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ABSTRACT

Airborne turbulence measurement gives a spatial distribution of air—surface fluxes that networks of fixed
surface sites typically cannot capture. Much work has improved the accuracy of such measurements and the
estimation of the uncertainty peculiar to streams of turbulence data measured from the air. A particularly
significant challenge and opportunity is to distinguish fluxes from different surface types, especially those
occurring in patches smaller than the necessary averaging length. The flux fragment method (FFM),
a conditional-sampling variant of eddy covariance in the space—time domain, was presented in 2008. It was
shown capable of segregating the mean flux density (CO,, H,O, sensible heat) in maize from that in soy-
beans over the patchwork farmlands of Illinois. This was, however, an ideal surface for the method, and the
random-error estimate used a relatively rudimentary bootstrap resampling. The present paper describes an
upgraded random-error estimate that accounts for the serial correlation of the time/space series and the
heterogeneity of the signal. Results are presented from the Alaskan tundra. Though recognized as im-
portant, systematic error estimates are not covered in this paper. Some discussion is offered on the relation
of the FFM to other approaches similarly motivated, particularly those using wavelets. Successful mea-
surement of the variation of air—surface exchange over heterogeneous surfaces has value for developing
and improving process models relating surface flux to remotely sensible quantities, such as the vegetative
land-cover type and its condition.

1. Introduction to develop and improve models relating surface flux to
remotely sensible parameters, however, it is important
to acquire the signal of the surface’s influence on air—
surface exchange. Depending on the parameters re-
motely measured, the surface may be characterized
categorically (e.g., by surface class) or by an interval
quantity such as a vegetation index or the land surface
temperature. Of the several approaches that have been
Corresponding author: Ronald Dobosy, ron.dobosy@noaa.gov  used, some involve integral transforms. A flux can be

Surface heterogeneity is a prime reason to make flux
measurements from aircraft, but it is also a significant
source of uncertainty. One approach is to sample above
the blending height (Wieringa 1986; Mahrt 2000) to
obtain a measure of the bulk flux. If the intent is
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determined from the Fourier cospectrum of vertical
wind with a scalar (e.g., Karl et al. 2009) or from scale-
dependent shape functions intrinsic to the two signals
themselves, determined by Hilbert transform and used
to compute the covariance (Barnhart et al. 2012).
These two schemes apply more readily to measure-
ments recorded over homogeneous surfaces or above
the blending height. For small-scale heterogeneity, the
continuous wavelet transform is well suited (Torrence
and Compo 1998; Metzger et al. 2013; Karl et al. 2009;
Mauder et al. 2008) and is becoming the standard
method for airborne work.

For a number of reasons, however, time/space
schemes that do not involve integral transforms are also
attractive. Ogunjemiyo et al. (2003) computed the flux
of CO, and latent and sensible heat over a grid of
(16 km)? They flew the grid in parallel east-west flight
tracks overlaid by similar north-south tracks, thus de-
fining 2-km segments. Passing twice over the grid
provided a 4-km average over each segment. In such an
approach, the effective length scale of the detrending
scheme (Ogunjemiyo et al. 1997) was necessarily in-
dependent of the 4-km averaging length. Land cover was
classified in (30 m)? pixels by remote sensing. Footprints
were determined for each twice-repeated 2-km segment,
their area classified using the (30m)? pixels. The con-
tribution from each surface type to each segment’s flux
density was then determined as the probability-
weighted average of the flux density from each surface
class over each footprint.

As seen from the method of Ogunjemiyo et al.
(2003), flux computation in the space-time domain is
tolerant of gaps. Also, the scale of the base state need
not be the same as the averaging length. This allows
for conditional sampling from the departure data
stream at will as long as there are enough samples
under each condition to form a stable covariance. The
flux fragment method (FFM) operates on this
principle.

Kirby et al. (2008) introduced the FFM and applied
it to an Illinois cornfield, probably the ideal appli-
cation. Fundamental to the validity of the FFM, with
its conditional sampling of fragments over long series
of measurements, is a defensible estimate of the un-
certainty, first random, then systematic. The uncertainty
estimate used by Kirby et al. (2008) was rudimentary,
containing poorly justified assumptions. This paper’s
focus is on improvements in the estimation of random
uncertainty drawing on the rich field of time series
analysis. Because of the recognized utility of wavelet
approaches, there will also be a discussion at the
end of the relation between these approaches and
the FFM.
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2. Background
a. Specific challenges of airborne flux measurement

Turbulent fluxes are determined from measurements
as a covariance between fluctuations in turbulent wind
and in whatever scalar is being transported, normally
computed as a temporal or spatial average. Airborne
turbulence measurement (Leise et al. 2013) is an order
of magnitude more complex than turbulence measure-
ment from fixed towers. Turbulent wind is especially
fraught with complexity and uncertainty. Turbulent
structures, complex on their own, are measured from
samplers themselves moving and accelerating in 6 de-
grees of linear and rotational freedom. Such sensor
movement must be accurately measured at a high
sample rate.

Moreover, although distorted flow is anathema to
wind sampling, strong and deliberate flow distortion is
the very essence of being airborne. Sensors are therefore
best placed as far forward of the engine(s) and fixed or
rotary wings as possible. Care in theory and measure-
ment can then account for what distortion remains
(Holder et al. 2011; Avissar et al. 2009; Kalogiros and
Wang 2002a,b; Crawford et al. 1996; Brown et al. 1983).

Finally, and very important, outside of a hurricane
the usual airspeed of an aircraft is much greater than
the wind speed to be measured. The wind velocity
relative to Earth is the vector sum of the flow velocity
relative to the sensor [(negative) airspeed] and the
sensor velocity relative to Earth (ground speed). These
two vectors nearly cancel, leaving the wind velocity to
be the small difference between large numbers. The
validity of Taylor’s frozen-turbulence hypothesis is
enhanced, but so is the measurement uncertainty. The
near canceling of the strong airspeed and ground speed
vectors does have one helpful consequence: Many
calibration errors and instrument malfunctions become
quickly obvious due to the narrow tolerances of the
measurements.

b. Historical overview

Progress over the past 40 years has greatly reduced the
size and cost of good-quality airborne turbulence mea-
surement. High-precision, low-drift GPS/inertial navi-
gation systems (INS) are now available commercially off
the shelf (COTS) with their accuracy and sensitivity
documented in the manufacturers’ literature. The wind
(gust) probes themselves are normally custom built,
though incorporating COTS sensors. Considerable
effort has been made to quantify and minimize the un-
certainty using wind-tunnel tests of the probes (Dobosy
et al. 2013; Metzger et al. 2012; van den Kroonenberg
et al. 2008; Garman et al. 2006), airborne maneuvers
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(Mallaun et al. 2015; Leise et al. 2013; Vellinga et al.
2013; Metzger et al. 2012; Lenschow et al. 2007; Bogel
and Baumann 1991), and postprocessing quality control
(Vickers and Mahrt 1997). Although the complexity of
the problem almost surely imposes a degree of irre-
ducible uncertainty beyond that of fixed sensors, such
work continues to define and expand the scope of pro-
ductive airborne measurement. Nevertheless, airborne
turbulence measurement remains largely a research
activity involving a small and slowly growing community
of groups, each with its own dedicated or convertible
aircraft.

Important scalar quantities and their turbulent fluc-
tuations are measured by increasingly capable in-
struments for ever smaller aircraft. The Anderson
Group at Harvard University has developed a suite of
instruments using integrated cavity output spectros-
copy (ICOS) to measure methane, carbon dioxide,
nitrous oxide, and water vapor along with their
isotopologues at a sufficient rate to measure eddy
covariance from a light twin-engine aircraft (Witinski
et al. 2011).

c. Treating surface heterogeneity in physical space

Two physical-space approaches (Fig. 1) have been
developed to treat surface heterogeneity—which
one applies depends on the scale of the heterogeneity.
If it is larger than the pathlength average required
to acceptably approximate the ensemble average, a
running flux method (RFM) can be used, analogous
to a running mean with or without overlap (Zulueta
et al. 2011; Vellinga et al. 2010; LeMone et al. 2003;
Ogunjemiyo et al. 2003; Mahrt 1998; Lenschow
et al. 1994). For repeated heterogeneity on scales
small compared to this length the FFM applies (Kirby
et al. 2008).

The FFM is a conditional sampling technique, condi-
tioned on the surface type of origin for each “sample.”
The sample is a fragment of short duration (e.g., 1s)
composed of high-frequency measurements summed to
avoid the unproductive computation of too many foot-
prints. These short clips are called flux fragments to
emphasize the need to average over a large collection of
them to incorporate the range of atmospheric conditions
present in the ensemble-average exchange with the
selected surface.

This paper provides a second-generation uncertainty
analysis for the FFM. The method relies on the ability to
establish a long enough path of statistical homogeneity
to approximate ergodicity (Gluhovsky and Agee 1994).
Application to the RFM was not attempted here be-
cause existing approaches to the RFM currently appear
more fruitful.
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3. Measurements: Type and location
a. Airborne measurements

The Anderson Group from Harvard collaborated with
NOAA’s Atmospheric Turbulence and Diffusion Di-
vision to produce an airborne system for eddy covariance
flux measurement. Harvard’s ICOS system and their ex-
pertise in interpreting its raw signals provided
greenhouse-gas concentrations at a high rate (Witinski
et al. 2011). The NOAA group’s Best Aircraft Turbu-
lence (BAT) probe measured the three components of
wind along with the atmospheric temperature and
pressure. Aurora Flight Sciences, Inc. provided a light
twin-engine aircraft and the aeronautical engineering
expertise to adapt it to carry the instruments. The system
was named Flux Observations of Carbon from an Air-
borne Laboratory (FOCAL). The NOAA group also
provided expertise in airborne flux analysis (Dobosy et al.
2013; Kirby et al. 2008; Crawford and Dobosy 1992). The
first FOCAL research flights were over Alaska in 2013
(Sayres et al. 2017; Dumas et al. 2014).

In view of the potential significance of the large res-
ervoir of carbon stored in permafrost regions, many
surface measurements of CO, and CH,4 have been un-
dertaken on the North Slope to date, most based on
chamber or short flux tower techniques. These obser-
vations are currently the best available to determine the
larger regional flux and any trends with time, but the
upscaling in space is considerably aided by airborne
measurements.

The value of airborne measurement of greenhouse-
gas emissions from small aircraft at low altitude over
the Arctic tundra has long been evident (Zulueta et al.
2011; Oechel et al. 2000, 1998; Brooks et al. 1997). The
drivers are the difficulty in accessing large areas of
tundra, the low relief of terrain, and the high ampli-
tude of spatial heterogeneity in the fluxes. Improve-
ments in the ability to measure methane as well as
isotopologue ratios for methane and carbon dioxide
have opened up new opportunities in such airborne
measurements.

b. Surface measurements and general overview

Fixed measurements on the surface are synergistic and
indispensable to an airborne campaign measuring air—
surface exchange. The primary role of surface measure-
ments is to provide continuous 24-h temporal coverage
while the aircraft provides wide-ranging spatial coverage.
The FOCAL campaign on Alaska’s North Slope (Sayres
et al. 2017) included a surface tower measuring fluxes of
latent and sensible heat, CO,, and CHy, along with soil
temperature and moisture. This was located in wet sedge
south of the Deadhorse Airport, Prudhoe Bay, Alaska.
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FI1G. 1. Methods for computing air—surface exchange in time and space: (left) RFM and (right) FFM. The left panel
depicts overlapping 3-km averages (yellow and blue segments). Each is composed of three parallel bars. All are blue
over the water; all are yellow over the land. Over mixed water and land, the segments are blue—yellow-blue or yellow—
blue—yellow depending on the proportions. Fragments in the right panel are accumulated separately for each major
surface type and averaged separately to distinguish between the contributions from each surface type.

The airborne campaign included 11 successful flights
of various types out of Deadhorse Airport. Fluxes of
methane and latent heat were combined with footprint
analysis (Kljun et al. 2004) to calculate and map the local
and regional fluxes of H,O and CHy for six of these
flights. These can help to define the landscape-scale
drivers of heterogeneity and variability. Three flights
followed a straight transect past the tower (Fig. 2). They
provide the examples used in this paper. Despite
limitations inherent in the first field deployment of a
new complex system, a large regional coverage was
accomplished as shown by Sayres et al. (2017).

c. Land cover along the flight track

The surface under the tower-run flight track (Fig. 2) is
largely a collection of tundra, small lakes, and river
valleys, The more detailed classification of the North
Slope Science Initiative (NSSI) shows the prominent
individual surface classes to be wet sedge and lake fol-
lowed by mesic (moderately wet) sedge and marsh. The
distribution of these types along the flight track (Fig. 8;
Table 1) also includes a significant fraction that does not
fall into any one of these categories.

4. Flux fragment method: Necessary background

The uncertainty estimation process described in
section 5 of this paper operates not on the individual
data streams (turbulent wind w and a scalar) but on flux
fragments (section 2c). Some necessary background on
the definition of fragments and the implementation of
the FFM for the example dataset is therefore given in
this section. The basic data segment is a period of
straight and level flight between turns and other ma-
neuvers that can contaminate flux computations.
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a. Selecting the averaging length

The eddy covariance procedure ideally uses a mea-
sured series that is long compared to the characteristic
cross-correlation scale of w and the transported scalar,
for example, trace-gas concentration. In practice one
seeks a gap (if available) in the cospectrum of w with the
scalar. In Fig. 3 mean spectra from flight 13.09:30 on
13 August (Sayres et al. 2017) are superposed through
multiplication by a constant. Their maximum spectral
energy density is at about 0.4 Hz for w and about 0.7 Hz
for the water vapor mixing ratio. Methane’s maximum
energy density may be above the Nyquist frequency of
the sample rate. The reduced spectral density of w above
its maximum at 0.4 Hz, however, mitigates the associ-
ated loss of methane flux, estimated to be around 10%
(Sayres et al. 2017).

The cospectra from 13 August (Fig. 4) use the series
unmodified except for mean removal. For methane, the
maximum cospectral density is difficult to identify, while
for water, apart from the isolated spike, the cospectral
maximum is at 0.5 Hz. A marked reduction in cospectral
density occurs for both gases near 0.05 Hz, reflected in
the ogive plots (integrated cospectra, lower panels)
reaching near horizontal by about 0.02Hz. Methane
has a wide spread among the ogives for the individual
segments, but they all tend to flatten between 0.05 and
0.02Hz. On this basis the averaging length is chosen to
be 505, or about 3km at the 60 ms™' nominal airspeed.

b. Determining the base state

The base state in principle describes the deterministic
mesoscale environment embedding the random turbu-
lence. If a cospectral gap separates the mesoscale from
the turbulent scale (section 4a), then the base state for
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FIG. 2. Flight track past fixed surface tower with footprint spots from 13 Aug 2013 showing
water (blue spots) and other surface types (green spots), of which wet sedge has the largest
fraction and the strongest CH,4 emission. Prudhoe Bay is 20 km north of the ARL tower.

the RFM is simply the mean over the averaging length.
The FFM, however, requires a longer track, sometimes
much longer, to accumulate an averaging length’s worth
of fragments from a given surface. The best condition for
confident specification of such a base state is a boundary
layer in which the scale of turbulence is clearly separated
from that of strong mesoscale flows, such as storms,
frontal passage, land-sea breezes, or katabatic flows.
The relatively flat North Slope, its heterogeneity on
horizontal scales being typically only hundreds of me-
ters, is among the better suited natural systems, although
two of the six analyzed flights showed a mesoscale
structure beyond the cospectral minimum.

In the absence of strong mesoscale patterns, the
averaging length scale and larger can be assigned to the
base state. In the space—time domain, this is usually done
by suitable averaging or curve fitting. The flux fragment
method, which requires an approach highly tolerant of

gaps, favors curve fitting. For example, the features
larger than 3km were found to be adequately fit by a
fourth-order polynomial along each segment of the
track on 13 August. Fourth-order polynomials fit to the
vertical wind component (Fig. 5, upper) and the mixing
ratio of methane (lower) are shown superimposed for
comparison on 1-s nonoverlapping block averages from
two segments of the time series from 13 August. The fit
is not perfect. For example, the sharp drop-off in the
mixing ratio of methane between the two segments in
Fig. 5 is probably real, being somehow associated with
the Sagavanirktok (Sag) River at the northeast end of
the transect (Fig. 2).

Overfitting of the base state is problematic with the
FFM. A large homogeneous region of the same sort of
surface will skew the base state toward that surface type,
degrading the signal from that surface in the turbulent
fluxes. The base state needs to be defined on such scales

TABLE 1. Means and 95% confidence limits (low, high) for the histograms in Figs. 10-12. Bold digits indicate means significantly greater
than italic digits.

Gas flux Methane (ug m~2s™) Latent heat (W m™)
Date Surface Length (km) Mean Low High Mean Low High
13 Aug 2013 Wet sedge 53 2.06 1.35 2.78 62.3 54.7 69.9
All 185 1.42 1.08 1.76 52.7 49.0 56.6
Lake 12 0.16 —0.66 0.94 30.0 20.0 40.2
Moderately wet sedge 3 —0.89 —3.02 0.98 224 —0.35 439
25 Aug 2013 Wet sedge 14 0.24 0.06 043 3.7 2.0 5.6
All 55 0.35 0.24 0.47 5.7 4.4 7.0
27 Aug 2013 Wet sedge 25 0.23 0.12 0.34 -0.32 -1.03 0.37
All 152 0.16 0.12 0.20 0.42 0.12 0.71
Lake 10 0.08 —0.07 0.22 —0.09 —0.90 0.75
Marsh 5 0.08 -0.15 0.29 1.99 0.73 3.34
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FI1G. 3. Mean power spectra of vertical wind w and mixing ratios
of methane and water over the eight straight segments of flight
13.09:30 on 13 Aug. Each segment’s mean, but not its trend, is
removed. Methane and water series are multiplied by 10 and 3,
respectively, to overlay the curves. Spectral density is multiplied
by the frequency, hence the spectral density in the inertial sub-
range is proportional to the —2/3 power of the frequency.

that the subfilter surface structure appears full force in
the departure quantities.

Here we note, concerning wavelet techniques, that the
scales in their domain extend to the scale of the averaging
length from section 4a and larger. The vertical wind at
these larger scales, however, is typically on the order of
0.1 ms'. Note from Fig. 3 that the spectral density of w at
0.02Hz is 13 dB below its peak at 0.4 Hz, corresponding
to a factor between 4 and 5 in amplitude. Also in Fig. 5 the
fluctuation of the base-state w is no more than +0.1ms™",
about one-sixth of the range of w. This is on the lower
edge of detection from the current airborne measure-
ment. The airspeed and ground speed vectors, which
nearly cancel, have a magnitude of about 60ms.
Accurately determining a wind component of 0.1 ms™
requires much better than 99.4% accuracy in speeds and
angles, an issue that must be addressed whether using the
wavelet domain or the space-time domain.

c. Defining the flux fragments

With the base state defined and removed, the
remaining path series is treated as a purely random
process. The flux is a covariance between high-rate
measurements of vertical wind w and a transported
scalar, such as methane’s mixing ratio with dry air rcpq.
Flux fragments are convenient-length partial sums (not
averages) of the constituent cross products. For exam-
ple, V is the airspeed, p is the (dry) air density, n is the
sample rate, and 8t = n~! is the sample interval. Primes
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indicate a departure from the base state. A T-second ‘‘na-
tive” fragment of methane flux is then (Webb et al. 1980)

fons = Z{(piwi)/r;)CH“Viﬁt. 1)

Typically, 7=1s is long enough to significantly reduce
the computational effort, particularly in computing
footprints, but short enough to resolve the features of
the surface. For the FOCAL system with 1-s fragments,
n = 50. The native fragments have uniform duration but
varying length depending on the airspeed:

L= 2 Vst )

i=1

A subset S containing p fragments, contiguous or not,
ordered or not, can be plucked and averaged to
produce a flux estimate:

Feyy(S) = kgtlfcm(k) (1;1 Lk> ) 3)

where the denominator of (3) is the fragments’ cumu-
lative length. The subsets of primary interest are those
determined by footprint analysis to all have come from
instances of one given surface class. If enough such
fragments are available from a given flight, then the air-
surface flux can be estimated for that class of surface.
Alternatively, the dependence of the flux on an interval
quantity, such as the enhanced vegetation index (EVI),
can be determined. The weighted-mean EVI is com-
puted for each fragment’s footprint and is mapped to the
associated value of the flux by regression or by a
machine-learning algorithm (e.g., Metzger et al. 2013).

5. Estimating the random uncertainty

The estimation of random uncertainty presented here
is a second generation from that of Kirby et al. (2008).
Although still based on bootstrap resampling (Efron
and Tibshirani 1998), the present analysis additionally
accounts for the serial correlation and heterogeneity of
the series of flux fragments. It uses a method applied
by Mudelsee (2010) to climate processes, but it is also
applicable to turbulence.

The uncertainty analysis operates on the fragments,
not the individual data streams (w or scalar). Although
the native fragments from (1) are computed over uni-
form time intervals (7 =1s), their length in air varies
with the airspeed elevating the interfragment variance.
This extra variance is removable by interpolating the
fragments to uniform length in air. The interpolation
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FIG. 4. Mean cospectra of w with mixing ratios of methane and water vapor from flight 13.09:30. Mean, but not
trend, is removed from each of the eight individual segments of straight and level flight from which data were taken.
Gray curves in the lower panels show the integrated cospectra from the eight segments individually.

operates on a cumulative sum over all fragments in a
flight segment as a function of the pathlength, the
cumulative sum of their individual lengths. A cubic-
spline interpolation is evaluated at uniform intervals
of pathlength, typically the distance traveled in 1s at
the mean airspeed over the flight. The first difference
recovers the constant-length fragments. This step
reduced the interfragment standard deviation by
about 5%.

The next step is to extract and assemble the sub-
samples for each surface of interest from the set of
constant-length fragments. This must precede Mudel-
see’s processes or much of the desired subfilter signal is
obliterated. Then for each surface type individually,
consider a process represented by the random variable
X(S) dependent on the pathlength § and having
both deterministic and stochastic components; that is,
X(S) is partially—but not fully—known. Such a process
is observed as a serially correlated series. With geo-
physical turbulence measurements as with climate, it
is rare to have on hand more than one such realization
comprising a sequence of measurements such as
x(©) = fcua(i), where the small x indicates a realization of
X(S). The random uncertainty can be estimated from
this realization by bootstrap resampling from its statis-
tical component once the deterministic component is
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estimated and separated out. To do this Mudelsee de-
composed X (S) as
4)

X(S) = Xt d(S) + Xou[(S) + U(S)Xvacor(S)’

ren
where the trend Xyena(S) and scaling function o(S) are
deterministic and interpreted broadly. This trend is not
to be confused with the base state defined in section 4b,
since we are working here with the fragments, that is, the
(nonlinear) covariances of departures from that base
state. The outlier function X, (S) provides for a model
of spikes or other valid but anomalous information. For
example, the airplane may encounter the plume from
human drilling operations or other nearby point sources
of greenhouse gas (Brooks et al. 1997). The stochastic
component X,.,(S) is weakly homogeneous (i.e., having
constant mean and variance along the track) and serially
correlated, a space—domain reflection of the spectral
properties evident in Fourier space. Weak homogeneity,
as opposed to identical distribution, is sufficient, since
moments higher than the variance of these fragments
are not used. In general X, is not Gaussian. In the
buoyancy-driven atmospheric mixed layer, X,.,; can be
strongly skewed and have high kurtosis (Lenschow et al.
1994). The bootstrap analysis used here is, however,
nonparametric.
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FIG. 5. Fourth-order base state for vertical wind (ms ') and mixing
ratio of methane (mgCH,[kg(dry)] ™).

Since the bootstrap process requires independence as
well as weak homogeneity, the serial correlation of
Xacor(S) is addressed by drawing on a parametric first-
order autoregressive (Markov) model,'

Xacor(l) = g(]‘)’
Xacor(i) = a(i)Xacor

i=2,..

(i— 1)+ Z ()1 —a()’]",
.. (5)

Here # (i) has zero mean and unit variance for all i. For
i=2,...,n, #(i) is multiplied by [1 — a(i)*]"* to retain
the unit variance of X, (i) for all i. Parameter a(i) de-
fines the serial covariance for an unevenly spaced series,

! This implied smooth passage between continuous and discrete
random variables is valid for a first-order Markov process but not
always; see Mudelsee (2010).
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such as encountered with the FFM. It decays exponen-
tially with separation distance,

a(i) = exp{=[S() — S~ DA}, (6)

where A is the decorrelation length and S(i) is the loca-
tion of the center of fragment i along the path. The es-
timation of A uses the full series regardless of surface
type (as in Fig. 7).

The realized x,co;() term emerging from the de-
trending and scaling in (4) for each surface type should
be at least weakly homogeneous (Gluhovsky and Agee
1994). With gaps in the data, however, accomplishing
this can range from tedious to impossible depending on
the sample size. Time constraints restricted the de-
trending in this case to a simple straight-line fit to each
segment, or to the whole flight if the total subsample size
from a flight was under 100 samples. A single variance
was computed per segment (or per flight) after de-
trending. Visually, this appeared adequate for two of the
three cases. The third case, 25 August, was markedly
heterogeneous, showing a repeatable sharp peak at the
tower in the RFM flux (Sayres et al. 2017). It was treated
in the same way as the others, for want of a readily
available alternative.

The process of isolating the (comparatively) sta-
tionary and serially decorrelated term &(i) of (5) for
13 August (Figs. 6 and 7) is shown as an example. The
modified symbol ¢ indicates a realization from data.
The constant-length fragments of Fig. 6 are only
mildly autocorrelated at lag 1 but show considerable
spread in their integrated autocovariance with in-
creasing lag out to 50s. With detrending and scaling,
the residuals

xamr(i) = [fCH4(i) - xtrend(i)]‘fgl (7)

(Fig. 7, left) have a reduced spread evident among their
lag-covariance curves. Decorrelating the residuals
Xacor(f) to obtain the realized e(i) uses the first-order
Markov model [(5)]:

(i) = [x,.,, (D) —a()x,., O] — ai] " (@8)

using a(i) from (6) with a decorrelation length A = 0.5.
The corresponding Markhov parameter is a = 0.13 for
adjacent fragments, rapidly falling to zero with a
widening gap. Mudelsee (2002) makes available a
software package to estimate the value of A. How-
ever, it assumes a Gaussian distribution for X,.r,
while the skewness and kurtosis of x,., are 0.73 and
7.63 (Gaussian has 0 and 3), respectively, for methane
flux fragments and 3.17 and 25.5, respectively, for
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FIG. 6. Case 13 August 2013. (upper) Autocovariance plots of the
methane-flux fragments fcys(i) from the eight individual flight
segments (gray) and their mean (black). The lag is in the fragments’
length (61.01 m for 13 Aug) along the flight path. The black spots
emphasize lag-1 autocovariance. (lower) Cumulative integrals of
these autocovariances, reflective of the cospectral relation in
Fourier space.

latent heat flux fragments. Therefore, the lag-1 co-
variance of zero evident in Fig. 7 (right) was achieved
by trial and error. For this 13 August example, one
unit of lag is 61.01 m, the length of a (constant length)
fragment.

Serial correlation implies fewer degrees of freedom
in a sample than there are members. The decorrelated
series, in principle, is an independent sample having
therefore the same number of degrees of freedom as
members. The first-order Markov expression [(8)] pro-
vides the additional degrees of freedom at the expense
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of increased variance at the high frequencies, verified by
comparing the spectra of x,.;({) and £(i) (not shown).

The realized ¢(i),i=2,...,n from (8) form the
population of (ideally) independent and weakly homo-
geneous quantities from which N bootstrap resamples
are drawn (here, N =2000). Each resample has n —1
members, n being the number of fragments representing
the given surface class.

An ensemble of realizations of X(S) from (4) is
produced in reverse of the path to &(i). For ensemble
member v, v=1,..., N, an initial x} (1) is ran-
domly selected (with replacement) from the collec-
tion of realized x,.,, from (7). Applied forward, (5)
has the form of a low-pass causal filter working
from an ensemble £”(i), v=1, ..., N of independent
realizations of #(S), defining &’(1)=x}, . (1). It
produces a corresponding ensemble of x!.(i). These
in turn are multiplied by the scale ¢ and added to
Xurena(f), both deterministic, hence constant with
v apart from their own uncertainty, which is beyond
the present scope.

The new ensemble of (bootstrap) realizations of
f&qa(i) can be used in any way the original realization
can. Each such realization retains the original data
stream’s dependence on surface type and its heteroge-
neity of mean and variance over the flight. Such
ensembles are developed for flux fragments of both
methane and latent heat for the significant land classes
from each of the three flights, a total of 20 ensembles.
For the present each flux fragment series in each
ensemble is averaged to produce a bulk flux (the dis-
tributions of these ensembles of bulk-flux realizations
are displayed in Figs. 10-12 and were used to estimate
95% confidence intervals for the methane and latent
heat fluxes.

400
300
200
100

L L L L i

0
Lag (fragments)

20 30
Lag (fragments)

0 10 40

20 30
Lag (fragments)

FIG. 7. Asin Fig. 6, but showing (left) the residuals x,¢, (i) from (7) and (right) the random process &(i) from (8).
Decorrelation resulting from application of the first-order Markov model is evident in the near-zero value of the

lag-1 covariance (black spots) on the right.
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6. Results and discussion

a. Intercomparison of airborne- and tower-based
measurements

Intercomparison flights are a standard part of every
campaign to verify the intercomparability of the systems
and to provide the spatial/temporal link necessary to the
synergy. A companion paper (Sayres et al. 2017) shows
results from all three intercomparison flights of the
2013 FOCAL campaign. Flight 13.09:30 on 13 August is
reproduced here to provide a context for the uncertainty
estimates.

The 13 August case had strong insolation (for north-
ern Alaska) shortly before the sharp drop in soil tem-
perature (measured at the tower) and weaker turbulent
flux, signaling autumn later in August. The tower was in
wet sedge, and the portion of the flight track determined
by the flux fragments’ footprints to be over wet sedge is
shown by the green spots in Fig. 8. Wet sedge along the
track emitted methane at very nearly the same rate as
at the tower (Fig. 9). This was greater than the mean
methane flux over all fragments, though not signifi-
cantly. In contrast, both the wet sedge and the general
track emit significantly’> more methane than either
mesic sedge (msds) or open water (lakes). Indeed, the
emission from the lakes and mesic sedge is not signifi-
cantly different from zero.® The tendency of methane
emission to be stronger from warmer and wetter soil is
consistent with the diurnal pattern exhibited by the
tower and in the greater emission from wet sedge than
from mesic sedge.

The latent heat flux evidently responded sharply to
the rise in solar radiation after 0700 local time (LT, UTC
-10 h). As with methane, the sedge fraction of the flight
track emits latent heat more intensely than either the
open water or the track overall. The open water, how-
ever, emits significantly more than zero latent heat.
Also, the latent heat flux from the sedge along the flight
track is reported significantly lower than that from the
tower. The influence of the airborne instrument cannot
be ruled out because it was not optimized for measuring
water vapor. Future deployments will include such

2We are requiring here, mostly for convenience, that the two
uncertain quantities’ 95% confidence intervals not overlap. This
is a strong criterion. If two uncorrelated surfaces actually emitted
the same mean flux density, then this observed outcome would be
below the 2.5th percentile for wet sedge and above the 97.5th
percentile for the lake or the mesic sedge, a probability less than
0.0625%.

3The confidence interval has its ordinary meaning when com-
paring an uncertain quantity to a known quantity.
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FIG. 8. Fragment values for 13 Aug 2013, with the eight passes on
the flight line depicted in Fig. 2. Specific surface classes are in-
dicated: wet sedge, green; mesic (moderately wet) sedge, yellow;
lakes, light blue; marsh, purple; and Sagavanirktok River, red. All
fragments are connected regardless of surface type (dark blue
lines). Location of the tower is shown (heavy black line).

optimization. Additional findings from the expedition
are given by Sayres et al. (2017).

b. Summary of uncertainty estimates

The uncertainty assessments show physically plausi-
ble results on all three Alaska tower flights. The mean
and 95% confidence limits for each flight, surface, and
gas appear in Table 1. The 13 August case, with its
stronger insolation (0930 LT) and higher soil tempera-
ture has been discussed. The 25 August case had a
relatively short sample (two passes) taken over reduced
soil temperature and late in the day (1800 LT). Unlike
the other two flights, it had stronger flux from the total
path than from wet sedge alone for both gases, probably
reflecting the strong peak at the tower noted in section 5.
On 27 August, also in late season and late day (1900 LT),
the marsh class had stronger latent heat flux than any
other surface, significantly so from the wet sedge and
total path, and almost significantly so from the lakes.

For visual representation of Table 1, the uncertainty
distribution of methane or latent heat flux from wet
sedge is compared in Figs. 10-12 with that from another
surface class during the same flight. No class represented
by less than 3 km of cumulative pathlength was included.
Each histogram contains 2000 of these means over a
pathlength series reconstructed from bootstrap resam-
pling as described in section 5.

Source series with fewer samples produce broader
and less well-determined confidence intervals (i.e.,
less confidence). Bootstrap estimates of confidence in-
tervals, based on the lower-probability regions (tails)
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FIG. 9. Comparing (a) methane and (b) latent heat flux measured at the tower with the same measured from the
air. MSDS is mesic (moderately wet) sedge with dwarf shrub. Both panels include all fragments; 95% confidence

intervals are indicated for the airborne measurements

of a distribution, always carry greater uncertainty than
estimates of central measures (e.g., mean): the smaller
the original sample, the greater the uncertainty. The
ways to estimate and optimize the statistical power for
smaller samples have not yet been explored.

¢. Reynolds criteria

The fragments defined in section 4 are products
of terms of two detrended data streams. The function
of the detrending is to distinguish between the ogive-
determined scales of turbulent vertical flux and larger
scales to be treated four-dimensionally. The detrended
(departure) quantities all sum to zero over each segment
of a multisegment flight; hence, the Reynolds criteria
(Monin and Yaglom 1971) are valid over each entire
flight segment.

The conditionally sampled subsets represent individ-
ual ensembles within the stream of turbulence. In this
paper, each ensemble corresponds to a surface class.
Combining and averaging enough fragments to charac-
terize the distribution of ambient atmospheric states
that are broadly homogeneous in the absence of strong
mesoscale features provides an estimate of the flux from
the given surface type. Shorter samples carry lower
confidence, as noted in the previous section. Deriving
the base state from the full series allows the subsets to
be readily combined to obtain the bulk mean flux den-
sity over a segment. The subsamples then represent a
partition of this segment into meaningful components.

d. Flux fragments and wavelets

The FFM is presented as a useful alternative approach
to wavelet analysis, which is becoming the standard for
turbulence measurements from aircraft over heteroge-
neous surfaces. Wavelet transforms, a middle method
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between the space-time and frequency domains, can
provide information on both location and scale, thus
balancing the assets and liabilities of the two extremes.
The work of Farge (1992) and Torrence and Compo
(1998) with continuous wavelet transforms have
produced a practical method that suits turbulence well.
Wavelet transforms can describe turbulence in limited
atmospheric subregions like space/time approaches
while integrating over many samples like Fourier
methods.

A recognized advantage of the wavelet technique is
the facility with which it treats scales beyond those de-
termined to belong to the turbulence. This avoids sys-
tematic error in estimating air-surface exchange due to
otherwise unaccounted transport on scales larger than
those of turbulence. For example, Foken et al. (2006)
examined ogive plots for fixed sensors and found an
energy flux beyond the normal averaging scale of 1800s
and having sign and magnitude sufficient to account for
the long-recognized imbalance in the measured surface
energy budget. Mauder et al. (2007) applied wavelet
analysis to the 115-km Candle Lake flight line from the
BOREAS study (Sellers et al. 1997) and found signifi-
cant mesoscale patterns from land-water and other
contrasts along the track. Mahrt (2010) noted the
problem of omitting stationary eddies, such as rolls
aligned with the mean wind (LeMone 1973) or second-
ary circulations anchored to a particular surface feature
and not advected past fixed instruments.

While acknowledging the importance of mesoscale
structures when these are present, the current focus of
the FFM is on vertical turbulent transport. In this role,
an important asset of the FFM is its gap tolerance. The
benefit is greater than it may appear. Like the FFM,
wavelets can provide short segments for conditional
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FIG. 10. Case 0930 LT 13 Aug 2013. Distributions over bootstrap samples pairing wet sedge (dark gray)
with the other primary surface classes present. Tower is in wet sedge. Mesic sedge is midway between wet

and dry.

sampling. Furthermore, these include a multiscale
characterization of the environment called the cone of
influence (COI) (Torrence and Compo 1998). This
additional benefit, however, requires a gap-free data
stream over the width of the COI, 3 times the largest
wavelet scale for the commonly used Morlet wavelet.
The overhead cost to a flight segment beyond the
working section is therefore 3 times the maximum scale
of the turbulence, more if larger mesoscales are in-
cluded. For the FFM, the shortest flight leg need not be
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longer than 1 or 2 times the maximum scale of turbu-
lence to properly partition the flow between de-
terministic and turbulent. There is no overhead, and
segments can be repeatedly sampled, or they can form a
multisegment track when required by terrain, pop-
ulation, or airspace.

A wavelet-derived flux estimate is locally self-
sufficient. Over a surface characterized by finescale
patches of differing surface type, however, the larger-
scale wavelets must increasingly contaminate the signal
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F1G. 11. Case 1800 LT 25 Aug 2013. As in Fig. 10, but this flight was short, and wet sedge was the only significant
individual contributor. See Sayres et al. (2017) for details.

from the central surface type by involving samples
gathered over adjacent surfaces with different char-
acteristics. A flux fragment, in contrast, is a snap
sample from a single source comprising all scales of
turbulence. It, however, requires additional frag-
ments to form an average. Typically, these additional
fragments come from separate instances of similar
surfaces (some more similar than others). This issue
motivates the uncertainty estimation in the current
paper.

The wavelet scheme is well suited to the Candle Lake
run studied by Mauder et al. (2007). Its run was long
compared to the intended maximum wavelet scale. Its
mesoscale patterns under strong springtime land-water
and other contrasts were well defined and largely two-
dimensional in the vertical plane along the flight track
(Sun et al. 1997). Otherwise, there was low-relief terrain
and sparse population.

The FFM is most attractive when the surface offers a
patchwork of strongly contrasting land classes in an area
requiring shorter, more complex flight tracks. For this,
the Illinois study of Kirby et al. (2008) in June was ideal.
Maize has strong CO, uptake relative to soybeans, and
the area is likely not a source of strong mesoscale pat-
terns. The flight segments, however, must be at least as
long as the scale of the base state, and longer flight legs
are more efficient. Also, if larger mesoscale patterns are
significant, they can and still must be treated in
another way.

A lot depends on the design of the measurement
program to fit the questions being asked. Airborne sys-
tems best function where the flow is 1) horizontally
homogeneous, 2) essentially two-dimensional, or 3)
separable into segments having such properties. Air-
borne campaigns are generally not sufficient in them-
selves. They are better supplemented to the extent
possible by scenario-specific modeling, multisite fixed
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measurement, remote sensing, and extensive use of
operational observations and models.

7. Conclusions

The analysis of random uncertainty developed in this
paper for the flux fragment method (FFM) in the space—
time domain supersedes Kirby et al. (2008), in that it
incorporates the effect of the serial correlation and
heterogeneity in the data stream. This aligns the un-
certainty analysis more closely than before with the
character of the dataset being analyzed. The de-
terministic aspects of the analysis were also more clearly
delineated, although uncertainty was not estimated
for them.

The influence of the serial correlation was found to be
small: the decorrelation length was half the width of a
fragment. The resulting first-order Markov parameter
a was 13% for adjacent fragments falling exponentially
as the gap between them increased. This result could be
bolstered by an explanation from turbulence theory. A
number of expediencies remain in the present method,
some of which were indicated in the text. The un-
certainty in this analysis was wholly assigned to the
stochastic (random) component. The trends and vari-
ances (Xyend, o), though also computed from the data,
were not subjected to uncertainty analysis. The un-
certainty, both random and systematic, of the fragments’
attribution to surface type (Kljun et al. 2004) likewise
remains to be explored.

A valuable next step is to analyze these FOCAL data
using the wavelet technique to develop a comparison
between the two methods. The FFM has not yet used an
interval quantity such as a vegetation index to charac-
terize the source of the observed flux. Doing so will
benefit from the upgrade of the footprint model to two
dimensions (Kljun et al. 2015). The synergy between the
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FIG. 12. Case 1900 LT 27 Aug 2013. As in Fig. 10, but the

FFM, which encompasses features shorter than the av-
eraging length, and the RFM, which treats the flux
variation on longer scales, needs further development.
In the space-time domain, such as with the FFM and
RFM, explicit treatment of the mesoscale and the tur-
bulence should use a filter that clearly defines which
components of the flow are to be treated de-
terministically and which stochastically. A filter such as
that used by Foken et al. (2006) appears attractive. The
first FOCAL campaign was focused on the air-surface
exchange itself. The flights were designed to maximize
the received signal from the surface and minimize
mesoscale influences. The design specified low flight
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path included significant marsh instead of mesic sedge.

altitude over terrain as smooth as possible and having
well-defined surface classes. The goal was to provide a
spatial complement to individual surface sites that are
rooted to one spot but can support a full set of obser-
vations of air, water, and soil.

The FFM/RFM is found to provide a viable scheme in
the space-time domain for analysis of air-surface ex-
change, especially for airborne studies spatially con-
strained by population, terrain, or airspace limits. It is a
development of the well-established space/time statis-
tical treatment of turbulent flow. The statistical theory
and practice of data-stream analysis provides a rich
source for potential development and improvement.
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