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Abstract

Understanding_the strengths and weaknesses of alternative assessment methods, harvest

strategies and.management approaches is an important part of operatiosialigexpecies and
ecosystem basefisheries managementSimulations run using two variants of a whole of
ecosystem moddbr the Southern and Eastern Scalefish and Shark Fishery (SE®&&Shows

that (i) datarich assessmentsutperform data-pooassessmestor target species and that this
performancas reflected in the values afiany systerievel ecosystenndicators;(ii) ecosystem

and multispecies management outperfosimglespecies managenmienapplied over the same
domain;(iii) investment irrobust sciencéased fisheries managemeatys dividendgven when
there are multi@jurisdictions some of whichare notimplementing effective managemgand

(iv) that multispecies yieldriented strategies can deliver higher total catches without a notable
decline in overall system performance, although the resulting system stigdiifferent to that

obtained withother forms of ecosystem based management
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Introduction

Even with a growing list of pressures on marine ecosystergs IPCC, 2013; Halperet al.,

2015; Wilcox et al., 2015; Hobdayet al., 2016; Kuncet al., 2016 Breitburg et al, 2017,
resource ranagementan be seen gmtentiallyexcessively costlyn a world where budgets for
science and (environmental management warder pressureEcosystem based management,
whether focused solely on fisheries or integrated across multiple marineaddsadda further
regulatory and fiscaburden particularly given its call for a broader system perspective.
Evidence is growing that the portfolio approach provided by an ecosystem perspective provides
ecological and,financial benedifLink, 2018). Giidelines Essingtoret al, 2016, NOAA 2016)

have been created to assist in the implementation of ecosystem based fisheries management
(EBFM). Neverthelessthe perceived complexity of the task and its sysspercific nature-
successful implementation of EBFM requires tailoring abraconcepts to local conditions
(Trochtaet al, 2018)- canlead to scepticism aralsense of being overwhelméethe feasibility

of EBFM has, been questioned @®me have assumed it means expanding tiyees of
managemenimplementedor species targeted by fisheries to a wider range of species, or at the

very least adding the trackirmg manyadditionalecosystenindicators.

In contrast to expanding the range of spedbe assertion thatinglespecies managemeiit
implemented correctlyshould be sufficiento achieve EBFMNRC 1999). Evidence tsupport
this assertiorhas beemmixed, and largely basedn discussions of the weaknessa&ssingle-
species management and whether these will be addrasseylEBFM approachegFogarty,
2014) For example, Hilborn (2011) explained that EBFM is required because-spegies
management does not accoufdr interactions (trophic or otherwise) amongst system
components ofor effects on nottarget speciesSimberloff (1998) also listed the many issues
associated witlsinglespecies managementeven if that managemerg focused on indicator
umbrellg or flagship species Specifically, Simberloff (1998) raised concerns aroutite
appropriatenessfisinglespecies aproxiesfor other parts of the systemndwhether managing
particularspeciesncidentallyleads to satisfactory outcomes for other spe&8asberloff (1998)
suggestd that managing for keystone species may effectively delivétNEB{owever it is not
clear that each ecosystem has a keyst@pecies In contrast severalauthors (e.gJennings,
2006 Hicks et al, 201§ have questionewhether a move to an ecosystem approach would
address the key drivers behind unsustainable fislfidgntified by FAQ 2002) - e.g.

inappropriate incentives; market distortions; high demand; poverty; a lackveadihdod
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alternatives or diversity; information gaps; and weak governance, compliance arwmefur
Of these drivers, EBFM should (by definitioog robust to the need tonsider the interactions
of all sectors(fisheries and otherwise) that impact thwrine environmentHowever, the
realisation that this would not successfully address issues of governanceiogfc@oamic
drivers hasrecently seen more emphasishenhuman dimensions of EBFNUquhartet al.,
2011;Charles2014 Anderseret al, 2015; Bundyet al.,2017.

Jurisdictional gdivisionscan alsolead to fisheries management tensiongarticularly when
ecosystems span,multiple jurisdictioi$is has ledfor exampleto UN agreements regarding
straddling stoeks YN, 1995), but has grown to be a larger systewel topic as shifting
environmental” conditions and variable stock statuge hzhallenged fisheries management
authorities on either de of national borders or who participate in regional fisheries management
organisations (Hatuet al., 2009; Spijkers and Boonstra, 2013»me have questioned whether
the additional investment in management is warranted if it is only applied to gh# system
(e.g.stock) n discussions of the implementation of EBFM (or even siagkries management

of straddling stecks) (Gulland, 1980; Murebal., 2004).

Mathematical radels are useful for exploring whether singfeecies management approash
can achieve EBMwobjectives given thalirect observational evidence regarding ecosyseel
objectivesis hard to collect at the scale of entire ecosystems and under controlled conditions.
Ecosystem modelling has matured ascientific disciplineover the last thirty years, with
hundreds of models developed on scales from local (e.g. single bays) tq glubalsing a
diverse range of modelling platforms and philosophies (ftaphically-focused to sizeand
agentbased). One modelling platforthat can baused to explore the implications of fisheries
management'in an ecosystem context is Atlafitidton et al, 201). Atlantis is a wholeof-
ecosystem modé¢hatincludes the major oceanographic and ecological processes, fos@meeb
human uses (Fulton et al, 201). It can be usedo explore the ecosystem implications of
alternative management strategiesl{onet al, 2019, potential future trajectories under climate
and management scenaridsaplan et al, 2010; Weijermanet al, 2015 and the potential
outcomes of the implementation of tierassessment methods and harvest stratégigsrget
speciegFultonet al, 2016 Dichmontet al,, 2017).

This paperevaluateghe incrementalecosystem value of sound fisheries managemesihgle-

species and integrated multispecies or ecosystem based managemeiis robustness smme
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key challenges, such as differing management approachesither side of jurisdictional
boundaries.Jurisdictions that lack the capacity to implementngbdisheries management
typically do not collect time series data on ecosystem. dtédecover, information facilitating
ecosysterevel assessmenis not necessarily available even when there has been a strong
investment in singlspecies management (efigheriesindependent surveys do not have a long
history or bread coverage in Australia despite significant institutional and ipdefort to
implement robust fisheries managemeiit)is analysis takes a modehsed approactusinga
model to representhe whole system (interacting ecological components, fisheries and the
management methods and processes). This approach means there can be contrayronsvbht f
management are_implemented (and the levels of compliance and responsivenedstdath
streams arécollected” (i.e. so a full ecosystem perspective can be gained). In thisthisy
paper allows for consideration diet ecosysterevel outcomes of(i) implementing dataich
versus datgpoor assessment for target species; (ii) implemerdsggssment methobafvest
strategieon all or only some of the species targeted by fish{iig implementing ecosystem

and multispecies management versug)lespecies managemerdnd (v) of managing only one

part of amulti-jurisdictionalmarine ecosystem.

Methods
The study regionswas the Australian Southern and Eastern Scalefish akdriShary (SESSF),
a large marine ecosystem that extends across southstrakan from subtropical to subpolar

waters(Figure. 1)

Terminology
Before describing the models and the simulations run we first clarify some terminology that will
be used through the rest of the paper:

o A target.speciess a species that is of primary interest to the fishers, it is central to their
decision“makingregardingwhere and what to fish. These species include all those
speciessmarked with an X in the column “Main target species” in Table S1.

e Treatment speciegrethose speciemanaged under a harvest strategy in scenarids P
(seebelow),, Thaee species include target,-pyoduct and bycatch species.

e Nontreatment specieare target species that are not being managed using the harvest
strategy in that particular scenarild they arealso atotal allowable catchTAC)

managed speciethey are managed using the 2005 quota levels throughout the run.
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¢ Nontarget specieare all the other groups in the model, which may or may not interact
with the fishery, but are not targets of the fishery operations.

e By-product specieare nortarget species with market value that are landed along with
the main target species

e Bycatchspeciesare nonrtarget species caught by the fishery that are discarded and not
landed.

e Iconic speciesare species of conservation concermarine mammals, seabirds and

large 'sharks

There are many.species under TAC in the SESSF (listed in the column “EBFM TAC species” in
Table S1)- including target species, fproduct species and particularly vulnerable bycatch
species (such agulper sharks and school sharks); bycatch species are included in TAC
management rules because they may previously haveabaeget species but are now depleted
(e.g. school sharks) or because they are a species of conservation concexnp@.gharks)
where discards.are trackeDiscards are accounted for in the assessment and TAC setting
processn the SESSF.

The speciesar@ot all handled in the same way in each of the management scerdnsss
because the seenarios were defimedesponsdo management questioasid so the details do
not fit an exhaustive or systematic plaklowever this reflecs the complicated nature of

managing a multispecies fishery.

Model content

The Atlantis medelling framework was used as the basis of the andisisple Atlantis
models of increasing sophistication have been developatddBESSFover the past 20 years.
Good understanding of both the fishery and the models makgpriopriatefor this paper We

first testedthe implications of managing only one part of an ecosystesimg AtlantisAMS,

which waspreviously usedby Fultonet al, (2014) to explore alternake management strategies

for this fishery Given the additional data requirements associated with the assessment
methods/harvest strategies applied to the individual species in the athef e studyit was
necessaryo conductthat analysisusing AtlantisRCC, which is very similar to Atlant8MS,

but includesmultiple sizeatage morphdor the assessed species; this model was originally

developedo evaluatethe efficacy of the use otieredassessment methods and harvest strategies

This article is protected by copyright. All rights reserved



213 (Fultonet d., 2016 Dichmontet al, 2017. While it would have been desirable to have all the
214  simulations directly comparable, by rerunning the simulatmsuctedusing AtlantisAMS,

215 the computational cost of running AtlarBRCC made this impracticable givéme desire to also
216  consider uncertainty.

217

218 Both Atlantis /modelsuse the sam&l model regions (“boxes”) based on the physical and
219 ecological properties of southeast Australia (Figure dgterminegrimarily by the dstribution

220 of the water bodieand the geomorphology of the area as summarized in bioregionalisations
221  (IMCRA, 1998, Butleret al, 2001; Lyne and Hayes, 2005; Fultenhal, 2007). Each of these
222 polygonal boxes has up fove water column layers (dictated by total dephallower boxes
223 have fewer layers)and a single sediment layer.

224

225 The oceanographicphysical) environmenin theseAtlantis modelsincludes ocearcurrents,
226  temperature salinity, pH, oxygen and nutrient level€Exchanges(horizontal and vertical)
227 betweenspatial boxesnd layersas well as temperature and salinityeach layer of each bpx
228  were taken from.thdataassimilated version of the glod&@cean Forecasting Australia Model”
229 (OFAM; Oke et,al,.2005 the database uséslavailable ahttp://www.bom.gov.au/bluelinkind

230 SPINUP6 from http://www.marine.csiro.au/ofami/)During the projection period of each
231  simulation (20052050) the OFAM reanalysis was used until 2014, then the patiExmariance

232 in the environmental conditions were looped (from steetof thetime series) to complete the
233 projection period; trends in the conditions were maintaindménwith thosefound in longterm
234  climateprojectiors (as detailetdy Fulton and Gorton, 2014).

235

236 The model structuren these modelss described infable 1, with minor variations betweethe
237 two modes. AtlantisRCC includes a fewmorespecieghan AtlantisAMS and multiple sizeat
238 agemorphs forthe speciesnarked asreatmenbr main target species in Table.Shese morphs
239  represent multiplezgrowth variants for the specesghwith its own growth rate antience
240 multiple sizeatage‘curvesor each speciefoth AtlantisAMS and AtlantisRCC use the same
241  dynamic growth'model formulation, but a single fixed growth rate parameterisatisedsper
242  cohort per species AtlantisAMS, while the parameters for each cohort drawn from a
243 distributionin AtlantisRCC. For all other parametersneset of biological parameter values (i.e.
244  values for norpredationmortality rates, consumption and growthtes, habitapreferences,

245 movement rates etc.) per species gréapmorph)is usedfor the entire model domainThe
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246  exception to thiss whena groupis definedas having multiple stock&ee Table 1)in which

247  case fecundity, backgroumdortality and diet connecn strength varied among stocks.

248

249  Food web pathways in Atlantis are defined based on: the maximum potential atxaibdlghch

250 preyto each-potential predator; the level of physical contact (i.e. spatial owdtldp a box

251 given habitat fpreferences and patchiness); the state of habitat (refugia)pardngation (i.e.

252  size of the mouth versus size of the prey given the feeding mode of the predator).-ANéBitis

253  uses Heavisidstepfunctiondike diet size windowswhereasAtlantissRCC uses smoother curves
254  (so that realized diets matobserved diets when multiple growth morphsraodelled.

255

256 Idealy Atlantis should berun with multiple plausible parameterisations, to allow for
257 consideration ‘of uncertaintyegarding ecological processes or socioeconomic profiles. All
258  simulations run with Atlanti®\MS (detailed below) were under the alternative parameterisations
259 available forthis model (these parameterisations are distinguished in particular byethgtlstof

260 the trophic interactionsPnly a single parameterisation wagailablefor the AtlantisRCC runs

261 due to the technieal difficulty of achieving a stable model state using multipdghgroorphs.

262  All the parameter sets used were determined by calibrating the models to available historical
263  biological and catch data (Fultet al, 2007, 2014) using a patteoniented modelling approach

264  (Fultonet al, 2007 KramerSchadtet al, 2007) whereby the most uncertain parametsese

265 adjusted according to the following criteria: (i) the predicted spatial distributions andetilee s
266  of biomasses, age structure, readizliet composition, and catches, must approximate the shape,
267 magnitude and variability of observed time series across the majority of baxeshysgrved

268 catches and discards must be sustained without rendering any model group andirfct) rate

269 pamameters must ndie adjusted beyond bounds reported in the literature without expert advice
270 from researchers active in the region. In this waarameters were set axhieve(a) a stable

271  ecosystem, under. constdighing pressure, with biomass and parameter valiiésn the range

272  of biomass valuesireportédr these groups in the literature; atl produce time series for the
273  target and surveyed species that matched observed time series and spaitiatiatis The

274  parameter pdagree (i.e. the relative uncertainty and reliability associated with each parameter)
275 was set based onythe data used to provide the initial parameter values (i.e. whether taken from the
276  local ecosystem, sister species, general ecological thetayandsensitivity to that parameter

277 as defined in thanalysesof Pantus and Dennisd2005) and Fultoret al., (2007) In practice,

278 this meant most tuning modifications were made thhe diet availabilities,growth and
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consumption rates, background natumadrtalities (especially for the highest trophic levels),

fecundity levels and thgteepness of the steci&cruitment curve.

The models were initialized for conditions in 1988vailable biomass estimates for the
biological groups+(e.g. from Morisaet al 2012for assessed species) were used to set the initial
1980 abundancesor all other speciesistorical fishdown scenarios run by Fult@t al (2007)
were used to set relative depletion levels in 2005 versus 488Ghen 1980 biomass levels
calculaed bydividing estimated2005 biomasss by the associatediepletionlevels (e.g. if the

relative depletiomvas 50% then the 1980s biomass was twice the @8fifhate of biomass).

Both models usethe socieeconomic effort allocation model ah earlier Atlantis model for the
region, AtlantisSE"(Fulton et al, 2007, including its price and cost structuréghis effort
allocation models largely driven by two main components- a quota trading module and a
métierlevel spacetime dynamiceffort module (Fulton et al., 2007; veaPutten et al., 2013)
However, the'model also explicitly models prices (accounting for markettaistand perverse
marketdriven incentives), as well as different behavioural profiles across fishers, which allows
them react to'management actions, their social (trading and informattemyke and perceived
ecosystem/istate in diverse ways. This dynamically determines which gears are used, which suite
of species is targeted by fishers through time (allowing for shifting 1sjpdicies targeting), as

well as where and at what time of year fishing takes place, and how these patterns change
through time. The model also determines whether fishers invest more into they fishe
alternatively choose to leave altogethier.terms of harvesting the ecosystetis tmeans th
modeldoes not assumecatch limitmust betaken exactlyi.e. undercatch can occuwhile also

allowing for non-compliance andmperfect targeng (i.e. accidental overcatchthoughthis is

constrained, as it is in reality).

Simulations

Path dependeney=0f depletion or changing status can be important for determining ®cosyste
state so eachssimulation included historical fishing of the syl®@80 — 2005xnd then a 50

year projectionofithe system under the conditions of inteéFest historical periosghvolvedthe

actual historical catchlimits for each target species, as well as theual values for
environmentaldrivers The projections (management simulations) wbenrun from 2005 to

2050 (schematic shown in Figure 2nd the time seriefor all ecosystem componensd

fisheriescatch andeffort per mdier stored by time-step and spatial location.
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313

314  Managemensimulationswere conductedo explorethe impactof management othe broader
315 ecosystemthese arelescribed more fully below (and in Tables 2 ajd8t can be grouped into
316 two sets (i) tiered (datarich to datalimited) assessment methods/harvest strateggdied to
317 individual species*or combnations of specigsusing AtlantisRCC and (ii) dfferential
318 management/across jurisdictiomsing AtlantisAMS. Simulations were conducted for two other
319 management”strategieg® provide ‘bounding results> (i) unconstrained fishingand (ii)
320 integrated EBFMdefined in more detail belgwThesestrategiesvere implemented across the
321 entire model domainJnconstrained fishingised the sameffort allocation model as the other
322 simulations but,.all forms of fisheries manageméneé. all spatial zoning, gear restrictions, catch
323 limits) were removed at the start of the projection pednd the fishery became open access.
324  The initial number-of vessels per sector was as of 2005 and after thatoexéss)effort in the
325 form of additional vesselgould be introduced intthe fishery based on a simple CRU&sed
326  rulefollowing Link et al (2010:

327
(@) - V., if CPUE > ky
328 Vij =4dl='e;) - V,_y; if CPUE <k,
Viaj otherwise
329

330 whereV,; is the number of vessels in fleet (gear typdliringyeart; ¢; s the rate of growth or
331 contraction for gear typg and thex are the CPUE threshold levelset per rdtier based on
332 historical fishing patterns in Australia, the USA and Europe; example fits gi@gure S1).

333

334 The integrated EBEM approach matched thlafFulton et al (2014).1t uses an intentionally
335 multi-faceted ‘set of management methods to handle each of the main objectives and syste
336 components; and.emplaygearspecific spatial zoning andomainwide depth and habitat
337 specific closures;“seasonal closuresfishing on spawning aggregations or migratiorend

338 regional quotas=foR4 of the target groupghat shape the fishery’s exploitation patterns and
339 economic drers(listed in Table S1) and groups of conservation concerndelper sharks) on

340 an annual cycle“(using the first harvest strategy listed in Tab@afh limitsweresetby stock

341 (i.e. wereset specific to a region for all species marketh an * in Table 1), accountingfor

342 discardswerereconciled on landingandwereadjusted so that no vulnerable companion species
343 wasat risk (i.e.catch limitswerereduced if a species caugtiongwith the target specieouald

344  not sustain that level of fishing presstinat would be required to land the full quota of the target
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speciek In addition, therevere trip-level catch limits for vulnerable bycatch species, bycatch
reduction devices and limits on permissible gears; see Fefl@n(2014) for additional technical

details.

Twenty replicates'were undertaken for eacénario Computational speed precluded a larger set

of replicates However, this number was adequate gitles deterministic nature of Atlantis (a

brief exploration showed that increased numbers of simulations did not mwpteitell the
results). The random deviat governingstochasticity (effort &cation and observation error)

were replicatespecific meaning that each scenario run was compared directly only to matching
runsfrom otherscenaris that used an identical set of random deviates. iBsiresnaximum
comparability ©of the results (i.e. the results are analogous to paired tests). Nevertheless, it is still
safest to consider‘the results in a relative se@sasequely, the indicatordor each scenario

are compared to the results under unconstrained fishing.

Harvest strategies

The harvest strategies explored are listedable 2. These strategies consist of an assessment
method and a decision rukend includd those currenin 2014in the SESSF (Smitat al, 2019

as well asupdated versions of data-poor harvest strategies that have been used in othearustrali
federallymanaged-fisheries (Zhoet al, 2011; Dowlinget al, 2008; Dowlinget al, 2016).
Theseharvest strategies are used to determine recommended biological ¢RBR=3, which

are in turn used to set the total allowable cas¢MACSs) usingthe following SESSFmetarule:

0.52TAC,_, if RBC, < 0.5-TAC,_,

TAC — TACt—l lf 0.9 * TACt—l S RBCt S 1-1 * TACt—l
YT OVT5ETAC,_, if RBC, > 1.5 TAC,_,
RBC otherwise

These strategies=(and resulting Tg\Qvere implemented on an annual cy¢i®e. aggregate
annualdata wereused in the assessments, as that is tyfacahost fisheries)The data for the
assessments.were generated usirsgrapling model, whiclgeneratedcatch length and age
composition data;, cateper-unit-effort data (by vessel sizgass and fishergector);landings
data (and catch species composition) by vesselctass and fishery sector; addgscard data.
This sampling model allowed fageing error, measurement error, variation in catchability, and
error when measuring discards, with error levels that were-sfmtific (Table $). Data were

generated for each dfour Atlantis timestep and aggregated to trip, month, and year. The same
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approachwas applied to a survey design to genefetieery-independent survey data for the

monitoringbased strategy discussed in the next secéind (n Table 3).

As is the case imactualmultispecies fisheries, harvestrategiesvere not applied to all fished
specieshut enlytothétreatmentspeciesidentified in TableS1; these species represent a range
of life historiesand have a range of influences on effort dynamidscluding major target
species (e.g. tiger flathead or blue grenadi®rproductspecies (e.g. blue warehou) and some
bycatch species (e.g. gulper shaild)e application of these harvest strategi@s conductedn

two ways. The first was to applyhe same harvest stegy to all treatment species
simultaneously(thisiwas done for each harvest strategy in Tahld@s was assumed to be a
pragmatic approach tachieve domakwide multispecies management. A final multispecies
scenarianvolved applying the mix of harvestrategies actually applied in the SESSF, as this is
an indication of the kind of pragmatic compromises that are made in fisheries mana(leenent
strategy applied per species in this case is listed in Tdhler'&is scenario is referred to as the

“Mixed” scenario in the results section.

The second approach to applying harvest strategies was more-sfiagies focused. This
involved applyingeachof the sevenharvest stratags listed in Table 2to each of theld
treatmentspeciegas identified inTable S1) individuallywith the TACs for all other species set

to the 2005 level. This meant there were 98 (7x14) combinationsmtimthe focus on the
dynamic management of a single target species with all other spédizssheld at 2005 levels.
This approachis illustrative of the kind of complexities that might arise amertlinderfishing

of some speciesr a multispecies figry should the focus of management be constrained to a

very limited sebf species

Differential management across jurisdictions

While no nationalsboundary exists within the SESSF, there are multiple state bosindtrie

the ecasystemsThere are differencesmn management actions implemented between state and
federal jurisdietions in Australjdutthese did not show the desired contrast in terms of types
management. Consequently, an artifigalitical jurisdictional boundgrwas draw within the
broader model domaiand unconstrained fishingas allowedon one side of the border while
fisheries management of specific formas implemented and enforced on the other side of the

border.
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Three potential border locatiofBigure 1)wereused toexamine thesensitivity of the results to

the location of the border versus the spatial distribution of the ecosystem compargniplé
eastwest split as shown by border location 2 could be confounded with biogeographic splits in
the systemdue tocirculation patternsvithin the model domain In addition, projectionswere
undertakerfirst'with'the western/southern jurisdiction being the managed area and then another
set of projections were undertakethen theeastern/northern jurisdiction w#se managed area.

The final results were averaged across all these simulations.

Table 3 summarisgbe management methothgat wereexplored.Unless noted otherwise, those
scenarios using a/more limited ferof management (e.g. only gear modifications or discard

minimisation)are subsets of the integrated EBFM strategy.

Indicators

Fourteenindicators (Table 4) were used to assess the ecosydwml performance of the
management actionkdividually, the indicatorselectedeflected different aspects of ecosystem
structure and funetion or different management and societal objectives for tysteco$he
ecological indicators were selected based on proven reliabditg clear understanding of
expected responses to fishing pressure frpravious indicator studie.g. Fultonet al, 2005;

Link 2005; Shinet=al, 2010, 2018 The potential social and economic indicators that could be
derived from the model output were limited, but an effort was made to capturésaspéte

system that are of importance to the fishers and the broader economy (as noted 4). Thigle
correlaton and redundancy amongst the indicators was checked using Pearson and Spearman

correlations- using the R cor() function (R version 3.4.4).

The mean and,simulation intervals of each indicaterecalculated over the final 10 years of the
projections for.each management strategy. These indicator values were then normalised against
the values for=therunconstrained fishing scenario to give the final scores per mgeato
strategy The smean result per indicator walsen used to rank the performance of each
managemerstrategy a lower value rank represents a higher value for the indicator. These ranks
were used to indieate the effectiveness ofvidil@ousmanagement styles and geographic extents

for those ecosystem aspects

An overall score per strategy was created based on tltdamecore across all thedicator

ranks. Thee median scores were théremselvesanked to give the final overall ranKhese
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445 final rankswere calculated across all strategies, regardless of wliahtis model was used
446  principal components analysisprincomp in R (version 3.4.4)was also run on the indicator
447  scores for all strategies across both models to a$¢bese were natural groupings in the results.
448

449 Tables 3 andb list'the model versiomsedfor eachstrategyto facilitate consideration atsults

450 for a specific Atlantis model versiomhe following comparisons are based on a single model:

451 a) the datarich and datgpoor multispecies strategies appliadross the entire domain
452 (scenarios Al) —all using AtlantisRCC

453 b) the datarich, and datgoor singlespecies strategies applied across the entire domain
454 (Scenarios B) —all using AtlantisRCC

455 c) all strategies (singispecies and multispecies) applied across the entire domalh

456 using AtlantisRCC

457 d) the strategies applied only to part of the domaai 4sing AtlantisAMS

458

459  All scenarios have been compared to the unconstrained fishing scenario to facilitate comparison
460 between scenariesrun using the same model, but also to allow for consideratguitefaoss

461 models (i.e. to,compare strategies applied across the entire and only part of th®.dbinea

462  unconstrained fishingcenariorun for AtlantisAMS and AtlantisRCC produce essentially the
463 sameresults and.so only AtlantRCC unconstrained fishing simulation outputs were used in the
464  reported analysis (as noted in Table 3).

465

466  Results

467

468 The biomass trends in both AtlarB$1S and AtlantisRCC for the historical period were
469  similar to each other artd those from formal stock assessments for the SEEg&¢ S2).

470

471  The correlationgFigure S3) showed that the forage figtgnic specieshabitat,total catch and

472  employment indicators were not correlated with other indicators. All theofake indicators

473  were significantly correlated, though the majority of these were recognizably lineahend
474  correlation coefficients wermot particularlystrong (i.e. 0.5 |r| < 0.75). Biodiversity had the

475 highest number of significant and strong etations with other indicators specifically, target

476  species biomass, demersal:pelagic biomass, total value, foregone value and value pertunit eff

477  Value per unit efforhad strong correlations with not only biodiversity, but also foregone catch
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and vdue when using the Pearson teQverall, howeverthere is sufficient differentiation

between the indicators to retain the full set of indicators.

Rank order of performance

Overall, the=relative ranks of the approaches (from best to poorest performing) are: (i) EBFM
across the entire domain (A); (ii) multispecies management across the entire dotbaiii{B
singlesspecies management across the entire domaW);(fv) EBFM across part of the domain

(J); (v) multispecies management across part of dbenain (KO); (vi) singlespecies

management only,in some jurisdictions (W-Z); and (vii) unconstrained fishing préasyre

Integrated EBFMapplied across the full domaifstrategy A in Table 5yanks first (best
performer) across the majority of indicaterdarget species, iconic species, habitats, diversity
and demersal:pelagic biomadstal value, value per unit effort and minimisation of foregone
catch and valueThis form of management has a much lowank (0-16) for the biomass of
forage fish, total catch and the size in the cafdhthe other extremeunconstrained fishing
throughout the.demai(strategy AA in Table 5)vas the poorest performerwith a rank of Z
(worst possible) ‘across all indiors excephabitat (rank 25)forage fish ibmass (where it had

rank 1) total catch (rank 6and employment (rank 7).

The ranls of the other management strategm® more mixed (Table 5)In general the
multispecies application of the harvest strategies across the entire d(smategiesB-I)
perform well, typically outperforming both the application of harvest stratdgi®nlya single
target specie@P-V) or to management methods only applied to part of the dof@&nand W

Z). The major exceptions to this pattenre: (i)the habitat state is bett€r20% greater area and
rugosity) under_specific managemestrategies(e.g. extensive spatial closures) even if only
applied in some. jurisdictia(N); and (ii) iconic speciefare better(with population sizes more
than 24x higher)"under multispecies and EBFM management even if only applied in part of a
system(A, JO)=in-addition, when implementing theore qualitative strategies (G and H) across
the entire domain for all specigsersonalwellbeing can be lower (more time at sea) and the
levels of foregone, catchnd foregone valuean be higher than when using more rigorous

quantitative single species management for at least some sppeéles (

Singlespecies managemelstrategies /) did not consistently outperform mu#pecies or

EBFM approaches (strategies@), though it occasionally scored well for individual indicators
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e.g.age structured assessments focusing on key target species that dictate fleet behaviour, such as
tiger flathead inthe SESSF, size in the catdhelagic:Demersal biomass ratmd personal
wellbeing (with less time spent at se@he performance of threanaement strategies based on

data poorassessmentgstrategiese.g. FH, T-V) is inferior to the data richquantitative
assessment'methodstrategiesB-E, RS). The total catch indicato is less straightforwardto

interpret than' the other indicatobecausehigh catch (and thukigh rank) couldresult from
eitherhigher catches due to healthier stocks being managed sustan&iper catches due to

less sustainable fishingimilarly, total value could be high due to a high volume of-low

moderate valug species or because of a smaller volume of high value product.

The rankngsgignore the amongsimulation variation in the values for the indicators
Consideratiorof this variationrevealsconsiderable overlap in indicator values among many of

the management strategiedleverthelessFigures 3-10 indicate the improved status of the
indicatorsin a managed systewersus a system exploited by unconstrained fishing, as outlined

in the sections belowOnly threeindicatorsarenot consistently higher ia managed systerthe

biomass of forage’'species (due to the increased abundance of their predators in managed

systems)the total.catch lande@ind employment.

Performance of alternative strategiapplied across the entire domain

Looking first'to.the_singlespeciesstrategies applied across the entire donfBi in Table 3,
while the reslis for target species in Figua) do not reach the high levels of EBRlihe dark
grey bar marked.A). for any of the harvestateges testedthey dotypically exceed those of the
unconstrainedsfishing (i.e. are >for the more quantitative (data richarvest strategie@-S).
The more qualitativédata poor)trategies IV do not outperform unconstrained fishiimgterms
of the biomass of target speciedt is clearfrom this that there is adirect benefit— to the
treatment specieand the other species caught and landed with themh using quantitative
harvest strategiesimplementing mnagement strategielsased on trigger points or catch
composition (U and Y does not substantially increasgalues ofindicators for thetreatment
speciesrelative tothe same indicatorsinderunconstrained fishing (Fige 3a). However, all
strategies can, have positibenefis for by-product speciese(g. ‘dories and ored®r ‘shallow

water piscivores.

Relative performancamongthese singlepeciesstrategiesis much less clear for the other

ecological and catcimdicators(Figure 3bh). For examplethere is little difference in the status
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of iconic species between the harvest strate(fe¥), with all of them leading to improved
performance in comparison to unconstrained fishingufiei§c). The lack of a clear pattefor
the indicators other thatine target species biomassedig to the variability associated with
dynamics that were conditional on the identity of the treatment speciestrdtegiesused and
the fleet's response to the resulting management restrictions and quota avaikailibgtance,
while forage fish biomasses are always lower than under unconstrained (iSiging 3b), even
then nonlinear responses complicate the pictarg.the community composition when catch
curvesare used as the basis for management ad@rkéds tdforage fishbiomasdevels lower
than those under EBFKFigure 3b).

There was a clear benefih most cas@sfrom using more quantitativstrategiegP-S) in terms

of resulting system dynamicas expressed by indicatdos (i) habitat,(ii) diversityand (iii) the
average size of the animals in the catdien only one treatment specieasmanaged using a
harvest strategyFigure 3d, f, g. There may also be some benefit for iconic species (e.g.
mammals, seabirds and large sharks), although this improvement is marginahgivaniation
within strategies.(the trend is clearer in g S4where the results are plotted without the EBFM
simulation resultsso the managemenstrategy results are not as compregsétis is also
apparent fatreatment speciegshoughwhen pooling across species the variable nature of the
stock status of the'treatment species and how they fit into system dynamics more roezadly
the simulationntervalsin Figure 3aare quite broad. Nonetheless, for targetcses overall (and
the treatment_species in particular) the relative biomass is much highdnevitiost quantitative
managemenstrategies, while biomasses are lower (overlapping thoder theunconstrained
scenarioswhen the more qualitativ@anagerantstrategies arased The nortreatment species
vary less among_strategies due to the usénmé-invariant TACs for those species (so any
variation among managemeistrategiesis due to indirect ecosystem effects flowingnir the
treatment species).

The economicrand social performance of the different strategies is less clear due to a high level
of variability amengsimulations when implementing the more quantitative strategies (Figure 4).
Total value landed was typically higher under the more qtigétatrategies &V (Figure 4a),

due to the volume,of catch while the improved quality of witatuctwas being landed in the
more quantitative strategies-g) is clear from thealue per unit effort(PUE) indicator (Figure

4d). The economic losses (appunity costs) are lower for the gquantitative strategies meaning
their foregone valugerformance is stronger than for strategieg Figure 4c) While there is

not muchto distinguish the strategies in termsfigsher wellbeing (except for strategy Which
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579 leads to high levels of expended effort), there is a clear difference inaéengployment, with

580 strategies U and V having effort levels quite similar to unconstrained fishing.

581

582 The benefits of using quantitative approaches were larger when the fbA@Il target species
583  were updated annualljrigure 5 vs Figure 3, and Figure 6 vs Figure-4g. when multispecies
584 and EBFM management approaches were (seategieB-| in Table 3) However,there were

585 exceptions such dertheiconic species indicatpwhich differs little between the two cagsge

586 strategies of the same colourHigures 8, &c; Figures S4c, S5¢)The benefits oimplementing a

587 ~managementstrategy are greatestfor the target species when integratedestructured

588 assessments‘amdanagemenstrategieqstrategyB) are used (preferably for as many species as
589 possible), followed by the other quantitative approack&atégiesC, D and E), then the more
590 qualitative approachesttategies-, Gand Hin Figure &; also comparstrategies with the same
591 colour inFigure 3a, Figuire 53. This performanceémprovementoccurs notust for the fished

592  species which indicates that the management footprint extends beyond the target species and
593 their direct predator®r prey This is also reflected in the total val(feigure 4a vs Figure 6a)
594  which shows less.difference betwethe strategies when management of all species is updated
595 annually, as the'improvement in the stock status compensates for any catch codsteatots
596 ~management, also reducing the degree of variability between scenarios. Opportusigreost
597 smaller for the guantitative scenariosEBas catch foregone due to poor stock status is lower
598 (meaning the performance of these strategies is rbatierfor the foregone catch and value
599 indicators).The value per unit effort is also much higher for scenarids Bhe employment
600 outcomegFigure 6ejare much more mixed and variabf®wever, andlepend on how the costs
601 of access and management play outresjgorofits

602

603  The Mixed strategy(l in Table 5) involves applying the actual harvest strategies forsgaatties,

604 and thisis reflectedby its results which areamongst thoséor the more quantitativetrategies

605 (of which it is'made up), although at the lower end of that group of strai@ggese 5).The

606 aggregate perfermancd strategy lacross all indicators together ranks itaabundthe same
607 level as whens€atch curves GPUEbased strategies are applied to all the treatment species
608 simultaneously“(Table 5)he performance of individual indicators for the Mixed stratégy
609 variable(Figures 5 and 6), and indicator responses under strategy | dmtutt tlose of any one
610 of theindividual strategieghatcontribute to thisggregatestrategy Age-structured strategiese

611 usedfor many species in the Mixed strategyhich explains the strong performance ofsth

612  strategy for treatmerdgpecies (Figre 58 — and for thedemersal:pelagic biomass ratgze in
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catch(Figure 5e,g)and foregone catch and value indices (Figilvee) The Mixed strategy also
performs well for habitats and iconic species, but leads to a different system strootpeered
to whenone strategysi applied to all treatment species. This is why the forage indid&ture
5b) is much higher than for the other quantitative strategies and the diversity (Figuardse)

value per unit effort (Figure 6@relower.

In general, thé' improved ecological statfishe quantitative strategiesmes atthe cost of lower
landed catches(Figure 3h, 51). However, total valuegFigure 4a, 6a)are not as strongly
differentiated (withvalues varying by 10-15%across theariousoptiong. This is becaussome

of thehighest'value species bendfie most from the quantitativervest strategiehe benefit

of the investing/inh mordolistic approacks to managemenis clear from the reduction in
opportunity costs (improved foregone vakeore)under EBFM and when all target species are
managed using quantitative strategies. These forms of manageatat a sufficient increase

in production and stock status for improved, if constrainattheover the longer term.

Some of the mergualitative managemenstrategies lead toatches similar to, dnigher than
those from uneonstrained fishing while salthievingan ecological status that outperforms the
unconstrained case. This is in part an artefact gbtbgectionperiodbecausehere is a declining
trend in biomass~forthe more qualitativemanagement strategigseflected in their lower
ecological performance in comparison to the more quantitatiategie} indicating that the
simple management rules are insufficient at a system scale, but that declines are not as rapid as in
the unconstrained stafe.g. Figire S6).A small number of much longer simulations indicated
that, while these more qualitative tiers avoid the worst of thductions in biomas®f
unconstrained_fishingthey are insufficient to avoid the system entering an undesirable state
where at least some of the main targeécieqe.g. pink ling, blueeye trevalla have dropped
below the limit.reference point of 20% of their unfished biomasséailed to recovefrom past

over exploitation(Figure S7).

Impact of managing only part of the system

Ecological statusiis. typically better (higher biomass of target and iconic species, broader habitat
extents and forage fish levels closer to those under EBFM) at the entire systewhimvalome

form of management is implementdthn when catch is uncorained in all regions; this is true

even when management ordgcurs in a part of the systeffiable 5 options \AZ; Figure 7).

However,improvement is low (<50% increase in biomass beyond levels seen under-aydéem
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unconstrained fishing) for target species. Improvements were also low for duenendicators
under certain strategieBor examplethere isvery little improvement in the state of the habitat
or the abundance of iconic speci®ien management rigds solely ondiscard controlsn one
jurisdiction (strategy X;Figure &, d). Of the strategies only applied to one jurisdiction, the
discards strategy-(strategy X) albad amongst the highest abundances of forage @sk to
predation releas@g-igure 7b).

Of those strategies applied to only part of the entire domain, integrated EBRM wisingle
jurisdiction (strategy J) led the highest levels of target biomass, as well as relatively high mean
levels of iconi¢ . species, diversity, average size ptwea (Figures 7a, 7c, 7f, 7g), value per unit
effort and wellbeing (Figure 8d, 8f). It can also minimise levels of foregone catphimg
long-term yield performance (Figure 8b). Spatial management (with extenssueead of 30% of

the fishable areaniione jurisdiction; strategy N) led to significant improvements in target
biomassthere, but that may be an artefact of the focus of this index in this ecosystem on
demersal, less mobile speciéssing ITQs as the only means of fisheries managemerthe
managed portien.of the systefstrategyZ) does not necessarily lead to higher target species
biomassat the system levebut ITQs are associated witlower variancein the outcomeshan
othermanagement strategidst focus on fisheries targetinor technology-i.e. thesimulation
intervals for ITQs(strategy Z)in Figure 7aare much tighter than for the other manageamen

strategiesThe use of ITQs also leads to some improvement in value per unit effort (Figure 8d).

With management limited tonly part of the systemhé abundance of the iconic species
(mammals, seabirds and large sharks) was sensitive to the form of managemérgusedt);
benefiting most_from specific bans on interactions with th{strategy M) use ofgear that
minimised interactions with thenfstrategy W) management based on simple ecological
indicators that.included iconic species status directly into the decision making (strategy L)
integratedEBFM-(stratey J). Habitats alsshowed clear benefits of management strategies that
either simply avoeiddimpacts orecologically valuabldnabitas (via gear modificationsstrategy

W) or by recognisinghemin management procesqatrategies L and N)

Management focused on multispecies yield (strateggdf)only leads to a higher catch overall
(Figure 7h), especially in the managed part of the system (Figure 9h), but also to dtigher t
value (Figure 8a) and the lowest levels of opportunity costs (and thus the strongest foregone

value score; Figure 8c). The species mix is much broader when focusing on multigpddjes
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leading to a lower overall average size in the catch (Figure 7g), with sizes in both regions of
about the same level (Figure 99g), without resulting in a strong reduction in the typtiahm

to largesized target fish species in the managed region (Figure 9a). This strategy also leads to
some of thehighestwellbeing and value per unit effort scores of the strategies applied to only

part of the demain*(Figure 8).

When comparing the managed and unmanaged regions tleewdeisr improvemenh terms of
ecosystem structure (as captured by the ratio of demersal:pelagic biandsspcial and
economic performance in the managed regiogure ®). While the extent othis benefitcan be
quite variableintegratedEBFM (strategy J)xclearly outperformed other management methods
(Figure ®). Interestindy, it was themultispeciesocused managemefstrategy K)that hada
markedy improvedbiodiversity in the managed versus unmanaged reg{éigure 9). There

was little difference between the outcomes under the other managsinaagies and while
there was aiodiversity benefit within the managed area (vs the unmanaged area) this was
diluted at thewhole of system levelthus the small effect size in kige #). In contrastthere is

little difference.between forage fish levels in managed and unmanagedcjioisgliwithin the

one ecosystenfFigure 9b), despitex clear ecosystem level signature of management in the
forage fishlindicatofFigure 7b). This is because the relatively high mobility of fleeage fish
groups, which_meve acrodarge parts othe modelleddomain. There were clear social and
economic beneftto having some form of management in placevith all the social and
economic indicatordeing highe in the managed areaxceptfor employment levels, (Figure
10).

Multivariate Patterns

The princi@ ‘components analysis clearlgentifies the strategies applied across the entire
domain from.those’applied in only part of the domain (Figure S8). Moreover, the migisspec
strategiesare located apart frortihe singlespecies strategies; and the quantitative strategess
separatefrom thesmore qualitative approachéche mixed strategy (I) actually insein the
fishery (2014)sclusters quite closely with the quantitative strategies. In contrast, there is no
simple orderingto,the strategies applied to only part of the domain (in 4bistlthe bulk of the
singlespecies and multispecies strategiescarcated. The EBFM and unconstrained fishing
scenariosare also separated from the rest of the stratebetsveen them bounding the space
occupied g the other strategies. Theaultispeciesocused harvest strategy is particularly

different it does nofocatewith the other strategies applied only to part of the systecauset
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hasmuch higher total catches for less of an ecosystem footprint. However, its oveitadhpes

alsoquite distinct from the EBFMtrategies.

In terms of what is structuring the prinalcomponents, the results lend weight to the correlation
analysis,suggesting thaihdicators oficonic species, forage fish, employmeeafch size, total
value and total catch (and perhaps also the demersal:pelagic biomass ratio) may have been

sufficient to characterise the relative performance of the different strategies.

Discussion

EBFM has beemn_ internationally recommended approach to fisheries management for 15 years
(FAO, 2003) and is being adopted in fisheries legislatiorabyincreasingrumber ofnations.
Approaches such®as the Ecological Risk Assessment of the Effects of Commercial Fishing
(Hobdayet al, 2011), IntegratedEcosystem Assessmentseyin et al, 2013; DePipekt al,

2017 and the delivery of ecosystem status reports to fisheramgementouncils (as is done

in the North Pacifice.g. Zador and Yasumiishi, 2ZB1Slateret al, 2017 all represent useful
stepstowardsdelivering EBFM. However, despite considerable advances, fisheries continue to

face considerable challenges around operationalising EBFM and achieving its goals

The failure ofsinglespecies management acount for feedbacks and traofés within fished
systemshas been used repeatedly as an argufieerfEBFM (Pikitch et al, 2004;Leslie and
McLeod, 2007; Marascet al, 2007; Moéllmannet al., 2014;Fogarty, 2014)However, those
familiar with the inertia and other realities of the decigimaking processes associated with
fisherieshave questioned whethan ecosysterbasedapproach is any more politically robust
than singlespecies manageme(iennings, 2006Rice 2011).For the management authorities
struggling under fisheries legislation calling for EBFM and a reduction in the nuofber
overfished stocks.(e.g. in USA, Europe and Australia), the first reaction has beerplyp sim
expand the number of stocks assddseencompass all the major target species (e.g. Australia
regulaty assesse84 stocks(Pattersoret al., 2017),Canada assesses 159 (ECCC, 20ti8;
USA periodically assesses up 346 stocks(NOAA, 2017 and the European Unioat least 50
(based on the"number of reports listed per year in the ICES stock assessment repository;

http://standardgraphs.ices.dk/stockList.3¥pnd to argue that this is a first step to EBFM

Realistically EBFM cannot follow this pathad infinitum the simple mental exercise of
extrapolating single assessment decision processes (and expenses) to the hundreds of species that

a mixed fishery, such as the trawl fishery of south eastern Ausirdiaacts with shows how
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expensivethat approach would be in the extrenhMoreover, such an “ecosystem approach”
would be open to many of the same flaws as sisgéeies management, but at greater expense.
However,asexpandinghe number oassessmestas been the pattern in the developed wibrld
would be beneficial to know what advantages it does convey. So the gsesti@in, societal
and politicalrcomplexities asidg,what are the benefits okingmore quantitative methods over
datapoor methods that could lmplementednore rapidly over broader sets of speciel®aer
cost?ii) would'moving to the formal assessméard direct managemert) more species lead to
better systemglevel outcomessa useful step toward EBFMandiii) in cases where a comt
does not have, sele control of an entire ecosystienthe institutional and scientific effort
associated with_fisheries management worth it if the neighboymimgdiction is not doing
likewise? While' these seem to be fairfpdimentary, even obvious, questions to,dkkre are

few published examples addressing them.

The results presented hgveovide some modddased input into this discussion. The ranks in
Table 5 indicate thatwhile expanding the number @nnually assessed species and thereby
adoptinga moremultispecies managemefarm is not the same as fully fledged EBFM, it is a
positive step in, tht direction.Well-enforced quantitative singpecies management focused on

a small number of species, implementaekr the entire ecosystem domain, has substantial
positive outcomes in terms of target species, habitats, iconic species, ecosystem structure,
diversity, economic value and fisher wellbeing. This form of management cameatesrform

less quantitative mnitispeciesoriented approaches applied across the same domain (e.g.
strategies F5 outperform strategies i for several indicators, Table Severtheless, there are
major benefits at the ecosystem level of using integrated rather than-sgpegles ognted
management. This_confirms arguments in favour of EBFM (e.g. Pikitai, 2004; Hilborn,

2011; Fogarty2014; Mélimannet al, 2014). The result also aligns with earlier work by Fulton
and Gorton (2014),’'who found that taking an integrated approach to the management o fisherie
and aquaculture=in® southeastern Australia was necessary if the indusirype as robust as
possille to thesweorst effects ajlobal change #both climatedriven shifts, but also expanding
pressure fromsother uses of ocean and coastal .ztinissalso evident that improvements in
ecosystem outcomes may be made without sacrificing catches. It is alielsdly discussed in

the literature that improved stock status leads to higher catches (Cestallo2016; Hilborn

and Costello, 2018). The same principle applies at the ecosystem level.
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It is possible to go further still and move to fisheries pcastimore oriented to deliven
sustainablemultispecies yieldgGarcia et al., 2012; Jacobsert al, 2014. While this is
contentious Burges<et al, 2016;Froeseetal., 2016;Law et al, 2016; Paulyet al.,2016),many

of the fisheries in developing natiofece thecompoum problem of struggling withincreasing
populationsrandood insecurity (Blancharét al, 2017) relying on mixed fisheries that land
hundreds of species spanning the highest through to the lowest trophic levels; and being data
poor with high'levels of illegal or unreported fishifidhe performance of the multispecigsld-

oriented appreach (strategy K in Figures 5 and 6) indicatesotlhitatchescan bemuch higher

under this strategwithouta notable decline in performane®npared tdhe other management
strategie} for 'most/of the other indicator§he mean values for the ecological indicators may
have been lower (leading to poor rank in absolute terms), but the range of possible values
overlapped those "of the other multispecies strate@asultaneously many of the social and
economic scores were much improved on the other strategies trialled. Whilen#he fi
multivariate resultwas locatedapart from EBFM(Figure S8) the ability to deliver to society
without causing the level of degradation seen under unconstrained fishing indicates that it
deserves further.attention in those nations struggling to deal with comglexidis and food
security issues. Farcas and Rossbéfil also found that strategies focused on multispecies
harvest sustainably yielded more thamglespeciesoriented controls, due to improved
ecosystem state.

Discussion of the objectives across all interested parties and relevant legislative diratithes w

a key step in implementing EBFM. As we have not undertaken such a discussion studizis

we have chosen not teeight the individual indicators hermsteadeporting on them with equal
weight Suchan_approachmay not beappropriatein individud systems. For instance, some
groups may ‘wweight environmental status, while others may prefer social and economic
outcomes; still others may look for consistency in performance across indicators. Irtethe lat
instance, care'willibe needed to distinguetween strategies that do moderately well across all
indicator categories (e.g. managing based on ecological indicators or quanditagie species
strategies versus those that are simply universally poor, such as unconstraiagement of
fairly qualitative wapproaches). Importantly, for those who chose to embrace integrated
management this will mean acknowledging that it may involve some strongoffade for

instance, between system structure and function and employhadié 5).
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There ardessons to be learnt around the kinds of assessment tools emgl@yedithout such
radical changes in fisheries and management approdehksnet al (2016)and Dichmontet

al. (2017)have considered the implications of datdn versus datpoor mangementstrategies

(and assessment methods) in terms of the risk to the resource and theostick tradeoff.

The results presented here consider the ecosystem aspects of that discussion. Fontonatgly

to the ecosystem perspective has not ovasiyplicated the generabnclusionsAs discussed in
Fultonet al (2016)and Dichmonet al (2017 —and shown here in Figlse and 5 — individual
stock status is lower (andu risk is higher) whemlatapoor methods are used. This is not
simply because fewer dasee available, but also because of biases in the assessments and slow
response times to unexpected declines in resource @athsnontet al.,2017. Importantly,the

same pattern@extends beyond the species directly assessed to other species caught in the fisheries
(i.,e. “nontreatmenit target species) and to iconic species, habitats, system structure and
diversity. Use ofdatapoor methods also has implications for economic and social outcemes
the absolute catch and value landed may have the potential to be high (with feweirdsriat
place), but this comes at the cost of lower value per unit effort, higher opportasity and
poorer outcomes.for individual wellbeing. In contrastiective datarich single species
management ‘can,deliver towards ecosystem outcattesughthe magnitude of delivery is far
greater when more species aetively managed(quantitatively assessed with relative short
assessment intervalshhe biomass of fised species as45-120% higher whemll major target
species were manageadingharvest strategiedlotably, such multispecies management also saw
improved annual returns (with value per unit effort increasing by > 40%), lower opibprt
costs,20-30% higher aggregate landings (i.e. lower levels of foregone catch) and evem high
employment levels, as the improved stock status saw more vessels remain siehe lng

term.

It is critical to.underStand the strengths and weaknesses of any methow/hetter dataich or
data-poor.As rdiseussed irDichmont et al (2017), the performance otatch curvesn this
modelled systemwas mixed andheywere not always as precautionary as CHidEed methods.
This translatedsintperformance that was sensititeethe life history of the managed specayd

a greater sensitivity to the history of depletion of a stdokturn, stock status influenced
performance in terms of the broader fish community and in combination with technological
interactions and fleet responses to quota allocations adtedt other indicators. Ultimately
however, the differences at the system lewvaebragst the more quantitative methodsraless

than the declingin performance as increasingly qualitative methods were emplayesi does
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not completely invalidate the use of such gatar methods, but would argue for their use to be
constrained to sysms that are only lightly fished (and so with little residual riskpting that
many of these datpoor methods were never intended for use in fisheries receiving as much
directed pressure as simulated here (Dowdingl.,2008, 2013

Resultswere sometimes complex across the indicators, where there was no simple pattern, but
rather results ‘could be' non-linear and conditional on the identity of the treapeeies and how
fishers responded to the management strategy in.dlatecomplexityfurther reinforces (a) that

a suite of indicatorss required to track overall structure and function of the socioecological
system FEultonet aly 2005;Rice and RocheR005; and (b) that the nature of EBFM will differ
among locatiors and will likely also need teevolve through time as conditions (and even

expectations) chang&lannoret al.,2014; Trochtaet al, 2018).

One of the important steps in transitioning to EBFM is to dedic@systentelevant reference
pointsand control ulesfor nontarget ecosystem components. The form of these rules has been
the subject of mueh discussion, but one of the clearest statements on the topadedoy hink

(200B), who identified “warning” and “limit” reference points for a number of ecological
indicators including the biomass of specific functional groups (gelatinous, foaaget, thabitat

and iconic species), the slope of the biomass size spectrum, diversity indices and total fisheries
removals (amongst otherd)ink’s rules were defined based on empirical observations from the
Georges BaniGulf of Maine ecosysterand were applied unmodified in the “simple ecological
indicators based” strategy applied in thiady.Despite only being applied in part of the domain

(and not being modified to best suit the ecosystem of interest) these rules penfenmagkably

well. They delivered some of the best scores across the board for iconic species and habitat
status. Interms_of strategies only applied to a single jurisdiction, the ecoldgighatorbased
strategy (L).was.one of thieighestranked strategies and was second only to full integrated
management (EBFEM) in terms of the target species stock status (cleidyforming the single
species management strategies applied over the same domaimdi€aorbasedstrategy did

not perform_as*well for some of the size and diversity indices, but other work has staiw
indicator performance is system dependedtsmrules really need to be tailored to the system in
question $hannonret al, 2014; Shinet al, 2018). Consequently, it is very likely that overall
performance of this approach would be eletteronce tailored to the SESSikely mitigating

the strong catch constraintaposedunder this strategy (which had quite strong impacts on its

economic performance)Nevertheless, the ecological performance of thisategy in the
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simulations provides strong support for further exploration tbfs appoach as it has the
potentialto progress fisheries science and management by implementing ecosystem relevant

control rules for a suite of relatively straightforward ecological indicators.

Fisheries management, EBFM or singfgecies focused, that is ctmasned to only part of an
ecosystem is/not as effective as when iimplementedover the entire ecosystem, but is still

much better than if fishing is unconstraingath in terms of the overall state of the ecosystem

and the status of groups within thranaged portion of the ecosystem). Naturally, the more of an
ecosystem that,can be managed the better the outdéanescxampleFigure 11shows that when
managing only,_part of an ecosystem the best performance for the demersal:pelagic biomass (a
proxy for ecosystem structure) is seen when management is applied to 50% or more of the
ecosystem’s aredloreover, it is due to the loss in performance of managing less than 50% of a
system that savsinglespecies approaches applied across an entire ecosystem outrank more

ecosysteroriented approaches limited to just part of the system for many indicatdie 3).

Neverthelessmanagementhat conserves stocks and improves habitats and other ecosystem
componenton,one side of the boundary subsidises the neighbouring jurisdiction. For example,
highly mobile species- such adarge pelagics— will move betweenjurisdictions, but thigs
insuficient to undermine management altogethaihile movement between jurisdictions also
occurs for the iconic species (mammals, seabirds and large slan#tsihe unmanaged
jurisdiction does benefit from the efforts of the other jurisdicttbe,statusof iconic species is
sensitive to the forms of management used, with quite strong differences inandalaes and
variability across thevarious management strategies. In some instances, the pressures in the
unmanaged jurisdiction cannot be compensated for by management applied in the other
jurisdiction_and the overall status of the iconic species dexltovards the case under
unconstrained. fishing (e.g. when the managed jurisdiction relies solely on spatial mantge
discard controlsTer'catch quejaThe variability in particular was because of the confounding
effects of mobility=and feeding behaviours. Increased prey fields were of direfitbbut this

was diluted by the ability of (some) iconic species to move or switch prey if there were

insufficient local'resources

For managers concerned with the status of iconic species and habitats who do not have control
over entire ecosystem§&igures7 and 8indicate thatthere areclear benefits of either simply

avoidingimpacts on those species and habifeits gear modification®r spatial zoningor by
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recognisingthemin management process@sg. via including information on their status in the
decision-makingprocess via the inclusion of appropriate ecological atdis) Given that59%

of all the large marine ecosystems and all the high seas FAO areas are under shared management
and thereare already concerns over transboundary species (e.g. Thoehtahh 2017), these

kinds of understandings will be importaftr mangers locatecbn one side or another of a
jurisdictional divide, This will be particularly important given that it is likely that there will be
jurisdictional differences iterms of food securitgBlanchardet al, 2017), trade policyWatson

et al, 2017, research capacitfas captured by UNESCO statistics on the Researah&&D

per million _pegple https://data.worldbank.org/indicator/SP.POP.SCIE.RD.P6?viewsmap)

societal valuation ofonservation$chultzet al, 2005; Balmforcet al, 2009; Snyman2012;do
Pacoet al, 2013) etc. Such differences may well even lead to tension or opanflict
(McClanaharet al,"2015).Consequently, understanding what is possible given the constraints in
place will be importantNonetheless, rather than abandon action, the results presented here

suggest that some forms of management are effective even when only applied to pareaf.a syst

It is important.te.recognise that this isnadeling study.We have endeavoured (i include the
kinds of processes./and data imperfections that real world assessraeatjemengtrategies and
fisheries management agencies fdoecluding inappropriate incentivesnarket distortions
information gaps=and enforcement issues thatlead todivergence between the intent and
outcome of specific management actions); @nciddress some aspectssgstemuncertainty by
including multiple parameterisations, where possiblditimately, however,this is but one
modelled systemand one where theocial and economic aspects of the model were conditioned
on a system where food security, poverty and a lack of livelihood alternatives argplg
concernsandthusnot explicitly considered in the mod@&lloreover, while the treatment species
for the assessments sptre majority of those assessed in thain fishery in the region (the
SESSF they arenot exhaustiveas they do not itede herbivores, shottived or sedentary
invertebratesprforage fish The individual species level results are consistent kehlts from
singlespeciessMSE testing of the dateh managemenstrategiege.g.,Wayte and Klaer, 2010;
Fayet al, 2014y Littleet al, 2011; Klaeret al, 2012). Nonethelesspgfidence in these results
would be much greater if repeateding other modellingframeworks more socioecological
systems of different typgso not just different ecosystem structure, dygtems with alternative
cultural expectations, demographics, livelihood make up etc), or if complementad wi

observational datasets.
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Conclusions

It has been a decade sirdarawski (2007 )discussed the ten myths of an ecosystem approach to
management. The efforts since then hawefirmedthat the means of operationalising EBFM
haveremained vague as has the exact nature of the science needed in supgdavahier, the
approach continues to evolve regardless, as Murawski (2007) said it Wattl@f that evolution

is concludingthe discussion that there is actual benefinanagementhat is well enforced and
actively conserves stocks and maintaimsble ecosystem structure and function. The results
presented here indicate thahile management magppeaircostly, it has real benefits far beyond
the immediate_target speciesd that where possible tleéfort should be putnto scienceand
management, ,ewvedf all jurisdictions arenot cooperating.Shifting management to larger
geographic or’ecological proportions of the ecosystem and supporting application-ofidata

harvest strategiedearlyimproved outcomesm terms ofimprovedsystem state
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1368

Modd Component Group Composition

Pelagic invertebrates

Large phytoplankton Diatoms

Small phytoplankton Picophytoplankton

Small zooplankton Heterotrophic flagellates

Mesozooplankton Copepods

Large zooplankton Krill and chaetognaths

Gelatinouszooplankton Salps (pryosomes), coelenterates

Pelagic bacteria Pelagic attached and fréiging bacteria

Squid Sepioteuthis australigoliginidae), Notodarus gould(Ommastrephidge

Benthic invertebrates

Sediment bacteria Aerobic and anaeroblzacteria

Carnivorous infauna Polychaetes

Deposit feeders Holothurians, echinoderms, burrowing bivalves
Deep water filter feeders Sponges, corals, crinoids, bivalves

Shallow water filter feeders Mussels, oysters, sponges, corals

Scallops Pecten fumatu@Pectinidae)
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Modd Component

Group Composition

Herbivorous grazers

Deep water megazoobenthos

Shallow water megazoobentho

Rock lobster
Meiobenthos
Macroalgae
Seagrass
Prawns

Giant crab

Fin-fish

Small pelagics*

Redbait

Mackerel*

Migratory mesapelagics
Non-migratorymesopelagics
School whiting*

Shallow water pisciveres

Blue warehou*
Spotted warehou
Tuna and billfish*

Gemfish*

Shallow water demersal fish*

Flathead*

Redfish*
Morwong*

Pink ling*

Blue grenadier
Blue-eye trevalla
Ribaldo

Orange roughy*
Dories and oreos*
Cardinalfish

Urchins,Haliotis laevigata(Haliotidae) Haliotis rubra (Haliotidae)
gastropods

Crustacea, asteroids, molluscs

Stomatopods, octopus, seastar, gastropodnandommercial crustacear
Jasus edwards{Palinuridae)Jasus verreauxXiPalinuridae)

Meiobenthos

Kelp

Seagrass

Haliporoides sibogaéSolenoceridae)

Pseudocarcinus giggdenippidae)

SardinopqClupeidae) sprat Engraulis(Clupeidae)

Emmelichthys nitidysEmmelichthyidae

Trachurus declivigCarangidag)Scomber australisicyScombridae)
Myctophids

Sternophychids, cyclothene (lightfish)

Sillago (Sillaginidae)

Arripis (Arripidae), Thyrsites at(Gempylidae) Seriola(Carangidae)
leatherjackets

Seriolella bramgCentrolophidae)

Seriolella punctatdCentrolophidae)
ThunnugScombridag)Makaira (Istiophoridae) Tetrapturus
(Istiophoridae) Xiphias(Xiphiidae)

Rexea solandiiGempylidae)
FlounderPagrusauratus(Sparidae)Labridae Chelidonichthys kumu
(Triglidae), Pterygotrigla(Triglidae), Sillaginoidespunctate
(Sillaginidae) Zeus fabefZeidae)

Neoplatycephalus richardso(latycephalidaePlatycephalus
(Platycephalidae)

Centoberyx(Berycidae)

Nemadactylu$lL atridae)

Genypterus blacodd®phidiidae)

Macruronus novaezelandig®erlucciidae)

Hyperoglyphe Antarctic&Centrolophidae)

Mora moro(Moridae)

Hoplostethus atlanticuéTrachichthyidae)

Oreosomatidae, MacrouridaggnopsigZeidae)

Epigonidae
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1369
1370
1371

Modd Component

Group Composition

Sharks
Gummy shark*
School shark*

Demersalsharks

Pelagic sharks

Dogfish
Gulper sharks
Skates and rays

Top predators
Seabirds

Seals

Sea lion
Dolphins
Orcas

Baleen whales

Mustelus antarcticuéTriakidae)

Galeorhinus galeuéTriakidae)

Heterodontus portusjacksoftiieterodontidag)Scyliorhinidae,
Orectolobidae

Prionace glaucdCarcharhinidag)surus oxyrunchufLamnidae)
Carcharodon carchariagLamnidae) CarcharhinugCarcharhinidae)
Squalidae

CentrophorugCentrophoridae)

Rajidae, Dasyatidae

Albatross(Diomedeidae)shearwate(Procellariidae)gullsand terns
(Laridae),gannetgSulidae)

Arctocephalus pusillus dorifery®tariidae) Arctocephalus forsteri
(Otariidae)

Neophocainereal(Otariidae)

Delphinidae

Orcinus orca(Delphinidae)

Megaptera novaeanglia@alaenopteridagBalaenoptera

(BalaenopteridagEubalaena australi¢Balaenidae)

1372  Table 2: Summary of the harvest strategies (assessment methods and decision rules) used with
1373  the AtlantisRCC"model. The continuum of quantitative to semantitative (more qualitative

1374  methods) is also shownthe dashed line marks the division betw#erse methods considered

1375 quantitative and those considered semmntitative.

1376

Assessment method Decision rule Type

Integrated quantitative aggructured| B,o:Bzs:Bsg “broken stick” strategy. Vessel level cat{ Quantitative
population model used to estimg and effort data are aggregated based on the gear used (thi$

biomass (B) allows for fleetspecific parameterisation of selectivity).

Catch curves used to estimate curr| Broken sticklike strategy used to calculatezde (see
fishing mortality, F (kur) Wayte and Klaer 2010) and the final recommended catch

is given by:
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1 — e FrBC

1 — e~Fcur’

RBC = max(

whereCcyr is current catch.

CPUEDbased

3) CCUR
Recommended catch is given by:

CPUE — CPUE,, 0

CPUE; — CPUE,’

whereCy+ is the catch targetCPUE, is the limit CPUE,

RBC = Crmax <

CPUE is the average CPUE over the most recent
years andCPUE; is the target CPUE (average over {
period 19962005 by default, but set to the maqg
conservative 1988996 period for a subset of species
described in Dichmorst al, 2017).

F estimated from lengths

Fcur based on observed average length in catch ve
expected lengths as a function of fishing mortality fron
a yield-perrecruit calculation (Haddoat al, 2015). This

Fcuris then used in Tier 3 harvest strategy.

F

footprint

estimated frommsthe:r fisher

Fcuris calculated as:
al-qt-(1-5) Dy By
4;

where § is the overlap of the species distribution and

Fi:

fisheries’ spatial footprintg”is the size and behaviour

dependent gear selectivitg,is the discard survival rate

a; is the area covered in time stépE; is the effort
applied in time steg and A; is the area the specig
occupiesF; is compared with a referen€e(as defined in
Zhouet al, 2011) to give the final RBC.

as

2S

Trigger based ong¢“cateh vers

Historical Maximum Catch

Current catch Qcyr) is compared with the historicq
maximum catch (HMC). IfiCcur < 50% HMC then thg

fishery continues without restriction, otherwi

restrictions (e.g. closure @cyr > 200% HMC) and more

gquantitative assessments are triggef- from lengths if <
HMC, otherwise a catch curve based assessme
triggered).

D

Trigger based on catch compositior

Catch composition, individual and aggregate catch, C}
and the area fished are all compared to histo
conditions. As for the o#lr triggerbased method, limite
change does not trigger a response, but a moderate c
triggers a footprinbased assessment and larger chat

trigger a catch curve based assessment.

0 Semi
hgogaetitative
qafore

qualitative)
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Table 3: Summary of the scenarios. Where the jurisdiction is marked as “sthgl&ianagement method is applied in one jurisdiction only (the

other jurisdiction has unconstrained fishirg)t the data used in the management strategy is drawn from both jurisditbisrimve been

assignedte‘each stratefgy each geographic extent to assist in reporting the results.

This article is protected by copyright. All rights reserved

ID | Model |s/Management Strategy(Scenario) Details of implementation Jurisdiction
Multispecies & EBFM management, entire domain

A RCC |.Integrated managemefEBFM) Integrated EBFM (as defined in Fultehal, 2014)—includes a mix of ITQs, limited entry All
gear controls, spatial management.

B RCC | All'treatmenspecies- age structured assessmen{ TACs are applied to all treatment species (listetlaibleS1) are all are calculated annuall All
using an integrated agstructured population model and the associated decision rule a
outlined in Table 2. This TAC is allocated as quotandividual vessels (with the allocatio
based on the proportion of TAC owniecthe previous year). This quota may be traded
among vessels. The effort allocation model attergpés/oid species where no TAC is
available (avoidance is not always possible due to the multispeaiere of the fishery).

C RCC | All treatmentspecies-catch curves As for scenario B, but with assessment using a catch camgetlie associated decision ru All
as defined in Table 2.

D RCC |\AlLtreatment species CPUE based rule As for scenario B, but with assessment using a CBafedassessment method (and the All
associated decision rule) as defined in Table 2.

E RCC | All treatment species F estimated from lengths | As for scenario B, but with assessment using F estimatedérgths (and the associated All
decision rule) as defined rable 2.

F RCC Allitreatment species F from fishery footprint As for scenario B, but with assessment using F es#idifrom the fishery footprint (and th All
associated decision rule) as defined in Table 2.

G RCC All"treatment species- Hist. max catch triggel As for scenario B, but with assessment using caigbers versus Historical Maximum All

based Catch (and the associated decision rule) as defined in Table 2.
H RCC All treatment species catch composition based | As for scenario B, bukith assessment using catch composition trigger (and the asdoci All



M odel

Management Strategy(Scenario)

Details of implementation

Jurisdiction

RCC

Allitreatment species mixed strategies

decision rule) as defined in Table 2.

As for scenario B, but with a combination of the assessmedtdemision ruleshat reflects
the set of strategies used in reality in the SE@Isd-rules used per species is given in Ta
S1).

All

ble

Multispecies & EBFM management, part of domain

AMS

AMS

AMS

AMS

Integrated management (EBFM)

Multispecies yielgfocused management

Simple ecological indicators based

Forage and iconic species catch ban

Integrated EBFM (as defined in Fultehal, 2014)—includes a mix of ITQs, limited entry
gear controls, spatial management.

The take of all fished species is in proportion to productivigh{n the constraints impose
by the existing mix of geawnd their selectivities); implemented through d#faial effort
levels across different fleet sector$ie realised effort levels result from the TACsfee
key species (listed in Table S1), which are calculated anrusiltg agestructured
populationmodels fitted to fisherglependent and fisheipdependent data with the
acceptable fishing mortality rates and biomasgeefee points set in proportion to
productivity. For ease of implementation, species bans are iraptethfor some gear type
so tha keeping F at the acceptable levels is easier (either becaedades the number of
gears or interactions to consider or because a companion sgés loy that gear would
be overexploited as a result of allowing this gear tatetspecies if irrest).

TACs for main target species (listed in Table S1) are calcudatiedally using survepased
ecological indicators vs historical baselirggcluding the relative biomass of gelatinous,
forage,target, habitat and iconic species; biomass ratios for demetagipand
planktivore:piscivores; mean fish length; slopdimimass size spectrum; Reyni diversity
index; total removals; and large fish indicator (reference paintthése indicators ases
defined in Link 2005).

2005 TACs in place for all species, but the landing of adide fish and iconic species

(large sharks, pinnipeds, cetaceans, sea birds) are bamneedny caught must be

Single

Single

[2)

Single

Single
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ID | Model | Management Strategy(Scenario) Details of implementation Jurisdiction
discarded. Bycatch reduction devices are used to minimisedtitgrmawith these groups
and the effort allocation model attempts to avhiese species (i.e. penalises locations where
such species had been caught previously in the simulation).

N AMS |iSpatial management 30% closure of all habitat types (shelf, slope, deep oceddf). @ibtas in place for all Single
species, but with no fishing in the closed areas (100% ¢anael assumed).

@] AMS | High levels of monitoring informing managemen{ Monitoring (spatially and temporally) informs quatetting (including for noitarget & Single
conservation species). TACs for key species (listed in Tablar8Xalculated annually
using agestructured population models based on fiskadggendent andndepenént data.

Single species management, entire domain
P RCC ['Single treatment species— Age structured As for scenario B, but with the harvest stratagyg decision rule only applied for a single All
assessments treatment species at a time (instead of all at once). 2005 TAflada for all other species

Q RCC ..|=Single teatment speciescatch curves As for scenario C, but with the harvest strategy deasionrule only applied for a single All
treatment species at a time (instead of all at once). 2005 TAflada for all other species

R RCC | Single treatment speciesCPUE based rule As for scenario D, but with the harvest strategy decision rule onhapplied for a single All
treatment species at a time (instead of all at once). 2005 TAflada for all other species

S RCC |/Single treatment specied- estimated from lengthy As for scenario E, but with the harvest strategy @ecision rule onhapplied for a single All
treatment species at a time (instead of all at once). 2005 TAflada for all other species

T RCC | Single treatment specied from fishery footprint | As for scenario F, but with the harvest strategy decision rule onlapplied for a single All
treatment species at a time (instead of all at once). 2005 TAflada for all other species

U RCC ["Single treatment speciesHist. max catch trigge| As for scenario G, but with the harvest strategy @ecision rule onlhapplied for a single All

based treatment species at a time (instead of all at once). 2005 TAflada for all other species

\Y, RCCI.[ Single treatment speciescatch composition base( As for scenario H, but with the harvest strategy dacision rule onlapplied for a single All

treatment species at a time (instead of all at once). 2005 TAflada for all other species

Single species management, part of domain

W ‘ AMS ‘ Gear modification

2005 TACs in place for all species with gear restits (i.e.larger mesh sizes) and bycatq

This article is protected by copyright. All rights reserved
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ID | Model | Management Strategy(Scenario) Details of implementation Jurisdiction

reduction devices to minimise interactions with bycatch, halatadsconic species. Effort
allocation model also attempts to avoid bycatcimoidental catch of all species (i.e.
penalises locations where these had beaghtgreviously in the simulation).

X AMS |iDiscard controls 2005 TACs in place for all species, with spatiabdffillocation conditioned on economic Single
incentives (penalties) on discards so that discards are méairtily avoidance, shifting
gears to minimise interactions ete.3ee Huttoret al, (2010) for further details on the
incentives.

Y AMS | Cateh quotas TACs for major target species (listed in Table Sg)aalculated annually using an age Single
structured population model. All vessels begin fishing Januafttie calendar year and
landing of the species continues until the TAC Fattspecies is full. After that point all
further catch for the species must be discarded. The efforatilo model attempts to avold
species where no TAC is available (avoidance is not alwagshpedue to the multispecies
nature of the fishery).

V4 AMS" | Individual transferable quotas TAC species list and calculations as for scenario Y, but tbeagan be traded. Single

¥

AA | RCC fUnconstrained fishing No restrictions on fishin¢as described in the main text). All

* The esults obtained for this scenatsing AtlantiSAMS are very similar to those for AtlartRCC and do not lead to any change in the

pattern of results reported here
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Table 4: List of indicators used to summarise the ecosyigesh outcomes of the simulations. All have been structured so that a high value is
typically desirable (nottinearities can complicate mattersee the discussion of forage fish index in the main t&¢alues are reported relative

to the value of the indicator in the unconstrained fishing simulations.

Indicator Definition Notes

Target species biomass | Relative biomass averaged across all spgtieatment andion- | Measure of the direct effect on the fish
treatmenttargeted by fishing ecosystemAs thefishing pressure considered
in the model was sufficient to deplete species
to around the target reference point of
harvest strategies (and beyond), a hig
value (i.e. me close to the target reference
point or a little higher) was considert

desirable.

Forage fish biomass Biomass summed across sardines, anchovy and mackerel Prey biomass field; incidentally i
combination gives some insight into size
composition of the ecosystem Avoiding
depletion of prey fields is a drivin
motivation of calls for precautionar
reference points for forage fis®rfith et al,
2017, consequently a higher value w
judged to be desirable for this indical
(noting that it can also be high under predator

This article is protected by copyright. All rights reserved



release, but such a situation should be flag

by other indicators in the suite).

Iconic species abundance

Relative biomass averaged across marine mammals, seabir

large sharks

Species of conservation concern; vulnere
(slow growing) species; species tt
synthesise dynamics over lar
spatiotemporal scales. Higher scores for this
indicator conveys that the system struct
has not been distorted by the removal of these
vulnerable specie@~ulton et al, 2005, Link
2005).

Habitat coverage

Proportional cover by habitat forming species groups

seagrass, algae, filter feeders)

Health of habitat in the ecosysterrligher

values for this indicator shows that habit:
relied upon by ther speciege.g. as nursery
habitat or refugia) are in good conditi
(Fultonet al, 2005, Link 2005).

Demersal:Pelagic biomas

Ratio of the total biomass of demersal:pelagic fish specags

Provides an index of structure of tl
ecosystem and typically decreases undt
intensive fishing pressure odisturbance
(Caddy 2000, Fultoet al, 2005)

Q90 Diversity index

The Q90 diversity statistic (Ainsworth and Pitcher 2006):

Index of biodiversity Expected to decreas
under intense fishing pressure (Link 2D05

higher levels considered momesirable by
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08-S

log (RZ/ R1>

where only those groups > 10% of their unfished values

Q90 =

included in the calculation (as recommended for ecosy
models by Ainsworth and Pitcher (20068)is the total number o
functional groups included in the calculatid®; and R, are the
representative biomass values of th& ad 9 percentiles in
the cumulative abundance distribution across the funct

groups

implication in legislation.

Size in catch

Average size of individuals in the catch across all fisheries se

Initially an index of footprint of fishery, bu
ultimately can also reflect stock and system
structure (Rochet and Trenkel 2003)Also
indicates relative value (although market
dependentwhile small finfish are typically
worth less than largeinvertebrates can b

high value).

Total catch

Total landed catch summed over all fisheries sectors and f

species

Food securityndex (in simple terms, more i

better than less)

Total value

Total value of landed catch summed over all fisheries sector

fished species

Gross economic contribution inde
(considered desirable in terms of to

contribution to the broader economy).
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Foregone catch index

1
Yy X Es(Cospy — Cogy) €7

where Cps1y is the landedcatch of species under theoretica

Lc

“optimal” managementin fisheryf in yeary; Csyy is the landec
catch under the harvest strateggnd ¢ is the is the economi
discount rate (0.05). Note that discounted catches are used
each species started from a different biomass relative t@ QU4&

assumed target reference biomass level).

Index of loss of food provisiorMinimising
losseqi.e. high value for this index}y widely
stated as desirable as evidenced by th
FAO’s global initiative on food loss an
Cwaste reduction (FAO 2015Achieving this
giweh minimises the denominator so w

maximise this index.

Foregonewvalue index

1
B Zy Zf Zs ps(Cb,s,f,y - Cs,f,y) e—6y

where the terms are as for foregone catch @mnid the price of

Ly

species (held constant through time).

Index of economic losses Minimising

opportunity costs (i.e. high value for tr
index) isa fundamentakconomic principle.
this minimises  th

Achieving goal

denominator so will maximise this index.

Value perunit effort

Average over fisheries of (value of catch / effort expended)

Profitability index Maximising profits is

another fundamental economic principle.

Employment

Total number of crew members employed across vessels

fisheries

Typical indicator assumed to be an index
social value (wellbeing)- with the inherent
assumption that more is better @®ductive

employment is correlated withpoverty

reduction, and other positive outcomes such

as access to services, social inclusion
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(Fischer 2014).

Personal socialwellbeing 1

index

S=—
XrEr

WhereE; is the effort in fleef.

Index of minimisation of time away fror
family? and exposure to -&ea risks (the
higher the score, the less time away)
Achieving this goal minimises th

denominator so will maximise this index.

1. The theoretical “optimal” catch here was givbg a “bangbang” harvest setegy as described in Dichmordt al, (2017) —to

summarise: using perfect knowledge of the fished stdm&massabovethe target level is removeda the following protocoltargeted

fishing ofa speciess eliminatedor N; years if B < 0.48B, while large catches are allowéar N2 years if B > 0.48B N; and N, were

selectedteratively for each species amalytical determination was not possilige to the use of the dynamic effort allocation model

(which allowed forimplementation erroand incidental catches of species underatorium)

2. We.appreciate that some fishers prefer to be at sea and do not perceive a “loss” from being at sea.
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Table 5: Rank of the performance of each management strategy for each indicatdratEgees have been grouped based on their focus
(ecosystem/multispecies versus single species) and geographic extent (full vs partial domain ctiverageg)managemerstrategies are as

defined in.Lable 3. The Atlantis operating modelMQusedin each instancis given for reference.

pE 5
g @ % s 3 ; 3
S < 3} o S < o S S 5 % = =
= £ & . 8 2|8 § g ¢ & & &g 2 |
Management Strategy o = 2 % g & 'g = = > 5 ) = S S
Model [.(Seenario) ,‘:" E § cIB a '5 c% E E E E (_>‘s LIEJ § 5
Multispecies & EBFM
management, entire domaip
RcC Integrated  manageme| 1 16 1 1 1 1 10 16 1 1 1 1 20 2 1
(EBFM)
RCC All target species- age| 2 5 12 7 16 7 2 10 10 2 2 3 23 4 2
structured assessments
RCC All target species- catch| 6 24 14 9 2 4 4 10 11 5 6 4 13 12 4
curves
RCC All target speciess CPUE| 4 24 16 8 8 3 6 2 3 3 4 2 16 5 3
based rule
RCC All target species— F 3 24 18 12 6 5 4 13 13 7 7 5 6 14 6
estimated from lengths
RCC All target species- F from 5 24 23 9 5 6 3 4 5 16 11 11 5 17 8
fishery footprint
RCC All target species- Hist. 7 2 24 18 13 2 15 5 4 22 15 8 8 16 9
max catch trigger based
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RCC

RCC

All target species- catch
composition based
All target species- mixed

strategies

26

19

22

15

16

12

12

24

18

12

21

18

13

13

AMS

AMS

AMS

AMS

AMS
AMS

EBFM

part @

Multispecies &
management,
domain
Integrated
(EBFM)

Multispecies

manageme

yield
focused management
Simple ecologica
indicators based
Forage and iconic specig
catch ban
Spatial management
High levels of monitoring

informing management

14

21

15

18

16
17

20

23

11

13

13
12

26

27

21

17

20

18

22

23
23

18

13

23

26

21
22

12

26

22

20

19
18

20

26

19

18
17

22

25

18

21
20

14

26

23
13

23

25

22

21
20

10

25

22

26
23

18

17

12
19

19

20

24
23

12

11

19

25

21
24

RCC

RCC

RCC

RCC

Single species manageme
entire domain
Treatment species Age
structured assessments
Treatment species catch
curves
Treatment  species —
CPUE based rule

Treatment species— F

10

12

11

13

19

17

21

13

17

14

19

12

15

14

17
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11

10

10

12

11

14

17

11

22

25

21

23

16

17

15

14

12

17

15

19

10

14

13

16

15

25

24

27

26

10

15

10

16



estimated from lengths
T RCC Treatment species— F | 23 22 22 19 6 15 8 7 7 21 16 20 22 8 18
from fishery footprint
U RCC Treatment species Hist. 25 8 19 20 12 16 13 9 8 11 13 14 9 10 14
max catch trigger based
\% RCC Treatment species catch| 26 5 25 22 14 17 14 8 6 9 12 19 10 15 17
composition based
Single species manageme
part ofdomain
W | AMS Gear modification 20 10 2 4 25 23 25 15 19 18 19 21 15 21 20
X AMS Discard controls 24 7 11 24 26 20 23 14 23 25 17 24 11 25 26
Y AMS Catch quotas 19 15 8 16 21 25 21 24 24 10 24 18 1 26 22
Z AMS Individual transferablg 22 18 10 5 19 19 24 27 25 20 26 17 14 22 23
quotas
AA | RCC | Unconstrained fishing 27 1 27 25 27 27 27 6 27 27 27 27 7 27 27

1. The sana rankings were obtained if the Atlari$!S model was used instead of the AtlasR€C model for these management strategies.
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Figure Captions

Figure 1: Map of the model domain showing the polygonal box structure used in the model and

the jurisdictional boundary locations used in the second set of simulations dasiited lines).

Figure 2: Scheématic of how the simulations were implemented.

Figure 3: Relatie value of ecological and fisheries indicators (compared to the case with
unconstrained _fishing pressure) for the simulations where individual speciemagaged using

one of the assessment methods/harvest strategies, while the rest of the systerd ata200&l

TAC levels. The/codes from TabBeare used to identify the strategies, with full narmkthese
strategies are also given in the Keyg. strategy P uses age structured assesgymientise first

panel —target speciés- there is a triplet foeach tier: the left most symbol for each tripkalid

lineg are the overall results; thmiddle symbol large dashed lingsndicate treatment species
(species listed.in Table S1gnd therightmost symbol of each triplesifort dashgsare the non
treatment target.species (all other fished species). The light grey bar with black dashed central
line indicates‘the, levels for unconstrained fishing (AA in Ta)lethe dark grey line marked

with an A indicates the level under EBFM across the entire domain (A in Bablde vertical

line between scenarios S and T demarcates quantitative from more qualitative harvest strategies.

Figure 4: As for Figure 3, but fdhe relative value of economic and social indicators.

Figure 5 Relative value of ecological and fisheries indicators (compared to the case with
unconstrained_fishing pressure) for the simulations where all target treatment species were
managed simultaeisly using one of the assessment methods/harvest strategies. The codes from
Table 3 are used.to’identify the strategies, with full names also given in théelgystrategy P

uses age structured assessmeifisg light grey bar with black dashed centira¢ indicates the

levels for uncenstrained fishing (AA); the dark grey line marked with an A indicates the level
under EBFM.across the entire domain (A in Tak)leThe vertical line between scenarios E and

F demarcates quantitative from more qualitative harvest strategies, another line separates the

“mixed strategy” | from the rest.

Figure 6: As for Figure 5, but for the relative value of economic and social indicators
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Figure 7 Relative value of ecological and fisheries indicators (compared to tlee va#s
unconstrained fishing pressure) calculated at the overall ecosystem level for the simulations
where management rules were only applied to one half of the model domain (with fishing
unconstrained in the other half). The codes from Taldee used tadentify the strategies, with

full names also"given in the kdg.g. strategy J is Integrated management (EBFW)e light

grey bar with/black dashed central line indicates the levels for unconstrahed (AA); the

dark grey line'marked with an Adicates the level under EBFM across the entire domain (A in
Table 3). The vertical line between scenarios O and W demarcates EBFM/multispecies

management strategies from single species strategies.

Figure 8: As for Figure 7, but for the relative valueobnomic and social indicators.

Figure 9: Relative value of ecological and fisheries indicators for the manaded tha model

domain in comparison to the values in the region of the model with unconstrained fidieng. T
codes from Tabl& are used to identify the strategies, with full names also given in th@lgy
strategy J is Jntegrated management (EBEMYe light grey bar with dashed central line
indicates the levels for the part of the domain with unconstrained fishing (AAble 3a The

vertical line between scenarios O and W demarcates EBFM/multispecies management strategies

from single species strategies.
Figure 10: As for Figure 9, but for the relative value of economic and social irdicato
Figure 11 Example explanatior(using the overall demersal:pelagic biomass ratio) of the

contribution of the different geographic jurisdictional arrangements to the ovesalts per

indicator.
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Index relative to Unconstrained fishing
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