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Abstract.

Geographie convergence during migration influences the extent to aitialpopulations
may experience cargver effects acrogseriods of the annual cycle. Whemostindividuals of a
population share geographic areas during a given peaog:over effectsare likelystronger

than whensindividuals occupy multiple arease Wsel geneticdataand stable isotopeiH)

measuremenisom feathers and claws to describe the likely breeding and wintering geographic

origins of a longdistance migratorgongbird Gray-cheeked ThrusiCatharusminimug moving
through northern Colombia in spring and faigration Furthermore, weised these data
coupled with regional occupancy surveyassess whethardividualsfrom various breeding
populatienssconverge during migration, avdluatel whether geographic origin, age, or sex
affectedstopover strategie¥Ve found that range-wide breeding populations of Greeked
Thrush ‘converged in northern Colomimaan areapanning less than 1% of the breeding range,
especially_during prolongedpringstopoveiin the Sierra Nevada de Santa MaBeeeding
(but not winter)origin, sex, and age, influenced arrival date and body condipon arrivalat
stopover sites where populations converdgais from more northerly breeding latitudesales
and adultgenerallyarrived earlier and in lower body condition than thwgd more southerly
breeding.originsfemales and juvenile©ur work and other studissiggesthatareasn
northern“Colombianay functionasecologicabottleneck for Gray-cheeked Thrush because
theyconcentrate individuals frorcrosshe breeding range, providetical resourcesand
imposeconstraintsluring migration Future studies quantifying the efte®of high-convergence
areas on.fitness and survivalindividuals and their demographic consequemeesequired to

assess their roles as ecological bottlenecks.

Key words.- Bottleneck Catharus minimusColombia, deuterium, migratory connectivity, ND2,

occupancy, South Americatable isotopes.
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Migratory animalsshow high geographic convergence when large proportions of populations
concentrate in the same area during periods of their annual(byalaura et al. 2013}or
exampleggeographical constraints measult inlarge numbers of individuals tralieg through

and stopping oven certain regions (e.g. small or narrow land masses, low mountain passes), or
spatial variation‘in‘resource availability may foemeémalsto concentrate in a few high-quality

areas to fue{Buehler and Piersma 2008, Bayly et al. 2017, Cohen et al. 2017). Within these
restricted areas, which may be obligatory stopovkesemay beaccesgo high-quality

resoures orsafe flywaysuttheremay alsdbe heightened competition, predation risk, or
exposure fto diseas@Buehler and Piersma 2008, Bauer et al. 2016). Therefore, opportunities and
constraints_at higleonvergence areas may enhance positive or negativemaareffects,
significantly influencing individual fithess and population dynamics (WebstgiMarra 2005,

Boulet and"Norris 2006, Betini et al. 2015, Cohen et al. 2018)

In areas of high geographic convergenpatial constraintsnay actsimultaneously with
temporal constraint$or instance, dring spring migrationanimals experience strong time
constraints if'they are to reach their breeding grounds ontdioigtain the best territories and
mateg(VVelmalaet al. 2015). Yetnigrants must also invest sufficient time accumulating fuel at
stopovers to safelgeachtheir next destination (Hedenstrém and Alerstam 1997), not become so
heavy that'mass hinders their ability to avoid predators (Pomeroy 2006), and nobargaé\

SO as to risk starvation in potentially barren breeding §R#assma 2002, Alerstam 2011).
Furthermorebecause&onstrains may change ovéime in relationto food availability or
climate,the.timing of passage through a convergence area could be limiting for some
populatiens-but ndor others depending on themigratorystrategy(Bauer et al. 2016). Any
change disruptinthe delicate equilibrium of adaptations involved in migration (e.g. protection
or degradation of a higbenvergence aramposingmultiple seéction pressures on individuals)
couldthereforeresult in a significant boost or toll on survival through carry-over effects on
arrival time to breeding grounds and breeding sud@&sshler and Piersma 2008, lwamura et al.
2013, Piersma et al. 2016, Studds et al. 201&)eininingwhether species show high
geographic convergence in their annual cycle is thus an essential first steptify potential
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ecological bottlenecks for populations, asdentral to understanding the ecology and guiding
the conservation of migratory spes.

In birds, high convergence during migratiscommon among shorebir@Rogers et al.
2010, lwamura et al. 2013, Piersma et al. 2016, Studds et al. 20.wagantbwI(Drent et al.
2007, Hubner et al. 2010)jth major corsequences fguopulation dynamicsia carryover
effects(Rogerset al. 2010, Iwamura et al. 2013, Piersma et al. 2016, Studds et alF@017).
most songbirds; however, we lack information about the range-wide connectivity oftmoysula
(Faaborg et al. 2010, Cresswell 2014, O’Connor et al. 2014) and/é&iusow little aboutthe
extent towhicheperiods of the annual cycteay represerttottlenecks resulting from high
convergenee in particular are@®odenhouse et al. 2003, Leyrer et al. 2013, Rockwell et al.
2016, Bayly et al. 2017). Not only do we lack knowledge about geographic convergence, but
alsoaboutthe constraintghat individualdace inareasof high convergence when they exist.

Because the distance to be travelled and the time &pimg largely determine the
duration offmigrationn birds (Alerstam and Lindstrom 1990, Cohen et al. 2014, Schmaljohann
and Eikenaar 2017), stopover behavior is intricately related to migratory e¢alegstam et al.
2003, Alerstam 2011). Depending tmtal migrationdistance, theuality and availability of
food, and the energequired to complete migratory flightsirds may attempgitherlong
stopovers and extensive fueling followed by long flightshmrt stopovers with minimal fuel
replenishmentifollowed by shorter flights (Tsipoura and Burger 1999, Buler et al. 2007,
Seewagentet-al. 2013)herefore jndividualsfrom different populationsnay show different
stopoverstrategiesvhen they converge in particular areas depending on breeding origin or
wintering destinatiorfPaxton and Moore 2017). Sudtiferencesnaybe temporal, if individuals
from certain populations arriver leave the stopover before others (Warnock et al. 2004, Bauer
et al. 2016)Alternatively, difference# stopovesstratey may have a physiologichhsis such
thatindividuals from differenpopulations differ in body condition on arrival amdtheir
subsequentifueling behavior (how fast and for how long theyfgeliduring stopover) due to
conditions experienced on their breeding or wintering grounds (Battley et al. 2012, Paxton and
Moore 2017).

This article is protected by copyright. All rights reserved



94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117

118
119
120
121
122
123

Fuel load on arrivafi.e. thestoredenergypossessety birds onarrival ata stopover sije
alsolikely influences the stopover strategy that individuals a@gtber and Houston 1997,
Alerstam 2011). For instance, birgdgth low fuel on arrivahave likelymade longer flights and
will requirelonger stopovers tprepardor the next leg of their journey (Alerstam 2011).
Differences.in,stopover strategies may also exist between males and fenhewge@radults
and immature birds given that individuals of different sex or age mayissenilarconstraints

or mayuse-areadiffering in quality during migration (Cooper et al. 2009, 2011).

Weused an integrative approach to exangaegraphic convergence of populations
across thannual cycle othe Gray-cheeked ThrushiQatharus minimus a NearctieNeotropical
long-distanee migratorgongbird in which at least some populations rde@inedprecipitously
Populations of the western breeding subspétien. aliciaeappear stable wherepspulations
of the eastern subspeci&sm. minims have showmecent, drastic declingsVhitaker et al.

2015, FitzGerald 2017, FitzGerald et al. 2017). We combined regstiadates obccupancy
ratesbased-onieldurveys withgenetic and stablisotope §°H) analyses of tissue samples
collected at sprin@gnd fallstopover site in northern Colombia to determine the extent of
geographie.convergenes previously identified stopover sites (Bayly et al. 2013, Gomez et al.
2013), ando'test the hypothesis that birdgyadopt different stopover strategies depending on
their breeding origin andintering destinatios. As with other recent studiesiraveing
connections among populations of migratory spe@es Norris et al., 2006; Rushing et al.,
2013; Stanleyet al., 2014; Hostetler et al., 20d®)usedstable isotopes and gertesnfer
breeding and-wintering origiref individuals and then examined potential links between such

origins andhe stopover behavioof birds.
Methods

Study system.- Gray-cheeked Thrush breed lmgh-latitudetaiga and tundra from eastern Siberia
to Newfoundland in Canada (Lowther et al. 2001, FitzGerald 20LuBs@&cie€. m.minimus
breed in"Newfoundland and southeastern Labraat is listed as threatened under the
Newfoundland and Labrador Endangered Speciebécdause oprecipitous populatiodeclines

in recent decadd$SSAC 2010, Environment Canada 2014, Whitaker et al. 2015, FitzGerald et

al. 2017). In contrasG. m. aliciae breed from Sberiaacross North Americtb central Labrador
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and is not known to be declininGray-cheeked Thrusfollow a loop migration, entering South
America in the fall mainlyia the Isthmus of Panama atie Dariénregionin the north west,

and leaving South America in the spring by crossing the Caritfbeafrom the Sierra Nevada
de Santa MartéBayly et al. 2013, Gomez et al. 2013, 2014, 20Evidenceexistsfor multi-day
stopovers in.both regions and eneaggumulated atpring stopovers in northern Colombia fuels
flights in excess of 3000 km (Bayly et al. 2013, Gomez et al. 2017). The winter range of the
speciesis‘poorliknown, butmostavailable records shokirds winteringmainly in Amazonia

and in the'northerAndes(Lowther et al. 2001, eBird 2014, UngvaMiartin et al. 2016).
Furthermare, durind0 years of resear@iong the length of the northern coast of Colombia,
have not hadsany records of wintering Gray-cheeked Thnuslat regionHowever, a recent
tracking studyssuggests some individuals from Newfoundland spent the winterharnort
Colombia, probably at very low densiti@&hitaker et alin pres3. There is low but significant
mitochondral DNA differentiation between subspec{@®pp et al. 2013, FitzGerald et al.
2017), but'there is nmformation regarding potential differenclestween thenm migratory

routeswintering or stopover areas.

Fieldwork and sample collection. - We captured sever@ray-cheeked Thrusturing fall
migration (September October 2014 and 2015, n = 399 theDariénregion near the
Colombia=Panama bordéReserva Natural Tacarcur@8°3944"N, 77°21'48"W) and during
spring migration (ApriMay 2015 and 2016, n = 87if) the Sierra Nevada de Santa Marta
northern ColombigHacienda La Victorial1°719.84"N, 74°534.14"W). All birds werebanded
andaged according to plumage characterisg®itheradult orimmature(Pyle 1997, Johnson et
al. 2011). ¢ also measuretiewing chord (£ 1 mm) and body mass@.1 g)of each

individual toassess body condition.

We usedvalues ofstablehydrogen isotopanalysegd”H) from feathers and clawts
infer the breeding and winterirggigins of birdsmigraing through northern Colombia. During
springmigration’ we dippedthe distal endé~ 1 cm) of the first primary feathéiP1) and
(~2mm) of.both halluxlawsfrom a subset of captured individuals (n2683 Becausd”1is the
first feather to be moltedy adultGray-cheeked ThrusHuring the preédasic molt after the
breeding season (Pyle 199if)contains thesotopicsignature most representativetioé

breeding groundm North America(Hobson et al. 2014Bird clawsgrow continuously and tips
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contain the combined isotopic information of the previodsr@enthspre-capture(Hahn et al.
2014);the claw samples froGBray-cheeked Thrusbaptured during springiigrationwere
thereforeexpected to contain the isotopic signature of the wintering grounds occupied prior to
migration All isatopic data are available through Dryad (doi:10.5061/dryad.7hk6523).

During bothmigrationperiods wealsocollected~20 ul of bloodfrom the brachial veirof
birds and 'storedampleson filter paper prior taenetic analyss(see below)Because Gray
cheekedrhrush cannbbe reliably sexeth the hand outside of the breeding period, blood
samples weresalassed for molecular sex determinati@riffiths et al., 1998seeAppendix S1:

Supplementary Methoder details.

Occupancy.surveys during spring and fall migration.- A first step to evaluate whetharmregion
represents a higbonvergence araa to determine whether most individuatncentrate in
restrictedgeographi@reasor if they are widely spreaatrosghe landscapéelo examinehis, we
carried ourepeated surveys for Graneeked Thrush acroasrthern Colombia during the
spring and.fall migratiosof 2016 Repeatedurveys (4 per transeg¢twere carried out every 10
daysduring,two'monthsn 200 transects, each 100 m long, spread across 17 sites spanning ¢.700
km from east to wegfFig. 1), for a total effort of 400 person/holée analyzedsurvey datan a
dynamic oceupancy modelling framework (Fiske and Chandler 2011, Guiesda 2017)
allowing us toestimatethe probability of occurrence of Gray-cheeked Thrush throughout the
region and to examirthe influence of variables such as vegetatiover, precipitation and
elevation on,theletectability anadccupancyateof the species during both migratiseasons.

Detailed methods of data collection and occupancy modelling are described in Agp&ndix

Linking birds from the breeding range and stopover areas using genetics.- To infer
connectivity of Gray-cheeked Thrush populations, we assessed the genetic giafilairids
captured during migration in northern Colombia with individuals from known breeding
populationssinsNorth America. @lcomparedequences dhe NADH dehydrogenase subunit 2
(ND2) gene“obtained for 150dividuals captured at our field sitesColombiawith published
sequences from breeding ar@aSiberia (n = 3)Alaska (n = 7), Quebec (n = 3), southern
Labrador (n =12), western Labrador (n = 11), and Newfoundland (n #F88erald et al2017;
seeAppendix S1: Supplementary Methods drable S). Sequences were aligned using
Gereious version R7.(Kearse et al. 20129nd polymorphisms confirmed from the
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chromatograms. We used two complementary methoclsat@cterizgenetic differences

between populations. Haplotype networks and pairwise population comparisons were used to
assesyariation along the entitdD2 sequencéBandelt et al. 1999), whileresence of private
alleles was used identify variation in unique positioremongpopulations (Kekkonen et al.
2011).

Weused’POPARTLeigh and Bryant 2015p estimatea minimum spanning network
depicting relationships among haplotypes (Bandelt et al. 1999). In addigarsed estimates of
pairwise populatiorifferentiation (@s;) calculated using the Kimura Zabstitutionrmodel
(identified as.the best fit to the daktzGerald et al. 201 &yith 1000 permutations of the
haplotype matrix in Arlequin v. 3.5 (Excoffier et al. 2008) evaluate similarities between
breeding regions (Newfoundland/southern Labrgsioibspecie€. m. minimug, western
Labrador/Quebefsubspecie€. m.aliciae], Alaska/Siberidsubspecie€. m .aliciad) and
stopover locationdXarién[fall] and Sierra Nevada de Santa Marta [springJg evaluated
whether the"genetic composition of birds captured in Colombia differed by yeagration
period by employing hierarchical analysis of molecular variance (AMOYé&gassess how
much genetic variation was attributed to stopover groupings (i.e. spring vs. fall and 2014 vs.
2015) from 203000 permutations of the datadét.alsoestimated allelic frequencieglentified
parsimonymfermative allelesand calculated the number of geographic regiotise breeding
rangewhereallelesoccured We therexaminedwhether individuals captured in Colombia
shared any‘privatalleles(i.e. those found only in 1-2 breeding regions) with batdsnown
breeding origin: An assumption of this method is that a random sample of individuala fro
population willbe roughly representative of the frequency of alleles present in that population
(Kekkonen.et al. 2011). If most members of a population share a private allelé sinewldl
likely be.detecte@ven with relatively small sample siz&haring of private alletebetween
birds capturedin Colombia and the breeding rangeth@sforetaken as an indication of

linkage between populations (Kekkonen et al. 2011).

Assigningrindividuals to breeding and wintering grounds with stable-isotope analysis of
feathers and claws.- Stableisotope analyses were carried out atStele Isotope Laboratory of
Environment and Climate Change Canada, Saskatoon, C&eadlers and claws were cleaned

of external oils and debris before analyssing a 2:1 chloroform:methanol soak and rinse.
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214 Measurements @fH in feather §°H;) and claw §°H.) were obtained through continuofisw
215 isotoperatio mass spectrometry (GRMS) following the ‘comparative equilibration’ method
216 which uses calibrated keratin reference materials to correct for exchangeable hydiogehe
217 keratin standards CBS107 %9 and KHS {54 %.; Wassenaar and Hobson 2003). We reffett
218 valuesin standardlelta ¢) notation, in parts per thousand (%o) relative to Vienna StandashM
219 OceanWater(VSMOW). Based on withimun replicates (n=6) of calibration standards, we

220 estimate analytical error to be of the ordet®%o.

221 Employing data on species abundance in space and potksitigdution modelsis

222 geographie.priorsnay improve geographic assignments based on stable isqtopalsot et al.
223 2012, Fournier et al. 2017, Rushing et al. 201FFby species like the Grasheeked Thrush,

224  which breed and winter in remote locations seldom visited by people, there is caiiside

225 uncertainty about true distribution ranges and more so about pattepetiafabundancewe
226 thereforecombifedissues’H data with dspatiotemporal exploratory moddSTEM; Fink et
227 al., 2010)'shewing relative abundarafeGray-cheeked Thrush during the breeding pebeded
228 on field observationand, separately with a seasgpecific(breeding and wintelgpecies

229 distribution mode(SDM) generated frorfield recordsand climatic variablegFitzGerald 2017,
230 Fournier et al*2017). Abundance and probabditpccurrence eshated by distribution models
231 areusually-correlated and considered good profaepredictng species presen§@/eber et al.
232 2016) We evaluated the similarity between geographic assignments based on STEM and SDM
233 priors by estimating the spatial correlation between tiMethods for the construction of the
234 STEM and SDM modelare inthe AppendixS1 We also present assignmehtsed only oa?H
235 valuesto assesanybiasederived fromthe priors (Rushing et al. 2017b).

236  Surfacesof likely origin based on stable isotopes.- Isotopic datavereusedto derives?H; and
237 &°H.isoscapedased orzﬁZHp during the growing seas¢Bowen et al. 2005), andcalibration
238 equatiom estimated fofeathers ofjround-foraging Neotropical migrants (Hobson et al. 2012):
239 8%H; = 27.094°0.95 (8%H,,). Prior to modeling, we removed outliers wit values more
240 thanthreestandard deviations from tineean(feathers = 3, claws = Zhabot et al., 2012LIaw
241  §°H values are closely correlatedth feather valuesutthey require alightly different

242  conversion factovaryingby age (Hobsorynpubl. daty. Thereforeto generate the claw

243  isoscape we first expressétH. values in termsf equivalent expectedfH; values using age-
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specificclaw-to-featherconversion equationgerived forCatharusthrushes: formmature birds
SY:82%H; = —15.7 + 0.94 (6%H,), andfor adults AY: §2H; = 24.1 + 1.3 (6§2H,) (Hobson,

unpubl. daty. In addition, we needed to account for thet that thewinter of 2015/2016

coincided with ene of the strongest El Nifio events ever recqddifte@nezMuiioz et al. 2016).

This event proeduced anomalous droughts in the Amazon, whanedBeeked Thrusare

expected to,wintegiving rise tod’H values enriched by ~16%. above the ldagn average
(Srygley et al. 2010, Brienen et al. 2012, Jiménez-Mufioz et al. 2016). To use our data with the
available Iongermész isoscape for the Amazon region (Bowen et al. 20@%)e correcting

for the effect of El Nifidn 2015, we subtracted 16%o. from our measurét} valuesbefore

undertaking spatiassigments

The.probability of each individual originating from any given ~ £ kel on the
breeding er.wintering grounds was estimated based on a normal probability density function:

fOy* s, 0) = \/%exp [—%(y* —~ ui)z], wheref(y |ui, o) is the likelihood that an individual

with feather.isoetopic value¥H; =y’ originated from cell. ; is the predicted 8°H; value for cell

i, ands is the 'standard deviation of th&H; values within a breeding or wintering site, which

was setat.10.8%Hobson et al. 2012). Likelihood values were transformed into apildp

surface by.dividing each likelihood by the total sum of likelihoods (Hobson et al. 2012). A cutof
of the upper 67% of the probability was defined as the likely area of origin for eacialiradli

(Hobson et al. 2012, Chabot et al. 2012) and cells with values equal to or above this cutoff were
set a probability value of 1 (likely origin), whereas those with lower values were set to O
(unlikely origin). The 67% cutoff provides a good compromise between assignment precision
and overestimation error (Hobson et al. 2012, Chabot et al. 2012). Finally, using Bayes rule,

f(bly) = M, we estimated the posterior probabiliigly) that any 1 krhcell on the
Lpf@ib)f (b)

map represented the origin of a bird, giv@), the prior probability of occurrence based on the
abundanc&{STEM) or the distribution model (SDM), &glb), the likelihood of the*H
assignment surfag€habot et al. 2012, Fournier et al. 200 finally overlaid the likely
origins of all birds and obtained a cumulative surface for all the individuals saoysle.

Assessing the influence of breeding and wintering origins on stopover strategies.- To evaliate

whether stopovestrategesof Gray-cheeked Thrushesgererelated tdbreeding or wintering
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273 origin, we examined how fuel load on arrival to the stopover site varied as a furfotiate of
274  arrival, breeding or winter origiisotopic value$6’H; anddé’H.), age,and sex\We estimated

275 fuelloadon arrival as the mass (g) above lean body rfid381) of each individual on its first
276  captureFuel load on arrival = Mass on first capture — LBM. Lean body massas

277 estimated bysregressing wing chords and body masses of all captured individual$atvighore
278 of 0 (n = 185),which resulted in the equatid®M = 0.33 x wing length — 4.63 (Goémez et
279 al. 2017)Weused AIC value¢Burnham and Anderson 2002) to evaluate 15 candidate models
280 plus a nulFmodel in which none of the independent variables influenced fuaraadval

281 (Table 3. To evaluate whether observetfetencesn breeding and wintering origirebwveen

282 age and sex classesresignificant, we carried ouandomization testsvhere the observed

283 differencein meanketween each group (males f@males or adults vénmatures)vas

284 compared to a random distribution of 999 differermfesquivalent datasets selected regardless

285 of age or sex.
286 Results

287  Occupancyiratesduring spring and fall migration.- Occupancy surveys resulted in 159 and 264
288 presence.records of Graheeked Thrush during fall and spring migrati@spectively, across

289 the 17 sitesssampled along the Caribbean coast of Colo8méal predictions of occupancy

290 rates of Graycheeked Thrush during spring and fall migration revealed marked concentrations of
291 individuals in the Darién region during fall (sum of area of grid cells with occupafcdy=

292 80,045 km,Fig. 1A) and on the northern and western slopes of the Sierra Nevada de Santa
293 Marta in spring/(12,963 kinFig. 1B), with intermediate areas showing very low probabilities of
294  occupancyThese two areaspan only 5% an@.8%, respectivelyof areas occupied by Gray

295 cheekedMhrtisSh'during the breeding season (1,587,463 kotording to our isotopic

296 assignments)During fall migration, occupancy increased towards the west, in areas with low-
297 mid elevations, 'high canopy cover and a dense undergtppefidix S1: Bble S2A). During

298 spring, occupancy was predicted to be highest in regions wiiermediate levels of annual

299 precipitation coincided with elevations below < 1700 m in northernmost Colomitiieh w

300 largely correspond to the mountain slopes of the Sierra Nevada de Santa Martad{(Ayie

301 Table SB).
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302 Linking birdsfrom the breeding range and stopover areas using genetics.-We found no

303 significant difference in the genetic composition of birds captured in Colomiwadre years

304 (pst=0.010, P = 0.073with most of the genetic variation (96.6%undwithin years (P =

305 0.667). Very low but significant differentiation was found between migration seésenfall vs.
306 spring ¢s=.0:047, P< 0.001), yet most of the variation (9%8existedwithin seasongP =

307 0.330). ND2 gsipairwise population comparisons showedttnostfall and spring birds in

308 Colombiawere'more genetically similar todividuals fromsubspecie€. m. aliciae (breeding

309 in Alaska/Siberinthanto C. m. minimus(Newfoundland/ S Labradofable2). However,birds
310 captured in Colombia sharetlleast sombaplotypes with birds from throughout the breeding
311 range (Fig«2A). All Alaska haplotypes and most haplotypes from western LabradQuabec
312 were foundiin Colombia. Conversefgwer of Newfoundland/&.abrador haplotypes were found
313 in Colombia.A large number of haplotypes found in birds captured in Colombia were not
314 observed in any of the birds of known breeding origin (F9, Bkely reflectingalack of

315 sampling In northeentral Canada and low sample sizes in sofibe otheibreeding areas

316 However, ofthese haplotypes sharachong birds from Colombia and the breeding grounds,
317 there were24sinformative sites abdlof these corresponded to private alleles restricted to
318 individuals:from only one or two of the sampled breeding populations. Furthermore, 119 out of
319 150 individuals from Colombibad allelegprivateto birds fromall 6 breeding regions; out of
320 these, 8 individualbadallelesprivate tobreedingsites inNewfoundland and southern Labrador
321 (Fig. 2B).Qverall this suggests that although mbstissample& in Colombia were more

322 geneticallyssimilar to birds from the western subspeCias. aliciae individualsfrom most

323 breeding regions and both subspecies likely converged in Colombia.

324  Geographic.assignment through stable isotopes and geographic priors.- In agreement with the
325 genetic data;@pgraphic assignmenbased od’H valuesanddistributionand abundance

326 models suggestithatGray-cheeked Thrushigraing through northern Colomblikely

327 originatad from multiple breeding populations (Fig. 3). Geographic assignment of breeding
328 origin using the STEM model as a prior showed a 60% correlation with that basedspadies
329 distribution model $DM), suggestingelativelyclose agreement betwepredictions

330 considering geographic variationabbundance and habitat suitability (Weber et al. 200g.
331 two models predicted high numbers of individuals originating from Alaska and cemtrel

332 Canada, but the STEM model did not predict as nasthe SDMrom the eastern extreme of
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333 the breeding range. Given the agreement between modgtsesent only the assignments based
334 onthe SDMbecause thewereavailable for both the breeding and the winter periods

335 Geographic assignmentis breeding aasbasedsolelyon isotopepredicteda high probability

336 of origin from three main regiongl) Alaska,(2) an area bordering Hudson Bay in the provinces
337 of Nunavut.and Manitoba, ar{d@) northern Quebec and Labrador (Appendix Bg: S1)

338 Similarly;isotopicanalysegredicted individuals originating fromwide range of
339 wintering locations mostlgoncentratedh northern Amazoniancluding portions of Ecuador,
340 Peru,Colombia, Venezuela, and BrazA smallerproportion of birdsverealsopredicted to

341 havewinteredat midelevationsn the Andes of Colombia (Fig. 3).

342 Effect of date, age, sex and geographic origin, on stopover strategies.- We foundno spatial

343 differences irthe inferred breedingr winter origin betweemdult andmmaturebirds stopping
344  over in northern Colombia (97% and 100% Pearson correlation of breeding and winter surfaces,
345 respectively. However, adults had significantly high#H; valuescompared témmature birds
346  (Appendix S1: FigS2 P = 0.02), suggesting a slighttyoresoutherly breedingnolting origin
347 comparedo immaturebirds. Adultsalsoshowed slightly lower values of°H. than immature
348 birds (Appendix S1Fig. S2 P = 0.03). There were no obvious differences in breeding or
349 wintering origin between sexe81% and 98% Pearson correlation of breeding and wintering
350 surfacesrespectivelyplthoughfemalesshowed slightly highevaluesof 9°H; than males

351 (AppendixsS1: FigS3 P = 0.06), and both sexes slealequivalentvinter ranges and values of
352  §°H. (Appendix S1Fig.S3 P = 0.12).

353 Date"of arrivalat the spring stopover site in Colombia varied as a function of breeding
354  but not winter origin (Fig4A-B. Boreeding= 0.16 + 0.03 P<0.00%, Bwinter = -0.05 + 0.04 P =

355 0.22),withsbirdssthat bred at more northerly latitudes arriviii§ daysearlieron average.

356 Additionallys=males arrived i€olombia significantly earlier than females$-10 days), during
357 bothspring«(Fig4C, P = 0.001) and fall migration (Fig. 4D, P = 0.Glnilarly, adults arrived
358 in northern*Colombia significantly earlier than immature birds durotg igration periods

359 (Figs4E+, Spring: P = 0.003; Fall: £0.001).

360 Two candidate models explained 84% of the variation in fuel load on aatitred spring
361 stopover site. Contributingariablesincludeddate of arrivalpreeding origin, sexand an
362 interaction between sex abdeeding originTable 1).Both males and females aiirig earlier
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did so in lower body condition than birds amiy later in the seasd(frig 5A, Pmae = 0.26 £ 0.02,

P < 0.001; Premaie = 0.21 + 0.03, P < 0.001). In addition, males water 6°H; values(i.e. those

with more northerly breeding origin) arrived earlier and in lower body condition than those from
more southerly origins (FigE) Bmaes= 0.09 = 0.04, P = 0.02). Théssociation between

breeding origin on fuel loads was not significeotfemales Fig 4B, Bremales= -0.03 £ 0.06 P =

0.56) and, if anything, showed the opposite tendéimay that observed in males
Discussion

Our occupancy surveys, genetic comparisansistableisotope analysesuggest thaGray

cheeked Thrush frormacrosshe breeding and wintering range funnel through two regbns
northern Colombia during migratiothe Dariénin the falland the Sierra Nevada de Santa Marta
in the springGeographiconvergences particularly strongn spring,whenindividuals from

mostof the breeding rangeppear tstopoverexclusivelyin the Sierra Nevada de Santa Marta
prior toundertaking non-stop flights (>2500 km) across the Caribbean Sea and Gulf of Mexico
(Fig. 1; Bayly etal. 2013, Gomez et al. 2017). Regions occupied in northern Colombia during
fall andspringhad areagquivalent to only 5% and 0.8%espectivelypf the area used during

the breedingeasonhighlighting the extreme degreeaufnvergence.

Based on the above results, we hypothesize that thechiglergence area in the Sierra
Nevada de Santa Marta likely functions as an ecological bottleneck for populattbesGrhy-
cheeked Thrush. Given that fat gained iardgion may fuel 40% of total migration distanc
covered by.Grayxheeked Thrush (Bayly et al. 2013) and that events at this spring stopover site
carry-over-te.influence the pace of migration and potentially breeding success (Goémez et al.
2017), itislikely that there are fitness and survival conseqesmssociated to a successful
spring stopovenin northern Colombia (Bayly et al. 2012, 2013, Gémez et al. 2017). Future
research should verify whether this is the case for-Ghagked Thrushes as well as other

migratory.species.

Because our work and othetudieg(e.g. Gonzalez-Prieto et al., 2011; Fraser et al., 2013)

suggest that stopover regions where range-wide populations converge have thd fmtentia
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392 function as ecological bottlenecks, a priority for the conservation of populations ohtaigra

393 worldwide would be to identify and protect such ardésst studies on migratory connectivity to
394 date have addressed connections betweebreeding and wintering groun@sg. Rushing et

395 al., 2013; Hobson et al., 2014; Fraser et al., 2017)aardent metanalysissuggestd thatlow

396 migratory connectivitypetween breeding and wintering populationsasimonamong long-

397 distance migrantd-inch et al. 2017). éwer studie®iave examined connectivity during

398 migration(e.g-"Hubner et al., 2010; Laughlin et al., 2013; Andueza et al., 2014; Stanley et al.,
399 2014) but'these studies consisterfttyind high comergence of populationparticularly at

400 stopover sitebefore barriers or atbligatory flyways withimarrow land massg8uehler and

401 Piersma 2008nFort et al. 2009, Piersma et al. 2016). Furthermore, for a few songbig] specie
402 mortality ratesqare known to be higher during migration than any other phase of the anrual cycl
403 (Sillett and Holmes 2002, Rockwell et al. 2016, Paxton et al. 2017, Rushing et al. 2017a). This,
404 combined with the recent finding that mudiay stopovers occur in just a few key regions in

405 many speciefBonter et al. 2009, Stanley et al. 2014), means that migration is probably the most
406 vulnerabkperiad in the annual cycle across a range of(axaborg et al. 2010 herefore

407 more researchreffort should be directed to identify convergence areas duringpmignalt

408 assess their,demographic effects on the populations of migrants worldwide.
409

410 A question arising from our study whether differences in pajation declines between
411 C. m. aliciaeand the endanger&zl m. minimusnay be connected with events taking place in
412  the high-convergence area we identified. Given that most variatiShijivalues in the Northern
413 Hemispheretistdescribed by latitude, breedirigin isotopic assignments based on hydrogen
414 have lowlongitudinal precision (Hobson et al. 2012 therefore difficult to discriminate with
415 certainty individuals originating from eastern and western populations in noogth

416  America based solely aifH; values Appendix S1: Fig. S2, but s@ardenaOrtiz et al., 2017).
417 However, by.eembining isotopic assignments with genetic information, we ceuwfihat birds
418 capturediin,norther@olombiahavelikely origins from across thiereeding range of th@ray
419 cheeked Thrushwith most individualgprobablybelonging topopulations ofC. m. aliciae The
420 apparentlyjower proportion ofC. m. minimusn our samplesnay reflect either a differential

421 migratory strategy between subspecies, that the rarn@erof minimuss smaller, othat there
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arefewerC. m. minimuslue to population declindgvhitaker et al. 2015, FitzGerald et al.

2017). Spatial or temporal differences in migratory strategy between populations srayiruket
whether a high-convergence site is also a bottleneck for some or all populatamsira et al.
2013, Bauer et al. 2016). Tracking of individuals from different subspecies and using genomic
to more finely.characterize population structure and hence map geographicwitigigeeater

resolutionare promising avenues of research to start testing these hypotheses.

Differences in population dynamics may not be related to events occurring on migration
but instead.depend more on conditions experienced during the (Mfiteon et al.2011, 2018,
Rockwell et.al«2016). We found that breeding but not winter (isotopic) origin influenced the
spring migratory strategies of individualstds that bred further nortmigratedearlier and
arrivedat the spring stopovesitein poorer body condition than those from more southern
breeding origins. This maeflectchain migrationa pattern whermigration occurs i
latitudinal sequence between populations (Lundberg and Alerstam 1986, Kelly 2006, Gonzéalez-
Prieto et al. 2011 However becausehe isotopic uniformity of Amazonia limits the resolution
with which latitudinalpatterns can be detected in that region (Bowen et al. 28@Spuld nd
determinewhethemorthernbreeding populations inde&dnterin more northerly regions.
Although our‘results did not show an effect of winter origin, we cannot rule out tkats. e
Other studies-have consistenglyown that winter habitatsehassignificant carryover effects
on breeding success by affecting behavior during migration and date of arrival toetthiedpre
grounds (Marra’and Holmes 2001, Norris et al. 2004, Norris and Marra 2007, McKinnon et al.
2015). Furthermore, given that we only made inferences of likely geographic origin and not of
variation in winter habitat quality, we canmrrate out that winter habitat may affect individual

performance during stopover in Gray-cheeked Thrush.

Wesalso'documentedffitrences in migration timing between age classéth, adult
thrusresmigraing earlier thanimmaturesduring both fall and spring. Moreoveadults hadess
negativebreeding ground values 6fH; thanimmature birdssuggestinghat age classes have
eitherdifferent hydrogen isotoperecipitationto-featherdiscrimination factor¢Hobson and
Clark 1992, Rushing et al. 2018) thatGray-cheeked Thrush exhibitraolt-migration whereby
adultsdisperse from theipbreedingsitesprior to molting—a patern primarilyknown for
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migratory birds from western North Amerig@ohwer et al. 2005pifferences betweeage

classs inmigration phenology have been linked to individual experiéeoause adults may
navigate more accuratefiitchell et al. 2015), fuel up faster (Yong and Moore 198#gle
fewerstopovers along the wagr take riskier routedMcKinnon et al. 2014, Dossman et al.
2016)than firstyear birds Alternatively, firstyear birds may migrate more slowly because they
do not benefifrom early arrival to the breeding grourtdshe same extent aslults(Stewart et

al. 2002, Cooper et al. 2009). Even if young birds arrive early they are likely to be outcompeted
by adults andtdl face the perils ofariableclimatic conditionsand increased risk from agonistic
interactions withadults early in the season (Cooper et al. 2009). A recent study orclaeled
Thrush foundsno effect of age on fueling rates (Gomez et al. 201 fhdratstudy is needed to

evaluate age differences in navigation skills or routdruigs species.

We found differences in migration phenology between sexes, with males migrating
earlier thanfemales the springSuch dfferencesin other speciebave been attributed &
strongerselection pressur&ctingon males tarrive earlier thafemales to the breeding grounds
(Kokko et'al. 2006, Cooper et al. 2009, 2011, Coppack and Pulido 2009, Schmaljohann et al.
2015) such thamales thamigraie fasterarrive earier and theeforesettle inbetterterritories
and get the best matélhe ‘mate opportunity hypothesigosits thaearly arrival improveshe
probability-ef-mate acquisition for malesore sahan for females, given that most females will
breed regardless of arrival date, whedaésarriving males will likely failto breed in a given
year(Kokko'etal. 2006, Cooper et al. 2009, 20Mdre study is needed to evaluatexratios of
Gray-cheeked Thrush on the breeding grounds as well as the strength of sexual selestion to s
whetherthis hypothesis ia plausible explanation for our observations. Segregation of sexes by
latitude on the winter groundsayalsocontribute to protandry, when males winter closer to the
breeding-greunds (Woodworth et al. 2016), yet we didiet#ctany geographical differences in

wintering originbetween sexes.

Overallyour studgmphasizethe importance of northern Colombia gratticularlyof
the SierrasNevada de Santa Marta for Gzhgeked Thrush during migration given that
individuals from throughout the breeding range converge there during a critical petied of t
annual cycle. Furthermore, we showed how breeding geographic origin, age and sex influence
the migratory strategies of individual Gralieeked Thrush during stopover. Verifying whether
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482 this high geographic convergence area functions as an ecological bottleneck foh&elagd

483  Thrush populations and potentially other species, should be a research priority (BhyR0é4,
484 GoOmez et al. 2015YVe thus highlight the neei identify and study other high-convergence

485 regions for migratory songbirds and to quantify timipact o fithess and survivaln areasof

486 high geographic convergence the effects of habitat loss or change may be magnified]lpotent
487 making a large/contribution to the pronounced population deckresded irmanyNeotropical
488 migrants(Robbins et al. 1989, Sauer et al. 2013), or indeed, to the reversal of such long term

489 declines inthe<future.
490
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Tables

Table 1.Fuelload onarrival of Gray-cheeked Thrushta spring stopover site in northern
Colombia'varied as a function of date of arrival, breeding oriifi yaluesof feathes), and
sex. The firstwo models were equally likely and overall explaine@a®df the variation irfuel

on arrival Models including age did not rank among the top two.

Model AlCc AAICc wi

Fuel ~ Date«to°H feather + 6°H feather:Sex 35757 0.00 0.54
Fuel ~ Daté +0°H feather + Sex 358.73 1.16 0.30
Fuel ~ Date ©°H feather + Sex + Age 361.04  3.47 0.09
Fuel ~ Date.©°H feather +°H feather:Sex +°H feather:Age 361.70 4.12 0.07
Fuel ~6°Hféather + Sex 378.30 20.73 0.00
Fuel ~5°H feather + Sex + Age 380.37 22.80 0.00
Fuel ~ Date v°H feather 1636.68 1279.11 0.00
Fuel ~ Date v°H feather +°H feather:Age 1640.52 1282.95 0.00
Fuel ~6°Hdfeather 1714.82 1357.25 0.00
Fuel ~ Date«=:Sex 2898.49 2540.92 0.00
Fuel ~ Sex# Age 3015.04 2657.46 0.00
Fuel ~ Sex 3022.43 2664.86 0.00
Fuel ~ Date + Age 8772.38 8414.81 0.00
Fuel ~ Date 8821.76 8464.19 0.00
Fuel ~ Age 9060.65 8703.08 0.00
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Fuel ~ 1 9109.30 8751.72 0.00

Table 2 Pairwise st cOmparisons between breeding populations and stopover localities, based
on mitochondrial ND2. Note that birds from ‘Newfoundland/s. Labrador’ are allrosidC.
m. minimusvhereas birds from ‘w. Labrador/Quebec’ and ‘Alaska/Siberia’ are of subsgcies

m. aliciae “Significance (p < 0.05) is denoted with *.

Fall Spring Newfoundland/ w. Labrador/ Alaska/

stopover stopover s. Labrador Quebec Siberia

Fall stopover -

Springsstopover| 0.047* -

(%3]

=)

£

-g Newfoundland/

€ |s. Labrador 0.384*  0.330* -

O

o w!Labrador /

:g Quebec 0.381*  0.327*  0.293* -
®

£ | Alaska/ Siberia| 0.072*  0.066*  0.301* 0.319* -
@)

Figure Legends

Figure 1. Occupancy surveys carried out at 17 sites (black dots on maps) across the northern
coast of Colombia were used to predict probability of occurrence of Gray-cheekesth Taring

fall and springsmigrationThe dashed lines show the ateavhich occupancyrpdictions were
limited (seessuppl. material for detail$Jigh occupancy rates in the Darién in the fall &nd in

the Sierra Nevada de Santa Marta in the spB)gguggest a funneling effect where most Gray

cheeked Thrush entering and leaving SoutleAca concentrate in these two regions during

migration.
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Figure 2. A. Low population structure of ND2 among population&ohy-cheeked Thrustvas
found, however, birds captured in Colombia (n = 18@red haplotypes with individuals from
throughout the breeding rangehe number of individuals sampl&dm eachbreeding region
are shown on the map, as well as the subspecies to which each population hemgshed
line shows _the approximate geaghic division between subspecies breeding ramyeis! out
of 24 informative sites within the Gray-cheeked ThriN§)2, were private alleles restricted to
individualsfrom' one or two breeding populatioB&ds captured in Colombia shared private

alleleswith all"of thesampled breedingegions.

Figure 3A.“Temporally explicit breeding and wintering distribution models of the Greagked
Thrush based on monthly climatic variables and presence re€andiaces reflect the
probability of presence based on a maximum entropy algorhixikely breeding and
wintering geographic originsf Gray-cheeked Thrush captured during spring migration in
northern @élémbia based on a species distribution model asftHoraluesof feathers
(breeding)yand-claws (wintefp agreement with genetic datayr assignment suggests that
rangewide populations of Gragheeked Thrush converge in northern Colombia during
stopover. Colored surfaces represent the sum of the upper 67% likelihood prolizhilagids)

of origin for eaeh bird.

Figure 4. There was a significant effect of breeding origifH; values)(A) but not of winter
origin (0°Hg, values)(B) on date of arrival oGray-cheeked Thrush to the spring stopover in
northern ColembiaMales arrived significantly earlier than females both to the sp@ipagrid
fall (D) stopover sitesand adultarrived significantly earlier than immature bimisring spring

(E) and espeaily during fall F).

Figure 5, Fuelloadon arrival toa spring stopover siter Gray-cheeked Thrusharied as a
function of-date; breeding origin and séx.Both males and females captured earlier in the
season weresin'poorer body condition than those that arrivedBalidrere was no difference in
fuel on arrival between females of different breeding origins but malesnfiane northerly
breeding origin(more negativéH; values) arrived with lower fuel stores than those from more

southerly breeding origins.
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Fuel on first capture (g above LBM)
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5°H from feathers {%e) - Breeding origin
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