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ABSTRACT

Airborne turbulence measurement gives a spatial distribution of air–surface fluxes that networks of fixed

surface sites typically cannot capture. Much work has improved the accuracy of such measurements and the

estimation of the uncertainty peculiar to streams of turbulence data measured from the air. A particularly

significant challenge and opportunity is to distinguish fluxes from different surface types, especially those

occurring in patches smaller than the necessary averaging length. The flux fragment method (FFM),

a conditional-sampling variant of eddy covariance in the space–time domain, was presented in 2008. It was

shown capable of segregating the mean flux density (CO2, H2O, sensible heat) in maize from that in soy-

beans over the patchwork farmlands of Illinois. This was, however, an ideal surface for the method, and the

random-error estimate used a relatively rudimentary bootstrap resampling. The present paper describes an

upgraded random-error estimate that accounts for the serial correlation of the time/space series and the

heterogeneity of the signal. Results are presented from the Alaskan tundra. Though recognized as im-

portant, systematic error estimates are not covered in this paper. Some discussion is offered on the relation

of the FFM to other approaches similarly motivated, particularly those using wavelets. Successful mea-

surement of the variation of air–surface exchange over heterogeneous surfaces has value for developing

and improving process models relating surface flux to remotely sensible quantities, such as the vegetative

land-cover type and its condition.

1. Introduction

Surface heterogeneity is a prime reason to make flux

measurements from aircraft, but it is also a significant

source of uncertainty. One approach is to sample above

the blending height (Wieringa 1986; Mahrt 2000) to

obtain a measure of the bulk flux. If the intent is

to develop and improve models relating surface flux to

remotely sensible parameters, however, it is important

to acquire the signal of the surface’s influence on air–

surface exchange. Depending on the parameters re-

motely measured, the surface may be characterized

categorically (e.g., by surface class) or by an interval

quantity such as a vegetation index or the land surface

temperature. Of the several approaches that have been

used, some involve integral transforms. A flux can beCorresponding author: Ronald Dobosy, ron.dobosy@noaa.gov
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determined from the Fourier cospectrum of vertical

wind with a scalar (e.g., Karl et al. 2009) or from scale-

dependent shape functions intrinsic to the two signals

themselves, determined by Hilbert transform and used

to compute the covariance (Barnhart et al. 2012).

These two schemes apply more readily to measure-

ments recorded over homogeneous surfaces or above

the blending height. For small-scale heterogeneity, the

continuous wavelet transform is well suited (Torrence

and Compo 1998; Metzger et al. 2013; Karl et al. 2009;

Mauder et al. 2008) and is becoming the standard

method for airborne work.

For a number of reasons, however, time/space

schemes that do not involve integral transforms are also

attractive. Ogunjemiyo et al. (2003) computed the flux

of CO2 and latent and sensible heat over a grid of

(16 km)2. They flew the grid in parallel east–west flight

tracks overlaid by similar north–south tracks, thus de-

fining 2-km segments. Passing twice over the grid

provided a 4-km average over each segment. In such an

approach, the effective length scale of the detrending

scheme (Ogunjemiyo et al. 1997) was necessarily in-

dependent of the 4-km averaging length. Land cover was

classified in (30m)2 pixels by remote sensing. Footprints

were determined for each twice-repeated 2-km segment,

their area classified using the (30m)2 pixels. The con-

tribution from each surface type to each segment’s flux

density was then determined as the probability-

weighted average of the flux density from each surface

class over each footprint.

As seen from the method of Ogunjemiyo et al.

(2003), flux computation in the space–time domain is

tolerant of gaps. Also, the scale of the base state need

not be the same as the averaging length. This allows

for conditional sampling from the departure data

stream at will as long as there are enough samples

under each condition to form a stable covariance. The

flux fragment method (FFM) operates on this

principle.

Kirby et al. (2008) introduced the FFM and applied

it to an Illinois cornfield, probably the ideal appli-

cation. Fundamental to the validity of the FFM, with

its conditional sampling of fragments over long series

of measurements, is a defensible estimate of the un-

certainty, first random, then systematic. The uncertainty

estimate used by Kirby et al. (2008) was rudimentary,

containing poorly justified assumptions. This paper’s

focus is on improvements in the estimation of random

uncertainty drawing on the rich field of time series

analysis. Because of the recognized utility of wavelet

approaches, there will also be a discussion at the

end of the relation between these approaches and

the FFM.

2. Background

a. Specific challenges of airborne flux measurement

Turbulent fluxes are determined from measurements

as a covariance between fluctuations in turbulent wind

and in whatever scalar is being transported, normally

computed as a temporal or spatial average. Airborne

turbulence measurement (Leise et al. 2013) is an order

of magnitude more complex than turbulence measure-

ment from fixed towers. Turbulent wind is especially

fraught with complexity and uncertainty. Turbulent

structures, complex on their own, are measured from

samplers themselves moving and accelerating in 6 de-

grees of linear and rotational freedom. Such sensor

movement must be accurately measured at a high

sample rate.

Moreover, although distorted flow is anathema to

wind sampling, strong and deliberate flow distortion is

the very essence of being airborne. Sensors are therefore

best placed as far forward of the engine(s) and fixed or

rotary wings as possible. Care in theory and measure-

ment can then account for what distortion remains

(Holder et al. 2011; Avissar et al. 2009; Kalogiros and

Wang 2002a,b; Crawford et al. 1996; Brown et al. 1983).

Finally, and very important, outside of a hurricane

the usual airspeed of an aircraft is much greater than

the wind speed to be measured. The wind velocity

relative to Earth is the vector sum of the flow velocity

relative to the sensor [(negative) airspeed] and the

sensor velocity relative to Earth (ground speed). These

two vectors nearly cancel, leaving the wind velocity to

be the small difference between large numbers. The

validity of Taylor’s frozen-turbulence hypothesis is

enhanced, but so is the measurement uncertainty. The

near canceling of the strong airspeed and ground speed

vectors does have one helpful consequence: Many

calibration errors and instrument malfunctions become

quickly obvious due to the narrow tolerances of the

measurements.

b. Historical overview

Progress over the past 40 years has greatly reduced the

size and cost of good-quality airborne turbulence mea-

surement. High-precision, low-drift GPS/inertial navi-

gation systems (INS) are now available commercially off

the shelf (COTS) with their accuracy and sensitivity

documented in the manufacturers’ literature. The wind

(gust) probes themselves are normally custom built,

though incorporating COTS sensors. Considerable

effort has been made to quantify and minimize the un-

certainty using wind-tunnel tests of the probes (Dobosy

et al. 2013; Metzger et al. 2012; van den Kroonenberg

et al. 2008; Garman et al. 2006), airborne maneuvers
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(Mallaun et al. 2015; Leise et al. 2013; Vellinga et al.

2013; Metzger et al. 2012; Lenschow et al. 2007; Bögel
and Baumann 1991), and postprocessing quality control

(Vickers and Mahrt 1997). Although the complexity of

the problem almost surely imposes a degree of irre-

ducible uncertainty beyond that of fixed sensors, such

work continues to define and expand the scope of pro-

ductive airborne measurement. Nevertheless, airborne

turbulence measurement remains largely a research

activity involving a small and slowly growing community

of groups, each with its own dedicated or convertible

aircraft.

Important scalar quantities and their turbulent fluc-

tuations are measured by increasingly capable in-

struments for ever smaller aircraft. The Anderson

Group at Harvard University has developed a suite of

instruments using integrated cavity output spectros-

copy (ICOS) to measure methane, carbon dioxide,

nitrous oxide, and water vapor along with their

isotopologues at a sufficient rate to measure eddy

covariance from a light twin-engine aircraft (Witinski

et al. 2011).

c. Treating surface heterogeneity in physical space

Two physical-space approaches (Fig. 1) have been

developed to treat surface heterogeneity—which

one applies depends on the scale of the heterogeneity.

If it is larger than the pathlength average required

to acceptably approximate the ensemble average, a

running flux method (RFM) can be used, analogous

to a running mean with or without overlap (Zulueta

et al. 2011; Vellinga et al. 2010; LeMone et al. 2003;

Ogunjemiyo et al. 2003; Mahrt 1998; Lenschow

et al. 1994). For repeated heterogeneity on scales

small compared to this length the FFM applies (Kirby

et al. 2008).

The FFM is a conditional sampling technique, condi-

tioned on the surface type of origin for each ‘‘sample.’’

The sample is a fragment of short duration (e.g., 1 s)

composed of high-frequency measurements summed to

avoid the unproductive computation of too many foot-

prints. These short clips are called flux fragments to

emphasize the need to average over a large collection of

them to incorporate the range of atmospheric conditions

present in the ensemble-average exchange with the

selected surface.

This paper provides a second-generation uncertainty

analysis for the FFM. Themethod relies on the ability to

establish a long enough path of statistical homogeneity

to approximate ergodicity (Gluhovsky and Agee 1994).

Application to the RFM was not attempted here be-

cause existing approaches to the RFM currently appear

more fruitful.

3. Measurements: Type and location

a. Airborne measurements

The Anderson Group from Harvard collaborated with

NOAA’s Atmospheric Turbulence and Diffusion Di-

vision to produce an airborne system for eddy covariance

flux measurement. Harvard’s ICOS system and their ex-

pertise in interpreting its raw signals provided

greenhouse-gas concentrations at a high rate (Witinski

et al. 2011). The NOAA group’s Best Aircraft Turbu-

lence (BAT) probe measured the three components of

wind along with the atmospheric temperature and

pressure. Aurora Flight Sciences, Inc. provided a light

twin-engine aircraft and the aeronautical engineering

expertise to adapt it to carry the instruments. The system

was named Flux Observations of Carbon from an Air-

borne Laboratory (FOCAL). The NOAA group also

provided expertise in airborne flux analysis (Dobosy et al.

2013; Kirby et al. 2008; Crawford and Dobosy 1992). The

first FOCAL research flights were over Alaska in 2013

(Sayres et al. 2017; Dumas et al. 2014).

In view of the potential significance of the large res-

ervoir of carbon stored in permafrost regions, many

surface measurements of CO2 and CH4 have been un-

dertaken on the North Slope to date, most based on

chamber or short flux tower techniques. These obser-

vations are currently the best available to determine the

larger regional flux and any trends with time, but the

upscaling in space is considerably aided by airborne

measurements.

The value of airborne measurement of greenhouse-

gas emissions from small aircraft at low altitude over

the Arctic tundra has long been evident (Zulueta et al.

2011; Oechel et al. 2000, 1998; Brooks et al. 1997). The

drivers are the difficulty in accessing large areas of

tundra, the low relief of terrain, and the high ampli-

tude of spatial heterogeneity in the fluxes. Improve-

ments in the ability to measure methane as well as

isotopologue ratios for methane and carbon dioxide

have opened up new opportunities in such airborne

measurements.

b. Surface measurements and general overview

Fixed measurements on the surface are synergistic and

indispensable to an airborne campaign measuring air–

surface exchange. The primary role of surface measure-

ments is to provide continuous 24-h temporal coverage

while the aircraft provides wide-ranging spatial coverage.

The FOCAL campaign on Alaska’s North Slope (Sayres

et al. 2017) included a surface tower measuring fluxes of

latent and sensible heat, CO2, and CH4, along with soil

temperature and moisture. This was located in wet sedge

south of the Deadhorse Airport, Prudhoe Bay, Alaska.
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The airborne campaign included 11 successful flights

of various types out of Deadhorse Airport. Fluxes of

methane and latent heat were combined with footprint

analysis (Kljun et al. 2004) to calculate andmap the local

and regional fluxes of H2O and CH4 for six of these

flights. These can help to define the landscape-scale

drivers of heterogeneity and variability. Three flights

followed a straight transect past the tower (Fig. 2). They

provide the examples used in this paper. Despite

limitations inherent in the first field deployment of a

new complex system, a large regional coverage was

accomplished as shown by Sayres et al. (2017).

c. Land cover along the flight track

The surface under the tower-run flight track (Fig. 2) is

largely a collection of tundra, small lakes, and river

valleys, The more detailed classification of the North

Slope Science Initiative (NSSI) shows the prominent

individual surface classes to be wet sedge and lake fol-

lowed by mesic (moderately wet) sedge and marsh. The

distribution of these types along the flight track (Fig. 8;

Table 1) also includes a significant fraction that does not

fall into any one of these categories.

4. Flux fragment method: Necessary background

The uncertainty estimation process described in

section 5 of this paper operates not on the individual

data streams (turbulent wind w and a scalar) but on flux

fragments (section 2c). Some necessary background on

the definition of fragments and the implementation of

the FFM for the example dataset is therefore given in

this section. The basic data segment is a period of

straight and level flight between turns and other ma-

neuvers that can contaminate flux computations.

a. Selecting the averaging length

The eddy covariance procedure ideally uses a mea-

sured series that is long compared to the characteristic

cross-correlation scale of w and the transported scalar,

for example, trace-gas concentration. In practice one

seeks a gap (if available) in the cospectrum ofwwith the

scalar. In Fig. 3 mean spectra from flight 13.09:30 on

13 August (Sayres et al. 2017) are superposed through

multiplication by a constant. Their maximum spectral

energy density is at about 0.4Hz for w and about 0.7Hz

for the water vapor mixing ratio. Methane’s maximum

energy density may be above the Nyquist frequency of

the sample rate. The reduced spectral density ofw above

its maximum at 0.4Hz, however, mitigates the associ-

ated loss of methane flux, estimated to be around 10%

(Sayres et al. 2017).

The cospectra from 13 August (Fig. 4) use the series

unmodified except for mean removal. For methane, the

maximum cospectral density is difficult to identify, while

for water, apart from the isolated spike, the cospectral

maximum is at 0.5Hz. Amarked reduction in cospectral

density occurs for both gases near 0.05Hz, reflected in

the ogive plots (integrated cospectra, lower panels)

reaching near horizontal by about 0.02Hz. Methane

has a wide spread among the ogives for the individual

segments, but they all tend to flatten between 0.05 and

0.02Hz. On this basis the averaging length is chosen to

be 50 s, or about 3 km at the 60ms–1 nominal airspeed.

b. Determining the base state

The base state in principle describes the deterministic

mesoscale environment embedding the random turbu-

lence. If a cospectral gap separates the mesoscale from

the turbulent scale (section 4a), then the base state for

FIG. 1. Methods for computing air–surface exchange in time and space: (left) RFM and (right) FFM. The left panel

depicts overlapping 3-km averages (yellow and blue segments). Each is composed of three parallel bars. All are blue

over the water; all are yellow over the land. Overmixedwater and land, the segments are blue–yellow–blue or yellow–

blue–yellow depending on the proportions. Fragments in the right panel are accumulated separately for each major

surface type and averaged separately to distinguish between the contributions from each surface type.
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the RFM is simply the mean over the averaging length.

The FFM, however, requires a longer track, sometimes

much longer, to accumulate an averaging length’s worth

of fragments from a given surface. The best condition for

confident specification of such a base state is a boundary

layer in which the scale of turbulence is clearly separated

from that of strong mesoscale flows, such as storms,

frontal passage, land–sea breezes, or katabatic flows.

The relatively flat North Slope, its heterogeneity on

horizontal scales being typically only hundreds of me-

ters, is among the better suited natural systems, although

two of the six analyzed flights showed a mesoscale

structure beyond the cospectral minimum.

In the absence of strong mesoscale patterns, the

averaging length scale and larger can be assigned to the

base state. In the space–time domain, this is usually done

by suitable averaging or curve fitting. The flux fragment

method, which requires an approach highly tolerant of

gaps, favors curve fitting. For example, the features

larger than 3km were found to be adequately fit by a

fourth-order polynomial along each segment of the

track on 13 August. Fourth-order polynomials fit to the

vertical wind component (Fig. 5, upper) and the mixing

ratio of methane (lower) are shown superimposed for

comparison on 1-s nonoverlapping block averages from

two segments of the time series from 13 August. The fit

is not perfect. For example, the sharp drop-off in the

mixing ratio of methane between the two segments in

Fig. 5 is probably real, being somehow associated with

the Sagavanirktok (Sag) River at the northeast end of

the transect (Fig. 2).

Overfitting of the base state is problematic with the

FFM. A large homogeneous region of the same sort of

surface will skew the base state toward that surface type,

degrading the signal from that surface in the turbulent

fluxes. The base state needs to be defined on such scales

TABLE 1. Means and 95% confidence limits (low, high) for the histograms in Figs. 10–12. Bold digits indicate means significantly greater

than italic digits.

Gas flux Methane (mgm–2s–1) Latent heat (Wm–2)

Date Surface Length (km) Mean Low High Mean Low High

13 Aug 2013 Wet sedge 53 2.06 1.35 2.78 62.3 54.7 69.9

All 185 1.42 1.08 1.76 52.7 49.0 56.6

Lake 12 0.16 20.66 0.94 30.0 20.0 40.2

Moderately wet sedge 3 20.89 23.02 0.98 22.4 20.35 43.9

25 Aug 2013 Wet sedge 14 0.24 0.06 0.43 3.7 2.0 5.6

All 55 0.35 0.24 0.47 5.7 4.4 7.0

27 Aug 2013 Wet sedge 25 0.23 0.12 0.34 20.32 21.03 0.37

All 152 0.16 0.12 0.20 0.42 0.12 0.71

Lake 10 0.08 20.07 0.22 20.09 20.90 0.75

Marsh 5 0.08 20.15 0.29 1.99 0.73 3.34

FIG. 2. Flight track past fixed surface tower with footprint spots from 13 Aug 2013 showing

water (blue spots) and other surface types (green spots), of which wet sedge has the largest

fraction and the strongest CH4 emission. Prudhoe Bay is 20 km north of the ARL tower.
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that the subfilter surface structure appears full force in

the departure quantities.

Here we note, concerning wavelet techniques, that the

scales in their domain extend to the scale of the averaging

length from section 4a and larger. The vertical wind at

these larger scales, however, is typically on the order of

0.1ms–1. Note from Fig. 3 that the spectral density ofw at

0.02Hz is 13 dB below its peak at 0.4 Hz, corresponding

to a factor between 4 and 5 in amplitude.Also inFig. 5 the

fluctuation of the base-statew is no more than60.1ms–1,

about one-sixth of the range of w. This is on the lower

edge of detection from the current airborne measure-

ment. The airspeed and ground speed vectors, which

nearly cancel, have a magnitude of about 60ms–1.

Accurately determining a wind component of 0.1ms–1

requires much better than 99.4% accuracy in speeds and

angles, an issue that must be addressed whether using the

wavelet domain or the space–time domain.

c. Defining the flux fragments

With the base state defined and removed, the

remaining path series is treated as a purely random

process. The flux is a covariance between high-rate

measurements of vertical wind w and a transported

scalar, such as methane’s mixing ratio with dry air rCH4.

Flux fragments are convenient-length partial sums (not

averages) of the constituent cross products. For exam-

ple, V is the airspeed, r is the (dry) air density, n is the

sample rate, and dt5 n21 is the sample interval. Primes

indicate a departure from the base state. A t-second ‘‘na-

tive’’ fragment of methane flux is then (Webb et al. 1980)

f
CH4

5 �
nt

i51

(r
i
w

i
)0r0i,CH4Vi

dt. (1)

Typically, t5 1s is long enough to significantly reduce

the computational effort, particularly in computing

footprints, but short enough to resolve the features of

the surface. For the FOCAL system with 1-s fragments,

n5 50. The native fragments have uniform duration but

varying length depending on the airspeed:

L5 �
nt

i51

V
i
dt. (2)

A subset S containing p fragments, contiguous or not,

ordered or not, can be plucked and averaged to

produce a flux estimate:

F
CH4

(S)5 �
p

k51

f
CH4

(k)

 
�
p

k51

L
k

!21

, (3)

where the denominator of (3) is the fragments’ cumu-

lative length. The subsets of primary interest are those

determined by footprint analysis to all have come from

instances of one given surface class. If enough such

fragments are available from a given flight, then the air–

surface flux can be estimated for that class of surface.

Alternatively, the dependence of the flux on an interval

quantity, such as the enhanced vegetation index (EVI),

can be determined. The weighted-mean EVI is com-

puted for each fragment’s footprint and is mapped to the

associated value of the flux by regression or by a

machine-learning algorithm (e.g., Metzger et al. 2013).

5. Estimating the random uncertainty

The estimation of random uncertainty presented here

is a second generation from that of Kirby et al. (2008).

Although still based on bootstrap resampling (Efron

and Tibshirani 1998), the present analysis additionally

accounts for the serial correlation and heterogeneity of

the series of flux fragments. It uses a method applied

by Mudelsee (2010) to climate processes, but it is also

applicable to turbulence.

The uncertainty analysis operates on the fragments,

not the individual data streams (w or scalar). Although

the native fragments from (1) are computed over uni-

form time intervals (t5 1s), their length in air varies

with the airspeed elevating the interfragment variance.

This extra variance is removable by interpolating the

fragments to uniform length in air. The interpolation

FIG. 3. Mean power spectra of vertical wind w and mixing ratios

of methane and water over the eight straight segments of flight

13.09:30 on 13 Aug. Each segment’s mean, but not its trend, is

removed. Methane and water series are multiplied by 10 and 3,

respectively, to overlay the curves. Spectral density is multiplied

by the frequency, hence the spectral density in the inertial sub-

range is proportional to the 22/3 power of the frequency.
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operates on a cumulative sum over all fragments in a

flight segment as a function of the pathlength, the

cumulative sum of their individual lengths. A cubic-

spline interpolation is evaluated at uniform intervals

of pathlength, typically the distance traveled in 1 s at

the mean airspeed over the flight. The first difference

recovers the constant-length fragments. This step

reduced the interfragment standard deviation by

about 5%.

The next step is to extract and assemble the sub-

samples for each surface of interest from the set of

constant-length fragments. This must precede Mudel-

see’s processes or much of the desired subfilter signal is

obliterated. Then for each surface type individually,

consider a process represented by the random variable

X(S) dependent on the pathlength S and having

both deterministic and stochastic components; that is,

X(S) is partially—but not fully—known. Such a process

is observed as a serially correlated series. With geo-

physical turbulence measurements as with climate, it

is rare to have on hand more than one such realization

comprising a sequence of measurements such as

x(i)5 fCH4(i), where the small x indicates a realization of

X(S). The random uncertainty can be estimated from

this realization by bootstrap resampling from its statis-

tical component once the deterministic component is

estimated and separated out. To do this Mudelsee de-

composed X(S) as

X(S)5X
trend

(S)1X
out

(S)1s(S)X
acor

(S), (4)

where the trend Xtrend(S) and scaling function s(S) are

deterministic and interpreted broadly. This trend is not

to be confused with the base state defined in section 4b,

since we are working here with the fragments, that is, the

(nonlinear) covariances of departures from that base

state. The outlier function Xout(S) provides for a model

of spikes or other valid but anomalous information. For

example, the airplane may encounter the plume from

human drilling operations or other nearby point sources

of greenhouse gas (Brooks et al. 1997). The stochastic

componentXacor(S) is weakly homogeneous (i.e., having

constant mean and variance along the track) and serially

correlated, a space–domain reflection of the spectral

properties evident in Fourier space.Weak homogeneity,

as opposed to identical distribution, is sufficient, since

moments higher than the variance of these fragments

are not used. In general Xacor is not Gaussian. In the

buoyancy-driven atmospheric mixed layer, Xacor can be

strongly skewed and have high kurtosis (Lenschow et al.

1994). The bootstrap analysis used here is, however,

nonparametric.

FIG. 4. Mean cospectra of w with mixing ratios of methane and water vapor from flight 13.09:30. Mean, but not

trend, is removed from each of the eight individual segments of straight and level flight fromwhich data were taken.

Gray curves in the lower panels show the integrated cospectra from the eight segments individually.
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Since the bootstrap process requires independence as

well as weak homogeneity, the serial correlation of

Xacor(S) is addressed by drawing on a parametric first-

order autoregressive (Markov) model,1

X
acor

(1)5E (1) ,

X
acor

(i)5 a(i)X
acor

(i2 1)1E (i)[12 a(i)2]1/2,

i5 2, . . . , n . (5)

Here E (i) has zero mean and unit variance for all i. For

i5 2, . . . , n, E (i) is multiplied by [12 a(i)2]1/2 to retain

the unit variance of Xacor(i) for all i. Parameter a(i) de-

fines the serial covariance for an unevenly spaced series,

such as encountered with the FFM. It decays exponen-

tially with separation distance,

a(i)5 expf2[S(i)2 S(i2 1)]/lg, (6)

where l is the decorrelation length and S(i) is the loca-

tion of the center of fragment i along the path. The es-

timation of l uses the full series regardless of surface

type (as in Fig. 7).

The realized xacor(i) term emerging from the de-

trending and scaling in (4) for each surface type should

be at least weakly homogeneous (Gluhovsky and Agee

1994). With gaps in the data, however, accomplishing

this can range from tedious to impossible depending on

the sample size. Time constraints restricted the de-

trending in this case to a simple straight-line fit to each

segment, or to the whole flight if the total subsample size

from a flight was under 100 samples. A single variance

was computed per segment (or per flight) after de-

trending. Visually, this appeared adequate for two of the

three cases. The third case, 25 August, was markedly

heterogeneous, showing a repeatable sharp peak at the

tower in the RFMflux (Sayres et al. 2017). It was treated

in the same way as the others, for want of a readily

available alternative.

The process of isolating the (comparatively) sta-

tionary and serially decorrelated term «(i) of (5) for

13 August (Figs. 6 and 7) is shown as an example. The

modified symbol « indicates a realization from data.

The constant-length fragments of Fig. 6 are only

mildly autocorrelated at lag 1 but show considerable

spread in their integrated autocovariance with in-

creasing lag out to 50 s. With detrending and scaling,

the residuals

x
acor

(i)5 [ f
CH4

(i)2 x
trend

(i)]s21
p (7)

(Fig. 7, left) have a reduced spread evident among their

lag-covariance curves. Decorrelating the residuals

xacor(i) to obtain the realized «(i) uses the first-order

Markov model [(5)]:

«(i)5 [x
acor

(i)2 a(i)x
acor

(i)][12 a(i)2]21/2 (8)

using a(i) from (6) with a decorrelation length l5 0:5.

The corresponding Markhov parameter is a5 0:13 for

adjacent fragments, rapidly falling to zero with a

widening gap. Mudelsee (2002) makes available a

software package to estimate the value of l. How-

ever, it assumes a Gaussian distribution for Xacor,

while the skewness and kurtosis of xacor are 0.73 and

7.63 (Gaussian has 0 and 3), respectively, for methane

flux fragments and 3.17 and 25.5, respectively, for

FIG. 5. Fourth-order base state for vertical wind (m s21) andmixing

ratio of methane (mgCH4[kg(dry)]
21).

1 This implied smooth passage between continuous and discrete

random variables is valid for a first-order Markov process but not

always; see Mudelsee (2010).
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latent heat flux fragments. Therefore, the lag-1 co-

variance of zero evident in Fig. 7 (right) was achieved

by trial and error. For this 13 August example, one

unit of lag is 61.01m, the length of a (constant length)

fragment.

Serial correlation implies fewer degrees of freedom

in a sample than there are members. The decorrelated

series, in principle, is an independent sample having

therefore the same number of degrees of freedom as

members. The first-order Markov expression [(8)] pro-

vides the additional degrees of freedom at the expense

of increased variance at the high frequencies, verified by

comparing the spectra of xacor(i) and «(i) (not shown).

The realized «(i), i5 2, . . . , n from (8) form the

population of (ideally) independent and weakly homo-

geneous quantities from which N bootstrap resamples

are drawn (here, N5 2000). Each resample has n2 1

members, n being the number of fragments representing

the given surface class.

An ensemble of realizations of X(S) from (4) is

produced in reverse of the path to «(i). For ensemble

member n, n5 1, . . . , N, an initial xnacor(1) is ran-

domly selected (with replacement) from the collec-

tion of realized xacor from (7). Applied forward, (5)

has the form of a low-pass causal filter working

from an ensemble «n(i), n5 1, . . . , N of independent

realizations of E (S), defining «n(1)[ xnacor(1). It

produces a corresponding ensemble of xnacor(i). These

in turn are multiplied by the scale s and added to

xtrend(i), both deterministic, hence constant with

n apart from their own uncertainty, which is beyond

the present scope.

The new ensemble of (bootstrap) realizations of

f nCH4(i) can be used in any way the original realization

can. Each such realization retains the original data

stream’s dependence on surface type and its heteroge-

neity of mean and variance over the flight. Such

ensembles are developed for flux fragments of both

methane and latent heat for the significant land classes

from each of the three flights, a total of 20 ensembles.

For the present each flux fragment series in each

ensemble is averaged to produce a bulk flux (the dis-

tributions of these ensembles of bulk-flux realizations

are displayed in Figs. 10–12 and were used to estimate

95% confidence intervals for the methane and latent

heat fluxes.

FIG. 7. As in Fig. 6, but showing (left) the residuals xacor(i) from (7) and (right) the random process «(i) from (8).

Decorrelation resulting from application of the first-order Markov model is evident in the near-zero value of the

lag-1 covariance (black spots) on the right.

FIG. 6. Case 13August 2013. (upper)Autocovariance plots of the

methane-flux fragments fCH4(i) from the eight individual flight

segments (gray) and theirmean (black). The lag is in the fragments’

length (61.01m for 13 Aug) along the flight path. The black spots

emphasize lag-1 autocovariance. (lower) Cumulative integrals of

these autocovariances, reflective of the cospectral relation in

Fourier space.
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6. Results and discussion

a. Intercomparison of airborne- and tower-based
measurements

Intercomparison flights are a standard part of every

campaign to verify the intercomparability of the systems

and to provide the spatial/temporal link necessary to the

synergy. A companion paper (Sayres et al. 2017) shows

results from all three intercomparison flights of the

2013 FOCAL campaign. Flight 13.09:30 on 13 August is

reproduced here to provide a context for the uncertainty

estimates.

The 13 August case had strong insolation (for north-

ern Alaska) shortly before the sharp drop in soil tem-

perature (measured at the tower) and weaker turbulent

flux, signaling autumn later in August. The tower was in

wet sedge, and the portion of the flight track determined

by the flux fragments’ footprints to be over wet sedge is

shown by the green spots in Fig. 8. Wet sedge along the

track emitted methane at very nearly the same rate as

at the tower (Fig. 9). This was greater than the mean

methane flux over all fragments, though not signifi-

cantly. In contrast, both the wet sedge and the general

track emit significantly2 more methane than either

mesic sedge (msds) or open water (lakes). Indeed, the

emission from the lakes and mesic sedge is not signifi-

cantly different from zero.3 The tendency of methane

emission to be stronger from warmer and wetter soil is

consistent with the diurnal pattern exhibited by the

tower and in the greater emission from wet sedge than

from mesic sedge.

The latent heat flux evidently responded sharply to

the rise in solar radiation after 0700 local time (LT, UTC

–10 h). As with methane, the sedge fraction of the flight

track emits latent heat more intensely than either the

open water or the track overall. The open water, how-

ever, emits significantly more than zero latent heat.

Also, the latent heat flux from the sedge along the flight

track is reported significantly lower than that from the

tower. The influence of the airborne instrument cannot

be ruled out because it was not optimized for measuring

water vapor. Future deployments will include such

optimization. Additional findings from the expedition

are given by Sayres et al. (2017).

b. Summary of uncertainty estimates

The uncertainty assessments show physically plausi-

ble results on all three Alaska tower flights. The mean

and 95% confidence limits for each flight, surface, and

gas appear in Table 1. The 13 August case, with its

stronger insolation (0930 LT) and higher soil tempera-

ture has been discussed. The 25 August case had a

relatively short sample (two passes) taken over reduced

soil temperature and late in the day (1800 LT). Unlike

the other two flights, it had stronger flux from the total

path than from wet sedge alone for both gases, probably

reflecting the strong peak at the tower noted in section 5.

On 27August, also in late season and late day (1900 LT),

the marsh class had stronger latent heat flux than any

other surface, significantly so from the wet sedge and

total path, and almost significantly so from the lakes.

For visual representation of Table 1, the uncertainty

distribution of methane or latent heat flux from wet

sedge is compared in Figs. 10–12 with that from another

surface class during the same flight. No class represented

by less than 3km of cumulative pathlength was included.

Each histogram contains 2000 of these means over a

pathlength series reconstructed from bootstrap resam-

pling as described in section 5.

Source series with fewer samples produce broader

and less well-determined confidence intervals (i.e.,

less confidence). Bootstrap estimates of confidence in-

tervals, based on the lower-probability regions (tails)

FIG. 8. Fragment values for 13Aug 2013, with the eight passes on

the flight line depicted in Fig. 2. Specific surface classes are in-

dicated: wet sedge, green; mesic (moderately wet) sedge, yellow;

lakes, light blue; marsh, purple; and Sagavanirktok River, red. All

fragments are connected regardless of surface type (dark blue

lines). Location of the tower is shown (heavy black line).

2We are requiring here, mostly for convenience, that the two

uncertain quantities’ 95% confidence intervals not overlap. This

is a strong criterion. If two uncorrelated surfaces actually emitted

the same mean flux density, then this observed outcome would be

below the 2.5th percentile for wet sedge and above the 97.5th

percentile for the lake or the mesic sedge, a probability less than

0.0625%.
3 The confidence interval has its ordinary meaning when com-

paring an uncertain quantity to a known quantity.
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of a distribution, always carry greater uncertainty than

estimates of central measures (e.g., mean): the smaller

the original sample, the greater the uncertainty. The

ways to estimate and optimize the statistical power for

smaller samples have not yet been explored.

c. Reynolds criteria

The fragments defined in section 4 are products

of terms of two detrended data streams. The function

of the detrending is to distinguish between the ogive-

determined scales of turbulent vertical flux and larger

scales to be treated four-dimensionally. The detrended

(departure) quantities all sum to zero over each segment

of a multisegment flight; hence, the Reynolds criteria

(Monin and Yaglom 1971) are valid over each entire

flight segment.

The conditionally sampled subsets represent individ-

ual ensembles within the stream of turbulence. In this

paper, each ensemble corresponds to a surface class.

Combining and averaging enough fragments to charac-

terize the distribution of ambient atmospheric states

that are broadly homogeneous in the absence of strong

mesoscale features provides an estimate of the flux from

the given surface type. Shorter samples carry lower

confidence, as noted in the previous section. Deriving

the base state from the full series allows the subsets to

be readily combined to obtain the bulk mean flux den-

sity over a segment. The subsamples then represent a

partition of this segment into meaningful components.

d. Flux fragments and wavelets

The FFM is presented as a useful alternative approach

to wavelet analysis, which is becoming the standard for

turbulence measurements from aircraft over heteroge-

neous surfaces. Wavelet transforms, a middle method

between the space–time and frequency domains, can

provide information on both location and scale, thus

balancing the assets and liabilities of the two extremes.

The work of Farge (1992) and Torrence and Compo

(1998) with continuous wavelet transforms have

produced a practical method that suits turbulence well.

Wavelet transforms can describe turbulence in limited

atmospheric subregions like space/time approaches

while integrating over many samples like Fourier

methods.

A recognized advantage of the wavelet technique is

the facility with which it treats scales beyond those de-

termined to belong to the turbulence. This avoids sys-

tematic error in estimating air–surface exchange due to

otherwise unaccounted transport on scales larger than

those of turbulence. For example, Foken et al. (2006)

examined ogive plots for fixed sensors and found an

energy flux beyond the normal averaging scale of 1800 s

and having sign and magnitude sufficient to account for

the long-recognized imbalance in the measured surface

energy budget. Mauder et al. (2007) applied wavelet

analysis to the 115-km Candle Lake flight line from the

BOREAS study (Sellers et al. 1997) and found signifi-

cant mesoscale patterns from land–water and other

contrasts along the track. Mahrt (2010) noted the

problem of omitting stationary eddies, such as rolls

aligned with the mean wind (LeMone 1973) or second-

ary circulations anchored to a particular surface feature

and not advected past fixed instruments.

While acknowledging the importance of mesoscale

structures when these are present, the current focus of

the FFM is on vertical turbulent transport. In this role,

an important asset of the FFM is its gap tolerance. The

benefit is greater than it may appear. Like the FFM,

wavelets can provide short segments for conditional

FIG. 9. Comparing (a) methane and (b) latent heat flux measured at the tower with the same measured from the

air. MSDS is mesic (moderately wet) sedge with dwarf shrub. Both panels include all fragments; 95% confidence

intervals are indicated for the airborne measurements
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sampling. Furthermore, these include a multiscale

characterization of the environment called the cone of

influence (COI) (Torrence and Compo 1998). This

additional benefit, however, requires a gap-free data

stream over the width of the COI, 3 times the largest

wavelet scale for the commonly used Morlet wavelet.

The overhead cost to a flight segment beyond the

working section is therefore 3 times the maximum scale

of the turbulence, more if larger mesoscales are in-

cluded. For the FFM, the shortest flight leg need not be

longer than 1 or 2 times the maximum scale of turbu-

lence to properly partition the flow between de-

terministic and turbulent. There is no overhead, and

segments can be repeatedly sampled, or they can form a

multisegment track when required by terrain, pop-

ulation, or airspace.

A wavelet-derived flux estimate is locally self-

sufficient. Over a surface characterized by finescale

patches of differing surface type, however, the larger-

scale wavelets must increasingly contaminate the signal

FIG. 10. Case 0930 LT 13 Aug 2013. Distributions over bootstrap samples pairing wet sedge (dark gray)

with the other primary surface classes present. Tower is in wet sedge. Mesic sedge is midway between wet

and dry.
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from the central surface type by involving samples

gathered over adjacent surfaces with different char-

acteristics. A flux fragment, in contrast, is a snap

sample from a single source comprising all scales of

turbulence. It, however, requires additional frag-

ments to form an average. Typically, these additional

fragments come from separate instances of similar

surfaces (some more similar than others). This issue

motivates the uncertainty estimation in the current

paper.

The wavelet scheme is well suited to the Candle Lake

run studied by Mauder et al. (2007). Its run was long

compared to the intended maximum wavelet scale. Its

mesoscale patterns under strong springtime land–water

and other contrasts were well defined and largely two-

dimensional in the vertical plane along the flight track

(Sun et al. 1997). Otherwise, there was low-relief terrain

and sparse population.

The FFM is most attractive when the surface offers a

patchwork of strongly contrasting land classes in an area

requiring shorter, more complex flight tracks. For this,

the Illinois study of Kirby et al. (2008) in June was ideal.

Maize has strong CO2 uptake relative to soybeans, and

the area is likely not a source of strong mesoscale pat-

terns. The flight segments, however, must be at least as

long as the scale of the base state, and longer flight legs

are more efficient. Also, if larger mesoscale patterns are

significant, they can and still must be treated in

another way.

A lot depends on the design of the measurement

program to fit the questions being asked. Airborne sys-

tems best function where the flow is 1) horizontally

homogeneous, 2) essentially two-dimensional, or 3)

separable into segments having such properties. Air-

borne campaigns are generally not sufficient in them-

selves. They are better supplemented to the extent

possible by scenario-specific modeling, multisite fixed

measurement, remote sensing, and extensive use of

operational observations and models.

7. Conclusions

The analysis of random uncertainty developed in this

paper for the flux fragment method (FFM) in the space–

time domain supersedes Kirby et al. (2008), in that it

incorporates the effect of the serial correlation and

heterogeneity in the data stream. This aligns the un-

certainty analysis more closely than before with the

character of the dataset being analyzed. The de-

terministic aspects of the analysis were also more clearly

delineated, although uncertainty was not estimated

for them.

The influence of the serial correlation was found to be

small: the decorrelation length was half the width of a

fragment. The resulting first-order Markov parameter

a was 13% for adjacent fragments falling exponentially

as the gap between them increased. This result could be

bolstered by an explanation from turbulence theory. A

number of expediencies remain in the present method,

some of which were indicated in the text. The un-

certainty in this analysis was wholly assigned to the

stochastic (random) component. The trends and vari-

ances (xtrend, s), though also computed from the data,

were not subjected to uncertainty analysis. The un-

certainty, both random and systematic, of the fragments’

attribution to surface type (Kljun et al. 2004) likewise

remains to be explored.

A valuable next step is to analyze these FOCAL data

using the wavelet technique to develop a comparison

between the two methods. The FFM has not yet used an

interval quantity such as a vegetation index to charac-

terize the source of the observed flux. Doing so will

benefit from the upgrade of the footprint model to two

dimensions (Kljun et al. 2015). The synergy between the

FIG. 11. Case 1800 LT 25 Aug 2013. As in Fig. 10, but this flight was short, and wet sedge was the only significant

individual contributor. See Sayres et al. (2017) for details.
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FFM, which encompasses features shorter than the av-

eraging length, and the RFM, which treats the flux

variation on longer scales, needs further development.

In the space–time domain, such as with the FFM and

RFM, explicit treatment of the mesoscale and the tur-

bulence should use a filter that clearly defines which

components of the flow are to be treated de-

terministically and which stochastically. A filter such as

that used by Foken et al. (2006) appears attractive. The

first FOCAL campaign was focused on the air–surface

exchange itself. The flights were designed to maximize

the received signal from the surface and minimize

mesoscale influences. The design specified low flight

altitude over terrain as smooth as possible and having

well-defined surface classes. The goal was to provide a

spatial complement to individual surface sites that are

rooted to one spot but can support a full set of obser-

vations of air, water, and soil.

The FFM/RFM is found to provide a viable scheme in

the space–time domain for analysis of air–surface ex-

change, especially for airborne studies spatially con-

strained by population, terrain, or airspace limits. It is a

development of the well-established space/time statis-

tical treatment of turbulent flow. The statistical theory

and practice of data-stream analysis provides a rich

source for potential development and improvement.

FIG. 12. Case 1900 LT 27 Aug 2013. As in Fig. 10, but the path included significant marsh instead of mesic sedge.
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