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Abstract
Management of spatially structured species pos&pie challenge®espite a strong
theoretical foundation, practitioners rarely have sufficient empirical data to evaluate how

populations interact. Rather, assumptions abonhectivityand source-sink dynamics are often
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based on incomplete, extrapolated or modeled datach interactionare even considered at

all. Therefore it has been difficult to evaluate whetlspatially structuredpecies are meeting
conservation goal$Ve evaluatechow estimated metapopulation structure responded to
estimates_of population €& andlispersal probabilities, and the set of populations included.
We thencomparedutcomes of alternative management strategies that target conservation of
metapopulation process&de illustrated these concepts fohinook salmon@ncorhynchus
tshawytscha)in‘the Snake River, USAur description of spatial structure for this

metapopulation'was consistent with previous characterizaitddagound substantial differences

in estimatednetapopulation structure when we had incomplete information about all populations

and when weised different sources of dgBaempirical, 2 modeledp estimate dispersal
whereas responsespopulation size estimates were more consisiegether, these findings
suggest that manitoring efforts should target all populations occasionally andtpoysuibat

play key roles frequently, and that multiple types of data should be collected whblefeas
Whenempirical dataare incomplet®r of uneven qualityanalysesisingestimates produced
from an ensemblef availabledataset canhelp conservation pheners and managers weigh near
termoptions. ‘Doing so, we found tradeoffs in connectivity and source dominance in
metapopulatiorievel responseto alternative management stratedlest suggesivhich types of
approaches'may be inherently less risky.

K eywor ds:.uncertaity, spatial structurejispersal, sourcsik, conservation

I ntroduction

Management ofmetapopulationgdHanski 1998)posegarticularchallenges, ancesting
conservation goalsan be difficult ifmovements among populations are not understood (e.g.,
Ying et al.,.2011)There is aich literature onthe theoryof population structure and its emergent
properties (Holt 1996, Keeling 2002, Clobert et al. 2012). For example, metaopsiican
exhibit souree-sink dynamics, whergopulationsvith net demographic surpluses support those
with net deficits(Pulliam 1988, Heinrichs et al. 201&patial dstribution of populationsacross
a landscape cgromote resilience by reducing the likelihoodtthll populations will

experience the same disturbangi€allimanis et al. 2005, Good et al. 2008pa8alstructure
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also increasegenetic diversity througlocal adaptation and reduced genetic exchange, which in
turn can increasthe longtermresilience of the speci¢sox 2005).
Despite thestrong theorétal understanding of metapopulation procespeactitioners

rarely have sufficienempiricaldata to evaluate how populations interact (Harrison and Taylor

1997, Lowe.and McPeek 2014). Rather, assumptions about dispersal and source-sink dynamics

are often based on incompleéxtrapolatedr modeled data. Therefore, it has been difficult to
evaluate whether spatially structurgaecies are meeting conservation benchmaiks.is
especially‘true“for metapopulatiomsfreshwater lotic systemsvhich do not meet assumptions
of classic/metapopulation models due to the dendritic nature of stream neffAaglas 2002,
Moilanen et al»2008, Seymour and Altermatt 2014jirgates of disprsal among such
populations‘are crucial for understanding how timgract andor predicting how thy will
respond to disturbance. Technological advances in mark-recapture, genetic, andgmodeli
methods have led to expansive and growing datasets sugstinatingdispersal. Yein many
cases, limitations specific to eashthesemethodshave prevented a comprehensive analysis
(Erés and Campbell Grant 2015, Heino et al. 2015).

For'species both spatially structured and for which conservation concern is high, a
diverse portfolioof populations may be key to logrm persistenceroughnatural and
anthropogenic stressofanderson et al. 201&riffiths et al. 2013 Therefore, consideration of
metapopulation processes should inform conservation priorities. For example, an uniderstand
of source-sinkelationshipcanhelp identify appropriate strategies for reintroduction or
recolonizationwef animals into habitdtem which they have been extirpated (Holland and
Bennett 20&1;7Anderson et al. 201@pmparng levels of synchrony in demographic trends
among populationeelative topastlevels may suggest whethgrangesn artificial propagation
or sportfish stockingrogramsareappropriate (Moore et al. 2010, Fox et al. 2013).
Understanding.spatial relationships among populations may help to prioritize hedibaation
activities. For instancénprovements imearing or breeding areawy increase the size of a
populationgbut it may be more beneficial to improve connectivity by restbahbiat in
migratory corridos (Cooper and Mangel 1999, Sawyer et al. 20I3¢se considerations are
becoming increasingly challenging as climate change alters hedmit@ditions and phenology of
biological processeSchiffers et al. 201,35ienapp et al. 2014, Schuetz et al. 2015).
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In this paper, our objéwes were to(1) evaluatehow estimaes of metapopulation
structure wee influenced by population size, methods and dsgal to estimate dispersahd by
thesetof populations for which data were available; ande{@luate alternativenanagement
strategieslespiteuncertainty We illustratel these concepts f@hinook salmon@ncorhynchus
tshawytscha).in.the Snake River, USA-or the first objective, &vevaluatd how estimated
metapopulation structudifferedacrossa range of abundae estimates using dispersal data
from three"empirical and two modelsdurceswith differentpopulation setsWe askedhow
sensitive areestimates of metapopulation structure to data gaps or to inaccurate information?
Answerscan help identify managemestécisionghatcould be misguided byis-specified
metapopulation, structure asenhighlight locationsvhere additionatiata carmost improve
understandingFor the second objective,eused all available information tmmpare a suite of
managemergcenarios to evaluate how metapopulation structurerespond to strategic
aspects of recovery effortsuch asncreasinghesize of certain populations or decreasing
dispersal by individualseared in captivityWe askedWhat can be learned about teadfs
betweeralternative management strategisgng the information we haveéAnswerscanguide
evaluation‘of whetherurrent management practices areeting conservation goals for sphyia

structuredspopulations and what can be done to improve metapopudunction

M ethods
Study area

Ouranalyses encompassed streams used for spawning and rearing by spring/summer
Chinook salmon in the Snake River below Hells Canyon Dam and its major tributddes o,
Oregon and Washington states, U$Ag(re 1). The landscape in the surrounding dagjes
ranges from arid grasslamol mountainous forest. Many streams\aithin federally protected
wilderness.areas and are relatively pristine. Gtharve been influenced by human activities
such as livestock grazing, water diversions, timber haraedgre mining.Juveniles generally
spend oneyear in freshwater rearing habitats before beginning migration toitteeGaan.
After 1-4 years in the ocean, adults travel up to 1,500 km to return to their nesgahstnd
reproduceDuring both migrationsfish navigate 8 hydropower facilities.

The Snake River spring/summer Chinook salmon evolutionarily significant unit (ESU),
one of several along the Pacific Riimjisted aghreatened under the U.S. Endange3pdcies
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Act (ESA; NMFS 200%. Populationsvithin the ESUareconsidered to be at higlsk of
extinction within the next 100 years (NMFS 20208)thin thisESU, 32 populationsvere
previously identified by a group of expeasd assigned tiive “major population groups”
(MPGs) within which populations are thought to be more closely related based on a combination

125 of geographyslife history patterns, demographic trends, genetic attributes, and enviabnme
information(ICTRT 2003, 2005)Population boundaries are relegiy stable through time,
although the“extent of spawning reaches can vary annuafyldions in the Clearwater River
basin are notformally part of the listed ESU, auificial propagation programs have led to
significant natural production in receygars.

130 At presentabundance and production of natusalin fish in thisESU are substantially
lower than*historical estimatéal/ild Chinook salmon were functionalxtirpated from several
tributaries due to mining practices that degraded hatritatconstruction of impassable dams
(Table 1). Fish hatcheries are operated in all MPGs except the Middle Fork Salmon River.
Hatcheries. operate support numbers of wild fish spawning (i.e., conservation programs),

135 provide fishefortharvest (i.e., fishery enhancement programs), or both (Naish et al. 2008)
Consevation programsrimarily use local brood stock in order to maintain genetic diversity,
whereadishery enhancement programsy have used nonlocal broodstock. We did not
distinguish"betweehatcheryorigin spawners from each typéprogram in ouanalyses
Estimating ESU structure

140 We usecdconstructs frongraph theory to describe spatial relationships among
populations*within the ESU (Schick and Lindley 20Bis et al. 2011, Fullerton et al. 2011).
Populations:werdepicted as nodes (circles in figures), with geographic location given by
position and population sizepresented by diameter. Dispersal among populations was
represented by edges (arrows in figuresih line thickness representimgagnitude and arrows

145 denoting directionGraph theoretical techniques have been successfully applied to evaluate
human impacts tmetapopulation structure awide variety of aquatic ecosyste(®sunders et
al. 2015). Teconstruct graphs, we created a matrix of potential transitions amongi@ogulat
calculated as.the product of population size and the probabilitgpéialdatadescribed
below). Diagonals in the transition matnigpresenthe number of fish homing and recruiting to

150 their natal population; offliagonal elements are emigration (columns) or immigration (rows)
between each pair of populations. Eagaghts (v), the number of individualsmigratingminus
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those immigratinglivided by donor population sizeepresented realized net dispertal
graphs, we constructed edges between populatemdj if the donor population contributed
more thare = 1% of net recruitment to the recipig®ichick and Lindley 2007

We, calculated a suite of pattdwvel metrics(Figure 2) to characterize properties of each
population_pertaining to its role in the metapopulation. These metriascheégntify populations
thatwere isolatednot connected to any others), the degree of independeheeefecruitment
in a populations more strongly driveby reproduction thahy immigration)and which
populations*functioned as sources or psesidks(the latter argpopulations with abundances
that are supplemented by immigration from other populations but which may be setfisgsta
in the absenceyof immigrantg hemetrics are complementary, yet there was some conceptual
overlap. Therefore, we computed a principal comporemysis (PCA)d reduce
dimensionality of population metrics and to help visualize how populations diffetbeir roles
as metapopulation componeritsie PCAenabled us to compare two populations with respect to
multiple metrics simultaneously. For taace both populations may be well connected, but one
may be a source arle other a pseudo-sink.

We alsecomputed a suite of grapével metricgFigure 2) that allowed us to compare
how metapeopulatiostructure differed among various scenarios (desdriielow) Graphlevel
metrics characterized properties of érgiremetapopulation such as the fraction of isolated
populations, the fraction of potential connections realized, the fraction of igghting, and
whether the graph was dominated by sources or by pseudo-sinks. Foleyephetrics, e

used boxpletse,inspect differences among results

Data
Population size

We estimatedhe sizeof populations as the geometric measgawnerpresumedvild
(i.e., unmarked) for brood years 1999-2008 (i.e., fish that returned to spawn between 2000 and
2012 Tabled;Table S1). Spawner abundance estimates were derived from a combination of
redd countsj earcass surveys, addlts observed annually weirs ofin index spawning
reaches. These data were collediganultiple agencies and compiled BMFS (2010). For
populations lackinghe full time serieswe relied on agency reports to estienspawner

abundances
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Dispersal
We definedispersal probability as thgrobability of emigration by an individueiom its
185 natal population into a non-natal population to reproduce. For salmon, this is termedaksabr-
straying (Keefer_and Caudill 2013in this paper we use the two terms interchangealtséy
consideredlispersal estimatefdom five sources(1) coded wire tagCWT) data; ) passive
integrated transpond@PIT) tagdata; @) genetic estimates of migration rgté$ a hydrologic
distance modeknd (5 a habitat attraction moddtachapproach to estimating dispersal
190 probabilities*hac distinctsuite of strengths and assumptiohalfle 2). For instance, tagging
approaches did nabnfirm whetheranimals hd successfully contributed offspring to the
populationsPast events may have iméinced current patterns of genetic variationdils
assumd that movement was driven bysimple mechanism (distancehabitat quality). Due to
data limitations; we were unable to incorporate relationships between digpetsability and
195 sex, age, sizdife history stage, demographic characteristics, and environmental conditions
(Keefer and Caudill 2013, Westley et al. 20\&stley et al2015).

Coded wire taglata

Werqueriebbservationsf hatcheryfish implanted withcoded wire tags (CWT)

200 (PSMFC.201% Thedatabase contains records contribuigdariousorganizations; there is no
systematic recovery program. Wsed recoveries of spring/summer Chinook salmon brood
years 2000-2009 in the Snake River basinratained only records that were presumed final
destinations*(where tags were collected from cagsaen spawning grounds or from adults
returning toshatcheries) and omitted recoveries from locations that may leavéebeoute” to

205 intended spawning locations (e.g., the mainstem Columbia, Snake and Sabr®)nwe
calculated, dispersal probabilitiasthe proportion of fish released as juveniles from a population
that were recovered as adults in a-matal population. We aggregated data within population
boundariesnd.averaged dispersal probabilities across y&arbe conservative, we treated
missingvalues(i.e., no data available for a population pas)zeroes when averaging straying

210 rates but omittedhissingvalues when averaging homing rat€serewasan annual average of

323returningfish (range: 4 to 48 fish per population).
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Passiventegrated transponder tag data

We queried observatiore wild fish implanted with passive integrated respor(eér)
tags CBR 2014. We usedfinal detections of spring/summer Chinook salmon brood years 2002-
2008 in the Snake River basime omitted detections of returning adults for locations that may
have been “en. route” to intended spawning locatsuth as in lower mainstems andlams as
well asrecordsfor tagsthat were likéy not attached to a live fish. We recognize that records
may notrepresenthe final destination (i.e., fish may have continued to move but not been
detected again) or thatended final destination (i.e., fish died after the last detection but before
making it to the spawning grounds).&/¢alculated dispersal probabilitiesths proportion of
fish taggedsassjuveniles from a populatishose finaldetectioras adult®ccurredn a nonnatal
populationWeraggregated data within populatsoand across years as described for CWT. data

Therewere data for an annual average of 112 returfisiig(range: 1 to 20 fish per population).

Genetic data

Wesevaluated genetic connectivity by estimating pairwise migration rates among a subset
of populations«for whichve had microsatellite genotypic d4igan Doornik et al. 201/an
Doornik et.al. 2013)We computeckstimate effective population sizesd genetic distanse
and then.used these estimate pairwise migration rat@§right 1931).

We estimated the effective number of breeddg3 for each collection site, in each year,
with genetic linkage disequilibriurgHill 1981) using the computer program LDNE with bias
correction forfinite population and sample sizes (Waples 2006, Waples and Do 2010)nWe the
calculated‘thesharmonic mehly across years and multiplied by populatgpecific generation
time (Myers etal. 1998 McPherson et al. 2006, Waples et al. 2@d@btain an estimated
evolutionarily effective sizeNg) for each population.

To estimate pairwise genetic distances among all populations, we combined genetic data
across collection years within populations and calculated paifsigea multilocus equivalent
of theFgr fixation index standardized for heterozygosity andaftomited number of populations
(Meirmans*and Hedrick 20L1When populations are small, genetic distance estimates are
upwardly biased (Waples 1998) so we subtractedplft®m the pairwise genetic distance
estimates (wherl, is the harmonic mean for the pair of populations in questionddly, we
estimatecpairwise migratioom from the relationship
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(4Ne ﬁ) m+1

whereN, is the harmonic mean of ti estimates for the pair of populations in questiondnd
is the finite.aumber of subpopulationdight 1943 latRin and Voelm 1991

Gor =

[Eq. 1]

Wefrecognize a variety of simplifying assumptions that go into this estimaidée(2),
and we also‘recognize different perspectives and conclusions based on effective gene flow and
movement of individuals among locations and breeding aggregates. Unsampled populations
could be respensible for significant indirect gene flow among our study populdtrerefore,
our geneticiestimate should be viewed as an “effective” migration rate, mglodih direct
migration 0f successfully spawning individuals moving from one population to another, as well
as indirect gene flow mitigated through a stepping stone effect via “ghost” popsi@eerli
2004, Slatkin 2005). In our study system, the size of such a mitigating effect is unknown and

may vary across river basins and through time.

Missing data
Coverage across populations differed dependingp@mlata sourcel @ble S7). Missing

data can inflience the interpretation of metapopulaiarcture(Moilanen and Nieminen 2002,
Slatkin 2005)=TFherefore, widl ed missing cells in dispersal matric@s., unsampled dispersal
between population pairs) using a hybrid bootstrap-simulation appi@cbonsider the
potential impacon estimated metapopulation structure of omitting populatiotisiBensitivity
analysis andlnformation scenarios sectiors.

Plots of empirical estimates of dispergatsus hydrological distancey, distance along
the river networkbetween eachair of populations [figure S1; Table S8), suggesarelationship
whereby:dispersal probabilities decline exponentially with distance between pomiigure
3). Similar relationships with distance hdween found for steelheaBdarse et al. 20Dandare
common for other species (Lowe and McPeek 2014).

Yet there is substantial complexity iretshape of il relationship. To capture
uncertainty in estimating dispergal missing cells and to propagate its effiacough

estimation of metapopulation sttuce, we used the following approach.
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(1) For each type agmpiricaldata (CWT, PIT and genetic), we uggsheralized
nonlinear least squares (nlme package for R; Pinheiro et al. 20ft4arncexponential decay
dispersal kernel (Clark et al. 1998):

_ dij
bij = exp\| — o

> [Eq. 2]

wherea (inkkm)ds a dispersion parameter (the rate of decay from the sotirse),
dimensionless'shape parameter controlling the degree of kurtosth; @ruydrologic distance
between populationsandj. Thea parameters related tdhe dispersal ability of the species, and
c controlsithe shape of the kernel's tak{ gives a fat tail; c=1 is exponentighor each dataset
there was a strong homing tendency and a fat tail suggestiagionalong distance dispersal
by a few individualsKigure 3).

(2) Next, we filled missing cells in the dispersal matilike values representing
estimated dispersal fropopuldion i to populatiorj was obtained by randomly drang a
sample from a lognormal distribution of possible dispgrsatbabilitiesat that dstance:

sij =pij X InN(u,0?) [Eq. 3]
wherew= 0, 5°= 0.5, andp;j is the predicted valukeom the fitteddispersal curve from
Equation2.\We chose a lognormal distribution to ensure that sampled values wereyspally
but occasionally were very largé/e stress that this sampling was only used to fill cells with
missing data; empirical data were preserved when availBEfilegave one instance of a
complete matrix of estimated dispersal probabilities for a given type of data.

(3)sFo"ensure that columns summed to 1 (i.e. homing and straying summed to 100%), we
column-standardized the matrix, preserving homing probabilities and adjustinggtrayi
probabilities proportionally.

(4).We used the filled dispersal matrix fratep 3 angpawner abundances to estimate
metapopulation, structaras described abaw&/e constructed graphs, computedmmary
metricsand.stored results.

(5) We'repeatethe first 4steps 1000 times andhterpretedhe median result.

Hydrologicdistance model

We pooledall 3 sources of empirical da&WT, PIT, and genetic) to fit a curve using

Equation 2Fitted parameters wete= 2.0 andc = 0.32.Instead of deterministically using the
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predicted values, however, we introduced stochasticity by follosteygs 25 aboveln step 2,
we did not preserve any empirical estimates. Insteach cell in the matrix was filled with a

random sample using Equation 3.

Habitat attractiormodel

Conceivably, fish may be attracted to stray into a populatiert@social stimuli during
migrationorifithey are able to deteat.g, via olfaction of water chemistry or conspecifics) that
the quality"of'spawning habitatisore attractive thawhat they are likely to find in their natal
streamWe begarwith thefirst two steps otomputingdispersal probabilitiessingthe
hydrologicdistance modeDispersal probabilities resulting from stegv@rethenmultiplied by
the ratio of*habitat quality in a given populattorhabitat quality in the natal populati¢tiis
ratio ranged from O to 1).a&bitat qualitywas represented @n index ointrinsic potential
spawning habitabased on stream width, gradient, valley width, and sediment characteristics
described‘irCooney and Holzer (2006} &ble 1). We continued with steps 3-5.

Ensemble dispersal estimate

Weralso computed a dispersal matrix using all available informatighted equally so
that we_could evaluate the influence of missing data, and to have a common sourngerséldis
data for characterizing existing conditions and for evaluating managemenicsenae
combined(hereafter, ‘ensembledispersal matrix was calculated gt producing four
instances of‘complete dispersal matrices estimated from CWT data, PIT tag data, genetic data,
and the habitat attraction model. We then took the median of the four métaceslement by
element) and columrstandardized the res|fliable S9). As before, we incorporated uncertainty
by using the median result of 1,088timates of metapopulation structurbe ensemble
dispersal probabilities differed from those estimated using the hydrolotaocksmodel in two
ways: (1) empirical stragates were preserved (only cells with no data were estinated (2)

empiricalvalues were combined with estimates from the habitat attraction model.
Sengitivity analysis

To explore how missing data or inaccurate estimates of population size osalispeid
affect results, we conducted a sensitivity analysis. We alsgerved spawner abundance for
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wild fish during 1999-2008he ensemble dispersal dataset, and include&2dSAlisted

populations to estimate baseline metapopulation strystigreorsidered this to bthe ‘truth’.

We then evaluated how the metapopulation responded when we altered a random set of 5, 10, or
20 populations in one of three ways: (1) siwe of selected populations was increased or

decreased by.50%) dispersal from sektted populations was increased or decreased by 50%,

or (3) selectedpopulations were omitted (i.e., assumed not to be part of the matapypule

ran 1000 simulations for easlituation To evaluate how changes to a single population could
influence the'metapopulation, we repeated this analysis but modified only one population at

time.

| nformation‘scenarios

We explared how estimated metapopulation structure could be influenced by the
completeness and accuracy of available.dtglacing results from these scenarios in the
context of results from the sensitivity analysis, we aimed to learn how robust ESU structure was
to inaccuracies iavailable information.

To evaluatéhow population size influenced metapopulation structure, we varied
population:size estimates while holding constantlibpersal probabilities (ensemble) and the
set of populations (aB2 ESA-listed populations). We considered four populationss{zable
S1): (1) estimated spawner abundamitging the late 1800s, computed by multiplying an
estimate of potential spawnerstire SnakdRiver (400,000 fish; Chapman 1986) by a
populationspeeificindex of spawning habitat potential (Cooney and Holzer 200i&)( (2)
observed spamer abundance during 1962-1971, a period when fish were moderately abundan
coincident with favorablecean conditiondewer hydropower dams, and prior to the
construction of fish hatcheries in the Snake Rivad); (3) observed spawner abundance for
wild fish during.the recent decade, 1999-2008d); and(4) observed abundance of both wild
and hatchery.fish observed on the spawning grounds, 1999608 Comparisons across
these representationavg insight to how metapopulation structure might have changed over
time. Both the,moderate and historical scenarios included estimates of abundance in the four
populations believed to be functionally extirpated prese@iynparisons betweem+h andwild
scenarios enaldeus to evaluate the potential contribution of the number of hatchigin-

spawners.
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To evaluate how thigype of data used to estimate dispersal influenced metapopulation
structure, v varied dispersal estimates while holding congiaptlation sizerécent wild
spawner abundancahd tte set of populations (all SA-listed populations)We compared
metapopulation_structure estimated usiiigpersal probabilities computédm CWT data,PIT
tag datageneticdata, the hydrologic distance modahd the habitat attraction model.

Finally, we evaluated howstimated metapopulation structure reflected the speeifaf
populatiensincluded. We used recent wild spawner abundance arehtieenblalispersal
probabilities;but varied the set of populations, considering only sets of populations for which
singlesource dispersal information was availafde, 13, and 16 of the 32 populations for CWT,
PIT, and genetics, respectively). We also evaluated how inclusion of populations in the
Clearwater-River would alteystimatednetapopulatiorstrucure. We were interested to see
whether potential straying by hatchesigin fish from the Clearwaterould have any influence

on listed populations in other MPGs.

Managementisecenarios

Weused scenarios favestigatenow alternative managemesttategie®r environmental
stressors'might alténteractions among salmon populatiohkesescenarios were intended to
address strategic aspects of ESU recovery (i.e., increasing size of certain populations via habitat
restoration or decreasing dispetsg hatcheryorigin fish), rather than specific tactics used in
each populatiorManagement scenarios compaeecepresentation of existing conditions from
the recent.decad®)to a variety of alternative scenaripgable 3). For all scenarios, wased
ensembledispersal probabilitieand includedall 32 ESArlisted populationswild spawner
abundances were used for all scenarios esxtbepefor which we were explicitly interested in
the influence of hatchery fiskor hatchery influence scenarjoseincreasedK+) or decreased
(H-) the number of hatchery spawnérgopulations with hatcheries aatso increased dispersal
probabilities,.asome evidence suggests hatchery fish may stray at highe(datder and
Caudill 20135 Ford et al. 2015). For habitat alteration scenariomoneasedr decreasethe
number of spawneisy 50%in all populationsA+ or A-), populations designated by tHERG
(2009)as primary(P+ or P-), and populations designatedstabilizing(St+ or S-). We also
examined a scenario that increasbdndance in the four functionally extirpated populations
(Table 1) to 10% of the historical estimaté&).
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We visualizal how salmon metapopulatiomseach scenario differed from baseline
conditions witha PCA Thebiplot showednetapopulationse@ach scenario represented by one
point) in relation tographlevel metrics By plotting the first two principal componentge
reducedbsix different but related metrics to two essential eleméhésdegree to which the
metapopulation is dominated by a few large source populdifesrss) and connectivity among
populationgx-axis) (Harrison and Taylor 1997, Fullerton et al. 2011). This plot allowed us to
evaluate howdifferent scenarios influeddkerelative position of a metapopulation along each

of the® axes; regardless albsolute magnitudes

Results
Estimated ESUsstructure

In theestimated presemtay metapopulation, populations within an MPG shared more
connections thathosebetween MPGsHigure 4). Interactions were often strongest between
populations near the mouths of adjacent riv&hss resultvas supported by the relationship
between genetic distanEgr/(1-Fsr) and hydrologic distance for Salmon River populations
(Figure S2):

Populations that were most independent, or sustainedriyirog individuals that
accuratelyhomed rather than by immigraniscluded the Imnaha, Lostine, Tucannon,
Pahsimeroi, an@athering(Table S10; Figure 4). Dispersal from these populationas
generallylowest suggestinghat they were alsdhe most isolated populations. Conversely, well-
connectedspopulations included Yankee Fork Salmon, EF Salmon, Bear Valley, Saheon
below RedfishiLake, and Camas. Populations acting as the strongest sources included upper
Middle Fork Salmon, ChamberitgiSecesh, Bear VallegndMinam, whereas those acting as
the strongest pseudo-sinks included upper Grande Ronde, Sulphur, Yankee Fork Salmon, Loon,

and Camas

Sensitivity analysis

Compared to the unmodifidzhseline metapopulation structuegfects on
metapopulation structure wegenerallysmallest when we altered thize ofarandom subset of
constituent populatiorsnd largest when wesed a reduced set of populations; altered dispersal
had intermediate but considerable effgEigure 5). In mostcases, the medians and variance in
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metrics wverecomparable to baselirstructure. Variability in responses ardmxause the
metapopulation responded differently to the particséaiof populations thabad been altereid
425 agivensimulation as well as tour stochastisamplingof dispersal curves. Effect size
increased with the number of populations altered. The most notable effects wei20when
populations,were omitted and wheme altered dispersal fro20 or 10 populations. Removing
populations,caused the fraction of migrants and the fraction of edges to decrease whereas the
fraction“of'sources and fraction isolated increased. Increasing dispersahifoioan subset of
430 populations'caused an increased fraction of migrants and fraction of edgesa$ing dispersal
caused a decreased fraction of migrants and edges and an increased fraction isolated. The
fraction of sources relative to sinks was highly sensitive to the specifi€ gepulations altered;
this metric'was'more responsiveaibered population siz&ndinclusionthan to dispersal
Changes to certain individual populations had more influence on the ESU than others.
435 The fraction of edges was unduly influenced by changes to the upper Middle Fork Salmon, South
Fork Salmen mainstem, Panther Creek, and Big Sheep Creek, amongfitnersg). A
reduction insthe fraction of edges was notable when the upper Middle Fork population was
omitted, wherthis population decreased size and when dispersal from this population
decreasedui was relatively unchanged when either population size or dispersal increased.
440
I nformation scenarios
Estimated retapopulation structure was idiosyncratic and depended qatheular
combinations'ef empirical datessed to estimate size and dispersal, and which populations were
included.Asispawner abundance decreased from the late 1B0)stlirough a period when
445 spawners/were moderately abundamid) to conditions in the recent decadel (), we
estimated thaboth the number and fraction of fish migrating decreased and source dominance
increased slightlyRigure 7; Table S11). The fraction of isolated populations was lowest in the
estimated historicahetapopulation and highest for the metapopulation mitdeatespawner
abundance«The fraction of edges was lowest with moderate spawner abundance angitiighes
450 recent estimates of spawner abundaWdeen we included both hatcheamd wild spawners
(w+h), we foundaslightly larger number but smaller fractioffish migrating and a higher
fraction of sourcethan wherwe considereavild fish only (Figure 7). This resulted in slightly
fewer isolatecand more connected populatidng similar nterMPG interactions.
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Dispersal probabilitieand the correspondirfraction of migrantsverehighest when
455 estimated using modelkab, hyd), lowest when estimated from genetic digen), and
intermediate for théagrecapture method&igure 7; Table S11). For both tag methodst,
pit), fish exhibited a strong homing tendency; when straying occurred, it tended to beanbip ne
populationsfable S2, Table S3) butPIT tag data revealeskverakrareinstances ofong-
distancestraying intothe Upper Columbia River ESWse ofgenetic data yielded a
460 metapopulation'domated by more sources and fewer sinks than metapopulations estimated
using otherdata sources. Despite having the lowest dispersal probabilitiestapepuakation
estimated using genetic ddtad more edgesndfewerisolated populationthan we saw with
tag-based estimatg&igure 7). Because the relationship between genetic dispersal and distance
had a fat tail, long-distance dispersal by a few individuals was more frequentang., m
465 populations exchanged a small number of fidle ensemble dispersal estimate mediated values
that were especially high in one dataset and low in another (i.e., the net effeetiu@ed or
cancelled).
Whenrwe included only a subset of populations, we feauretlucedraction of migrarg
and edges'and‘ancreasedraction of sourcesndisolated populationd=(gure 7; Table S11).
470 Inclusion‘ei,populations in the Clearwater Rieaused higher fraction of migrants and
reduced._fraction of sources and isolated populations.
Metapopulation structure as characterized usingsargle dispersal dataset sometimes
produced responses outside of what we might have expected based on the sensitivity analyses.
For instanee;"using a modeled dispersal estimate produced a much larger fraction of migrants
475 than the sensitivity analysis segio that had the strongest likelihood of altering this metinie (
scenario in which wencreased dispersal from 20 random populations by 50%). However, the
fraction of edges increased only about as much as the sensitivity analysis scenario where we

increased dispersal in five random populatigosmpare-igures 7 andb).

480 Managementiscenarios
Compared to the present-dsgenariaR), connectivity among populations was higher
and the metapopulatiomas more dominated by a few large sousghenhatchery influence
increasedH+) (Figure 8; Table S12). Converselywhenthe influence of hatchery fish
decrease@H-), connectivitywas reduced and source dominance slightly increased
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In all other scenarios, we used only wild fish and did not modify dispersdiffe@nces
in connectivity among scenarios were emergent propertiesingsinbm altered sourcsihk
relationshig when population size differentials changét foundreducedconnectivity and
source dominancevhenhabitatquality was decreased in all populatigis) or in populations
designated.as.'primaryPf) (Figure 8). Habitat improvements in all populatiosH) or in
populations designated as ‘stabilizin§+(andS) hadlittle effect but habitat improvemenits
primarypopulations IP+) increasedoth connectivity and source dominance marginally.
habitat improvement scenaribad less effect ooonnectivity andh comparable effect on source
dominanceashatcheryscenarios

Estimatedmetapopulatiostructurechanged dramaticallywhen were-established the
four extirpatedpopulatiors (F). This scenario had the lowest source dominancaigher
connectivity tharall scenariogxcept the increased hatchery influence scergélrt).
Lookingglass drew immigrants from nearby populatievisereas Panther interacted in complex
ways withits neighbors, sending fish to the North Fork Salmon but recemamy mordish
from populations in the lower Middle Fork Salmon. Asotin and Big Sheefained isolated.

Individual populations responded differentlyni@nagement scenaridsor example, in
Chamberlain Creek, neither independence nor flow direction responded appreciably to any
scenariogwhereas both metngsre strongly influenced hyanyscenarios in the upper Grande
Ronde populationHigur e S15).

Discussion

Oursstudy illustrated that missing or inaccurate data can have substdght@ide on
estimated metapopulation structure. We found that in general, omission of popuked the
greatest potential to misrepresent metapopulation strudfieteécs of meéapopulation structure
were also influenced considerably by dispersal estimates, and to a lesser degree by estimated
population.size. The common practice of managing individual populations independently may be
overlookingsthenfluence of and reliance on neighboring populati@s: results suggest that
monitoring efforts should target all populations occasionally and populations th&epleoles
frequently, and that multiple types of data should be collected when feasible.

When empirical data are incotepe or of uneven quality, analyses using estimates
produced from an ensemble of available datasets can help conservation planners and managers
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weigh near-term option®ur estimate of metapopulation structure for the Snake River
spring/summer Chinook sabm evolutionarily significant unit (ESUbased on all available
information, was congruent with previous findilgSTRT 2003, 2005, Thorson et al. 2014,
Jorgensen et al. 2015). Interestingly, we found more interactions among populatiomshaithi
520 Middle Fork-Salmon River than expectegven that no fish hatcheries are operated tHdre
mouths of‘rivers used by these populations are closely spaced, which may promatg strayi
opportunities: W& had few empirical data for estimating dispkrates among these populatipns
so weremain‘unsure whether this finding represents a real example of the influenodriticle
stream network structure on dispersal processes. Some studies suggest that dendritic network
525 structure candnfluence metapogtibn structuréMari et al. 2014 Yeakel et al. 2014)hereas
others found no effect (Webb and Padgham 2013).
Below, we use our findings for this salmon metapopulation and the questions posed in the
introduction as guides to consider (1) how information level can influence nmeageptions
for spatially_structured populatioasidhow monibring can be targeted to reduce uncertainty,
530 and (9 whatwean be learned about tradeoffs of alternative management decisions despite

uncertainty:

I mpact of.information level on metapopulation characterization
At least fourpieces of informatiomre pararauntto accurately describingpatially

535 structured populationshe number of component populations, inter-population dispénsatjze
of individualpepulationsand their spatial arrangemdhtinde 1988, Moilanen and Nieminen
2002, Sutherland et al. 2014Ye evaluated how sensitive our characterization of the Snake
River salmon metapopulation was to the first threthe$eand indirectly to the fourth
(populations retained their locations throughout our anglysgspatial configurations of

540 subsetdliffered).

Set of populations
We found thafailure to accountor all populations had larger effect than did potésit
inaccuracies in the size of populations or dispersal rdtdgiowingly (or intentionally)ignoring
545 “ghost” populations may cause managers to think that populations are more idwatdtey

really are. Such a belief may result in prescriptions taece connectivity among populations,
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which may unintentionally decrease local adaptation and increase synchrony amontignspula
(Paradis et al. 1999, Fox et al. 201@ndenng them less resilient to widespread stressbone

of the missing populations is a large or centrally located source, a nearby sink pomdatd
artificially appear to be hidgf productive and function independent{ooper and Mangel

1999) Managers may choose to protect the giogulation without knowing thatis statusrelies
heavily on‘an unknown neighbor. To avoid these pitfalls, we recommend that monitoring be as
spatially'inclusive as possible. This may mean collecting basic infermfati all populations
occasionallytistead of, or in addition to, the common practice of more intensely monitoring only
a fewindex populationsBasic informaéon will be sufficientfor populations having low

potential ta:interact with other populations (e.g., those located far from otheits or
demonstratedindependenddnwever for populations suspected of having significant
interactions (e.g., centrallgcated or large populations or those with the potential to be
influenced by artificial propagationjore accuratempirical estimates could substantially
improve understanding about metapopulation structure and how it changes through time. If
informationefconsistent quality is not available for all populations, using modeled data or
ensembles‘createssinga variety of data may be preferable to permitting dafzs. Only by
considering,the metapopulation as a whole can managers envision how changes in one
populationsmight cascade to other populations.

The specific set of populations omitted sometimes caused responses in opposite
directions'and with vastly different magnitudes, suggesting that certain populaistronger
roles in thesmetapopulatidhan others or, alternativelihat spatial juxtaposition of populations
is importantHand et al. (2016pund that relationships between climatic variation and
metapopulation processes were not consistent across steelbtgubpulations in the Columbia
River basin andsuggested that practitioners should be wary in extrapolating conclusions from
one metapopulation to another. Heinrichs et al. (2016) fthatdstrong souresink dynamics
emerged in.theoretical metapopulations under a diverse combination of poteritialingn
factors, suggesting that emergent properties are not easily predictauzeobgsatterns in

underlying data.
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Dispersal

Dispersal estimatesso influenceabur characterizatiomf metapopulation structure
considerably. Our sensitivity analysis revedleat over-or underestimatingdispersal for a
random subset of 5, 10, or 20 populatiaffected estimates of connectivity and isolation but did
not influence.trends in the proportion identified as sources. Had we used only modelatessti
of dispersal, we may have concluded that the metapopulation was too-well commected
suggestedtakiymeasures to decrease connectiwigckson and Pringle 201Rahel 2013
when in reality'there may be multiple isolated populations in need of intervention do avoi
extinction. Conversely, had we usagingle type oémpirical estimatef dispersal, we may
have falsely assumed interactions among populations to be too Isuggestedteps to
enhance connectivity

Using genetics dispersal estimates paintedrg different picture of metapopulation
structure than when we used other approaches. It only took a few successful long distanc
dispersal events to maintain genetic connections among populations (i.e., treatigpee had
a fat tail)whereas tagecapture data and distadoased dispersal models were less likely to
detectrare eventsA genetics approactonveys the movement of genes among populations
whereasasdemographic approach conveys movement and productivity of individuals (Lande
1988, Kanno et al. 2014)he two may be complementary ways of characterizing
metapopulations, each providing a valuable perspective for managers. Using dgglagganore
relevantfor.measuring and maintainirggnetic diversityover generationsvhereas using
demographiciinformation may highlight more immediate conservation corameh®s
identifying aspopulation at imminent risk ektinction

Monitoring dispersal remains a key challenge (Lowe and McPeek.2@b4) ecologists
would agree that empirical estimates are favorable compared to modeled estimates because they
are more likely to represent real processes.evapirical estimates are expensive to collect and
are constrained by the unique suite of assumptions specific to each data type. Until a more
complete mechanistic understanding of dispersal is availablenissgrudent to monitor
dispersal using multiple techniques when possible. Monitoring a common subset of populations
would enable comparison across methods and years. Ultimately, we felt that usingpactappr
that included empirical estimates for dispershére available (i.e. our ensemble dataset) was
best because this dataset muted some of the extreme values seen in individual datasets. If biases
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associated with each empirical dataset were known, a better approach would lggnto wei
estimates before cornmng them.
Monitoring dispersal from the natal population to the population in which animals

610 reproduce may not completely represent dispersal processes for species with complex life history
strategies sueh as salmon. For instance, Copeland et al. {@0dd)that a substantial proportion
of juvenile spring/summer Chinook salmon in the Snake River rear downstream from tleir na
streams: Given'that imprinting is believed to occur throughout their stream ocgujhésc
behavior could‘influence homing accuracy (Westley et al. 2013). Other approaches for

615 estimating dispersal might prove to be great resources for filling gaps and expandi
understanding-aboudispersal. For instance, recent studies have identified reabigts by
analyzing ehemical signatures in fish otoliths (ear bones) and water from different streams
(Kennedy et al.;2002, Hamann and Kennedy 2012). Radiotelemetry data are accumulating for
this ESU as wel{Keefer and Caudill 2013phatcould provide important information about

620 populations for which we currently know little. For other species, informationtezpby citizen
scientists (ewgw the Christmas bird count or trends in social media discussiddd)ecuseful

sources ofiinfermation (Donnelly et al. 20K3rilenko and Stepchenkova 2014).

Population-size

625 Our characterization of metapopulation structure was least influenced by estimates of
population:size. In theensitivity analysis hie proportion of sources was more responsive than
connectivity"measures to gerbations irsize fora random subset of populatiosstimates of
metapopulation structure in earlier times (moderate and historical abundance schadrios)
higher numbers of fish migrating bigwer sources and connectiohsaddition to abundance

630 declines across,the whole ESU, changes in metapopulation structure from historical to recent
scenarios,also.reflect the loss of the four populations now considered to be functionall
extirpated(we have already demonstrated the influence of missing populattstishated
metapopulation structureay be robust to estimates of population sigdong as relative sizes
(i.e., compared to one another) are reasonably realistic. However, source-sinkcdymagnbe

635 misunderstood if size is inaccurately estimatadobpulations that are near in space and very
different in sizeTherefore, increasing abundance for a subset of populations by improving
habitat or bolstering hatchery fish production may be safest when managers@rabiyas
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confident that ay resultirg change in souresink dynamics will have a neutral or positive effect
on conservation goals.

640 For the well-studied Snake River spring/summer Chinook salmon ESU, we had high
confidence in spawner abundance estimates for most populations (i.e., thosseHztdn
monitored consistently for decades). Those for which we had lower confidenceniviesty to
play key roles,based on our assessment. Continued tracking of population sizes will be
necessaryto'explore how population interactions may be changing. Population produthtiity —

645 proportionoffish from each population that return to reproduoaybetter reflecpopulation
size tharspawner abundance. However, productiesyimates are often difficult to obtain and
monitoringsabundance as a proxy has a long history in species management.

Managing metapopulations despite uncertainty

650 The recovery plan for the Snake River spring/summer Chinook salmon ESU identifies
targets 6r abundance, productivity, diversity, and spatial structure that will need totlierme
the ESU terherconsidered viable, i.e. at low risk of extinction in 100 years (NMFS 20133 We di
not measure productivity over time and therefore cannot diredly&eprogress toward
recoveryplan targets, which are defined in terms of tengrviability. Moreover, identifying

655 specific reeovery actions necessary for each population was beyond the scope of this analysis.
However, our analysis comparing alternatmanagement strategiesn providea baselingor
conservation planning that can be updated adaptasehew information becomes availablel
can guide mear-term solutior@omparisons of scenarios highlight suites of actions that are most
or least likéyte‘influence longierm risk.

660 Our results suggest that safe bets are strategies that increase habitat quality, especially in
populations identified as having primary roles (i.e., large or central sources). Althelggw
no benefit.to.the metapopulation of habitat improvements in supplementary populations (those
likely to be pseudo-sinksianagersvill need toalsoconsider the ecological and cultural value
of such populations. Comparison of management strategiedsmsuggest how actions will

665 affed a speeific_population. For example, Chamberlain Creaintained its independence
despite increased interaction with neighboring populations in habitat improvemesticse
Riskier strategiesiclude those that have the potential to alter source-sink dynamics by
inadvertently failing to protect key populations (i.e., unknown sources or stepping stone
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populations), opening new areas or drastically improving habitat quality in previouspaéedi
areas, andupplementing witlartificially reared individals The effect on the metapopulation of
“stepping stone” populations could be positive by providing a source of immigrants, but could
also distract individuals away from more suitable breeding locafimasnerSchadt et al.
2011).Recovery activities that involve active movement of live animals such as managed
relocation or assisted migration should cdesithe potential to impact resident anin{alswler

and Olden'2011, Olden et al. 2011).

In ouranalyss, we assumed equaproductive success of wild and hatchery fish. In
scenarios in which we included effects of hatchery figipulations having hatcheries exgakt
more fish te neighboring populatior®ild populations are not completely isolated from
hatchery programs, so if real, such interactions could influence viaBitgyious analyses have
suggested that hatchery fish hdnagl minimalinfluence orgenetic diversity in this ESU despite
high numbers of hatchery strays on spawning grounds (Van Doornik et al\N2&Xhl3 et al.

2012, Van.Doornik et al. 2013). Others found reduced fitness of offspring from hatchery parents
(Christie et-al=2014). Hatchery fish may impact the fitness of wild fish througbgtaphic or
ecologicalinteractions such aswoetition for mates by spawners or competition for resources
by juveniles Naish et al. 2008Buhle et al. 2009)ncluding hatchery fish in our spawner
estimates.did not alter interactions between MPGs. These results seem consistent with recent
hatchery practices in this ESU in which broodstock are primarily selected from sources within
the same MPGHSRG 2009%. Naturally spawning fish in the Clearwater are presumably derived
from hatchery'stockgndthereforemight be expected to stray into other populations. When we
included Clearwater populations in the metapopulation, we saw the potential éasiedr
interaction with populations in the lower Snake River. However, the habitat occtipies$ent
(upper reaches of the South Fork Clearwater, Lochsa and Selway rivers) iesilyfidistant

from the other populations that straying would have thighto generate a detectable effect.

Conclusions

We have shown how data limitations can influence perceptions about metapopulation
structure for a species for which we have a relatively large amount of informadtangaps and
dispersal estimates had the greatest potential to influence results. Many species have fewer data
available upon which to base conservation and management dedigohsJargensen et al.
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2012). In data-poor situations, simple characterizations of metapopulation stelciule be

used cautiously. However, managers cannot always wait until better data or better models are
available. In these cases, even basic analyses can highlight oppestumitie near term. The

approach for evaluating metapopulation structure that we employed here idfstnagyiad and
transparent.\When data are sparse, this will be a safer approach than using a more detailed model
that makes,untestable assumptions. Resould be used to explore potential starting points for

more comprehensive modeling efforts (e.g., Harrison et al. 2011, Heard et alPROE3et al.

2014, Sutherland et al. 2014). In our opinion, the best use of results from analyses such as those
we presented will be in guiding future monitoring efforts. As new empinéaimation is

collected, analyses can be updated to more accurately describe metapopulation structure and how

it is changing ovetime (Thorson et al. 2014, Westley et al. 2015).
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Table 1. Characteristics dbnake River spring/summer Chinook salmon populations.

Status of  Conservation Spawner Estimated donebased dispersal réte
Code Population wild fish®  statu$ Hatchery abundanct  hyd hab cwt pit gen ens
Lower Snake River
nTu  TucannorRiver Extant Primary Integrated 127 0.151 0.150 0.000 0.010 NA 0.052
nAs  Asotin‘Creek Extirpated  Stabilizing  None 1 0.157 0.137 NA NA NA 0.105
Grande Rondellmnaha
gWe Wenaha River Extant Primary None 393 0.153 0.156 NA NA 0.032 0.112
glLo LookingGlass Creek Extirpated  Stabilizing Integrated 1 0.151 0.151 0.041 0.041 0.054 0.079
gLs Lostine River Extant Primary Integrated 312 0.150 0.157 0.029 0.020 0.017 0.045
gMi  MinamrRiver Extant Primary None 410 0.154 0.154 NA NA 0.024 0.118
gCa CatherineCreek Extant Primary Integrated 84 0.152 0.154 0.114 0.000 0.032 0.063
gUm Upper Grande Ronde Extant Stabilizing  Integrated 29 0.146 0.153 NA 0.500 0.056 0.194
iMa  Imnaha-River Extant Primary Integrated 480 0.139 0.147 0.004 0.016 0.020 0.031
IBs Imnaha Sheep Creek Extirpated  Stabilizing None 4 0.148 0.141 NA NA NA 0.109
South Fork Salmen River
ISa Little Salmon River Extant Stabilizing  Segregated 174 0.150 0.148 0.001 NA 0.019 0.063
sMa S ForK SalmomRiver Extant Primary Segregated 891 0.159 0.163 0.129 NA 0.029 0.085
sSe Secesh River Extant Primary None 517 0.144 0.148 NA NA 0.020 0.114
sEf  E ForksSskerk Salmon [Extant Primary Integrated 183 0.146 0.141 NA NA 0.031 0.113
Middle Fork Salmon River
mCh Chamberlain Creek  Extant Primary None 633 0.145 0.154 NA NA NA 0.108
mLm Mid Fork Salmon lower Extant Contributing None 38 0.143 0.141 NA NA NA 0.110
mBi  Big Creek Extant Primary None 155 0.151 0.163 NA 0.000 0.023 0.079
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mCa Camas Creek Extant Primary None 70 0.152 0.152 NA NA NA 0.107

mLo Loon Creek Extant Primary None 72 0.140 0.147 NA NA NA 0.112
mUm Mid Fork Salmon upperExtant Primary None 220 0.145 0.154 NA NA NA 0.104
mSu  SulphurCreek Extant Primary None 38 0.152 0.159 NA 0.000 NA 0.062
mBe Bear Creek Extant Primary None 381 0.152 0.143 NA NA NA 0.108
mMa MarshiCreek Extant Primary None 113 0.142 0.149 NA 0.000 0.024 0.090

Upper Salmon/River

uPn  Panther Creek Extirpated  Stabilizing  None 1 0.159 0.163 NA NA NA 0.116
uNf N Fork'Salmon River Extant Contributing None 70 0.148 0.161 NA NA NA 0.116
uLe Lemhi River Extant Primary None 97 0.150 0.158 NA 0.000 NA 0.061
uLm Salmon:.River (lower) Extant Contributing None 143 0.153 0.153 NA NA NA 0.112
uPa Pahsimeroi-River Extant Primary Segregated 148 0.155 0.150 0.007 0.016 0.019 0.038
uEf  E Fork Upper Salmon FExtant Contributing None 256 0.139 0.153 NA NA NA 0.111
uYf  Yankee Fork Salmon Extant Stabilizing  Integrated 30 0.145 0.147 0.098 NA NA 0.213
uVa Valley Creek Extant Contributing None 82 0.139 0.152 NA 0.000 0.043 0.066
uUm Upper‘Salmon River Extant Primary Segregated 324 0.143 0.143 0.003 0.057 0.034 0.063

& Status of populations assigned by ICTRT (2003, 20B&hgraphic boundaries of populations were also defined bytesgor ColumbiaTechnicalRecovery
Team

b Status of poptifations assigned by HSRG (2009) based on recoiteria (NMFS 2038) representing the contribution of the population to a viablgodma
population group’

¢ Indicates type-ef-hatchery program, if any. Segregated qumsyare operated to produce fish for harvest and may use ndmomadstock whereas integrated
programs are aimed at conservation (i.e., bolstering numbeikidish using local broodstock)

4 Abundance of naturairigin spawners over a recent-¢@ar period (se€able Si for estimates including hatchery fish and for past time periods)

®Estimate of.dispersal from the population to all other populabgrdata type, whe hyd=hydrologic distance model; hab=habitat attraction modetcoded

wire tags; pit=passive integrated transponder t@gs=genetic dati@ns = ensemble dataskii = no data available
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Table 2. Basis of dispersal estimates used to assess structure of the Snake River spring/summer Chinook salmon metapop!

Datatype  Source Strengths Simplifying Assumptions References
Coded wire.._RegionalMark Information 1. empirical measurements ofl. all populations are monitored equally Westley et
tag mark(~ System (RMIS) database  observed straying (tags were 2_fish collected on the spawning grounds produce viable ~ al- (2013,
recapture (http://www.rmpc.org), collected from carcasses so offspring that will contribute to the gene pool 2015)

(cwt) downloaded in September the final location is th 3. recavery efficiency is high and consistentasr

2012 data inTable S2 presumed intended Spawmngpopulations, and tag effects are negligible

location)
4. dispersal probabilities arepresentative of wild fish

2. many years of data ) . ) o
5. dispersal probabilities aredependent of broodstock origin

and hatchery practices

Passive PIT Tag Information System 1. empirical information 1. all populations are monitored equally Keefer et al.
integrated™ | “Www.ptagis.org, accessed  about movement ofildfish > juveniles are taggedithin their natal population (2008)
transponder /'@ Columbia River Data 2. growing database 3.fish detected on the spawning grounds produce viable

Access in Real Time (DART)

tag mark offspring that will contribute to the gene pool
(www.cbr.washington.edu/dar ) o o ]
recapture ) , 4. detection efficiency is high and consistent across
t/query/pit _basindownloaded ati g « il
i opulations, and tag effects are negligible
(pit) in July 2013 data inTable S3 pop g g1
5. last recorded detection represents final spawioicafion
Genetic DNA microsatellite dataset 1. movement of genes (ratherl. samples reflect allele frequencies in discrete breeding  Van
migrationi.....collected and analyzed by D. than adults) is measured aggregates Doornik et
rates Yan Doornik and P. Moran, (samples are frouvenile 2. microsatellitemarkers are selectively neutral al. (2011,
(gen) NOAA Fisheries data in salmon) 3. populations are at migration/drift equilibrium 2013)
Table4

4. migration issymmetricabetween members of a given
population pair

5. pairwise analysis violateke island moddmplicit in our
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Hydrologic Modeled; data iTable S5

distance

model

(hyd)

Habitat Dispersal probabilities from
attraction distance model (above),

model modified by relative habitat

(hab) quality; data inTable S6

estimation of migration

6. generations are nesverlapping
1. ease of application and cari. interpopulation distance is a surrogate for rigor and Schick and
be calculated for all difficulty of movement as fish navigate upstream Lindley

populations (no data gaps) 2. exponential decay is an appropriate model form to represdgf07);

2. flexible; parameters can bedispersal Clark et al.

adjusted for different species 3 propability of dispersal between population pasrequally (1998)
likely in both directions

1-2. same as above 1-3. same as above Murphy et
4. fish react to potential habitat quality al. (2019

5. our index of habitat quality is appropriate
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Table 3. Scenarios for evaluating potential effects of conservation and management action

the spatial structure of Snake River spring/summer Chinook salmon.

Code Scenario name Spawner

Populations Populations

Abundance Dispersal

abundancg included®  altered multiplier  multiplier

R Recentwild wild Extant None

H+ Hatchery.inc All Extant Having hatcheriés 1.5 15

H- Hatchery.dec All Extant Having hatcheri€s 0.5 0.5
A+  Habitat.inc wild Extant Extant 15

A- Habitat.dec wild Extant Extant 0.5

P+ Primarysinc wild Extant Primary’ 15

P- Primary.dec wild Extant Primary’ 0.5

S+ Stabilizinginc wild Extant Stabilizing 15

S- Stabilizingdec Wild Extant  Stabilizing 0.5

F Fix.extirpated wild Extant & Extirpated 0.1* not

Extirpated historical suppressed

& Calculatedorbrood years 1999008; wild = wild spawners; all = both wild and ¢laéry-origin spawners

b excluding Clearwater River populations; extant = supwild fish populations; extirpated = no longepgort

sustainable wild:fish populations (Asotin, Lookingglass, Big ShadPanther Creeks)

¢ populations’that have hatcheries within their boundaries

d populations reported by th¢SRG (20@) as necessary to achieve viability

®populations reported by th¢SRG (2009}0 be of lowest conservation concern

fwe usedensemblalispersal probabilitie@combinedacross 4 source§)r all scenarios
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List of Figures

Figure 1. Major population groups (MPG) and individual populations of Snake River
spring/summer Chinook salmon. Hatched lines indicate functionally extirpated fomsila

SeeFigure Skfor tagrecapture and genetics sampling locations.

Figure 2. Analytical metrics. Patclevel metrics describe individual population attributes;
graphievel'metrics summarize all populations in the evolutionarily significant unit (B&ty).

si = spawnerbundance for populatians;_,; , number of fish emigrating from populatioto
populationj; Simrecruitment to the natal populatiom; weight of dispersal between populations;
e, edge (i.ev, inter-population connection hawvkg); n, total numbepf populationsne-o, a
population that'has no edges, populationi. Metrics denoted with an asterisk (*) anfuenced

by z (set to 0.01 in analyses).

Figure 3. Dispersal probability estimated from coded wire tag (CWT) data, passive integrated
transpnder (PIT) tag data and genetic data, plotted against hydrologic distance between
populationwpairs. Top left: all empirical data together; other panels defedtdurves and 95%

confidencerintervals for each type of empirical data.

Figure 4. Top: Graph depicting source-sink dynamics for populations of Snake River
spring/summer,Chinook based on ensemble dispersal estimates and recent abundithce of
spawners.‘Bottom: biplot of patch metrics of metapopulation structure with syneinoiS)
contribution of populations to MPG-level viability (HSRG 2009; NOAA Fisheries 2013)

Figure 5. Sensitivity analysis results, showing resulting metapopulation structure metrics (y
axes; defined. iirigur e 2) when population size (left column), dispersal estimate (imidd
column), orspopulation set (right column) was altered in a subset of populations.drnitetiper
x-axis are the,number of random populations that were altered in each of 1000 cirapletiite
= value increased; dark gray = value decreased; gray utgiimms omitted. For each boxplot,
thick lines are medians, boxes are 1st and 3rd quartiles, and whiskers are 5th and 95th

percentiles. For comparison, ‘true’ values computed using the ensemble dispersal dataset and
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wild spawners in the recent decadedtipopulations except those in the Clearwater (n=32) are
depicted behind boxes as a gray rectangle (1st and 3rd quartiles) and horizontal lines
(dashed=median; dotted=5th and 95th). These and @xes/are comparable within a row and

with the same row ikigure?7.

Figure 6. Sensitivity analysis results, showing the percent change in the fraction sfiedige
metapopulation’ (seeigure S3 for other metrics) resulting from changes to a single population
(x-axis; names"iT able 1). Horizontal dashelines represent ‘true’ values’ using the combined
dispersal dataset and all populations except those in the Clearwater. @reB2boxes are major
populationsgreups: LoSn=lower Snake; Grim=Grande Ronde/Imnaha; SfSa=SF Salmon,;
MfSa=MF ‘Salmon; UpSa=Upper [8zon.

Figure 7. Metrics describing metapopulation structure for the Snake River spring/summer
Chinook salmon ESU comparing results across different population sizes I{iefingodifferent
datasets used+to estimate dispersal (middle column), and diféeterof populations (right
column). Metrics (yaxes) are defined iRigure 2. Abbreviations in the xaxes are, for the left
column:hist = historical abundance in the late 1800s, mod = wild spawner abundance for brood
years 1962-1971 when fish were moderately abundant; w+h = wild and hatchery spawner
abundance for brood years 1999-2008. Abbreviations for the middle column: hyd = hydrologic
distance model; hab = habitat attraction model; cwt = coded wire tag data; pit = passive
integratedransponder tag data; gen = genetic data. Abbreviations for treahight: a:43 = all
populationssinsthe ESU including Clearwater populations (n=43); ¢:10 = populations for which
coded wire tag data existed (n=10); p:13 = populations for which passive integnaspdhcer

tag data existed (n=13); gen = populations for which genetic data existed (n=16). For
comparison,values computed using the ensemble dispersal dataset and wild spatwaers in t
recent decade for all populations except those in the Clearwater (n=82pated behind

boxes as aJgray rectangle (1st and 3rd quartiles) and horizontal lines (dasfiad;-dwted=5th
and 95th). These and theayes are comparable within a row and with the same réugure 5.

SeeFigures $4-S12 for additional exploration of these patterns.

This article is protected by copyright. All rights reserved



Figure 8. Top: theoretical framework for describing the spatial structure adpoeulations,
adapted from figures in Harrison and Taylor (1997). Bottom: salmon ESU as predicted by
management scenarios placedhis framework. Metric names (vectors)rigure 2 and
scenario names (points) Trable 3. For clarity, scenario-Ss not shown because it is nearly
identical to.S+. SeEigures S13-15 for additional exploration of the effects of management

scenario®n the ESU and on individual populations.
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