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Abstract
Marine heatwaves can drive large- scale shifts in marine ecosystems, but studying 
their impacts on whole species assemblages is difficult. Analysis combining micro-
scopic observations with environmental DNA (eDNA) metabarcoding of the ethanol 
preservative of an ichthyoplankton biorepository spanning a 23 years time series cap-
tures major and sometimes unexpected changes to fish assemblages in the California 
Current Large Marine Ecosystem during and after the 2014– 2016 Pacific Marine 
Heatwave. Joint modeling efforts reveal patterns of tropicalization with increases 
in southern, mesopelagic species and associated declines in commercially important 
temperate fish species (e.g., North Pacific Hake [Merluccius productus] and Pacific 
Sardine [Sardinops sagax]). Data show shifts in fisheries assemblages (e.g., Northern 
Anchovy, Engraulis mordax) even after the return to average water temperatures, 
corroborating ecosystem impacts found through multiple traditional surveys of this 
study area. Our innovative approach of metabarcoding preservative eDNA coupled 
with quantitative modeling leverages the taxonomic breadth and resolution of DNA 
sequences combined with microscopy- derived ichthyoplankton identification to 
yield higher- resolution, species- specific quantitative abundance estimates. This work 
opens the door to economically reconstruct the historical dynamics of assemblages 
from modern and archived samples worldwide.
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1  |  INTRODUC TION

Climate- induced marine heatwaves are increasing in frequency 
and severity with far- reaching consequences in marine ecosystems 
(Oliver et al., 2018), ranging from severe organismal stress to cascad-
ing ecosystem effects (Frölicher & Laufkötter, 2018). Notable recent 
examples include repeated bleaching events across the Great Barrier 
Reef (2016, 2017, 2020) (Hughes et al., 2018), near- total deforesta-
tion in Northern California, USA, kelp forests (2016– 2019) (Rogers- 
Bennett & Catton, 2019), and rapid collapse of Bering Sea snow crab 
(Szuwalski et al., 2021). These marine heatwaves precipitated dras-
tic, unprecedented changes in dominant foundational species across 
hundreds of thousands of square kilometers of shallow, coastal eco-
systems and also drove concurrent range shifts of marine species in 
response to these warming events (Thompson et al., 2022; Walker 
et al., 2020).

The impacts of large environmentally driven disturbances on 
coastal marine ecosystems have been ecologically and econom-
ically significant (Cheung & Frölicher, 2020; Nielsen et al., 2021; 
Pinsky et al., 2020). For example, the dramatic collapse of Pacific 
Sardine (Sardinops sagax) in the 1940s disrupted marine food webs, 
causing broad- scale, negative socio- economic impacts across 
the Northeast Pacific (Becker et al., 2019; Chavez et al., 2003; 
Checkley et al., 2017). The California Cooperative Oceanic Fisheries 
Investigations (CalCOFI) was formed in 1949 to better understand 
the processes driving these complex marine ecosystem dynamics 
and to avert similar fisheries collapses within the California Current 
Large Marine Ecosystem (CCLME). CalCOFI has continuously con-
ducted systematic fisheries- independent surveys of the southern 
CCLME from 1951 until the present (Gallo et al., 2019; Lindegren 
et al., 2013; McClatchie, 2016) with a focus on monitoring larval 
fish assemblages, as larval fish dynamics are a key predictor of eco-
system health and function (Gallo et al., 2019; Nielsen et al., 2021; 
Smith & Moser, 2003).

Larval fish abundances help to characterize the state of ma-
rine ecosystems as they track spawning- stock biomass (Hsieh 
et al., 2006). Over 70 years, CalCOFI has documented decadal and 
annual changes in fish assemblages in response to environmental 
conditions, identifying major shifts in response to Pacific Decadal 
Oscillations and El Niño Southern Oscillations (Gallo et al., 2019; 
Moser et al., 1987, 2001; Thompson et al., 2012). These decadal and 
annual changes in ichthyoplankton dynamics are superimposed over 
strong biogeographic assemblages associated with distinct water 
masses typical for the Southern California Bight (Moser et al., 2001). 
For example, ichthyoplankton assemblages differ among three 
characteristic water types: the relatively cold and fresh California 
Current, the warmer and saltier California Counter Current and 
Central Pacific water mass, and deeper water upwelled across 
the continental shelf (Asch, 2015; Lindegren et al., 2013; Smith & 
Moser, 2003; Snyder et al., 2003). Importantly, periods of elevated 
temperatures are historically associated with higher abundances 
of southern, mesopelagic species and Pacific Sardine. In contrast, 
colder periods have been associated with higher abundances of 

northern, mesopelagic species and Northern Anchovy (Engraulis 
mordax; Chavez et al., 2003; Thompson et al., 2022).

Such historical insights into forage- fish community dynamics 
across decadal climatic regime shifts help form the basis for under-
standing the effects of climate change on the CCLME (Asch, 2015; 
Checkley et al., 2017; Lindegren et al., 2013). However, there is con-
cern that the rate and scope of recent changes may drive ecosystem 
impacts not predicted by past patterns, motivating a fresh look at 
the biological history available in biorepositories. However, manual 
identification of larvae is labor- intensive, and taxonomic resolution 
is often limited by a lack of discernible morphological characteristics 
(Thompson, Chen, et al., 2017). For example, the larvae of only three 
of the 66 species of rockfishes in the genus Sebastes that occur in the 
California Current can be identified morphologically, thus requiring 
genetic- based identification (Thompson, Chen, et al., 2017).

Decades of research within the study region (Moser et al., 1987, 
1993, 2001; Smith & Moser, 2003; Thompson et al., 2022) indicate 
the majority of species spawn in spring and the resulting ichthyo-
plankton closely track adult biomass (Hsieh et al., 2005). Thus, 
spring ichthyoplankton assemblages have been used as an import-
ant indicator of underlying changes in the local fish assemblages 
(McClatchie, 2016). Here, we leverage historical CalCOFI samples 
to reconstruct spring ichthyoplankton assemblages over a 23- year 
time series, using a novel “environmental DNA” (eDNA) approach. 
Specifically, we pair MiFish Universal Teleost 12S rRNA gene ampl-
icon sequence data (Miya et al., 2015) acquired from ichthyoplank-
ton sample preservative with morphological count observations 
in a joint Bayesian model to estimate species- specific larval abun-
dance. These data span the 2014– 2016 Pacific Marine Heatwave, 
the warmest 3- year period in the North Pacific in over 100 years of 
recorded history driven by a massive influx of warm, saline water 
from the central Pacific (Jacox et al., 2018), provided an opportunity 
to investigate the effects of marine heatwaves on ichthyoplankton 
assemblages in the southern CCLME.

2  |  MATERIAL S AND METHODS

2.1  |  Study design

To investigate decadal changes in southern California Current ich-
thyoplankton assemblages, we identified fish larvae from four 
CalCOFI stations sampled during spring months over 2 decades 
(1996, 1998– 2019). Archived spring ichthyoplankton samples were 
collected across four biogeographically dissimilar stations (up to 
370 km apart) with variable water properties (McClatchie, 2016; 
Nielsen et al., 2021; Thompson et al., 2019). The northernmost 
station was located offshore of Point Conception, CA within the 
California Current (34.14833° N, −121.1567° W). The second 
station was located off San Nicholas Island, CA (33.32333° N, 
−119.6667° W) which experiences high variation in annual tempera-
ture depending on the respective strengths of the California Current 
and Southern California Counter Current. The third station was a 
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southern coastal inshore station off San Diego, CA (32.84667° N, 
−117.5383° W) characterized by relatively warmer waters from the 
California Counter Current with seasonal (spring) upwelling of cool, 
nutrient- rich water. The fourth station was a southern offshore sta-
tion (31.85000° N, −119.5683° W) characterized by sub- tropical 
oceanic waters (Figure 1).

At each station, oblique bongo net tows were conducted from 
210 m depth to the surface using standard CalCOFI methods 
(Kramer et al., 1972; McClatchie, 2014; Thompson et al., 2012; 
Thompson, McClatchie, et al., 2017). Cod- end contents of both 
bongo nets were preserved at sea. The starboard side was preserved 
in sodium borate- buffered 2% formaldehyde and the port side was 
preserved in Tris- buffered 95% ethanol. Ethanol samples were ar-
chived in the Pelagic Invertebrate Collection at Scripps Institution 
of Oceanography stored at room temperature and out of direct 
sunlight.

To characterize species abundance, a team of expert ichthyolo-
gists conducted microscopy on the 84 collection lots (21 sampling 
years, four stations) of formaldehyde- preserved bulk zooplankton 
including fish larvae (>505 μm). Identification of ichthyoplankton 
followed standardized CalCOFI techniques in which all larvae are 
sorted from the other invertebrate zooplankton assemblages within 
each cod end and then subsequently identified to the lowest possi-
ble taxonomic rank (McClatchie, 2016). We note that eggs of a few 
species are typically sorted from each sample but were not included 
in our analyses (Section 4). Six of the 84 collection lots were pre-
served in multiple jars due to the large volume of zooplankton, re-
sulting in 90 total jars (Appendix S1).

To better resolve larval identifications, we conducted DNA me-
tabarcoding on DNA isolated by filtering the ethanol in which paired 
port- side samples were preserved, thereby maintaining the integrity 

of the historical larvae and egg samples. Given that liquid preser-
vative was used as the target substrate (as opposed to water, soil, 
or air) and the mass of larvae and eggs in the jar were not directly 
disturbed, we refer to this process as eDNA metabarcoding herein. 
Up to 125 mL of ethanol preservative (mean = 121.7 mL, n = 90; only 
6 of these jars had <125 mL with min. = 34 mL) was pipetted off ar-
chived samples and vacuum filtered onto 0.2 μm PVDF filters.

DNA was extracted from filters using a modified Qiagen DNeasy 
Blood and Tissue kit (Curd et al., 2019) and amplified using the 
MiFish Universal Teleost (Miya et al., 2015) PCR primer set targeting 
the 12S rRNA mitochondrial gene region (Table S1). eDNA from each 
extraction was amplified in triplicate with each technical PCR repli-
cate sequenced separately to capture stochastic variation within the 
amplification process (Appendix S1). This resulted in a final data set 
of 84 collection lots across four stations spanning 23 years that were 
morphologically identified as well as 90 unique DNA extractions and 
244 unique PCR technical replicates that were sequenced. A total 
of 26 technical PCR replicates with either low sequencing depth 
(n < 30,000) or high dissimilarity (Bray Curtis dissimilarity >0.7) were 
removed from the final dataset. See Appendix S1 for full description.

2.2  |  Estimating larval species abundance

We used a novel Bayesian hierarchical model based on the quantita-
tive metabarcoding framework described in Shelton et al. (2022) to 
jointly estimate the abundance of ichthyoplankton in each jar and 
the taxon- specific amplification efficiencies, given the two comple-
mentary datasets (ichthyoplankton estimated by visual counts and 
sequence- read counts from the metabarcoding observations). We 
expect morphological and molecular analyses to be independent, 

F I G U R E  1  Sea surface temperature (SST) pre and post marine heat wave. To visualize the dramatic shift in ecological conditions, we 
plotted average daily SSTs from (a) pre (April 1, 1996– April 1, 2014) and (b) post (April 1, 2014– April 1, 2019) marine heatwave. Average SST 
was dramatically elevated during and after the marine heatwave. The four sites sampled are plotted in white: (1) Point Conception, (2) San 
Nicholas Island, (3) San Diego Inshore, and (4) San Diego Offshore.
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imperfect reflections of a common biological community be-
cause port-  and starboard- side samples are not precisely identical 
(Section 4).

Briefly, we model the observed number of sequence reads, for 
any species i, as a nonlinear function of the species- specific fraction 
of DNA in the template (McLaren et al., 2019; Silverman et al., 2021). 
We use i to represent species, but it can be generalized to represent 
ASVs or other molecular targets. Our framework is built upon the 
premise that the amplicons produced during a PCR reaction are dic-
tated by the amplicon efficiency parameter ai, which is characteris-
tic of the interaction between the particular PCR reaction and each 
species being amplified. Thus, for any species i and in the absence 
of other species in the reaction, the number of amplicons should be 
directly related to the efficiency of amplification and the starting 
concentration of DNA template such that

where Ai is amplicon abundance, ci is the true number of DNA copies 
in the reaction attributable to species i, ai is the species- specific ampli-
fication efficiency (bounded on (0,1)), and NPCR is the number of PCR 
cycles used in the reaction (Lalam, 2006). The multispecies nature of 
a metabarcoding run complicates this single- species picture insofar as 
a limited read- depth means only a small subset of the total molecules 
will be read by the sequencing instrument. This creates competition 
among template molecules in the mix, resulting in a compositional 
dataset. Here we account for the compositional nature of metabarcod-
ing via a model term shared among species in a sample that estimates 
the fraction of amplicons sequenced (see Appendix S1 for full descrip-
tion of the model and assumptions).

The parameters ci and ai (Equation 1) are not identifiable using 
the observed metabarcoding data alone. To address this, Shelton 
et al. (2022) highlighted four general strategies to help estimate 
solutions to the above equation through the inclusion of additional 
independently derived sources of information. The first two strate-
gies involve estimating amplification efficiencies alongside metabar-
coding data, thereby providing estimates of two parameters (Ai and 
ai) and allowing for estimation of input DNA concentrations, ci. These 
amplification efficiencies can be derived either by the sequencing 
of (1) mock communities of known DNA template composition or 
(2) samples of unknown composition across a range of PCR cycles. 
The third strategy employs unique molecular identifiers to iden-
tify source molecules prior to amplification, functionally bypassing 
the need for the above equation. These three strategies have each 
been successfully demonstrated (Hoshino et al., 2021; Hoshino & 
Inagaki, 2017; Shelton et al., 2022; Silverman et al., 2021).

However, to date, no work has demonstrated the fourth strategy 
described in Shelton et al. (2022), which employs the use of a second 
independent set of observations of the same community to constrain 
the total possible parameter space of starting DNA concentrations 
and amplification efficiency values (ci and ai respectively). Here, 
we demonstrate this fourth strategy by linking sequencing data to 
the morphological ichthyoplankton counts from paired samples to 

constrain the species- specific starting concentrations of DNA in the 
ethanol jars. Essentially, we have imperfect information about the 
abundances of different species from two different sources (mor-
phological counts and metabarcoding sequence- reads), and each of 
these constrains our understanding of the other: the count informa-
tion helps to estimate the amplification efficiencies in light of the 
observed read- abundance, and the read- abundances suggest places 
where morphological counts under-  or over- estimated the abun-
dance of particular species in the jar (Appendix S1). One benefit of 
this strategy is that traditional observations are used to constrain 
eDNA measurements, providing a mechanistic framework to incor-
porate molecular and traditional surveys that align with current fish-
eries management indicators.

We highlight that the above modeling framework allows us to 
take advantage of the strengths of metabarcoding over visual as-
sessment of samples, namely higher sensitivity and taxonomic reso-
lution (Gold, Wall, et al., 2022; Thompson et al., 2016), as well as the 
strengths of morphological counts, namely quantitative estimates 
of abundance (larvae counts per standardized volume towed). The 
resulting joint model leverages the taxonomic breadth and resolu-
tion of amplicon sequencing (Gold et al., 2021; Miya et al., 2020), 
combining these with the power of morphological counts to yield 
species- specific quantitative abundance estimates. The joint model 
provides abundance estimates for a broader diversity of species 
than observed by morphological counts alone.

2.3  |  Data analysis

We first compared the results of metabarcoding and morphological 
surveys. We focus these comparisons on the 59 species that were 
either observed in >9 technical PCR replicates within the metabar-
coding data or enumerated >25 total times within the morphological 
data to ensure sufficient representation to achieve model conver-
gence. We then focus our analysis on the results of the joint model, 
using the mean posterior estimates for abundance estimates per 
species per station per year as our response variable in the following 
analyses.

A suite of environmental variables –  not just sea surface tem-
perature (SST) –  changed dramatically during the marine heat wave 
event. Upwelling strength and location, dissolved oxygen, salinity, 
current strength, and other environmental covariates also shifted 
during the climate- change influenced marine heatwave (Gentemann 
et al., 2017; Morgan et al., 2019; Ren & Rudnick, 2021; Schroeder 
et al., 2019). For simplicity, we use SST as a proxy for the onset 
and continuation of this suite of changes, documenting the result-
ing shift in community assemblage without attempting to identify 
any singular mechanistic driver responsible for this shift. To visual-
ize the dramatic shift in ecological conditions, we plotted average 
SSTs from pre (April 1, 1995– April 1, 2014) and post (April 1, 2014– 
April 1, 2019) marine heatwave using the rerddapXtracto package 
(Mendelssohn, 2020) in R to collect daily PathFinder Ver 5.3 re-
motely sensed composites (Figure 1).

(1)Ai = ci

(

ai+1
)NPCR
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To evaluate the effect of the marine heatwave on CCLME fishes, 
we compared estimated species abundances for periods before 
(1996– 2013), during (2014– 2016), and after (2017– 2019) the ma-
rine heatwave. We compare ichthyoplankton assemblages before 
the marine heatwave to assemblages during and after the marine 
heatwave because altered ocean conditions persisted well beyond 
2019 (Ren & Rudnick, 2021). We first calculated the mean abun-
dance for each species at each station for each model run. We then 
subtracted the pre- marine heatwave species- site abundance means 
from the post- marine heatwave species- site abundance means for 
each model run to evaluate changes in marine heatwave abundance 
per species per station per model run. We then calculated a 95% 
CI of change in marine heatwave abundance per species to identify 
which species were significantly different before versus during and 
after the marine heatwave at each station. We further plotted the 
change in marine heatwave abundance for each “species grouping” 
by habitat associations derived from previous CalCOFI research (see 
Appendix S1; Hsieh et al., 2005). We further visualized anchovy and 
sardine –  key taxa of management interest –  abundance over time 
by calculating the mean log- abundance of each species per station 
per year. We plotted the mean log- abundance of each of the four 
stations with error bars represent the 95% credible intervals (CI) ob-
served for a given species at a given station in that year (Figure 5).

3  |  RESULTS

eDNA metabarcoding of ethanol preservative with MiFish 12S 
(Miya et al., 2015) generated a total of 59.9 million sequence reads 
across 84 collection lots representing 90 unique DNA extractions 
and 244 unique PCR technical replicates. All sequence data were 
processed using the Anacapa Toolkit (Curd et al., 2019). After qual-
ity control, amplicon sequence- variant (ASV) dereplication, and 
decontamination processes (Curd et al., 2019; Gallego et al., 2020; 
Gold et al., 2021), we retained a total of 54.5 million reads (technical 
replicate range: 36,050– 1.2 million reads) (Appendix S1). From these 
data, we classified 130 unique taxa including 103 species- level as-
signments (79%), 15 genus- level assignments (12%), 11 family- level 
assignments (8.5%), and one class- level assignment. Independent 
microscopy- count data from paired, matching formalin- preserved 
samples classified a total of 92 unique taxa including 76 species- 
level assignments (83%) and 16 genus- level assignments (17%) from 
of 9610 larvae sorted across 84 collection lots. See Dryad repository 
for full ASV table and complimentary detailed summaries.

Molecular taxonomic assignments identified two distinct lin-
eages of the Northern Lanternfish (Stennobrachius leucopsarus) 
that are indistinguishable by morphological examination. The two 
lineages were identified by ASV clusters that differed by a single 
conserved base pair (99.5% sequence similarity). The two Northern 
Lanternfish lineages were repeatedly detected across samples and 
in high sequence read counts (variant 1: 6,145,100 total reads, 
236 detections across technical replicates; variant 2: 259,989 total 
reads, 97 detections across technical replicates). These two lineages 

exhibited dramatically different ecological patterns across the sam-
ples (Figure 2 and Figure S1), and were therefore treated separately.

The joint Bayesian model focused on the 59 taxa that had suffi-
cient representation across datasets to achieve model convergence 
(i.e. observed in >9 technical PCR replicates and >25 total larvae 
counted across the dataset), representing 99.0% of all larvae iden-
tified and reads sequenced. Of these 59 species, 48 were identified 
via microscopy and eDNA metabarcoding. eDNA metabarcod-
ing alone detected 11 additional taxa including six additional spe-
cies (Benthalbella dentata, Ceratoscopelus townsendi, Diaphus theta, 
Microstomus pacificus, Parophrys vetulus, Peprilus simillimus), one 
additional family (Opisthoproctidae), one additional variant of 
Stennobrachius leucopsarus, and three distinct higher- level taxo-
nomic groups that likely represent distinct taxa lacking reference 
barcodes (Bathylagidae and Stenobrachius sp.).

Detection levels varied by species and survey methods (Figure 2). 
The majority of species (n = 58) were detected more often with DNA 
metabarcoding, while only one species (Argyropelecus sladeni) was 
more frequently detected via morphological identification. The 10 
most abundant taxa by sequence reads and larval counts were iden-
tical across both methods. Non- detection of species across PCR rep-
licates was only observed for samples where microscopy counted 9 
larvae or fewer (Figure S2).

3.1  |  Quantitative abundance estimates

The joint Bayesian model had successful convergence yielding 
station- , species- , and year- specific larval abundances for 59 fish 
species spanning a 23- year period (Figure 3). We observed a poor 
correlation between uncorrected amplicon abundances from eDNA 
metabarcoding and larval counts from visual morphological analy-
sis (Figure 3a). In contrast, model estimates of larval counts and se-
quence reads (posterior means shown) show a close relationship to 
observed data (Figure 3b,c). Our model was able to link larval abun-
dance and sequence counts well, particularly for larvae with abun-
dant amplicon sequences and morphological counts.

3.2  |  Displacement of target fish species and 
tropicalization of fish assemblages associated 
with the marine heatwave

Ichthyoplankton assemblages shifted over time throughout the 
study region (Figure 4, Figures S3 and S4), but transformed during 
the 2014– 2016 marine heatwave. Specifically, southern, mesope-
lagic species increased in abundance while several temperate spe-
cies of ecological and economic importance declined; these changes 
were synchronous despite sampling stations being geographically 
distant and environmentally unique. For example, the mesopelagic 
Mexican Lampfish (Triphoturus mexicanus) was at peak abundance 
during the marine heatwave and extended its typical range both 
poleward and into coastal shelf waters by hundreds of kilometers 
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(Figure 4). In contrast, the abundances of northern, mesopelagic 
species and fisheries targets such as Pacific Sardine (S. sagax) and 
North Pacific Hake (Merluccius productus) were significantly lower 
after the onset of the marine heatwave and tended not to co- occur 
with warm associated southern, mesopelagic taxa (Figure 4).

3.3  |  Abundance changes in forage fishes

Results show dramatic changes in anchovy and sardine abundance 
(larvae counts per standardized volume towed) across the 23- 
year time series (Figure 5 and Figure S5). Anchovy abundance was 

F I G U R E  2  Co- detection of ichthyoplankton by metabarcoding and morphological methods. Detection plot of 59 species detected via 
microscopy (n = 48) and metabarcoding (n = 59). Metabarcoding detected all species observed in morphological counts and 11 additional 
species (in bold) that were not. Gray lines indicate missing data.
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~5- times higher during and after the marine heatwave (max: 3548, 
mean ± SD: 397 ± 834) than prior (mean ± SD: 62 ± 192). This increase 
was particularly dramatic given the low abundances immediately 
preceding the marine heatwave (mean ± SD: 1 ± 1.4). In contrast, 
on average, sardine abundances remained low before (mean ± SD: 
31 ± 65) as well as during and after the marine heatwave (mean ± SD: 
8 ± 19). However, there were regional variations in this pattern with 
relatively high sardine abundances at the San Diego Offshore station 
from 2005 to 2008 (mean ± SD: 119 ± 72) and an increase in Sardine 
abundance in nearshore coastal waters at the San Nicholas station 
after the marine heatwave (mean ± SD: 50 ± 6).

4  |  DISCUSSION

The novel combination of morphological data and eDNA meta-
barcoding of ethanol preserved larvae from an ichthyoplankton 
biorepository in a joint modeling framework (Shelton et al., 2022) re-
vealed marked shifts in California Current Large Marine Ecosystem 
ichthyoplankton communities across a 23- year time series. Across 
geographically distant and environmentally distinct sampling sites, 
ichthyoplankton communities show remarkably similar patterns of 

tropicalization during the 2014– 2016 marine heatwave. Results 
demonstrate the power of eDNA metabarcoding from ethanol pre-
served bulk samples to unlock important insights into community 
dynamics over time, creating novel research opportunities from pre-
served sample collections (Gallo et al., 2019).

The observed ichthyoplankton assemblage shifts during the 
marine heatwave are consistent with recent studies reporting the 
tropicalization of terrestrial and marine ecosystems in response to 
climate change (Chaudhary et al., 2021; Vergés et al., 2016). These 
deviations can induce novel species interactions, catalyzing changes 
in ecosystem function (Frölicher & Laufkötter, 2018; Morgan 
et al., 2019). The high abundances of both Northern Anchovy and 
southern mesopelagic species seen in our dataset during and after 
the 2014– 2016 marine heatwave is unique in the previous >70- 
year CalCOFI dataset (Moser et al., 1987; Smith & Moser, 2003). 
This result, corroborated by Thompson et al. (2022), suggests that 
climate- associated biological shifts in the CCLME are likely to be 
without modern analog (Nielsen et al., 2021; Sydeman et al., 2020; 
Thompson et al., 2019, 2022).

Our model estimates of ichthyoplankton assemblages are con-
sistent with studies (Sydeman et al., 2020; Thompson et al., 2022) 
that documented a decline in both sardine and anchovy abundance 

F I G U R E  3  Bayesian joint model improves quantitative abundance estimates. Plot of observed (uncorrected) eDNA metabarcoding 
derived sequencing reads against observed morphological counts (a). Observed- predicted plot for larval counts (b) and sequence reads (c) 
from our joint model results. The one- to- one line is plotted in red and Pearson correlation coefficients (r) are reported.
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F I G U R E  4  Novel marine heatwave assemblages. Shifts in species modeled abundances with the onset of the marine heatwave (1996– 
2013 vs. 2014– 2019). Synchronous increases in southern mesopelagic species and Northern Anchovy (Engraulis mordax) were observed 
across all stations. Stations are in rows, species in columns, and the joint model estimated change in abundance between the two ecological 
phases is shown as the response variable. Fisheries targets including Pacific Sardine (Sardinops sagax) and North Pacific Hake (Merluccius 
productus), as well as many other benthic and coastal species, had concurrent negative associations. Significant differences during and after 
the marine heatwave are marked with + or −.
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beginning in 2005 followed by a dramatic increase in anchovy 
abundance in the wake of the marine heatwave (Figure 5). This 
rise in anchovy and continued low abundances of sardine during 

the marine heatwave is an ecological surprise. Correlative analy-
ses between basin- scale environmental indices such as the Pacific 
Decadal Oscillation indicate that, for the latter half of the 20th 
century, anchovy thrived under cooler conditions and sardine 
under warmer conditions (Chavez et al., 2003). However, our 
results corroborate recent observations of anchovy- dominated 
forage- fish assemblages arising in response to marine heatwave- 
associated ocean warming conditions (Checkley et al., 2017; 
McClatchie, 2012; Nielsen et al., 2021; Santora et al., 2020; 
Thompson et al., 2019). Specifically, increases in Northern 
Anchovy and southern mesopelagic fishes were found to be as-
sociated with decreases in Pacific Sardine and North Pacific Hake 
in the Southern CCLME (Piatt et al., 2020; Robinson et al., 2018), 
suggesting fundamentally changed ecosystems and fisheries rela-
tive to the recent past (Thompson et al., 2022).

The unexpected response of ichthyoplankton communities 
to the 2014– 2016 Pacific Marine Heatwave suggests that the 
mechanisms that govern the population dynamics of forage fish 
species are not a mere function of temperature, but governed by 
more complex factors including trophic ecology as well as spa-
tial and temporal variation of distinct, favorable oceanic condi-
tions (Checkley et al., 2017; Schroeder et al., 2019; Thompson 
et al., 2022). Thus, improvement of our mechanistic understanding 
of drivers of forage fish dynamics is needed to inform ecological 
predictions in the face of extreme ocean events such as marine 
heatwaves, which are likely to increase in frequency and duration 
under climate change (Deutsch et al., 2015; Frölicher et al., 2018; 
Howard et al., 2020; Oliver et al., 2021). The quantitative me-
tabarcoding approaches described here provide an important ave-
nue to characterize larval prey field and gut contents, allowing for 
the characterization of a critical, yet poorly understood driver of 
recruitment volatility in coastal pelagic and other fishes (Barbato 
et al., 2019; Erdozain et al., 2019; Garcia- Vazquez et al., 2021; 
James et al., 2022; Kelly et al., 2019; Mariac et al., 2018; Nielsen 
et al., 2021; Pitz et al., 2020; Sydeman et al., 2020).

4.1  |  Quantitative metabarcoding framework

Across- species variation in amplification efficiencies resulted in 
relatively poor correlation between raw sequence abundance and 
morphological ichthyoplankton counts (Figure 3). However, after 
leveraging relative abundances provided by morphological counts to 
estimate differences in PCR amplification efficiency, Pearson corre-
lations between observed and predicted counts approached 1. This 
result delivers strong empirical support for the mechanistic meta-
barcoding framework proposed by Shelton et al. (2022), and greatly 
improves the quantitative reach of DNA metabarcoding.

This joint modeling framework provides a valuable foundation 
for the development of metabarcoding based quantitative abun-
dance estimates that could ease the burden of morphological work. 
Although we informed our model from abundance estimates from 
morphological larval identification, as noted by Shelton et al. (2022), 
this joint modeling approach can utilize any estimate of abundance, 

F I G U R E  5  Synchronous increase in anchovy abundance during 
and after marine heatwave. Model posterior estimates for larval 
fish abundances (larvae counts per standardized volume towed) 
over time at each of the four sampled stations. Joint modeling of 
metabarcoding and morphological counts reconstructed increases 
in Northern Anchovy (Engraulis mordax) during the recent Pacific 
Marine Heatwave and low spawning of Pacific Sardine (Sardinops 
sagax) over the past decade (points are means and error bars are 
95% credible intervals; the shaded region is during and after the 
marine heatwave). Northern Anchovy abundances are in blue while 
Pacific Sardine abundances are in red. Sea surface temperature 
is plotted above the Northern Anchovy and Pacific Sardine 
abundances for reference.
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including qPCR or dPCR derived estimates of absolute DNA concen-
tration. Therefore, the combination of multiple quantitative single- 
species molecular assays, rather than morphological counts, could 
provide the information needed to for our joint model, providing a 
purely molecular approach to estimating abundance from metabar-
coding data (McLaren et al., 2019, 2022; Pont et al., 2023). Such mo-
lecular based approaches are needed as few biological monitoring 
programs have access to the expert taxonomists needed to pains-
takingly identify the >9000 individual ichthyoplankton collected 
within our study (Gallo et al., 2019).

An important avenue of future research efforts is to unite the 
multiple amplification efficiency estimation strategies outlined in 
Shelton et al. (2022) to derive quantitative estimates of taxa de-
tected through eDNA metabarcoding. Here, our model solves for 
amplification efficiencies by constraining the underlying starting 
DNA concentrations with observed morphological counts, allowing 
for a model estimate of amplification efficiencies and underlying 
starting DNA concentrations for all taxa observed through me-
tabarcoding data. In contrast, previous work has utilized mock com-
munities or variable PCR cycling efforts to estimate amplification 
efficiencies directly (McLaren et al., 2019; Silverman et al., 2021). 
Future efforts should leverage a fully integrated model that derives 
independent information for all three parameters (observed reads, 
amplification efficiencies, and underlying DNA concentrations) to 
derive accurate quantitative estimates of molecularly observed bi-
ological communities.

Despite its utility, our joint modeling efforts also has limita-
tions. First, we assume exponential PCR across all 49 cycles, which 
was likely violated given theoretical and analytical work that sug-
gests a decline in the efficiency of PCR reactions over time (Boggy 
& Woolf, 2010; Chatterjee et al., 2012; Kubista et al., 2006). 
Fortunately, such PCR saturation would not affect the interpre-
tation of our results because bias would be applied uniformly as a 
scalar across all estimated amplification efficiencies. Future efforts 
could address this issue by simply incorporating a decay coefficient 
in the underlying PCR equation (Boggy & Woolf, 2010; Chatterjee 
et al., 2012; Kubista et al., 2006).

Another limitation of our modeling framework is the assump-
tion that morphological counts directly correlated with the start-
ing DNA concentrations in each ethanol preserved sample. This 
assumption is likely not completely accurate because: (1) our work 
did not incorporate morphological counts of egg abundance from 
the jars, (2) metabarcoding and morphological taxonomic identifi-
cation are imperfect, leading to mismatches between survey ap-
proaches, and (3) we made the explicit assumption that all larvae 
share an identical DNA shedding rate into the ethanol preserva-
tive, ignoring any allometric or physiological effects (Appendix S1). 
These limitations impact our ability to both directly compare and 
jointly model genetic and morphological methods (Figure 2) (Kelly 
et al., 2017).

Due to these limitations, care should be taken before extending 
our model framework to eDNA obtained directly from environmen-
tal sources and more complex metabarcoding applications as our 

model cannot account for the many processes impacting captured 
DNA prior to the PCR reaction. For example, ethanol- preserved lar-
vae in a bulk collection have experienced the same conditions in a 
constant volume of ethanol. As such, these samples may be more 
amenable to estimating abundance accurately because only a few 
processes are likely to affect the relationship between captured 
DNA and the number of larvae in a jar. In contrast, eDNA derived 
from environmental samples are impacted many processes beyond 
species specific allometry and morphology, including life stage, 
behavior, temperature, state, origin, and fate and transport of the 
collected DNA, among others (Andruszkiewicz Allan et al., 2021; 
Barnes & Turner, 2016; Harrison et al., 2019; Jo et al., 2019; 
Sassoubre et al., 2016; Shelton et al., 2022; Thalinger et al., 2021; 
Yates et al., 2021). Understanding the impact of these processes on 
metabarcoding results will require a fully integrated modeling ap-
proach accounting for all potential mechanisms impacting metabar-
coding read abundances. Such an approach would necessarily rely 
on a unified theory of eDNA metabarcoding pulling together our 
collective mechanistic understanding of shedding, degradation, and 
fate and transport processes (Harrison et al., 2019) alongside the 
subsampling and PCR amplification processes (Diana et al., 2022; 
Gold, Shelton, et al., 2022; Shelton et al., 2022) to ultimately derive 
accurate quantification and detection estimates.

To this end, recent work has begun to characterize the effects of 
additional mechanistic processes prior to amplification, particularly 
the effect of subsampling processes on observed read abundances 
and non- detections (Egozcue et al., 2020; Gold, Shelton, et al., 2022). 
Utilizing the dataset described in this manuscript in conjunction with 
mock communities, Gold, Shelton, et al. (2022) demonstrate that 
rates of non- detection are a function of amplification efficiencies 
and underlying DNA concentration. These results highlight the fu-
ture importance of not only modeling the deterministic PCR process 
as we have done here, but also modeling the stochastic subsampling 
process prior to amplification as both processes together drive ob-
served biological signal (abundance of observed reads) and noise (the 
patterns of non- detections across technical replicates) in metabar-
coding data sets (Gold, Shelton, et al., 2022; Gold, Wall, et al., 2022).

Despite the current limitations of our modeling approach, re-
sults demonstrate the clear value of the Shelton et al. (2022) frame-
work for deriving abundance estimates from metabarcoding data 
(Figure 3). This approach is particularly well- suited to controlled sys-
tems such as the CalCOFI ethanol- preserved samples, microbiomes, 
and bulk metabarcoding approaches (Carew et al., 2018; McLaren 
et al., 2019). Addressing the above limitations by advancing mech-
anistic modeling efforts will further enhance the accuracy of quan-
titative estimates derived from metabarcoding data in the future, 
allowing for applications to aquatic eDNA.

4.2  |  Novel insights from legacy collections

Ultimately, our novel approach generating metabarcoding sequence 
data from ethanol preservative combined with joint Bayesian 
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hierarchical modeling provides valuable quantitative estimates by 
non- destructively sampling legacy collections via metabarcoding. At 
the same time this novel approach provides a mechanistic frame-
work for determining absolute abundance estimates from com-
positional amplicon sequencing data (Gloor et al., 2017; McLaren 
et al., 2019; Silverman et al., 2021). Importantly, the integration of 
metabarcoding approaches allowed the differentiation of 11 addi-
tional variants and species that were not morphologically identifi-
able in ichthyoplankton (Thompson, Chen, et al., 2017). For example, 
metabarcoding identified unique variants of the Northern Lampfish 
(Stennobrachius leucopsarus) that are morphologically indistinguish-
able and combined as a complex exhibited little change before and 
after the marine heatwave. However, these two ASVs had markedly 
different responses to the marine heatwave with one variant largely 
disappearing after the marine heatwave onset (Figure 4), illustrating 
the power of molecular methods reveal ecological dynamics other-
wise hidden by shared larval morphology.

Beyond improved taxonomic resolution, the key advantage 
of our framework is the ability to derive quantitative estimates 
from metabarcoding data, albeit with the many caveats described 
above. Determining abundance from eDNA metabarcoding has 
been challenging, with mixed results (Fonseca, 2018; Lacoursière- 
Roussel, Côté, et al., 2016; Yates et al., 2019). Unlocking such 
quantitative metabarcoding approaches expands the potential for 
linking ecological assemblages to environmental processes be-
yond presence- absence (Lacoursière- Roussel, Côté, et al., 2016; 
Lacoursière- Roussel, Rosabal, & Bernatchez, 2016; Stoeckle 
et al., 2021; Yates et al., 2019). Such quantitative approaches may 
prove critical in modeling and predicting future ecosystem change, 
particularly difficult to study ecosystems like coastal pelagic fishes, 
although directly linking assemblage dynamic responses to climate- 
driven forces remains inherently challenging. While the CalCOFI 
samples are specific to ichthyoplankton from the CCLME, bulk col-
lection of community samples is commonly used to survey plankton, 
insects, pollen, gut contents, and microbiomes, among many other 
targets (Deiner et al., 2017). As such, the methodology we present 
here is broadly applicable to such bulk collections to efficiently un-
derstand modern and historical changes in ecological communities.
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