering grounds occupied prior to 156 

migration. All isotopic data are available through Dryad (doi:10.5061/dryad.7hk6523). 157 

During both migration periods we also collected ~20 μl of blood from the brachial vein of 158 

birds and stored samples on filter paper prior to genetic analyses (see below). Because Gray-159 

cheeked Thrush cannot be reliably sexed in the hand outside of the breeding period, blood 160 

samples were also used for molecular sex determination (Griffiths et al., 1998; see Appendix S1: 161 

Supplementary Methods for details). 162 

Occupancy surveys during spring and fall migration.-  A first step to evaluate whether a region 163 

represents a high-convergence area is to determine whether most individuals concentrate in 164 

restricted geographic areas or if they are widely spread across the landscape. To examine this, we 165 

carried out repeated surveys for Gray-cheeked Thrush across northern Colombia during the 166 

spring and fall migrations of 2016. Repeated surveys (>4 per transect) were carried out every 10 167 

days during two months in 200 transects, each 100 m long, spread across 17 sites spanning c.700 168 

km from east to west (Fig. 1), for a total effort of 400 person/hours. We analyzed survey data in a 169 

dynamic occupancy modelling framework (Fiske and Chandler 2011, Guillera-Arroita 2017) 170 

allowing us to estimate the probability of occurrence of Gray-cheeked Thrush throughout the 171 

region and to examine the influence of variables such as vegetation cover, precipitation and 172 

elevation on the detectability and occupancy rate of the species during both migration seasons. 173 

Detailed methods of data collection and occupancy modelling are described in Appendix S1. 174 

Linking birds from the breeding range and stopover areas using genetics.- To infer 175 

connectivity of Gray-cheeked Thrush populations, we assessed the genetic similarity of birds 176 

captured during migration in northern Colombia with individuals from known breeding 177 

populations in North America. We compared sequences of the NADH dehydrogenase subunit 2 178 

(ND2) gene obtained for 150 individuals captured at our field sites in Colombia with published 179 

sequences from breeding areas in Siberia (n = 3), Alaska (n = 7), Quebec (n = 3), southern 180 

Labrador (n = 12), western Labrador (n = 11), and Newfoundland (n = 39; FitzGerald et al. 2017; 181 

see Appendix S1: Supplementary Methods and Table S1). Sequences were aligned using 182 

Geneious version R7.1 (Kearse et al. 2012) and polymorphisms confirmed from the 183 
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chromatograms. We used two complementary methods to characterize genetic differences 184 

between populations. Haplotype networks and pairwise population comparisons were used to 185 

assess variation along the entire ND2 sequence (Bandelt et al. 1999), while presence of private 186 

alleles was used to identify variation in unique positions among populations (Kekkonen et al. 187 

2011).  188 

We used POPART (Leigh and Bryant 2015) to estimate a minimum spanning network 189 

depicting relationships among haplotypes (Bandelt et al. 1999). In addition, we used estimates of 190 

pairwise population differentiation (φst

Assigning individuals to breeding and wintering grounds with stable-isotope analysis of 210 

feathers and claws.- Stable-isotope analyses were carried out at the Stable Isotope Laboratory of 211 

Environment and Climate Change Canada, Saskatoon, Canada. Feathers and claws were cleaned 212 

of external oils and debris before analysis using a 2:1 chloroform:methanol soak and rinse. 213 

) calculated using the Kimura 2P substitution model 191 

(identified as the best fit to the data; FitzGerald et al. 2017) with 1000 permutations of the 192 

haplotype matrix in Arlequin v. 3.5 (Excoffier et al. 2005), to evaluate similarities between 193 

breeding regions (Newfoundland/southern Labrador [subspecies C. m. minimus], western 194 

Labrador/Quebec [subspecies C. m. aliciae], Alaska/Siberia [subspecies C. m .aliciae]) and 195 

stopover locations (Darién [fall] and Sierra Nevada de Santa Marta [spring]). We evaluated 196 

whether the genetic composition of birds captured in Colombia differed by year or migration 197 

period by employing a hierarchical analysis of molecular variance (AMOVA) to assess how 198 

much genetic variation was attributed to stopover groupings (i.e. spring vs. fall and 2014 vs. 199 

2015) from 20,000 permutations of the dataset. We also estimated allelic frequencies, identified 200 

parsimony-informative alleles, and calculated the number of geographic regions in the breeding 201 

range where alleles occurred. We then examined whether individuals captured in Colombia 202 

shared any private alleles (i.e. those found only in 1-2 breeding regions) with birds of known 203 

breeding origin. An assumption of this method is that a random sample of individuals from a 204 

population will be roughly representative of the frequency of alleles present in that population 205 

(Kekkonen et al. 2011). If most members of a population share a private allele, then it should 206 

likely be detected even with relatively small sample sizes. Sharing of private alleles between 207 

birds captured in Colombia and the breeding range was therefore taken as an indication of 208 

linkage between populations (Kekkonen et al. 2011). 209 
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Measurements of δ2H in feather (δ2Hf) and claw (δ2Hc) were obtained through continuous-flow 214 

isotope-ratio mass spectrometry (CF-IRMS) following the ‘comparative equilibration’ method 215 

which uses calibrated keratin reference materials to correct for exchangeable hydrogen using the 216 

keratin standards CBS (-197 ‰) and KHS (-54 ‰; Wassenaar and Hobson 2003). We report δ2

Employing data on species abundance in space and potential distribution models as 221 

geographic priors may improve geographic assignments based on stable isotopes (Chabot et al. 222 

2012, Fournier et al. 2017, Rushing et al. 2017b). For species like the Gray-cheeked Thrush, 223 

which breed and winter in remote locations seldom visited by people, there is considerable 224 

uncertainty about true distribution ranges and more so about patterns of spatial abundance. We 225 

therefore combined tissue δ

H 217 

values in standard delta (δ) notation, in parts per thousand (‰) relative to Vienna Standard Mean 218 

Ocean Water (VSMOW). Based on within-run replicates (n=6) of calibration standards, we 219 

estimate analytical error to be of the order of ±2 ‰. 220 

2H data with a ‘spatiotemporal exploratory model’ (STEM; Fink et 226 

al., 2010) showing relative abundance of Gray-cheeked Thrush during the breeding period based 227 

on field observations and, separately with a season-specific (breeding and winter) species 228 

distribution model (SDM) generated from field records and climatic variables (FitzGerald 2017, 229 

Fournier et al. 2017). Abundance and probability of occurrence estimated by distribution models 230 

are usually correlated and considered good proxies for predicting species presence (Weber et al. 231 

2016). We evaluated the similarity between geographic assignments based on STEM and SDM 232 

priors by estimating the spatial correlation between them. Methods for the construction of the 233 

STEM and SDM models are in the Appendix S1. We also present assignments based only on δ2

Surfaces of likely origin based on stable isotopes.- Isotopic data were used to derive δ

H 234 

values to assess any biases derived from the priors (Rushing et al. 2017b). 235 

2Hf  and 236 

δ2Hc isoscapes based on δ2Hp during the growing season (Bowen et al. 2005), and a calibration 237 

equation estimated for feathers of ground-foraging Neotropical migrants (Hobson et al. 2012): 238 �2�� = 27.09 + 0.95 ��2���. Prior to modeling, we removed outliers with δ2H values more 239 

than three standard deviations from the mean (feathers = 3, claws = 2; Chabot et al., 2012). Claw 240 

δ2H values are closely correlated with feather values but they require a slightly different 241 

conversion factor varying by age (Hobson, unpubl. data). Therefore, to generate the claw 242 

isoscape we first expressed δ2Hc values in terms of equivalent expected δ2Hf  values using age-243 
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specific claw-to-feather conversion equations derived for Catharus thrushes: for immature birds 244 

SY: �2�� = −15.7 + 0.94 (�2��), and for adults ASY: �2�� = 24.1 + 1.3 (�2��) (Hobson, 245 

unpubl. data). In addition, we needed to account for the fact that the winter of 2015/2016 246 

coincided with one of the strongest El Niño events ever recorded (Jiménez-Muñoz et al. 2016). 247 

This event produced anomalous droughts in the Amazon, where Gray-cheeked Thrush are 248 

expected to winter, giving rise to δ2H values enriched by ~16‰ above the long-term average 249 

(Srygley et al. 2010, Brienen et al. 2012, Jiménez-Muñoz et al. 2016). To use our data with the 250 

available long-term δ2Hp isoscape for the Amazon region (Bowen et al. 2005) while correcting 251 

for the effect of El Niño in 2015, we subtracted 16‰ from our measured δ2Hc

The probability of each individual originating from any given ~ 1 km

 values before 252 

undertaking spatial assignments.  253 

2 cell on the 254 

breeding or wintering grounds was estimated based on a normal probability density function: 255 �(�∗|�� ,�) =  
1√2�σ ��� �− 12�2 (�∗ − ��)2�, where f(y*|μ i , σ) is the likelihood that an individual 256 

with feather isotopic values δ2Hf = y* originated from cell i. μ i  is the predicted δ2Hf value for cell 257 

i, and σ is the standard deviation of the δ2Hf  values within a breeding or wintering site, which 258 

was set at 10.8‰ (Hobson et al. 2012). Likelihood values were transformed into a probability 259 

surface by dividing each likelihood by the total sum of likelihoods (Hobson et al. 2012). A cutoff 260 

of the upper 67% of the probability was defined as the likely area of origin for each individual 261 

(Hobson et al. 2012, Chabot et al. 2012) and cells with values equal to or above this cutoff were 262 

set a probability value of 1 (likely origin), whereas those with lower values were set to 0 263 

(unlikely origin). The 67% cutoff provides a good compromise between assignment precision 264 

and overestimation error (Hobson et al. 2012, Chabot et al. 2012). Finally, using Bayes rule, 265 �(�|�) =
�(�|�)�(�)∑ �(�|�)�(�)�� , we estimated the posterior probability f(b|y) that any 1 km2 cell on the 266 

map represented the origin of a bird, given f(b), the prior probability of occurrence based on the 267 

abundance (STEM) or the distribution model (SDM), and f(y|b), the likelihood of the δ2

Assessing the influence of breeding and wintering origins on stopover strategies.- To evaluate 271 

whether stopover strategies of Gray-cheeked Thrushes were related to breeding or wintering 272 

H 268 

assignment surface (Chabot et al. 2012, Fournier et al. 2017). We finally overlaid the likely 269 

origins of all birds and obtained a cumulative surface for all the individuals in our sample. 270 A
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origin, we examined how fuel load on arrival to the stopover site varied as a function of date of 273 

arrival, breeding or winter origin isotopic values (δ2Hf  and δ2Hc

Results 286 

), age, and sex. We estimated 274 

fuel load on arrival as the mass (g) above lean body mass (LBM) of each individual on its first 275 

capture: ���� ���� �� ������� = ���� �� ����� ������� − ���.  Lean body mass was 276 

estimated by regressing wing chords and body masses of all captured individuals with a fat score 277 

of 0 (n = 135), which resulted in the equation ��� = 0.33 ×  ���� �����ℎ − 4.63 (Gómez et 278 

al. 2017). We used AIC values (Burnham and Anderson 2002) to evaluate 15 candidate models 279 

plus a null model in which none of the independent variables influenced fuel load on arrival 280 

(Table 1). To evaluate whether observed differences in breeding and wintering origin between 281 

age and sex classes were significant, we carried out randomization tests, where the observed 282 

difference in means between each group (males vs. females or adults vs. immatures) was 283 

compared to a random distribution of 999 differences of equivalent datasets selected regardless 284 

of age or sex.  285 

Occupancy rates during spring and fall migration.- Occupancy surveys resulted in 159 and 264 287 

presence records of Gray-cheeked Thrush during fall and spring migration, respectively, across 288 

the 17 sites sampled along the Caribbean coast of Colombia. Spatial predictions of occupancy 289 

rates of Gray-cheeked Thrush during spring and fall migration revealed marked concentrations of 290 

individuals in the Darién region during fall (sum of area of grid cells with occupancy ≥ 0.5 = 291 

80,045 km2, Fig. 1A) and on the northern and western slopes of the Sierra Nevada de Santa 292 

Marta in spring (12,963 km2, Fig. 1B), with intermediate areas showing very low probabilities of 293 

occupancy. These two areas span only 5% and 0.8%, respectively, of areas occupied by Gray-294 

cheeked Thrush during the breeding season (1,587,463 km2, according to our isotopic 295 

assignments). During fall migration, occupancy increased towards the west, in areas with low-296 

mid elevations, high canopy cover and a dense understory (Appendix S1: Table S2A). During 297 

spring, occupancy was predicted to be highest in regions where intermediate levels of annual 298 

precipitation coincided with elevations below < 1700 m in northernmost Colombia, which 299 

largely correspond to the mountain slopes of the Sierra Nevada de Santa Marta (Appendix S1: 300 

Table S2B).  301 
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Linking birds from the breeding range and stopover areas using genetics.-We found no 302 

significant difference in the genetic composition of birds captured in Colombia between years 303 

(φst = 0.010, P = 0.073), with most of the genetic variation (96.6%) found within years (P = 304 

0.667). Very low but significant differentiation was found between migration seasons (i.e. fall vs. 305 

spring φst = 0.047, P < 0.001), yet most of the variation (94.8%) existed within seasons (P = 306 

0.330). ND2 φst

Geographic assignment through stable isotopes and geographic priors.- In agreement with the 324 

genetic data, geographic assignments based on δ

 pairwise population comparisons showed that most fall and spring birds in 307 

Colombia were more genetically similar to individuals from subspecies C. m. aliciae (breeding 308 

in Alaska/Siberia) than to C. m. minimus (Newfoundland/ S Labrador; Table 2). However, birds 309 

captured in Colombia shared at least some haplotypes with birds from throughout the breeding 310 

range (Fig. 2A). All Alaska haplotypes and most haplotypes from western Labrador and Quebec 311 

were found in Colombia. Conversely, fewer of Newfoundland/S Labrador haplotypes were found 312 

in Colombia. A large number of haplotypes found in birds captured in Colombia were not 313 

observed in any of the birds of known breeding origin (Fig. 2A), likely reflecting a lack of 314 

sampling in north-central Canada and low sample sizes in some of the other breeding areas. 315 

However, of those haplotypes shared among birds from Colombia and the breeding grounds, 316 

there were 24 informative sites and 14 of these corresponded to private alleles restricted to 317 

individuals from only one or two of the sampled breeding populations. Furthermore, 119 out of 318 

150 individuals from Colombia had alleles private to birds from all 6 breeding regions; out of 319 

these, 8 individuals had alleles private to breeding sites in Newfoundland and southern Labrador 320 

(Fig. 2B). Overall, this suggests that although most birds sampled in Colombia were more 321 

genetically similar to birds from the western subspecies C. m. aliciae, individuals from most 322 

breeding regions and both subspecies likely converged in Colombia.  323 

2H values and distribution and abundance 325 

models suggested that Gray-cheeked Thrush migrating through northern Colombia likely 326 

originated from multiple breeding populations (Fig. 3). Geographic assignment of breeding 327 

origin using the STEM model as a prior showed a 60% correlation with that based on the species 328 

distribution model (SDM), suggesting relatively close agreement between predictions 329 

considering geographic variation in abundance and habitat suitability (Weber et al. 2016). The 330 

two models predicted high numbers of individuals originating from Alaska and north-central 331 

Canada, but the STEM model did not predict as many as the SDM from the eastern extreme of 332 
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the breeding range. Given the agreement between models, we present only the assignments based 333 

on the SDM because they were available for both the breeding and the winter periods. 334 

Geographic assignments to breeding areas based solely on isotopes predicted a high probability 335 

of origin from three main regions: (1) Alaska, (2) an area bordering Hudson Bay in the provinces 336 

of Nunavut and Manitoba, and (3) northern Quebec and Labrador (Appendix S1: Fig. S1).  337 

Similarly, isotopic analyses predicted individuals originating from a wide range of 338 

wintering locations mostly concentrated in northern Amazonia including portions of Ecuador, 339 

Peru, Colombia, Venezuela, and Brazil . A smaller proportion of birds were also predicted to 340 

have wintered at mid-elevations in the Andes of Colombia (Fig. 3).  341 

Effect of date, age, sex and geographic origin, on stopover strategies.- We found no spatial 342 

differences in the inferred breeding or winter origin between adult and immature birds stopping 343 

over in northern Colombia (97% and 100% Pearson correlation of breeding and winter surfaces, 344 

respectively). However, adults had significantly higher δ2Hf  values compared to immature birds 345 

(Appendix S1: Fig. S2, P = 0.02), suggesting a slightly more southerly breeding/molting origin 346 

compared to immature birds. Adults also showed slightly lower values of δ2Hc than immature 347 

birds (Appendix S1: Fig. S2, P = 0.03). There were no obvious differences in breeding or 348 

wintering origin between sexes (97% and 98% Pearson correlation of breeding and wintering 349 

surfaces, respectively) although females showed slightly higher values of δ2Hf  than males 350 

(Appendix S1: Fig. S3, P = 0.06), and both sexes showed equivalent winter ranges and values of 351 

δ2Hc

 Date of arrival at the spring stopover site in Colombia varied as a function of breeding 353 

but not winter origin (Fig. 4A-B. β

 (Appendix S1: Fig. S3, P = 0.12). 352 

breeding = 0.16 ± 0.03, P <0.001; βwinter

Two candidate models explained 84% of the variation in fuel load on arrival at the spring 360 

stopover site. Contributing variables included date of arrival, breeding origin, sex, and an 361 

interaction between sex and breeding origin (Table 1). Both males and females arriving earlier 362 

 = -0.05 ± 0.04, P = 354 

0.22), with birds that bred at more northerly latitudes arriving ~10 days earlier on average. 355 

Additionally, males arrived in Colombia significantly earlier than females (~5-10 days), during 356 

both spring (Fig. 4C, P = 0.001) and fall migration (Fig. 4D, P = 0.01); similarly, adults arrived 357 

in northern Colombia significantly earlier than immature birds during both migration periods 358 

(Figs 4E-F, Spring: P = 0.003; Fall: P < 0.001).  359 A
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did so in lower body condition than birds arriving later in the season (Fig 5A, βmale = 0.26 ± 0.02, 363 

P < 0.001; βfemale = 0.21 ± 0.03, P < 0.001). In addition, males with lower δ2Hf  values (i.e. those 364 

with more northerly breeding origin) arrived earlier and in lower body condition than those from 365 

more southerly origins (Fig 5B, βmales = 0.09 ± 0.04, P = 0.02). This association between 366 

breeding origin on fuel loads was not significant for females (Fig 4B, βfemales

Discussion 369 

 = -0.03 ± 0.06, P = 367 

0.56) and, if anything, showed the opposite tendency than that observed in males.     368 

Our occupancy surveys, genetic comparisons, and stable-isotope analyses suggest that Gray-370 

cheeked Thrush from across the breeding and wintering range funnel through two regions of 371 

northern Colombia during migration: the Darién in the fall and the Sierra Nevada de Santa Marta 372 

in the spring. Geographic convergence is particularly strong in spring, when individuals from 373 

most of the breeding range appear to stopover exclusively in the Sierra Nevada de Santa Marta 374 

prior to undertaking non-stop flights (>2500 km) across the Caribbean Sea and Gulf of Mexico 375 

(Fig. 1; Bayly et al. 2013, Gómez et al. 2017). Regions occupied in northern Colombia during 376 

fall and spring had areas equivalent to only 5% and 0.8%, respectively, of the area used during 377 

the breeding season, highlighting the extreme degree of convergence.  378 

 379 

Based on the above results, we hypothesize that the high-convergence area in the Sierra 380 

Nevada de Santa Marta likely functions as an ecological bottleneck for populations of the Gray-381 

cheeked Thrush. Given that fat gained in the region may fuel 40% of total migration distance 382 

covered by Gray-cheeked Thrush (Bayly et al. 2013) and that events at this spring stopover site 383 

carry-over to influence the pace of migration and potentially breeding success (Gómez et al. 384 

2017), it is likely that there are fitness and survival consequences associated to a successful 385 

spring stopover in northern Colombia (Bayly et al. 2012, 2013, Gómez et al. 2017). Future 386 

research should verify whether this is the case for Gray-cheeked Thrushes as well as other 387 

migratory species. 388 

 389 

Because our work and other studies (e.g. González-Prieto et al., 2011; Fraser et al., 2013) 390 

suggest that stopover regions where range-wide populations converge have the potential to 391 
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function as ecological bottlenecks, a priority for the conservation of populations of migrants 392 

worldwide would be to identify and protect such areas. Most studies on migratory connectivity to 393 

date have addressed connections between the breeding and wintering grounds (e.g. Rushing et 394 

al., 2013; Hobson et al., 2014; Fraser et al., 2017), and a recent meta-analysis suggested that low 395 

migratory connectivity between breeding and wintering populations is common among long-396 

distance migrants (Finch et al. 2017). Fewer studies have examined connectivity during 397 

migration (e.g. Hübner et al., 2010; Laughlin et al., 2013; Andueza et al., 2014; Stanley et al., 398 

2014), but these studies consistently found high convergence of populations, particularly at 399 

stopover sites before barriers or at obligatory flyways within narrow land masses (Buehler and 400 

Piersma 2008, Fort et al. 2009, Piersma et al. 2016). Furthermore, for a few songbird species, 401 

mortality rates are known to be higher during migration than any other phase of the annual cycle 402 

(Sillett and Holmes 2002, Rockwell et al. 2016, Paxton et al. 2017, Rushing et al. 2017a). This, 403 

combined with the recent finding that multi-day stopovers occur in just a few key regions in 404 

many species (Bonter et al. 2009, Stanley et al. 2014), means that migration is probably the most 405 

vulnerable period in the annual cycle across a range of taxa (Faaborg et al. 2010). Therefore, 406 

more research effort should be directed to identify convergence areas during migration and 407 

assess their demographic effects on the populations of migrants worldwide. 408 

 409 

A question arising from our study is whether differences in population declines between 410 

C. m. aliciae and the endangered C. m. minimus may be connected with events taking place in 411 

the high-convergence area we identified. Given that most variation in δ2Hf values in the Northern 412 

Hemisphere is described by latitude, breeding origin isotopic assignments based on hydrogen 413 

have low longitudinal precision (Hobson et al. 2012). It is therefore difficult to discriminate with 414 

certainty individuals originating from eastern and western populations in northern North 415 

America based solely on δ2Hf  values (Appendix S1: Fig. S2, but see Cárdenas-Ortiz et al., 2017). 416 

However, by combining isotopic assignments with genetic information, we confirmed that birds 417 

captured in northern Colombia have likely origins from across the breeding range of the Gray-418 

cheeked Thrush, with most individuals probably belonging to populations of C. m. aliciae. The 419 

apparently lower proportion of C. m. minimus in our samples may reflect either a differential 420 

migratory strategy between subspecies, that the range of C. m. minimus is smaller, or that there 421 
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are fewer C. m. minimus due to population declines (Whitaker et al. 2015, FitzGerald et al. 422 

2017). Spatial or temporal differences in migratory strategy between populations may determine 423 

whether a high-convergence site is also a bottleneck for some or all populations (Iwamura et al. 424 

2013, Bauer et al. 2016). Tracking of individuals from different subspecies and using genomics 425 

to more finely characterize population structure and hence map geographic origins with greater 426 

resolution, are promising avenues of research to start testing these hypotheses.  427 

Differences in population dynamics may not be related to events occurring on migration 428 

but instead depend more on conditions experienced during the winter (Wilson et al. 2011, 2018, 429 

Rockwell et al. 2016). We found that breeding but not winter (isotopic) origin influenced the 430 

spring migratory strategies of individuals: birds that bred further north migrated earlier and 431 

arrived at the spring stopover site in poorer body condition than those from more southern 432 

breeding origins. This may reflect chain migration, a pattern where migration occurs in a 433 

latitudinal sequence between populations (Lundberg and Alerstam 1986, Kelly 2006, González-434 

Prieto et al. 2011). However, because the isotopic uniformity of Amazonia limits the resolution 435 

with which latitudinal patterns can be detected in that region (Bowen et al. 2005), we could not 436 

determine whether northern breeding populations indeed winter in more northerly regions. 437 

Although our results did not show an effect of winter origin, we cannot rule out that it exists. 438 

Other studies have consistently shown that winter habitat use has significant carry-over effects 439 

on breeding success by affecting behavior during migration and date of arrival to the breeding 440 

grounds (Marra and Holmes 2001, Norris et al. 2004, Norris and Marra 2007, McKinnon et al. 441 

2015). Furthermore, given that we only made inferences of likely geographic origin and not of 442 

variation in winter habitat quality, we cannot rule out that winter habitat may affect individual 443 

performance during stopover in Gray-cheeked Thrush.  444 

 445 

 We also documented differences in migration timing between age classes, with adult 446 

thrushes migrating earlier than immatures during both fall and spring. Moreover, adults had less 447 

negative breeding ground values of δ2Hf  than immature birds, suggesting that age classes have 448 

either different hydrogen isotope precipitation-to-feather discrimination factors (Hobson and 449 

Clark 1992, Rushing et al. 2013) or that Gray-cheeked Thrush exhibit a molt-migration whereby 450 

adults disperse from their breeding sites prior to molting – a pattern primarily known for 451 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

migratory birds from western North America (Rohwer et al. 2005). Differences between age 452 

classes in migration phenology have been linked to individual experience because adults may 453 

navigate more accurately (Mitchell et al. 2015), fuel up faster (Yong and Moore 1994), make 454 

fewer stopovers along the way, or take riskier routes (McKinnon et al. 2014, Dossman et al. 455 

2016) than first-year birds. Alternatively, first-year birds may migrate more slowly because they 456 

do not benefit from early arrival to the breeding grounds to the same extent as adults (Stewart et 457 

al. 2002, Cooper et al. 2009). Even if young birds arrive early they are likely to be outcompeted 458 

by adults and still face the perils of variable climatic conditions and increased risk from agonistic 459 

interactions with adults early in the season (Cooper et al. 2009). A recent study on Gray-cheeked 460 

Thrush found no effect of age on fueling rates (Gómez et al. 2017), but more study is needed to 461 

evaluate age differences in navigation skills or route use in this species. 462 

We found differences in migration phenology between sexes, with males migrating 463 

earlier than females in the spring. Such differences in other species have been attributed to a 464 

stronger selection pressure acting on males to arrive earlier than females to the breeding grounds 465 

(Kokko et al. 2006, Cooper et al. 2009, 2011, Coppack and Pulido 2009, Schmaljohann et al. 466 

2015), such that males that migrate faster arrive earlier and therefore settle in better territories 467 

and get the best mates. The ‘mate opportunity hypothesis’ posits that early arrival improves the 468 

probability of mate acquisition for males more so than for females, given that most females will 469 

breed regardless of arrival date, whereas late-arriving males will likely fail to breed in a given 470 

year (Kokko et al. 2006, Cooper et al. 2009, 2011).

Overall, our study emphasizes the importance of northern Colombia and particularly of 477 

the Sierra Nevada de Santa Marta for Gray-cheeked Thrush during migration given that 478 

individuals from throughout the breeding range converge there during a critical period of the 479 

annual cycle. Furthermore, we showed how breeding geographic origin, age and sex influence 480 

the migratory strategies of individual Gray-cheeked Thrush during stopover. Verifying whether 481 

 More study is needed to evaluate sex ratios of 471 

Gray-cheeked Thrush on the breeding grounds as well as the strength of sexual selection to see 472 

whether this hypothesis is a plausible explanation for our observations. Segregation of sexes by 473 

latitude on the winter grounds may also contribute to protandry, when males winter closer to the 474 

breeding grounds (Woodworth et al. 2016), yet we did not detect any geographical differences in 475 

wintering origin between sexes.  476 
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this high geographic convergence area functions as an ecological bottleneck for Gray-cheeked 482 

Thrush populations and potentially other species, should be a research priority (Bayly et al. 2014, 483 

Gómez et al. 2015). We thus highlight the need to identify and study other high-convergence 484 

regions for migratory songbirds and to quantify their impact on fitness and survival. In areas of 485 

high geographic convergence the effects of habitat loss or change may be magnified, potentially 486 

making a large contribution to the pronounced population declines recorded in many Neotropical 487 

migrants (Robbins et al. 1989, Sauer et al. 2013), or indeed, to the reversal of such long term 488 

declines in the future. 489 
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 848 

Tables. 

Table 1. Fuel load on arrival of Gray-cheeked Thrush at a spring stopover site in northern 

Colombia varied as a function of date of arrival, breeding origin (δ2

Model 

H values of feathers), and 

sex. The first two models were equally likely and overall explained 84% of the variation in fuel 

on arrival. Models including age did not rank among the top two. 

AICc ΔAICc wi 

Fuel ~ Date + δ2H feather + δ2 357.57 H feather:Sex 0.00 0.54 

Fuel ~ Date + δ2 358.73 H feather + Sex 1.16 0.30 

Fuel ~ Date + δ2 361.04 H feather + Sex + Age 3.47 0.09 

Fuel ~ Date + δ2H feather + δ2H feather:Sex + δ2 361.70 H feather:Age 4.12 0.07 

Fuel ~ δ2 378.30 H feather + Sex 20.73 0.00 

Fuel ~ δ2 380.37 H feather + Sex + Age 22.80 0.00 

Fuel ~ Date + δ2 1636.68 H feather  1279.11 0.00 

Fuel ~ Date + δ2H feather + δ2 1640.52 H feather:Age 1282.95 0.00 

Fuel ~ δ2 1714.82 H feather  1357.25 0.00 

Fuel ~ Date + Sex 2898.49 2540.92 0.00 

Fuel ~ Sex + Age 3015.04 2657.46 0.00 

Fuel ~ Sex 3022.43 2664.86 0.00 

Fuel ~ Date + Age 8772.38 8414.81 0.00 

Fuel ~ Date 8821.76 8464.19 0.00 

Fuel ~ Age 9060.65 8703.08 0.00 
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Fuel ~ 1 9109.30 8751.72 0.00 

 

Table 2. Pairwise φst

 

 comparisons between breeding populations and stopover localities, based 

on mitochondrial ND2. Note that birds from ‘Newfoundland/s. Labrador’ are all designated C. 

m. minimus whereas birds from ‘w. Labrador/Quebec’ and ‘Alaska/Siberia’ are of subspecies C. 

m. aliciae.  Significance (p < 0.05) is denoted with *. 

 

Fall 

stopover 

Spring 

stopover 

Newfoundland/ 

s. Labrador 

w. Labrador/ 

Quebec 

Alaska/ 

Siberia 

 Fall stopover - 

 Spring stopover 0.047* - 

   

C
.m

.m
in

im
u

s 

Newfoundland/ 

s. Labrador 0.384* 0.330* - 

  

C
.m

.a
lic

ia
e  

  
  
  
  
  
  
 

w. Labrador / 

Quebec 0.381* 0.327* 0.293* - 

Alaska / Siberia 0.072* 0.066* 0.301* 0.319* - 

 

 

Figure Legends 

Figure 1. Occupancy surveys carried out at 17 sites (black dots on maps) across the northern 

coast of Colombia were used to predict probability of occurrence of Gray-cheeked Thrush during 

fall and spring migration. The dashed lines show the area to which occupancy predictions were 

limited (see suppl. material for details). High occupancy rates in the Darién in the fall (A) and in 

the Sierra Nevada de Santa Marta in the spring (B), suggest a funneling effect where most Gray-

cheeked Thrush entering and leaving South America concentrate in these two regions during 

migration.  
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Figure 2. A. Low population structure of ND2 among populations of Gray-cheeked Thrush was 

found, however, birds captured in Colombia (n = 150) shared haplotypes with individuals from 

throughout the breeding range. The number of individuals sampled from each breeding region 

are shown on the map, as well as the subspecies to which each population belongs. The dashed 

line shows the approximate geographic division between subspecies breeding ranges. B. 14 out 

of 24 informative sites within the Gray-cheeked Thrush ND2, were private alleles restricted to 

individuals from one or two breeding populations. Birds captured in Colombia shared private 

alleles with all of the sampled breeding regions.    

Figure 3A. Temporally explicit breeding and wintering distribution models of the Gray-cheeked 

Thrush based on monthly climatic variables and presence records. Surfaces reflect the 

probability of presence based on a maximum entropy algorithm. B. Likely breeding and 

wintering geographic origins of Gray-cheeked Thrush captured during spring migration in 

northern Colombia based on a species distribution model and on δ2

Figure 4. There was a significant effect of breeding origin (δ

H values of feathers 

(breeding) and claws (winter). In agreement with genetic data, our assignment suggests that 

range-wide populations of Gray-cheeked Thrush converge in northern Colombia during 

stopover. Colored surfaces represent the sum of the upper 67% likelihood probability (2:1 odds) 

of origin for each bird.   

2Hf  values) (A) but not of winter 

origin (δ2Hc

Figure 5. Fuel load on arrival to a spring stopover site for Gray-cheeked Thrush varied as a 

function of date, breeding origin and sex. A. Both males and females captured earlier in the 

season were in poorer body condition than those that arrived later. B. There was no difference in 

fuel on arrival between females of different breeding origins but males from more northerly 

breeding origin (more negative δ

 values) (B) on date of arrival of Gray-cheeked Thrush to the spring stopover in 

northern Colombia. Males arrived significantly earlier than females both to the spring (C) and 

fall (D) stopover sites, and adults arrived significantly earlier than immature birds during spring 

(E) and especially during fall (F). 

2Hf  values) arrived with lower fuel stores than those from more 

southerly breeding origins.  
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