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 26 

The majority of the world’s fisheries, by number, are data-poor/limited, and there is a growing body 28 

of literature pertaining to approaches to estimate data-limited stock status. There are at least two 29 

drivers for assessing of the status of data-limited fisheries. The first is to try to understand and 30 

report on the global or regional status of fisheries across many stocks. The second is to attempt to 31 

assess individual data-limited stocks, for status reporting and/or guiding management decisions. 32 

These drivers have led to attempts to find simple, generic, low-cost solutions, including broad 33 

application of generically parameterised models, and the blanket application of a single, or limited 34 

number of possible, analytical approach(es). It is unclear that generic methods function as intended, 35 

especially when taken out of their original design context or used without care. If the intention is to 36 

resolve individual stock status for the purposes of management, there is concern with the 37 

indiscriminate application of a single method to a suite of stocks irrespective of the particular 38 

circumstances of each. We examine why caution needs to be exercised, and provide guidance on the 39 

appropriate application of data-limited assessment methods (DLMs). We recommend: i) obtaining 40 

better data, ii) using care in acknowledging and interpreting uncertainties in the results of DLMs, iii) 41 

embedding DLMs in harvest strategies that are robust to the higher levels of uncertainty in the 42 

output of DLMs by including precautionary management measures or buffers, and iv) selecting and 43 

applying DLMs appropriate to specific species’ and fisheries’ data and context.  44 

Abstract 27 

 45 

Keywords: data-poor, data-limited stock assessment, stock status 46 

The majority of the world’s fisheries, by number, are data-limited (Costello et al. 2012). That is, they 48 

have insufficient data (e.g., type, amount, and/or quality of) and/or capacity (e.g., research, 49 

institutional, or funding) to enable undertaking a quantitative, model-based stock assessment to 50 

estimate time series of biomass and fishing mortality relative to their reference points. There is a 51 

growing body of literature aimed at developing approaches to estimate the status of data-limited 52 

stocks (e.g. Anderson et al. 2017; Dowling et al. 2008; Dichmont and Brown 2010; Plaganyi et al. 53 

2015; Wayte and Klaer 2010; Dowling et al. 2014; Dowling et al. 2016; Pilling et al. 2008), and 54 

increasing use of these data-limited assessment methods (DLMs) for management purposes (Bentley 55 

2015; Carruthers et al., 2012, 2014, 2016; Dichmont et al. 2017; Geromont and Butterworth 56 

2015a,b). Several of the classical, average-length-based methods developed in the 1950s by 57 
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Beverton and Holt, Gulland, Ricker and other early quantitative fishery scientists are data-limited 58 

assessment methods, many of which are being revisited and re-emphasised (eg., Gedamke and 59 

Hoenig 2006; Prince et al. 2014; Then et al. 2016).  DLMs range from empirical methods, in which 60 

performance indicators are based on directly-measured properties, to model-based approaches, 61 

where performance indicators are model outputs. Table 1 provides a summary of types of DLMs, 62 

including empirical assessments. 63 

There are at least two contexts for undertaking an assessment of the status of data-limited fisheries. 64 

The first is to try to understand and report on the global or regional status of fisheries across many 65 

stocks. This typically involves application of a single DLM to a large number of stocks (e.g. Rosenberg 66 

et al. 2017; Zeller et al. 2016; Costello et al. 2012; Froese et al. 2012; Thorson et al. 2012; FAO 1995), 67 

to gain an understanding of the general health of fisheries for the purpose of motivating funding, 68 

research and reform. The second is to assess the status of individual data-limited stocks, for status 69 

reporting or guiding management decisions, the latter typically within a harvest, or management, 70 

strategy (e.g., Sainsbury et al. 2000; Butterworth and Punt 2003, and Fish. Res. Special Issue 94(3) 71 

2008) (Figure 1).  72 

 DLM approaches are also increasingly being used in formal harvest strategies (e.g. Dichmont and 73 

Brown 2010; Klaer et al. 2012).  The main distinction being highlighted within this paper is the use of 74 

assessments for stock status determination, compared to connecting a control rule to the 75 

assessment output in order to provide a direct link to a pre-specified management action , as per a 76 

formal harvest strategy (e.g., Sainsbury et al. 2000; Butterworth and Punt 2003) (Figure 1). We 77 

discuss more fully the stock assessments whose outputs are embedded within harvest strategies 78 

below.  79 

There are good reasons for management agencies, national governments and international 80 

organisations such as the Food and Agricultural Organisation to report on the status of individual 81 

stocks. Over the last 20 years, fisheries policy has increasingly required the maintenance of stocks at 82 

or around biomass-based target reference points, and the avoidance of biomass-based limit 83 

reference points (Oremus et al. 2014; FAO 2016). The stock status reporting requirement associated 84 

with managing around target and limit reference points imposes a daunting task for fishery 85 

management agencies, leading in many cases to a substantial number of stocks being classified as 86 

“uncertain”, and many others being designated as “not overfished” or “overfished”, but with a high 87 

risk of misclassification (e.g., Flood et al. 2016; NRC 2012).  88 

At the same time, there is, understandably, pressure to resolve the status of “uncertain” stocks (e.g., 89 

Flood et al. 2016) to increase the number of species assessed and decrease the number of species 90 
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whose status is designated as “uncertain”. While the initial focus of national level stock status 91 

reports (e.g., in Australia or the USA) has been on data-rich stocks, there is interest to report on the 92 

large number of stocks which are currently listed as uncertain, and to use DLMs to do so. For 93 

example, the Status of Australian Fish Stocks (SAFS), the nationally standardised approach to 94 

assessing stock status, aims to increase the number of included species from 83 to 200, and to 95 

reduce the number of species classified as “undefined” from the current approximately 30%, to less 96 

than 10% (Flood et al. 2016). In the United States, there is a legal requirement to assess and set 97 

Acceptable Catch Levels for all species, per the 2006 amendment to the Magnuson–-Stevens Act 98 

(Newman et al. 2015). The interest in resolving stock status extends to developing nations whose 99 

legislative requirements are also becoming more stringent, demanding the use of standard target 100 

and limit reference points to set management regulations (e.g., Chile, Wiff et al. 2016). 101 

The above drivers have led to attempts to find simple, generic, low-cost solutions to assess fishery 102 

status. Such solutions include “silver bullet”, or one-size-fits-all approaches, that are simple to 103 

implement without much scientific expertise. It is unclear that these generic methods function as 104 

intended, especially when taken out of their original design context or used without care. 105 

For example, the abovementioned Australian SAFS process has, as an initial step, focused on building 106 

capacity around a small number of possible quantitative methods (3) to assess a large number of 107 

species, while acknowledging the challenge of appropriate application and interpretation (Haddon et 108 

al. in prep). In a developing nation context, the authors have consulted in countries where an 109 

outside expert has proposed a method for one species or fishery, and subsequently a blanket 110 

application of that approach to other species has occurred, without due critical appraisal of the 111 

appropriateness of the method or its assumptions.  112 

While all of the above motivations are legitimate, the approach to undertaking an assessment of 113 

stock status needs to be appropriate to the objective. If the intention is to resolve individual stock 114 

status for the purposes of managing the stock, particularly within a management or harvest strategy, 115 

the concern is with the indiscriminate application of a single method to a suite of stocks irrespective 116 

of the particular circumstances of each.  117 

In this paper, we examine why caution needs to be exercised when using generic approaches to 118 

data-limited stock assessment, and provide guidance on the appropriate application of DLMs. 119 

What do we mean by “generic assessment approaches”?

Generic approaches to stock assessments include two important potentially undesirable 121 

applications: i) species-unspecific parameterised models, and ii) blanket application of a single or 122 
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very few analytical approach(es) to many stocks that do not discriminate among the different 123 

circumstances and requirements of each stock. Table 2 provides a review of regional or global 124 

assessment applications, with examples of one-size fits-all approaches, and the rationale or impetus 125 

for each. Note that the methods here summarised are not intended as examples of incorrect 126 

application; the point is that such approaches exist, and along with them exists the possibility of 127 

misapplication or misinterpretation.  128 

Generic assessment approaches may include methods that have been tested using data-rich stocks, 129 

and are then applied in the same manner to data-limited stocks. We emphasise that we are not 130 

against generic approaches per se, if they are tuned intelligently and used with care to the specific 131 

application, such as with, Froese et al.’s 2017 application of a catch-MSY assessment to a range of 132 

data-limited fisheries. 133 

i) Broad application of generically parameterised, or data-aggregated, models 134 

Generically-applied DLMs may be appropriate (and thus the value of individually-tailored DLMs 135 

diminished) if their purpose is not to examine individual stock status, but rather, to undertake a 136 

broader (regional, or global) “health check” of overall sustainability (examples include Rosenberg et 137 

al. (2017), Costello et al. (2012, 2016), Kleisner et al. (2013), and Thorson et al. (2012)– see Table 2 138 

for details). Despite the concern of compounding sources of uncertainty, at such scales, it could be 139 

argued that the inaccuracy of DLMs due to lack of data/information may be absorbed, rather than 140 

compounded by, the lack of accuracy caused by generic parameterization of DLM. That is, if the 141 

uncertainty about key input parameters is large (with wide associated prior distributions) then 142 

potentially a number of stocks could be included within the range of uncertainty allowed for that 143 

particular stock, and the accuracy or lack thereof would be the same whether or not the DLM is 144 

generically parameterised. If the assumptions of the method hold for all species to which it is being 145 

applied, then this argument may have some validity.  146 

Yet there remain examples of misapplication of empirical DLMs – specifically, the use of aggregated 147 

time series of catch or catch-per-unit-effort - in the context of obtaining a regional or global estimate 148 

of sustainability. Edgar et al.’s (2018) use of aggregated catch time series across over 200 Australian 149 

fisheries, each normalised to its maximum value, to infer that Australian fisheries are in decline, 150 

acknowledges but fails to account for management intervention and large-scale environmental 151 

changes, fails to weight each time series according to (for example) relative biomass, and fails to 152 

acknowledge the lack of desirability of maximum catch as a reference point. The now-classic Myers 153 

and Worm (2003) claim of rapid worldwide depletion of predatory fish communities, based on 154 
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analysis of nominal catch-per-unit-effort data combined globally, was rebutted by Hampton et al. 155 

(2005), Maunder et al. (2006), and Polacheck (2006).  156 

A preferable approach to identifying regional stock status might be to undertake an in-depth analysis 157 

of a sample of stocks from the region, rather than attempting to estimate the status of many stocks 158 

using a one-size fits all approach. More broadly, if DLMs are to be applied for purposes of fishery-159 

specific management, then generic parameterisation is inadvisable.  160 

ii) Blanket application of a single, or limited number of possible, analytical approach(es) 161 

Some regional, and, especially, global analyses have applied a single DLM to all stocks (including 162 

regression models from data-rich stocks to make predictions for data-poor stocks (Costello et al. 163 

2012)), irrespective of whether better information or assessments are available for some.  Blanket 164 

application of DLMs may be problematic or inappropriate due to a lack of data, problems with data 165 

quality, a lack of required inputs, or the violation of assumptions. However, this has typically been 166 

done as a practical approach to provide global assessments of stock status or to assess groups of 167 

stocks in the face of limited time and resources, and balanced against the relatively low value of 168 

some data-limited stocks. We caution that this may not yield meaningful results for individual stocks, 169 

but the outcome is preferable to no assessment and no management.  170 

It is clear from the literature that, while the application of DLMs may be simple, these methods are 171 

very context-specific and each has its own assumptions and caveats, requiring expert guidance 172 

and/or local knowledge (Geromont and Butterworth 2015a,b; Dowling et al. 2014; Carruthers et al. 173 

2014; Pilling et al. 2008). Blind application of generic assessment packages, be these data-rich or 174 

data-limited, may inadvertently result in erroneous assessment outputs and misinformed guidance 175 

because of assumption violations and method outputs not fitting management objectives. An 176 

example of potential blanket application of a single, or limited number of analytical approaches 177 

includes the aforementioned Australian SAFS approach of, as an initial step, advocating a limited 178 

number of assessment methods to resolve status for 200 species (Haddon et al. in prep). In 179 

developing nations, authors have observed, during capacity building exercises, the misapplication of 180 

assessments recommended for a particular species, to others for which it is not appropriate, or 181 

where assumptions are violated.    182 

The misapplication of any assessment method, be it data-rich or data-limited, can lead to erroneous 183 

results and interpretation. This is more likely to be a problem for DLMs, however, since their 184 

information requirements are fewer, and, as such, they can be more readily applied. More generally, 185 

blanket application of the same models to a suite of species, or species complexes, may result in 186 
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varying levels of certainty in parameter estimation, according to the amount and quality of data 187 

available (Bentley 2015). 188 

While generic methods may be quicker and easier to implement, their broad or blanket application 190 

increases the likelihood of violating assumptions, and of not paying due attention to issues of data 191 

quality (errors, gaps, bias) or representativeness (of the stock, of the fishery, and in terms of 192 

whether data is temporally or spatially consistent) (Table 3 provides a summary list of typical 193 

assumptions, required inputs, and assumed knowledge associated with DLMs). This compromises 194 

the reliability of generic methods.  195 

Why do we need to be so careful about the generic application of DLMs? 189 

The application of traditional model-based assessment to data-limited fisheries is often further 196 

limited (Dowling et al. 2007, 2008a, 2008b) because many such fisheries also have other 197 

complicating features, such as high variability in productivity (e.g., squid and scallops), spatial 198 

heterogeneities (e.g., sedentary or low-mobility species) or large numbers of interacting species and 199 

gears (e.g., tropical multi-species fisheries). 200 

For both developed and developing nations, there is the need to counter a legacy from a “quick-and-201 

dirty”-methods era, when stock assessment tools were made readily available with little training 202 

support and little awareness of their limitations. This frequently results in the misapplication of 203 

DLMs, whereby assumptions are violated, or the input data are uninformative. For example, yield-204 

per-recruit models are widely available in a variety of user-friendly applications that also promote 205 

simple reference points (e.g., F=M). This user friendliness allows access to the method, but is 206 

sometimes not flexible enough to include important aspects of a fishery. If selectivity is rigidly 207 

assumed to be asymptotic, but true selectivity is dome-shaped (often the case in fisheries that fish 208 

shallow, but ontogenetic shifts result in larger individuals in deeper water), the interpretation of the 209 

fishing rate at maximum yield (Fmax

Although many DLMs are computationally simple to undertake (e.g., via the use of packages (e.g., 213 

Carruthers and Hordyk 2018; Cope 2018)), caution needs to be applied to interpretation and use of 214 

their outcomes, because of the inherent propensity of DLMs to yield highly uncertain results. 215 

Moreover, the application of DLMs and interpretation of their output are less simple when the 216 

assumptions of the DLM are not respected. In addition, many DLMs can still be resource-demanding 217 

- even, at times, approaching the requirements of a data-rich approach. As such, there is a cost-218 

) will be incorrect. Increased training and bottom-up engagement 210 

and support should help overcome the misapplication of DLMs, and enable the results of user-211 

friendly applications to be correctly interpreted. 212 
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benefit balance between their generic application versus devoting resources to ensuring the most 219 

appropriate method is applied. However, the latter is readily facilitated using decision support tools 220 

(e.g. FishPath (Dowling et al. 2016)) to guide the choice of appropriate methods. 221 

Even if a DLM is appropriate for a fishery or stock, in general, data-limited stock assessments have a 223 

higher degree of uncertainty and potential bias in their estimates of stock status than data-rich 224 

approaches (Fulton et al. 2016). The extent of this uncertainty is highly case specific. It follows that 225 

generic application of DLMs further compounds this uncertainty. 226 

DLMs have an inherent propensity of to yield highly uncertain results 222 

All stock assessment methods result in some level of uncertainty in status determination: 227 

uncertainty in priors and measurement error in the data, and naturally occurring variability in 228 

biology result in a lack of certainty in output. Data rich methods usually deal with this uncertainty 229 

explicitly –e.g. they can estimate and report the “probability that the stock is below a limit reference 230 

point” or undertake sensitivity tests that can be well defined. By contrast, the uncertainty involved in 231 

stock assessments conducted using DLMs is rarely estimated or reported (Dichmont et al. 2017 is an 232 

exception). However, to adequately define and calculate the uncertainties associated with DLM 233 

methods requires only an awareness of the assumptions of the DLM and unknown parameter inputs. 234 

In the USA, the Pacific Fishery Management Council has set the uncertainty around a data-limited 235 

assessment to be a coefficient of variation of 1.44 (Ralston et al. 2011. This uncertainty is used to 236 

describe the distribution around a catch limit derived from a data-limited method. The risk tolerance 237 

is then defined as a certain percentile of the distribution, this determining the reduction from the 238 

median. A catch-limit based on a data-limited method, therefore, has a larger reduction in catch 239 

than other, less data-limited methods (Ralston et al. 2011). 240 

Where uncertainty has been reported, data-limited assessments have been often imprecise for 241 

status determination of specific stocks. This has been demonstrated by Dichmont et al. (2017), and 242 

by studies (e.g., Klaer et al. 2012; Plaganyi et al. 2013; Dichmont et al. 2017) resulting from the 243 

Australian government-funded initiative to explore and understand DLM methods through the 244 

“Reducing Uncertainty in Stock Status” program (Larcombe et al. 2015). Although it is difficult to 245 

generalise because performance is highly species-specific, the comprehensive management strategy 246 

evaluation of Dichmont et al. (2017), that considered assessments embracing fully quantitative 247 

model-based assessments, catch curves, empirical analysis of average catch-per-unit-effort CPUE 248 

relative to target and limit CPUE reference points (Wayte and Klaer 2010), length-based yield-per-249 

recruit (Haddon et al. 2015), SAFE (Zhou et al. 2011), an empirical catch-based trigger system, and an 250 

empirical multi-indicator trigger system (Dowling et al. 2008), showed that, given the same inputs 251 
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and data, stock-specific data-limited assessments generally tended to be highly uncertain and biased 252 

towards overestimating population size. In consequence, more precautionary management is 253 

required to achieve the same risk outcomes when using data-limited assessment methods, including 254 

generic application of outcomes from data-rich situations (Fulton et al. 2016; Dichmont et al. 2017). 255 

As such, care needs to be exercised to ensure that the estimates produced by DLMs are 256 

appropriately robust given the circumstances. More thought is also required than is usually given to 257 

adequately represent the uncertainties in all status determinations given what one knows about the 258 

approach and the unknowns due to lack of information. For example, catch-only assessment 259 

methods are known to perform poorly or well in different circumstances especially depending on 260 

available knowledge of key inputs such as natural mortality (Wetzel and Punt 2011; Caruthers 2014; 261 

Arnold and Heppell 2014).  262 

Harvest strategies are formal frameworks for managing exploitation of fisheries, usually applied to 264 

the target species (e.g., Sainsbury et al. 2000; Butterworth and Punt 2003, and Fish. Res. Special 265 

Issue 94(3) 2008) (Figure 1).They comprise a fully-specified set of rules for making tactical 266 

management decisions, including specifications for (i) a monitoring program, (ii) the indicators to be 267 

calculated from monitoring data (usually via a stock assessment) and (iii) the use of those indicators 268 

and their associated reference points to adjust harvest controls (e.g., total allowable catches)  269 

through application of harvest control rules (HCRs, Sainsbury et al. 2000; Butterworth and Punt 270 

2003; Punt et al. 2002; Rayns 2007; Butterworth 2007). The motivations for using DLMs in a harvest 271 

strategy context are usually resource limitations (e.g., sparse or uninformative data, funding 272 

limitations, or a lack of scientific capability).  Commonly there is limited time or resources to apply 273 

the best (tailor-made) assessment for each, often relatively low-value, stock (Bentley 2015). 274 

Embedding DLMs within harvest strategies 263 

We encourage the use of harvest strategies in many data limited management contexts.  DLMs can 275 

be embedded within a harvest strategy with control rules that explicitly link the assessment to a 276 

specific management action.  Moreover, control rules within a harvest strategy can be designed to 277 

be conservative and compensate to some extent for imprecision in the assessment. Simulation and 278 

real-life experience have shown DLMs to be biased and have higher variance than data-rich 279 

assessments (Dichmont et al. 2016), yet can perform adequately in a precautionary HCR setting 280 

(Fulton et al. 2016). DLMs linked to precautionary HCRs within a harvest strategy can therefore 281 

perform adequately in avoiding overfishing at the expense of less yield, to compensate for poor 282 

estimates of stock status by DLMs. 283 
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Ironically, some of the more data-limited assessment options (e.g., ratios of fish density inside 285 

compared to outside marine protected areas (Babcock and MacCall 2011; McGilliard et al. 2011), 286 

hierarchal decision trees based on combinations of multiple empirical indicators (Prince et al. 2011)) 287 

are labour intensive, and hence quite costly. Undertaking even the more empirical assessments 288 

requires investment of a base level of resources and may also require new data to be collected if 289 

stock status is determined to be below target levels, demanding a more rigourous assessment 290 

(often, “trigger based” empirical assessment frameworks demand that a more quantitative 291 

assessment is undertaken, if a trigger is reached that suggests the stock is below target levels 292 

(Dowling et al. 2008)). We reiterate the need to balance the costs of generically applying DLMs, and 293 

those of ensuring the most appropriate method is applied. 294 

DLMs can still be resource-demanding 284 

While there are no simple generic solutions to resolve stock status when data are limited, there are 296 

simple stock-specific solutions to manage fisheries in data-limited situations. We would argue that 297 

the preferred approach, for the purposes of sustainable management using harvest strategies, is to 298 

tailor DLMs to individual stocks or fisheries. Overall management success is strongly dependent on 299 

the reliability of the stock status estimate (especially when this is not associated with precautionary 300 

HCRs), which we argue can be compromised by the application of generic approaches. Tailored 301 

application of DLMs is made more feasible by decision support tools that help users easily select the 302 

DLM(s) that are most appropriate for their circumstances (Dowling et al. 2016, Carruthers et al. 303 

2012, 2014). 304 

Stock-specific knowledge and solutions are required to guide decision making  295 

A fishery’s specific data collection protocols and operational characteristics, the life history 305 

characteristics of the species of interest, and the management objectives and capacity all should be 306 

explicitly considered in the application of any assessment. It is these aspects of a stock and its fishery 307 

that help match appropriate methods and assumptions to inform management. For instance, 308 

knowing not just whether data can be collected or are available for a particular method (e.g., a 309 

catch-only method) but whether that method performs well for a given life history (e.g., some are 310 

better for faster than slower life history types; Wetzel and Punt 2015) and whether the management 311 

system can manage the output of that method, are all fundamental to determining the case-specific 312 

appropriateness of any given method.  Practitioners should apply a DLM that is appropriate to their 313 

data and fishery context (in terms of life history and operational characteristics) (Carruthers et al. 314 

2012, 2014, 2016; Dowling et al. 2016).   315 
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Rather than only seeking simple, generic solutions, we recommend dedicating effort to: i) obtaining 317 

better (less measurement error, more spatially and temporally continuous and representative, or 318 

additional) data, ii) using care in acknowledging and interpreting the uncertainties in the results of 319 

DLMs, iii) embedding DLMs in harvest strategies that are robust to the higher levels of uncertainty in 320 

the output of DLMs (both stock status and reference points), by including precautionary 321 

management measures (e.g., setting size limits that prevent or limit exploitation until after the size 322 

at first or second spawning), or precautionary buffers that set more conservative measures to 323 

account for assessment uncertainty, and iv) selecting and applying DLMs appropriate to specific 324 

species’ and fisheries’ data and context.  325 

What is the way forward for the application of data-limited assessments?  316 

i) There is no substitute for better data 326 

There is no replacement for data quantity and quality, particularly time series data, to enable 327 

reliable assessment of stock status (Bentley 2015). In the absence of a time series of data and/or 328 

current (research, or funding) capacity to conduct assessments, it is important to make a 329 

commitment to improve the amount and quality of data informing any assessment, for example, by 330 

archiving time series of fishery or biological data for later analysis (Dowling et al. 2008).  331 

Improved data can be obtained in cost-effective ways (Dowling et al. 2016). These include market, 332 

port or processor monitoring programs, interviews (Moore et al. 2010), voluntary logbooks 333 

(Breckwoldt and Seidel 2010), participatory community data collection and assessments (Schroeter 334 

et al. 2009; Kittinger 2013), and eliciting local ecological knowledge; (Beaudreau and Levin 2014). 335 

These nonetheless require some minimum, ongoing financial and capacity commitment.   336 

ii) Acknowledge uncertainties and assumptions 337 

DLMs should not be applied as a routine, low-risk or technically trivial exercise. The process, 338 

uncertainties and outcomes must be critically confronted. Practitioners should be aware of and 339 

report on the limitations of the available data inputs, such as their representativeness, uncertainty 340 

(in terms of measurement error and reliability), level of contrast (i.e., that a time series of 341 

abundance or proxy abundance data embraces both periods of highs and lows), or spatial/temporal 342 

continuity.  343 

It is good practice to apply more than one DLM method (and this will usually be technically possible) 344 

in order to assess consistency of results (e.g., Fitzgerald et al. 2018). The assumptions and limitations 345 

of the chosen DLM(s) should be clearly understood and reported. Where appropriate, uncertainties 346 
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in inputs (prior ranges for parameters) should be considered via Monte Carlo approaches and 347 

sensitivity analyses (e.g., Prince et al. 2011).  348 

It follows that care should be taken in interpreting the outcomes of DLMs. The uncertainties in the 349 

results should be made explicit. For example, typical DLM problems include the inability of 350 

sparse/poor data to update priors to give meaningful posteriors, and difficulty estimating MSY. 351 

Effort should be dedicated to considering the implications of this uncertainty as it affects 352 

management decision efficacy and future monitoring requirements (e.g. Dowling 2011). HCRs should 353 

be adequately precautionary (conservative) given the risk associated with the strength of the data 354 

(relative to data-rich stocks) and perceived robustness of the DLM. Such measures may provide 355 

incentives to resolve uncertainties identified through sensitivity analysis (sensitivities to assumed 356 

model inputs and priors). 357 

The legislative, policy and/or commercial (through seafood certification requirements) pressures to 358 

evaluate stock status of data-limited fisheries, together with a view that inexpensive, generic 359 

approaches are available, begs the question: what level of certainty do agencies or organisations 360 

regard as acceptable in moving a species from an “uncertain” stock status to a reportable status 361 

designation? It may be misleading to assume that a highly uncertain, yet designated stock status 362 

category is preferable over an honest categorization of "uncertain". However, this policy question is 363 

rarely addressed. The recent SAFS discussion (Flood et al. 2016) and reconsideration of the 364 

Australian Fisheries Management Authority (AFMA) tiers (Dichmont et al. 2017; 2016), the Alaskan 365 

tier system (North Pacific Fishery Management Council (NPFMC) 2014), and the U.S. Pacific Fishery 366 

Management Council stock assessment categories (Ralston et al. 2011) are exceptions. Demanding 367 

that data-limited fisheries meet the same precision and accuracy as data rich fisheries is unrealistic. 368 

However, data limited methods have value in identifying species at risk of being overfished, even if 369 

the assessment is not "certain" enough to, for example, set catch or effort limits as in a data rich 370 

fishery. Generic application of outcomes from data-rich situations may also be appropriate in 371 

guiding, for example, the setting of broader control rules such as size limits or gear restrictions. 372 

Another valid application of DLMs is via the “Robin Hood” approach of Punt et al. (2011) that uses 373 

insights from data-rich assessments to inform data-poor assessments. 374 

iii) Embed DLMs in harvest strategies 375 

We recommend embedding DLMs within data-limited harvest strategies: precautionary HCRs can 376 

compensate for poor estimates of stock status by DLMs. At the same time, we caution that this is 377 

not a trivial undertaking: data-limited harvest strategies demand expertise and can sometimes be as 378 

time consuming to develop as data-rich ones (Dowling et al. 2016; Plaganyi et al. 2013; Dowling et al. 379 
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2008), and they are frequently difficult to implement and to simulation test (e.g., Carruthers et al. 380 

2016; Dowling et al. 2016). Additionally, it is often difficult to provide defendable indicators and 381 

reference points for management frameworks based on empirical assessments. For example, what 382 

level of catch or catch rate, at what geographical scale, is considered ‘good’ and can be related to an 383 

overall objective, such as optimising human benefits and avoiding recruitment overfishing? Or, in 384 

multispecies fisheries, which species should be considered, what is the basis of the proxy reference 385 

points for them, and how should the status of many species be reconciled to yield an overall status 386 

for a stock complex, or to determine management advice for the fishery?  Despite these challenges, 387 

DLMs have been successfully embedded within harvest strategies (Dowling et al. 2008; Fulton et al. 388 

2016), and we believe that the use of harvest strategies provides the best outcomes for sustainable 389 

fisheries management. A process of bottom-up engagement, facilitated by a decision support tool 390 

such as FishPath (Dowling et al. 2016), may best enable the design of effective harvest strategies.  391 

iv) Context and consequence matter 392 

There is a difference between attempts to assess the status of stocks for situations in which dynamic 393 

(based feedback from a stock assessment) management protocols exist - typically, developed 394 

countries that set total allowable catches (TACs), and situations in which static (“set and forget”) 395 

management protocols, such as closed seasons, exist. Many fisheries, especially (but not exclusively) 396 

small-scale fisheries from developing nations, remain unassessed and largely unmanaged. In those 397 

cases, the imperative to estimate stock status is usually less important than establishing some form 398 

of management even in the absence of formal stock assessments and harvest control rules (Mahon 399 

1997). Ultimately, the resolution of stock status by an appropriately-selected DLM is still paramount, 400 

but the introduction of a formal harvest strategy is certainly not essential, at least initially. The 401 

immediate priority is to establish interim management controls identified as feasible and affordable 402 

within the social-economic and governance contexts and constraints impacting the fishery. Any 403 

required reduction in fishing effort, for example, may have to be achieved as a longer-term goal. 404 

More broadly, context and consequence must be considered: the same reasons that resulted in the 405 

fishery being data-limited may also cause restrictions on assessment and management options. This 406 

is typically the case for small-scale coastal fisheries where data limitations go hand in hand with 407 

difficulties in enforcement and management more generally as a result of the fishery being quite 408 

complex (e.g., multispecies, multisector, spatially dispersed), which preclude certain forms of 409 

harvest controls (Parma et al. 2003; Garcia et al. 2008).  410 

A common issue is that of migratory, shared and high seas stocks where there is a contrast in 411 

information quality from different regions. Practitioners can either agree to using the best available 412 
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data, regardless of its place of origin, as being representative to inform an assessment, or “manage 413 

their own backyard” to the extent that this is possible, given the extent of site fidelity of fish and the 414 

available local data. The Australian Eastern Tuna and Billfish Fishery makes local management 415 

decisions informed by a hierarchical decision tree based on combinations of empirical indicators 416 

(Prince et al. 2011), which draws more broadly from the regional (South Pacific Commission) stock 417 

estimates. 418 

Costs and associated resources for fisheries management are substantial. Management requires a 420 

consistent investment and commitment to research, monitoring, assessment and enforcement, and 421 

to the collection of data to inform these. Fisheries need to be managed in a demonstrably 422 

sustainable manner in the face of limited resources. Even if generic approaches are used, there is a 423 

minimum cost associated with stock status resolution for data-limited fisheries. Recognising that 424 

there are no cheap, simple, generic, solutions to evaluating stock status for data-limited fisheries 425 

does not preclude agencies and other fisheries stakeholders from implementing pragmatic fisheries 426 

management. This should involve commitments to cost-effective data collection programs, careful 427 

selection of DLMs based on available data, critical evaluation of their results and their associated 428 

uncertainties, and embedding DLMs within appropriate harvest strategies to formalise specific 429 

management actions.  430 

Conclusion 419 
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Input-based category Data-limited assessment References

Expert Judgement Move directly to harvest control measures Dowling et al. (2014)

Discourse/expert judgement Dowling et al. (2008a)

Data exploration via plotting and descriptive statistics Dowling et al. (2008a)

Analysis of changes in the spatial distribution of fishing effort Dowling et al. (2008a)

Analysis of changes in the spatial distribution of catch Dowling et al. (2008a)

Analysis of changes in gear type or manner of deployment Dowling et al. (2008a)

Empirical Reference Points Size-based sequential trigger system Dowling et al. (2008a)

Sequential effort triggers Dowling et al. (2008a)

Sequential catch triggers Dowling et al. (2008a)

Risk Analysis/Vulnerability Comprehensive assessment of risk to ecosystems (CARE) Battista et al. (2017); Fujita et al. (2014)

Ecosystem threshold analysis McClanahan et al. (2011)

RAPFISH (Multi-dimensional scaling) Pitcher and Preikshot (2001); Pitcher et al. (2013)

Productivity and Susceptibility Analysis (PSA) to estimate risk of 

overfishing
Patrick et al. (2010)

Ecological Risk Assessment for the Effects of Fishing (ERAEF) Hobday et al. (2007, 2011a,b)

Sustainability Assessment for Fishing Effects (SAFE) Zhou et al. (2016a); Zhou et al. (2011); Zhou and Griffiths (2008, 2009)

Abundance Indicators Analysis of changes in species-composition Dowling et al. (2008a)

Use of biomass surveys to inform management Dowling et al. (2008a); Parma et al. (2003)

Single-indicator analysis using standardized CPUE Hinton and Maunder (2004); Maunder and Punt (2004)

Linear regression to recent time series of CPUE Haddon (2010); Maunder and Punt (2004); Dichmont and Brown (2010)

MPA
Analysis of ratio of density inside and outside marine protected areas 

(MPAs)
Babcock and MacCall (2011); McGilliard et al. (2011)

Analysis of length/size-specific catch-rate indicators for fish sampled 

inside and outside of marine protected areas (MPAs), and per-recruit
Wilson et al. (2010)

Catch Only Optimized catch-only method (OCOM) Zhou et al. (2016b) 

Boosted Regression Tree (BRT) model for stock depletion using catch data Zhou et al. (2017) 

Only Reliable Catch Series (ORCS) Berkson et al. (2011); Free et al. (2017)

Depletion-Corrected Average Catch (DCAC) MacCall (2009)

Depletion-Based Stock Reduction Analysis (DB-SRA) Dick and MacCall (2011)

Simple Stock Synthesis (SSS) Cope (2013)

Stochastic Stock Reduction Analysis (stochastic SRA) Lombardi and Walters (2011); Walters et al. (2006)

Catch-MSY/CMSY (MSY = maximum sustainable yield) Froese et al. (2017); Martell and Froese (2013)

Feasible stock trajectories Bentley and Langley (2012)

Population Dynamics Model Depletion analysis Hilborn and Walters (1992)

Production model Fox (1970); Hilborn and Walters (1992); Haddon (2010); Schaefer (1954, 1957)

Statistical catch-at-age (SCAA) Hilborn and Walters (1992); Quinn and Deriso (1999)

qR Method McGarvey and Matthews (2001); McGarvey et al. (1997); McGarvey et al. (2005)

Size/Age-Based Analysis of size relative to size at maturity Basson and Dowling (2008)

Analysis of changes in mean length/weight or length/weight percentiles Dowling et al. (2014); Quinn and Deriso (1999)

Analysis of sustainability indicators based on length-based reference 

points (LBRP)
Cope and Punt (2009)

Catch curve analysis Chapman and Robson (1960); Dunn et al. (2002); Gulland (1971); Smith et al. (2012)

Length-based Spawning Potential Ratio (LB-SPR) Hordyk et al. (2015a, b)

Mortality estimates from length data in non-equilibrium situations Gedamke and Hoenig (2006)

Length-based Integrated Mixed Effects (LIME) Rudd and Thorson (in press)

Multiple Indicators Hierachical decision trees Dowling et al. (2014); Prince et al. (2011)

Traffic lights Caddy (2004, 2009); Caddy et al. (2005); Halliday et al. (2001)

Cumulative Sum (CUSUM) Control Charts Mesnil and Petitgas (2009); Scandol (2003, 2005)

Sequential trigger framework involving catch and/or effort, catch-per-unit-

effort (CPUE), size, sex ratio etc.
Dowling et al. (2008a)

Table 1: Overview of data-limited assessment methods, from empirical (in which performance 789 

indicators are based on directly-measured properties) to model-based (where performance 790 

indicators are model outputs). 791 

 792 

 793 

 794 

 795 

 796 

 797 

 798 

 799 

Table 2: Review of 800 

regional or global 801 

assessment 802 

applications, with examples of one-size fits-all approaches and the rationale or impetus for each. 803 

Note that the methods here summarised are not intended as examples of incorrect application. 804 
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 805 

 806 

 807 

Reference Method Rationale/what is estimated Limitation

Costello et al. 2012

Multivariate regression to identify predictors of 

stock status from assessed fisheries and use these 

models to estimate status of unassessed fisheries

 Estimates the status of collections 

(including the global status) of previously 

unassessed stocks

Per authors, this approach does not 

produce precise estimates for 

individual fisheries and therefore is 

not a substitute for formal 

assessment.

Costello et al. 2016

Global regression analysis merged with Catch-MSY 

used to estimate instrinsic populatiog growth rate 

(r), carrying capacity (K), maximum sustainable yield 

(MSY), and merged with a microlovel structural 

bioeconomic model based on global regresssion 

analysis

Global MSY and individual stock status 

based on 4713 fisheries in RAM (Dr. 

Ransom A. Myers) Legacy and FAO marine 

capture databases

Emphasis was on investigating 

alternative approaches to recovering 

depleted fisheries. Fisheries that failed 

to meet minimum criteria excluded

Froese et al. 2012
Comparison of maximum catch with MSY and of 

catch-based analysis with biomass-based analysis.

Evaluates whether maximum catch is 

correlated with MSY, and whether temporal 

trends in catch data are consistent with 

trends in biomass.

Limited to FAO (Food and Agriculture 

Organization of the United Nationa) 

catch database. Not aiming to resolve 

stock status for intent of formal 

management.

Rosenberg et al. 2017

Four catch-only methods were applied, and 

estimates from these were combined using a 

superensemble. The 4 catch-only methods included 

one empirical model (panel regression approach 

(PRM) developed by Costello et al. (2012)), and 

three mechanistic models (catch-MSY; catch-only 

model with sampling-importance resampling 

(COMSIR), and state-space catch-only model 

(SSCOM). 

Quantitative estimates of exploitation 

status for 785 FAO fish stocks.

Estimates of stock status were global 

and within each FAO statistical region. 

Per authors, there are still many 

limitations to using this information 

for stock-specific or even regional 

advice. These include the high 

variability of the estimates, the need 

for longer time series of data, limited 

life history information for many 

stocks, and the difficulties of assigning 

prior distributions.

Branch et al. 2011

Analysed i) simulated random catch data with no 

trend; ii) stocks classified as collapsed on the basis 

of catch data to determine whether these stocks 

actually were collapsed; iii) stock assessments to 

compare stock status derived from catch data with 

status derived from biomass data.

How use of catch data affects assessment of 

fisheries stock status.

Limited to FAO catch database, and 

stock assessments in RAM Legacy 

database. Not aiming to resolve stock 

status for intent of formal 

management.

Thorson et al. 2012

 This model uses logistic regression to extrapolate 

from assessment results to available landings, life 

history, and location data. The model classifies 

stocks into different prediction bins and estimates 

the probability of collapse in each using cross-

validation.

Assesses whether globally available 

landings, life history, and location 

information are sufficiently informative to 

allow model-based predictions regarding 

stocks for which single-species assessments 

are not available. An extrapolation model 

uses stock assessment results to estimate 

parameters for a model that predicts the 

probability of collapse.

Estimates probability of collapse. Is a 

"global extrapolation model" which 

uses the opportunistic data that are 

available on a global scale for 

evaluating fishery questions.

Kleisner et al. 2013

Reviews stock status plots as means to provide a 

robust overview of fisheries and of the major 

trends besetting them

Considers challenges, improvements, and 

uses of stock status plots, and examines 

their expected performance under alternate 

scenarios

Uses global catch data; provides broad 

and indirect overview of stock status. 

Not intended to guide management of 

individual stocks. Acknowledges that 

catch statistics are not a silver bullet 

when it comes to evaluating stock 

status, but points out that they are the 

only means to obtain a

global picture of stock status, when 

analysed with an understanding of the 

scenarios which may cause

misinterpretations.
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Assumption Example assessments

The approach assumes the population is currently in equilibrium (with 

constant recruitment)
Catch curves; LB-SPR

The approach requires that unexploited, or theoretical equilibrium, 

biomass (B0) is stationary (i.e. meaningful regardless of time)
Many

Selectivity needs to be at least able to be inferred Most 

Selectivity has not changed over time Most 

Asymptotic fishing selectivity Catch curves; LB-SPR

There have been no major temporal changes in sampling patterns, 

fishing operational characteristics, management, markets or the 

environment

Most 

Species is actively and consistently targeted Many

Sampling is representative of the stock Most 

Sampling is representative of the spatial extent of the fleet(s) Most 

Required inputs

Estimate of the ratio of fishing mortality at maximum sustainable yield 

(FMSY) relative to natural mortality (M) (FMSY/M)
DCAC; DB-SRA; SSS

Estimate of FMSY Stochastic SRA;

Estimates of von Bertalanffy growth parameters

LBRP; Size-specific catch rate indicators for fish sampled inside and outside of MPAs, and per-recuit; LB-SPR; SSS; 

Stochastic SRA; Feasible stock trajectories; Mortality estimates from length data in nonequilibrium situations; SCAA; 

qR method; LIME

Estimate of steepness SSS; Feasible stock trajectories; SCAA, qR method; LIME

Estimate of natural mortality

Size-specific catch rate indicators for fish sampled inside and outside of MPAs, and per-recuit; Catch curves; SAFE; 

DCAC; DB-SRA; SSS; Stochastic SRA; Feasible stock trajectories; Mortality estimates from length data in 

nonequilibrium situations; SCAA; qR method; LIME; OCOM

Estimate of length-fecundity relationship SCAA

Estimate of size at maturity Hierarchical decision trees; LBRP; DB-SRA; LB-SPR; SSS; Stochastic SRA; Feasible stock trajectories; SCAA; LIME

Estimate of life-history ratio M/k LB-SPR

Estimate of length-weight relationship SSS; Feasible stock trajectories; SCAA

Prior estimate for stock status (depletion)
RAPFISH; BRT model for stock-depletion using catch data; ORCS; DCAC; DB-SRA; SSS; Catch-MSY; Feasible stock 

trajectories

Assumed knowledge

Some notion of spatial distribution SAFE

The number of times mortality is thought to change, and initial guesses 

of the years during which mortality is thought to change
Mortality estimates from length data in nonequilibrium situations

Table 3: A list of common assumptions, required inputs and assumed knowledge associated with data-limited assessments, with some examples of 808 

assessments to which these apply. Acronyms and abbreviations are as defined in Table 1. 809 

  810 

 811 

Figure 1: The fisheries adaptive management 812 

cycle, underpinned by a harvest strategy 813 
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