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ABSTRACT

Formulas in an Eulerian framework are presented for the absolute velocity and vorticity of individual

parcels in inviscid isentropic flow. The analysis is performed in a rectangular Cartesian rotating coordinate

system. The dependent variables are the Lagrangian coordinates, initial velocities, cumulative temperature,

entropy, and a potential. The formulas are obtained in two different ways. The first method is based on

finding a matrix integrating factor for the Euler equations of motion and a propagator for the vector vorticity

equation. The secondmethod is a variational one. Hamilton’s principle of least action is used to minimize the

fluid’s absolute kinetic energyminus its internal energy and potential energy subject to the Lin constraints and

constraints ofmass and entropy conservation. In the firstmethod, the friction and diabatic heating terms in the

governing equations are carried along in integrands so that the generalized formulas lead to Eckart’s circu-

lation theorem. Using them to derive other circulation theorems, the helicity-conservation theorem, and

Cauchy’s formula for the barotropic vorticity checks the formulas further.

The formulas are suitable for generating diagnostic fields of barotropic and baroclinic vorticity in models if

some simple auxiliary equations are added to the model and integrated stably forward in time alongside the

model equations.

1. Introduction

Understanding of atmospheric vortices, such as tor-

nadoes [see reviews by Davies-Jones et al. (2001) and

Davies-Jones (2015)], lee vortices (Smolarkiewicz and

Rotunno 1989; Davies-Jones 2000), and larger-scale

cyclones (Lackmann 2011, 101–102) often involves de-

termining the mechanisms by which air parcels obtain

large vorticities. One approach to investigating torna-

dogenesis is to use a ‘‘bare-bones computer model’’ that

forms a tornado (Davies-Jones 2008). The results are

easy to interpret, but a loss of realism naturally comes

with the simplifying assumptions. More realistic three-

dimensional models of supercell storms produce tor-

nadoes in favorable environments, but the origins of

these simulated vortices are difficult to decipher, be-

cause these models are complex and use Eulerian

coordinates, whereas the laws governing vorticity are

Lagrangian in nature (Salmon 1988, p. 226). The

modeler usually resorts to computing how circulation

evolves around a material circuit drawn around the

near-ground vorticity maximum and traced back to an

arbitrary ‘‘initial time’’ using computed backward parcel

trajectories (Rotunno andKlemp 1985; Davies-Jones and

Brooks 1993; Adlerman et al. 1999; Markowski et al.

2012). This method allows the analyst to determine the

barotropic (i.e., the initial) circulation and the change in

circulation around the circuit, which is the baroclinic

circulation plus circulation generated by frictional tor-

que (when significant). Computational restraints gen-

erally limit the analysis to only one circuit. A diagnostic

method using millions of forward trajectories has been

developed recently (Dahl et al. 2014), but the resulting

evaluations of barotropic and nonbarotropic vorticity

(the latter computed as the residual vorticity) are along

individual trajectories, which are spaced irregularly in

Eulerian coordinates. The barotropic and baroclinic

vorticity cannot be presented easily as fields by this

method.

This paper develops formulas for the velocity and

vorticity of an individual parcel in a general flow with

friction and diabatic heating that can be used to generate

the baroclinic- and barotropic vorticity fields if auxiliary
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equations are added to the model and integrated for-

ward in time alongside the model equations. The for-

mulas are relatively simple if the flow is isentropic and

inviscid. We use a rectangular Cartesian coordinate

system that is rotating with Earth rather than the inertial

systems used in previous work and assume that all fields

are continuous and differentiable. The Lagrangian co-

ordinates and initial velocities appear in the formulas as

dependent variables. We find a matrix integrating factor

for integration of the Euler equations of motion and a

propagator for integration of the vector vorticity equa-

tion. We then show how the formulas can be obtained

variationally from Hamilton’s principle of least action.

We check the formulas by showing that the barotropic

part of the vorticity is equivalent to Cauchy’s formula

(Dutton 1976, p. 385) and by using them to derive Ertel’s

potential vorticity theorem, the helicity-conservation

theorem, and the circulation theorems.

2. Previous work

The quest for these formulas starts with the fact that a

velocity field (or any other vector field) u and its curl

z can be represented locally by

u52$f1c$x and (1)

z[$3 u5$c3$x , (2)

(Truesdell 1954) where f, c, and x are called Clebsch

potentials (Lamb 1932; Serrin 1959) or Monge poten-

tials (Truesdell 1954; Aris 1962). These solutions predict

that flows in which all the vortex tubes are closed have

no helicity H (Bretherton 1970; Salmon 1988, p. 241),

because

H[

ððð
J

u � z dJ52

ððð
J

$f � z dJ

52

ððð
J

$ � (fz) dJ52∯
S
fz � n dS5 0. (3)

(Here, J is the fluid volume, S is its bounding surface,

and n is the outward unit normal to the surface.) Thus,

they fail to represent all flows. For instance, they exclude

the Beltrami flows in closed domains (e.g., Davies-Jones

2008). Consequently, the representation (1) is generally

local rather than global. We can make the formulas

global by adding more terms such that

u52$f1 �
N

i51

c
i
$x

i
and (4)

$3 u5 �
N

i51

$c
i
3$x

i
. (5)

According to Salmon (1988, 236–237), two is the

minimum value of N for representing either a gen-

eral homentropic (uniform entropy) or a general

isentropic flow.

For further elaboration, we need the following defi-

nitions. The Eulerian coordinates are (x, y, z, t), where t

is the current time and x [ xi 1 yj 1 zk is the position

vector in terms of eastward, northward, and upward unit

vectors i, j, and k. The corresponding Lagrangian co-

ordinates are (X, Y, Z, t), where t is the symbol for time

in the Lagrangian system, and X [ Xi 1 Yj 1 Zk is the

initial position vector of a parcel at the initial time t0.

The coordinates are measured from the origin of a

tangent plane, which is rotating with the earth. The

trajectory of a parcel is denoted by

~x(~t) for t
0
# ~t# t where ~x(t

0
)5X, ~x(t)5 x ,

(6)

where the tilde denotes quantities at time ~t. The cur-

rent and initial velocities of a parcel are u [ (u, y, w)

andU[ (U,V,W ), respectively. The gradient operator

in Lagrangian coordinates is

$̂[ i
›

›X
1 j

›

›Y
1k

›

›Z
, (7)

and it is

~$ [ i
›

›~x
1 j

›

›~y
1 k

›

›~z
(8)

at an intermediate time ~t in ~x space. The material de-

rivative in the rotating frame is D/Dt in the Eulerian

framework and ›/›t in the Lagrangian one. Thus,

›x/›t 5 u5 u$x1 y$y1 w$z, ›X/›t 5 ›U/›t 5 0, and

U5U$̂X1V$̂Y1W$̂Z. The potential energy of a

parcel is gz, where g is the gravitational acceleration.

The thermodynamic properties of a parcel are its en-

tropy S; its specific volume a; its density r 5 1/a; its

pressure p; its enthalpy cpT, where T is its temperature

and cp is the specific heat at constant pressure; and its

internal energy E [ cyT, where cy is the specific heat at

constant volume (Salmon 1988, p. 47). By the ideal gas

law, pa 5 RT, where R 5 cp 2 cy is the gas constant for

air. The internal energy is related to a and S by

lnE(a,S)5 S/c
y
2 (R/c

y
) lna1 constant . (9)

Consequently,

�
›E

›S

�
a

5T,

�
›E

›a

�
S

52p, 2a

�
›E

›a

�
S

1E5 c
p
T .

(10)
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Ertel’s potential vorticity is av �$S. It is conserved

following a parcel in inviscid isentropic flow.

In inertial reference frames, Serrin (1959), Dutton

(1976), Mobbs (1981), Epifanio and Durran (2002), and

Davies-Jones (2000, 2006, hereafter DJ06) found in-

tegrals of the vector vorticity equation for inviscid is-

entropic flow and decomposed the vorticity v into a

barotropic part vBT and a baroclinic part vBC. Serrin

generalized Weber’s transformed equations of motion

to isentropic flow by adding an additional term. Trans-

formation back to Eulerian coordinates results in the

N 5 4 formula for parcel velocity:

u52$C1U$X1V$Y1W$Z1L$S (11)

(Mobbs 1981), where L is the parcel’s cumulative tem-

perature or the integral over time of its temperature T

from the initial time t0 to the current time t,C is defined

by DC/Dt [ cpT 1 gz 2 u �u/2, C 5 0 initially. By

definition, L 5 0 initially, and DL/Dt 5 T. The corre-

sponding vorticity formula is

$3 u5$U3$X1$V3$Y1$W3$Z1$L3$S ,

(12)

where the last term is the baroclinic vorticity, and the

remaining terms on the right are the barotropic vorticity.

Alternatively, the barotropic vorticity is expressed by

Cauchy’s formula, which dates back to 1815 (Dutton

1976, p. 385). In general, there is a frictional part to vor-

ticity. For nonisentropic flows with friction, Epifanio

and Durran (2002) and DJ06 derived more complicated

formulas involving propagators, also known as state-

transition matrices.

Using variational analysis in the Eulerian framework

with constraints of entropy and mass conservation but

without the Lin constraints, Sasaki (2014) obtained

formulas of the types of equations (1) and (2) for inviscid

isentropic flow: namely,

u52$f2S$L, and (13)

v5$L3$S (14)

where f and L (a and b in Sasaki’s notation) are La-

grange multipliers for mass and entropy conservation,

and S is entropy. The rotational velocity is not unique

because it contains an arbitrary irrotational part that can

be exchanged with the potential term. For example, an

equally valid decomposition of the wind is

u52$(f1LS)1L$S . (15)

Since N 5 1, these formulas must apply only to a subset

of solutions of the perfect-fluid equations (Salmon 1988,

p. 234). The vorticity in (14) is, in fact, the baroclinic

vorticity in isentropic flow vBC (Dutton 1976). The

formulas exclude homentropic flows with barotropic

(i.e., initial) vorticity, all flows with nonzero potential

vorticity, and some flows with nonzero helicity (see

above). The barotropic vorticity is missing because it

depends only on the initial and current states of the flow,

which is when the variations vanish, not on the flow

configurations at intermediate times, which is when

variations are allowed.

The Lin constraints are

Da

Dt
5 0 , (16)

where a [ (a, b, c) is a unique parcel label or identifier.

Justification for the Lin constraints is provided in section 7.

Classically, the initial position vector (X,Y,Z) is used to

identify each parcel, but other conserved quantities can

serve as labels provided that the labeling is unique.

Salmon (1988, 1998, 327–329) included the Lin con-

straints, with (X, Y, S) as the labels and obtained the

following compact formulas with N 5 2:

u52$f1A$X1L$S, and (17)

v5$A3$X1$L3$S . (18)

Even though the variations are still assumed to vanish at

the beginning and end times, the initial velocity field

enters the analysis as the Lagrangemultipliers of the Lin

constraints (see section 7). Thus, (18) allows barotropic

vorticity and nonzero potential vorticity. However, the

physical significance of the apparently nonmeteorological

Lagrange multiplier A associated with the X label con-

straint is unclear, and there are generally insufficient de-

grees of freedom to enter a parcel’s 3D initial position

when N 5 2. Consequently, the formula does not seem

useful for following the evolution of a parcel’s vorticity.

Dellar (2011) used variational analysis in the Hamil-

tonian framework to derive equations of motion for

generalized b planes that incorporate the vertical and

horizontal components of the rotation vector and their

changes with latitude. Since they are derived from

Hamilton’s principle, the equations conserve energy,

angular momentum, and potential vorticity.

3. The velocity due to the earth’s rotation in a
tangent plane

To find a formula for parcel velocity in a non-

traditional f plane (i.e., a tangent plane in solid-body

rotation with both a horizontal and vertical component)
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or a nontraditional b plane, we first need a formula for

the planetary velocity (the velocity relative to the fixed

stars of a point in the atmosphere that rotates with the

earth). The planetary velocity is the vector

u
E
5V3 r , (19)

where V [ V(cosfj 1 sinfk) is the earth’s angular ve-

locity (with magnitude V), r [ x 1 ak is the position

vector from the earth’s center, x [ xi 1 yj 1 zk is the

position vector from the tangent plane’s origin (at r 5
ak), f is latitude, and a is the earth’s radius. Note that uE
is a vector potential for 2V because $ 3 uE 5 2V. The

derivative of (19) following a parcel is

Du
E
/Dt5V3 u , (20)

where D/Dt is the material derivative in the rotating

frame of the earth. (Note that DuE/Dt 6¼ 0, despite

›uE/›t5 0.) Thus, the material derivative of uE supplies

one-half of the Coriolis acceleration in the derivation of

the equations of motion.

On a nontraditional f plane, the earth’s angular ve-

locity is the constant value V(0, cosf0, sinf0), where

f0 is the latitude at the origin. In terms of the Coriolis

parameters f0 [ 2V sinf0 and k0 [ 2V cosf0, the plan-

etary velocity on the f plane is

u
f
5 (VR

0
1 k

0
z/22 f

0
y/2)i1 ( f

0
x/2)j2 (k

0
x/2)k , (21)

where R0 5 a cosf0 is the distance from the earth’s axis

to the origin. This velocity field is one of solid-body ro-

tation with planetary vorticity (0, k0, f0). It satisfies (19)

and (20).

In Grimshaw’s (1975) nontraditional b-plane ap-

proximation, the horizontal component k of the Coriolis

parameter is constant (5k0), and the vertical component

f varies with latitude according to f 5 f0 1 by, where

b [ k0/a. In Cartesian geometry, uE must now have

deformation and thus cannot be a field of solid-body

rotation. Consequently, it cannot be obtained from (19)

or as a solution of (20). It can only be determined up

to the additive gradient of an indeterminate potential

bx(x, y) because a b plane is unphysical. For the analysis

in section 6, it is convenient to define

u
b
[u

f
1b[2(y2/4)i1 (xy/2)j]

5 (VR
0
1 k

0
z/22F /2)i1 ( fx/2)j2 (k

0
x/2)k (22)

where F [ f0y 1 by2/2. The planetary velocity is uP 5
ub 1 b$x(x, y). This choice of planetary velocity is per-

missible because it reduces to uf in the case b 5 0 and

yields the correct planetary vorticity 2V 5 (0, k0, f ).

Dellar (2011) defined a vector potential for 2V

[his (B4)] that, for Grimshaw’s b plane, is compatible

with uP.

The absolute velocity of a parcel is

u
a
[ u1 u

b
1b$x(x, y) , (23)

and its initial value is

U
a
5U1U

b
1b$̂x

0
(X,Y) , (24)

where

U
b
5 (VR

0
1 k

0
Z/22 f

0
Y/22bY2/4)i

1 ( f
0
X/21bXY/2)j2 (k

0
X/2)k , (25)

and x0 is the parcel’s initial value of x. The initial ab-

solute vorticity is

v(t
0
)5 $̂3U1 (0,k

0
, f

0
1bY)5 $̂U3 $̂X1 $̂V3 $̂Y

1 $̂W3 $̂Z1k
0
$̂Z3 $̂X1 ( f

0
1bY)$̂X3 $̂Y .

(26)

4. Useful matrices

In this section, we introduce some important matrices

and investigate their properties. We can think of the

Lagrangian coordinatesX,Y, andZ either as curvilinear

coordinates that are dragged by the flow through loca-

tion space, the space with Eulerian coordinates (x, y, z)

as a Cartesian system, or as Cartesian coordinates in

label (X) space (Salmon 1998, p. 5). By the chain rule,

dx[

2
4dx

dy

dz

3
55

2
4 ›x/›X ›x/›Y ›x/›Z

›y/›X ›y/›Y ›y/›Z

›z/›X ›z/›Y ›z/›Z

3
5
2
4dX

dY

dZ

3
5[ JdX ,

(27)

where

J[

2
4 ›x/›X ›x/›Y ›x/›Z

›y/›X ›y/›Y ›y/›Z

›z/›X ›z/›Y ›z/›Z

3
5 (28)

is the Jacobian matrix of the transformation T[ x(X, t)

from Lagrangian to Eulerian coordinates. For consis-

tency, we use square brackets for matrices throughout

this paper. The columns of J, ›x/›X, ›x/›Y, and ›x/›Z,

which are tangent to the coordinate curves of X, Y, and

Z, respectively, are the covariant basis vectors e1, e2, and

e3 (Margenau and Murphy 1956, p. 193). This fact is

expressed in the notation
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J5
�
e
1

e
2

e
3

�
. (29)

Hence, the elements of the column vector dX are the

differentials of the contravariant coordinates. More

generally, for a generic vector A with contravariant

components A1, A2, and A3,

2
4 A � i
A � j
A � k

3
55 J

2
64A1

A2

A3

3
755A1e

1
1A2e

2
1A3e

3
. (30)

Thus, the matrix J (J21) operating on the column vector

of contravariant (Cartesian) components of a vector

yields its Cartesian (contravariant) components. The

Jacobian of T is the determinant of J, detJ, which 5
e1 � (e2 3 e3). The inverse of (27) is

dX5 J21dx , (31)

where J21 is the Jacobian matrix of the reverse trans-

formation T21 [ X(x, t), and, by the chain rule,

J21 5

2
4 ›X/›x ›X/›y ›X/›z

›Y/›x ›Y/›y ›Y/›z

›Z/›x ›Z/›y ›Z/›z

3
5 . (32)

The determinants of J and J 21 are related to a parcel’s

specific volume by the Lagrangian continuity equation

and its reciprocal as follows:

a

a
0

5
›(x, y, z)

›(X,Y,Z)
5 detJ5 e

1
� e

2
3 e

3
, and (33)

a
0

a
5

›(X,Y,Z)

›(x, y, z)
5detJ21 5 e1 � e2 3 e3 , (34)

where a0 is the parcel’s initial specific volume at time t0,

and e1, e2, and e3 are the contravariant basis vectors

(Borisenko and Tarapov 1979, p. 25).

We can obtain a different expression for J21 by ex-

panding (29) into the form

J5

2
64
e
1
� i e

2
� i e

3
� i

e
1
� j e

2
� j e

3
� j

e
1
� k e

2
� k e

3
� k

3
75, (35)

taking the transpose of the matrix of cofactors of J and

dividing the result by the determinant of J. The identity

of Lagrange (Kreyszig 1972, p. 215) is useful here. For

example, the cofactor

(e
2
� j)(e

3
� k)2 (e

2
� k)(e

3
� j)5 (e

2
3 e

3
) � ( j3k)

5 (e
2
3 e

3
) � i . (36)

We thus find that

J21 5
1

e
1
� e

2
3 e

3

2
64
e
2
3 e

3
� i e

2
3 e

3
� j e

2
3 e

3
� k

e
3
3 e

1
� i e

3
3 e

1
� j e

3
3 e

1
� k

e
1
3 e

2
� i e

1
3 e

2
� j e

1
3 e

2
� k

3
75

[

2
64
e1 � i e1 � j e1 � k
e2 � i e2 � j e2 � k
e3 � i e3 � j e3 � k

3
75 ,

(37)

where the rows of J21, are the reciprocal or contra-

variant basis vectors, and e15 e23e3/[e1 � (e23 e3)], etc.

(Borisenko and Tarapov 1979, p. 25). From (37) and

(32), it is apparent that e1 5 $X, e2 5 $Y, and e3 5 $Z.
Substituting for the covariant basis vectors in (37) gives

J21 5
›(X,Y,Z)

›(x, y, z)

2
66666666664

›(y, z)

›(Y,Z)

›(z, x)

›(Y,Z)

›(x, y)

›(Y,Z)

›(y, z)

›(Z,X)

›(z, x)

›(Z,X)

›(x, y)

›(Z,X)

›(y, z)

›(X,Y)

›(z, x)

›(X,Y)

›(x, y)

›(X ,Y)

3
77777777775

(38)

via (33). We can form the inverse of J21 similarly. This

yields the alternative form for J:

J5
›(x, y, z)

›(X ,Y,Z)

2
66666666664

›(Y,Z)

›(y, z)

›(Z,X)

›(y, z)

›(X,Y)

›(y, z)

›(Y,Z)

›(z, x)

›(Z,X)

›(z, x)

›(X,Y)

›(z, x)

›(Y,Z)

›(x, y)

›(Z,X)

›(x, y)

›(X,Y)

›(x, y)

3
77777777775
. (39)

The generic vectorA also has the following expansion

with respect to the contravariant basis e1, e2, and e3:

A5A
1
e1 1A

2
e2 1A

3
e3 , (40)

where A1, A2, and A3 are its covariant components.

Taking the dot product with the unit vectors i, j, and k

gives us2
64
A � i
A � j
A � k

3
755

2
64
e1 � i e2 � i e3 � i
e1 � j e2 � j e3 � j
e1 � k e2 � k e3 � k

3
75
2
64
A

1

A
2

A
3

3
75

5

2
64
›X/›x ›Y/›x ›Z/›x

›X/›y ›Y/›y ›Z/›y

›X/›z ›Y/›z ›Z/›z

3
75
2
64
A

1

A
2

A
3

3
75 . (41)
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The square matrix in (41) we define as

M[~x(t), ~x(t
0
)][

2
64
›X/›x ›Y/›x ›Z/›x

›X/›y ›Y/›y ›Z/›y

›X/›z ›Y/›z ›Z/›z

3
75

5

2
64
e1 � i e2 � i e3 � i
e1 � j e2 � j e3 � j
e1 � k e2 � k e3 � k

3
755 (J21)T, (42)

where ~x(t)5 x, ~x(t0)5X from (6), superscript T de-

notes transpose, and, hereinafter, the arguments of M

(and P below) will be shortened to (t, t0). Note that M

operating on the column vector of covariant compo-

nents of a vector yields its Cartesian components, and

M21 performs the reverse transformation. These ma-

trices are important because M21 converts any gradi-

ent $s in location space to the corresponding gradient

in label space, and M transforms the gradient back to

location space. This follows from the chain rule, whereby

$s[

2
4 ›s/›x

›s/›y

›s/›z

3
55

2
4 ›X/›x ›Y/›x ›Z/›x

›X/›y ›Y/›y ›Z/›y

›X/›z ›Y/›z ›Z/›z

3
5
2
4 ›s/›X

›s/›Y

›s/›Z

3
5 ,

(43)

or

$s5M(t, t
0
)$̂s . (44)

The reverse transformation is

$̂s5M21(t, t
0
)$s , (45)

where

M21(t, t
0
)5 JT 5

2
4 ›x/›X ›y/›X ›z/›X

›x/›Y ›y/›Y ›z/›Y

›x/›Z ›y/›Z ›z/›Z

3
5 . (46)

The columns ofM are the contravariant basis vectors, so

$s5
›s

›X
e1 1

›s

›Y
e2 1

›s

›Z
e3 , (47)

which shows that in location space ›s/›X, ›s/›Y, and

›s/›Z are the covariant components of $s.
We will also need to find amatrix operator P such that

$A3$B5P(t, t
0
)$̂A3 $̂B, and (48)

P21(t, t
0
)$A3$B5 $̂A3 $̂B . (49)

With the aid of the rule (47) applied toA andB, we obtain

$A3$B5

�
›A

›X
e1 1

›A

›Y
e2 1

›A

›Z
e3
�
3

�
›B

›X
e1 1

›B

›Y
e2 1

›B

›Z
e3
�

5
›(A,B)

›(Y,Z)
e2 3 e3 1

›(A,B)

›(Z,X)
e3 3 e1 1

›(A,B)

›(X,Y)
e1 3 e2

5 e1 � e2 3 e3
�
›(A,B)

›(Y,Z)
e
1
1

›(A,B)

›(Z,X)
e
2
1

›(A,B)

›(X,Y)
e
3

�
, (50)

because e1 5 e2 3 e3/[ e1 � (e2 3 e3)], etc. This becomes

$A3$B[

2
66666666664

›(A,B)

›(y, z)

›(A,B)

›(z, x)

›(A,B)

›(x, y)

3
77777777775
5 det(J21)[ e1 e

2
e
3]

3

2
6666666664

›(A,B)

›(Y,Z)

›(A,B)

›(Z,X)

›(A,B)

›(X,Y)

3
7777777775
5

a
0

a
J$̂A3 $̂B (51)

after use of (29) and (34). Thus,

P(t, t
0
)5

a
0

a
J5

2
66666664

›(Y,Z)

›(y, z)

›(Z,X)

›(y, z)

›(X ,Y)

›(y, z)

›(Y,Z)

›(z, x)

›(Z,X)

›(z, x)

›(X ,Y)

›(z, x)

›(Y,Z)

›(x, y)

›(Z,X)

›(x, y)

›(X ,Y)

›(x, y)

3
77777775
, and

(52)

P21(t, t
0
)5

a

a
0

J21 5

2
6666664

›(y, z)

›(Y,Z)

›(z, x)

›(Y,Z)

›(x, y)

›(Y,Z)
›(y, z)

›(Z,X)

›(z, x)

›(Z,X)

›(x, y)

›(Z,X)
›(y, z)

›(X,Y)

›(z, x)

›(X ,Y)

›(x, y)

›(X,Y)

3
7777775
(53)
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from (38), (39), (33), and (34). It is shown in the appendix

that P21 is the propagator for a directed material element

of area. Hence, P is related to vortex-tube stretching.

From (51) and (30), it is evident thata0›(A,B)/›(Y,Z),

a0›(A, B)/›(Z, X), and a0›(A, B)/›(X, Y) are the con-

travariant components of a$A 3 $B in location space.

Even though $A 3 $B, like vorticity, is an axial vector

(or pseudovector) that transforms differently from a true

vector (Springer 1962, p. 76), a$A 3 $B, like a times

vorticity, is a true vector.

5. Parcel velocity formula via integration

Wenow seek an expression for the velocity of a parcel.

The equations of motion, continuity, and entropy equa-

tions in a frame rotating with the earth are

Du

Dt
1 2V3 u52a$p2$F1F

5T$S2$(c
p
T1F)1F , (54)

›r

›t
1$ � (ru)5 0, and (55)

_S[
DS

Dt
5

J

T
, (56)

whereF[ gz2 uE � uE/2 is the sum of gravitational and

centrifugal potentials, F [ F1$x 1 F2$y 1 F3$z is the

friction force, _S is the rate of entropy production in the

parcel, and J is the diabatic heating rate.

The steps to obtaining a velocity formula are (i) use

the matrix M21 to convert (54) to Lagrangian co-

ordinates, (ii) utilize M21 as an integrating factor,

(iii) integrate over time, and (iv) multiply by the inverse

matrix M to convert the resulting formula back to Eu-

lerian coordinates.

When we pre-multiply (54) byM21 and use (45), we

get

M21(t, t
0
)

�
›u

›t
1 2V3 u

�
5T$̂S2 $̂(c

p
T1F)

1F
1
$̂x1F

2
$̂y1F

3
$̂z .

(57)

By (46),

M21(t, t
0
)
›u

›t
5

2
66666664

›x

›X

›y

›X

›z

›X

›x

›Y

›y

›Y

›z

›Y

›x

›Z

›y

›Z

›z

›Z

3
77777775

2
66666664

›u

›t

›y

›t

›w

›t

3
77777775
5
›u

›t
$̂x1

›y

›t
$̂y1

›w

›t
$̂z

5
›

›t
(u$̂x1 y$̂y1w$̂z)2 $̂

�
u2 1 y2 1w2

2

�
, (58)

since ›x/›t 5 u. We also have

M21(t, t
0
)(2V3u)5M21(t, t

0
)

2
64
2f y1 k

0
w

fu

2k
0
u

3
75

5

�
›x

›t
$̂F 2

›F
›t

$̂x

�
1 k

0

�
›z

›t
$̂x2

›x

›t
$̂z

�
. (59)

But

›x

›t
$̂F 2

›F
›t

$̂x5
›

›t
(x$̂F 2F $̂x)2 x

›$̂F
›t

1F ›$̂x
›t

,

(60)

and

›x

›t
$̂F 2

›F
›t

$̂x5 $̂

�
›x

›t
F 2

›F
›t

x

�
1 x$̂

›F
›t

2F $̂
›x

›t
(61)

Adding (60) and (61) gives

›x

›t
$̂F 2

›F
›t

$̂x5
1

2

›

›t
(x$̂F 2F $̂x)1

1

2
$̂

�
F ›x

›t
2x

›F
›t

�
.

(62)

Similarly,

k
0

�
›z

›t
$̂x2

›x

›t
$̂z

�
5
k
0

2

›

›t
ðz$̂x2x$̂z)1

k
0

2
$̂

�
x
›z

›t
2z

›x

›t

�
(63)
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Therefore,

M21(t, t
0
)(2V3 u)5

�
›x

›t
$̂F 2

›F
›t

$̂x

�
1 k

0

�
›z

›t
$̂x2

›x

›t
$̂z

�

5
1

2

›

›t
(k

0
z$̂x2F $̂x1 fx$̂y2 k

0
x$̂z)1

1

2
$̂(Fu2 k

0
zu2 fxy1 k

0
xw)

5
›

›t
(u

b
$̂x1 y

b
$̂y1w

b
$̂z)2 $̂(u � u

b
) (64)

from (59), (62), (63), and (22). Inserting (58) and (64)

into (57) then gives

›

›t
(u

B
$̂x1 y

B
$̂y1w

B
$̂z)

5T$̂S2 $̂
�
c
p
T1F2

u � u
2

2 u � u
b

	
1F

1
$̂x

1F
2
$̂y1F

3
$̂z , (65)

where uB [ (uB, yB, wB) [ u 1 ub. We now integrate

(65) over time from the initial time t0 to the current time

t, and apply the initial conditions x 5 X, uB 5 UB at t0,

where UB [ U 1 Ub. We get

u
B
$̂x1 y

B
$̂y1w

B
$̂z2U

B
52$̂c

1

ðt
t0

[T(~t)$̂S(~t)1F
1
(~t)$̂~x1F

2
(~t)$̂~y1F

3
(~t)$̂~z] d~t,

(66)

where

c[

ðt
t0

�
c
p
T1F2

u � u
2

2 u � u
b

	
d~t . (67)

After integration by parts and use of (56), this

becomes

u
B
$̂x1 y

B
$̂y1w

B
$̂z2U

B

5L(t)$̂S(t)2 $̂c(t)1
ðt
t0

G(~t) d~t , (68)

where L is the cumulative temperature defined in sec-

tion 2, and

G(~t)[F
1
(~t)$̂~x1F

2
(~t)$̂~y1F

3
(~t)$̂~z2L(~t)$̂ _S(~t) (69)

is the integrand of a Lagrangian integral (integral over

time following a parcel). For frictionless isentropic flow

(G[ 0) in a nonrotating system, (68) reduces to Serrin’s

(1959) generalization to isentropic flow of Weber’s trans-

formation of the equations of motion for homentropic

flow.

Finally, we pre-multiply (68) by M(t, t0). Note first

that

M(t, t
0
)U

B
5

2
64
›X/›x ›Y/›x ›Z/›x

›X/›y ›Y/›y ›Z/›y

›X/›z ›Y/›z ›Z/›z

3
75
2
64
U

a
2b›x

0
/›X

V
a
2b›x

0
/›Y

W
a

3
75

5U
a
$X1V

a
$Y1W

a
$Z2b$x

0

(70)

via (24). We thus obtain

u
a
5U

a
$X1V

a
$Y1W

a
$Z2$C1L$S

1M(t, t
0
)

ðt
t0

G(~t) d~t (71)

on the Grimshaw b plane whereC5 c2 b(x 2 x0). On

the nontraditional f plane, the potential term is

simply 2$C, where C is now

C[

ðt
t0

�
c
p
T1 gz2

u
a
� u

a

2

	
d~t . (72)

The velocity formula is implicit through the defini-

tion of C. However, the implicitness affects only the

irrotational part of the wind. If the normal velocity is

known at the boundaries of the domain, we may de-

termineC at time t as the solution of the elliptic partial

differential equation obtained by substituting the ve-

locity formula into the continuity equation [(55)] (Hunt

and Hussain 1991).

From the curl of (71) or, alternatively, P$̂ 3 (68), we

obtain the following explicit formula of the form (5) for

the absolute vorticity v of a parcel on a nontraditional

b plane:

v5$U3$X1$V3$Y1$W3$Z1 k
0
$Z3$X

1 ( f
0
1bY)$X3$Y1$L3$S1P(t, t

0
)

ðt
t0

$̂3G(~t) d~t . (73)
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6. Vorticity integral via propagator

An integral of the vector vorticity equation cir-

cumvents the complication caused by a b plane not

having a unique planetary velocity. The vorticity

equation is

Dv/Dt2 (v � $)u1v$ � u5$T3$S1$3F

5$p3$a1$3F , (74)

and the corresponding homogeneous equation, ob-

tained by equating the left side to zero, is the barotropic

vorticity equation.

Note that

(v � $)u2v$ � u5
2
4 ›u/›x ›u/›y ›u/›z

›y/›x ›y/›y ›y/›z

›w/›x ›w/›y ›w/›z

3
5v2

1

a

›a

›t
v

5

2
4 ›u/›X ›u/›Y ›u/›Z

›y/›X ›y/›Y ›y/›Z

›w/›X ›w/›Y ›w/›Z

3
5
2
4 ›X/›x ›X/›y ›X/›z

›Y/›x ›Y/›y ›Y/›z

›Z/›x ›Z/›y ›Z/›z

3
5v2

1

a

›a

›t
JJ21v

5

�
›J

›t
2

1

a

›a

›t
J

�
J21v5

›

›t

�a
0

a
J
	 a

a
0

J21v5
›P(t, t

0
)

›t
P21(t, t

0
)v (75)

by continuity, the chain rule, (28), (32), (52), and (53).

The vorticity equation now becomes

›v

›t
2

›P(t, t
0
)

›t
P21(t, t

0
)v 5 $T3$S1$3F . (76)

Clearly, P(t, t0) satisfies the homogeneous version of

(76) (i.e., the barotropic vorticity equation) and is thus

the propagator for the equation (DJ06). As well as

satisfying its ownhomogeneous equation, the propagator

has the following properties:

P21(t, t
0
)5P(t

0
, t),

P(t, t
0
)5P(t, ~t)P(~t, t

0
), P(t, t)5 I , (77)

where I is the 3 3 3 unit matrix.

Pre-multiplying (76) by P21(t, t0) gives us

P21›v

›t
5P21›P

›t
P21v1 $̂T3 $̂S1P21$3F

5
›(P21P)

›t
P21v2

›P21

›t
PP21v1 $̂T3 $̂S1P21($F

1
3$x1$F

2
3$y1$F

3
3$z)

52
›P21

›t
v1 $̂T3 $̂S1 $̂F

1
3 $̂x1 $̂F

2
3 $̂y1 $̂F

3
3 $̂z (78)

after use of (49). Hence,

›(P21v)

›t
5 $̂T3 $̂S1 $̂F

1
3 $̂x1 $̂F

2
3 $̂y1 $̂F

3
3 $̂z . (79)

Integrating (by parts in some places) over time from t0 to t yields the formula for the initial vorticity:

v(t
0
)5P21(t, t

0
)v(t)2

ðt
t0

[$̂T(~t)3 $̂S(~t)1 $̂F
1
(~t)3 $̂~x1 $̂F

2
(~t)3 $̂~y1 $̂F

3
(~t)3 $̂~z] d~t

5P21(t, t
0
)v(t)2 $̂L(t)3 $̂S(t)2

ðt
t0

H(~t) d~t , (80)

where

H(~t)[ $̂3G(~t)5 $̂F
1
(~t)3 $̂~x1 $̂F

2
(~t)3 $̂~y

1 $̂F
3
(~t)3 $̂~z2 $̂L(~t)3 $̂ _S (81)

is the vector integrand of the Lagrangian integral [after

use of (56)]. We then pre-multiply (80) by P(t, t0) and

utilize (48) to get

v(t)5P(t, t
0
)v(t

0
)1$L(t)3$S(t)

1P(t, t
0
)

ðt
t0

H(~t) d~t , (82)

where the first term on the right is the barotropic vor-

ticity, the second term is the baroclinic vorticity if the flow

is isentropic, and the last term includes the frictional
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vorticity and an alteration to the baroclinic vorticity ow-

ing to diabatic heating. Equation (82) is the same as (3.8b)

in DJ06. It is demonstrated in section 8 that all the cir-

culation theorems follow from (82). In inviscid isentropic

flow, the integral term vanishes, leaving

v(t)5P(t, t
0
)v(t

0
)1$L(t)3$S(t) , (83)

where the first and second terms on the right are the baro-

tropic and baroclinic vorticity, respectively. Unlike the baro-

clinic and frictional vorticities, the barotropic vorticity is

independentof thepath that theparcel takesbetweenXandx.

The barotropic vorticity in (83) may be written in

several different forms. By (52),

v
BT
(t)5P(t, t

0
)v(t

0
)5 (a

0
/a)Jv(t

0
) , (84)

which is Cauchy’s formula. The inverse of (84), v(t0)5
P21vBT(t), is (2) in Article 146 of Lamb (1932).

Inserting (26) for the initial vorticity into (84) and using

(48) produces

v
BT
(t)5$U3$X1$V3$Y1$W3$Z

1 k
0
$Z3$X1 ( f

0
1bY)$X3$Y . (85)

We can relate the barotropic vorticity to the initial

vorticity by expanding $U, $V, and $W by the chain

rule. For example,

$U3$X5

�
›U

›X
$X1

›U

›Y
$Y1

›U

›Z
$Z

�
3$X

5
›U

›Z
$Z3$X2

›U

›Y
$X3$Y . (86)

Substituting this and similar expressions for $V 3 $Y
and $W 3 $Z into (85) gives us

v
BT
(t)5

�
›W

›Y
2

›V

›Z

�
$Y3$Z1

�
›U

›Z
2

›W

›X
1 k

0

�
$Z3$X

1

�
›V

›X
2

›U

›Y
1 f

0
1bY

�
$X3$Y . (87)

Inserting (85) into (82) gives us the general formula for the vorticity of a parcel on a Grimshaw b plane:

v(t)5$U3$X1$V3$Y1$W3$Z1 k
0
$Z3$X1 ( f

0
1bY)$X3$Y

1$L3$S1P(t, t
0
)

ðt
t0

H(~t) d~t , (88)

where P and H are given by (52) and (81). This is

(73) again.

7. Velocity formula by calculus of variations

We now show how the isentropic frictionless version of

velocity (71) can be derived from an Eulerian form of

Hamilton’s principle of least action (Salmon 1988, 234–

235). The action, a functional, is defined as the integral over

volume and time of theLagrangian density functionL. The

Lagrangian density is the absolute kinetic energy of the

fluid minus its internal and potential energies (all per unit

volume). Hamilton’s principle in particle dynamics states

that the action is stationary with respect to small virtual

displacements of the particles from their actual motion

(Feynman et al. 1964). Because the Eulerian coordinates

are independent variables here, the action is stationarywith

respect to small changes dX in the Lagrangian coordinates

at each point rather than changes in the locations of indi-

vidual particles (Salmon 1988, p. 234). The analysis has to

account for the relationships between dX and the variations

du, da, and dS in the other dependent variables. Solving

DX/Dt5 0 for the velocity field yields u52J›X/›t, so the

variation in u is dependent on the Lagrangian coordinates

as well as x and t (Salmon 1988, p. 234). The same is true for

the density field because it is related toX via the continuity

equation [(34)], and also for entropy, which is a function of

X because it is conserved. However, the variations in a, S,

and u can be considered independent ofX if constraints are

added to the Lagrangian density (Hildebrand 1965, 139–

142). Therefore, we add constraints of mass and entropy

conservation and the Lin constraints to L.

Thus, the variational problem is

05 d

ðt
t0

dt

ð
J

dJL(u, r, S,X)5

ðt
t0

dt

ð
J

dJdL(u, r, S,X) ,

(89)

whereJ is the 3D spatial domain with surface boundary

S, the time integral is from the initial time t0 to the

current time t, and
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L(u, r,S,X)5 r
u
a
� u

a

2
2 rE(a, S)2 rgz2C*

�
›r

›t
1 u � $r1 r$ � u

�

2L*r

�
›S

›t
1 u � $S

�
2U*r

�
›X

›t
1 u � $X

�
2V*r

�
›Y

›t
1 u � $Y

�
2W*r

�
›Z

›t
1 u � $Z

�
. (90)

Here, C*, L*, U*, V*, and W* are the Lagrange multi-

pliers. In the case of a nonrotating atmosphere, (89) and

(90) reduce to Bretherton’s (1970) (10). We take the

variations and use integration by parts where necessary in

the manner prescribed by Hildebrand (1965, 135–136).

After using (10) and the divergence theorem, we obtain

05

ðt
t0

dt

ð
J

dJ

8<
:

du � r(u
a
1$C*2L*$S2U*$X2V*$Y2W*$Z)

1dr(u
a
� u

a
/22 c

p
T2 gz1DC*/Dt)1 dS[r(DL*/Dt2T)]1 dX � (rDU*/Dt)

9=
;

2

ðt
t0

dt∯
S
dS[C*rdu � n1 (C*dr1 rL*dS1 rU* � dX)u � n]

2

ð
J

dJ[C*dr1 rL*dS1 rU* � dX]tt0
, (91)

where n is the unit outward normal on S, and we have

omitted groups of terms that cancel owing to the

constraints. Because the variations are arbitrary, we

must have

u
a
(t)52$C*1L*$S1U*$X1V*$Y1W*$Z ,

(92)

DC*/Dt5 c
p
T1 gz2 u

a
� u

a
/2 , (93)

DL*/Dt5T , and (94)

DU*/Dt5 0. (95)

The natural boundary conditions are that the normal

velocity vanishes on S and that the variations dr, dS,

and dX vanish at the beginning and end times. We

stipulate that C* 5 0 and L* 5 0 initially. Then L*
becomes identical to the cumulative temperature L,
and (92) evaluated at the start gives us

u
a
(t
0
)5U*i1V*j1W*k , (96)

soU* is the initial absolute velocityUa given by (24) and

(25) with b 5 0. Thus, (92) becomes

u
a
(t)52$C*1L$S1U

a
$X1V

a
$Y1W

a
$Z . (97)

By calculus of variations, we have found for a non-

traditional f plane the inviscid isentropic version of (71),

the velocity formula obtained by integration.

8. Conservation and circulation theorems

We now show that the formulas are fundamental to

conservation of potential vorticity and the circulation

theorems. Conservation of Ertel’s potential vorticity

derives from the vorticity formula. For any scalar fields

A, B, and Q, we have

a($A3$B) � $Q5a
0

›(x, y, z)

›(X,Y,Z)

›(A,B,Q)

›(x, y, z)

5a
0

›(A,B,Q)

›(X,Y,Z)
(98)

with use of (33). Taking the scalar product of (88) with

a$Q, where Q is any conserved variable, and applying

(98) to each term on the right gives

av(t) � $Q5a
0

�
›(Q,U)

›(Y,Z)
1

›(Q,V)

›(Z,X)
1

›(Q,W)

›(X ,Y)
1 k

0

›Q

›Y
1 ( f

0
1bY)

›Q

›Z
1

›(L,S,Q)

›(X ,Y,Z)

�

5a
0

��
›W

›Y
2

›V

›Z

�
›Q

›X
1

�
›U

›Z
2

›W

›X
1 k

0

�
›Q

›Y
1

�
›V

›X
2

›U

›Y
1 f

0
1bY

�
›Q

›Z
1

›(L,S,Q)

›(X,Y,Z)

�

5a
0
v(t

0
) � $̂Q1a

0

›(L,S,Q)

›(X,Y,Z)
(99)
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when H [ 0. In inviscid isentropic flow, setting Q 5 S

eliminates the baroclinic term and proves potential

vorticity conservation. We may also take the baroclinic

term out of the equation by just considering the baro-

tropic vorticity. Setting Q equal to X, Y, and Z, in turn,

gives us the conservation laws

2
64 e1

e2

e3

3
75 � av

BT
(t)5

2
4 i

j

k

3
5 � a

0
v(t

0
) , (100)

because $X 5 e1, etc. Thus, the contravariant compo-

nents in location space of av(t) are equal to the initial

components of this vector and hence are conserved fol-

lowing themotion (Salmon 1998, p. 202;Dahl et al. 2014).

The effects of vortex-tube stretching and tilting on a

parcel are incorporated solely into the changing co-

variant basis vectors that are attached to the parcel. In-

cidentally, by (37), we may write (100) as J21avBT(t)5
a0v(t0), which is simply the inverse of Cauchy’s formula.

The baroclinic vorticity term $L 3 $S is a solenoidal

vector field and thus has its own vortex tubes. In

isentropic flow, the baroclinic vortex lines are the inter-

sections of the isentropic surfaces with the surfaces of

constant L because vBC is normal to both $L and $S
(Davies-Jones 2000). The terms that compose the baro-

tropic vorticity vBT in (85) are all solenoidal and indi-

vidual solutions of the barotropic vorticity equation.

Therefore, these fields [or, more strictly, a times these

fields—Salmon (1998, p. 199)] are frozen into the fluid.

The vortex lines of the term $U 3 $X are the inter-

sections of the surfaces of constantU and constantX, and

similarly for the other terms in vBT.

Helicity is conserved over a material volume J of

homentropic inviscid flow if the volume is made up of

closed vortex tubes (zero vorticity flux on the bounding

surface S). This follows from (71) and (87), which, for

homentropic inviscid flow in an inertial frame, reduce to

u(t)5U$X1V$Y1W$Z2$C and (101)

v(t)5 j
0
$Y3$Z1h

0
$Z3$X1 z

0
$X3$Y , (102)

where (j0, h0, z0) is the initial vorticity v(t0). The hel-

icity density is

u(t) �v(t)5 (Uj
0
1Vh

0
1Wz

0
)$X � ($Y3$Z)2$C �v(t)

5U �v(t
0
)
›(X,Y,Z)

›(x, y, z)
2$ � [Cv(t)] , (103)

and the helicity is thereforeððð
J(t)

u(t) �v(t) dx dy dz5

ððð
J(t0)

U �v(t
0
) dX dY dZ

2∯
S(t)

Cv(t) � n dS .

(104)

Hence, helicity is conserved ifv d n5 0 on the bounding

surface. The flow then has nonzero helicity only when

the vortex tubes of $u3 $x, $y 3 $y, and $w3 $z are
interlinked (Moffatt and Tsinober 1992, p. 283).

Eckart’s (1960) circulation theorem follows imme-

diately from the velocity (68). For the generic scalar

fields A and B,

þ
A$̂B � dX5

þ
A

�
›B

›X
dX1

›B

›Y
dY1

›B

›Z
dZ

�
5

þ
AdB .

(105)

Hence, applying the line-integral operator
Þ
C
�dX to (68)

and using (105), (23), and (24) yields

þ
C(t)

u
a
� dx2

þ
C(t0)

U
a
� dX

5

þ
C(t)

L dS2

ðt
t0

d~t

"þ
C(~t)

L(~t) d _S(~t)1

þ
C(~t)

F(~t) � d~x
#
,

(106)

which is Eckart’s theorem for the circulation around a

material curve C (Dutton 1976, p. 374). The barotropic

circulation, obtained by setting the right side to zero,

is constant, in agreement with Kelvin’s circulation

theorem.

The circulation theorems can also be obtained from

the vorticity (82). The element of vorticity flux is given

by the scalar product of the vector element of material

area and the vorticity vector. Note that a scalar product

is equivalent to a 13 3 row vector times a 33 1 column

vector. After integration over a finite material surface

area and use of (A4), we obtain

Flux5

ðð
s(t)

ds(t) �v(t)5

ðð
s(t0)

ds(t
0
) � P21(t, t

0
)v(t) ,

(107)
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where ds is a row vector, and v and P21v are column

vectors. Inserting (82) and then (A4) into (107) yieldsðð
s(t)

ds(t) � [v(t)2$L3$S]

5

ðð
s(t0)

ds(t
0
) �

"
v(t

0
)1

ðt
t0

H(~t) d~t

#
. (108)

Applying (48) at time ~t gives us

$A(~t)3$B(~t)5P(t, t
0
)$̂A(~t)3 $̂B(~t) . (109)

From (81), H is the sum of terms of the form $̂A(~t)3
$̂B(~t). By (109) and (A5),

ðð
s(t0)

ds(t
0
) �

ðt
t0

d~t$̂A(~t)3 $̂B(~t)5
ðt
t0

d~t

ðð
s(t0)

ds(t
0
) � $̂A(~t)3 $̂B(~t)

5

ðt
t0

d~t

ðð
s(~t)

ds(~t)P21(~t, t
0
) � P(~t, t

0
) ~$A(~t)3 ~$B(~t)

5

ðt
t0

d~t

ðð
s(~t)

ds(~t) � ~$A(~t)3 ~$B(~t) . (110)

Thus, (108) becomesðð
s(t)

ds(t)[v(t)2$L3$S]5
ðð

s(t0)

ds(t
0
)v(t

0
)

1

ðt
t0

d~t

ðð
s(~t)

ds(~t)[ ~$ 3F(~t)2 ~$L(~t)3 ~$ _S(~t)] . (111)

Stokes’ theorem then gives usþ
C(t)

(u
a
2L$S) � dx2

þ
C(t0)

U
a
� dX

5

ðt
t0

d~t

þ
C(~t)

[F(~t)2L(~t) ~$ _S(~t)] � d~x , (112)

which is (106) again.

In moist convection, dry entropy S is not conserved. It

is better to use the 2a$p form of the pressure gradient

term [see (54)], where a is the reciprocal of the density

of the air and water system (e.g., Davies-Jones 2015).

Then, (112) converts to

þ
C(t)

u
a
� dx2

þ
C(t0)

U
a
� dX

5

ðt
t0

d~t

"þ
C(~t)

p(~t) da(~t)1

þ
C(~t)

F(~t) � d~x
#
. (113)

For shallow convection,

þ
C(~t)

p(~t) da(~t)’

þ
C(~t)

b(~t) dz(~t) , (114)

where b is the buoyancy force.

9. Concluding remarks

Equation (71), obtained by integrating the equations

of motion, expresses the velocity of a parcel in a general

flow with friction and diabatic heating on Grimshaw’s

(1975) nontraditional b plane. The restriction of this

formula to frictionless isentropic flow on a nontraditional

f plane is obtained variationally from Hamilton’s

principle of least action by utilizing the vital Lin con-

straints in an Eulerian framework.

Although the velocity formula is implicit, the rota-

tional velocity is explicit. Thus, the curl of (71) provides

the explicit (73) for a parcel’s absolute vorticity in

general flow. This same formula is obtained by in-

tegrating the vector vorticity equation using the prop-

agator P defined in (52). The propagator method is

more powerful than the variational one because it

produces a vorticity formula for general flows on a

b plane instead of just inviscid isentropic flows on an

f plane.

The formulas pertain to individual parcels. If we knew

all the trajectories x(X, t), then we would have complete

knowledge of the motion of the fluid. Simulations that

use the Lagrangian description of fluid would provide

this knowledge. However, keeping track of all the parcel

trajectories is computationally expensive, and the tra-

jectories may be chaotic, so almost all models use the
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mathematically simpler Eulerian description. The latter

give us a subset of this knowledge: namely, the de-

pendent variables (velocity, entropy, and specific vol-

ume) as functions of the Eulerian coordinates. The

Eulerianmethodworks with incomplete knowledge (the

parcel paths are unknown), because the governing

equations are independent of how the parcels are la-

beled (Salmon 1998, p. 337).

For physical understanding, however, this subset of

knowledge is often insufficient. It does not tell us, for

instance, how an intense vortex forms in a model simu-

lation. To understand why the vortex is there, we need at

least some trajectory information. In particular, we need

to find out the paths of the parcels that end up in the

vortex and to determine the deformations and the tor-

ques that these parcels experience along the way. We

can do this by adding passive auxiliary equations to the

model. If the diabatic heating and friction is weak, we

might be able to diagnose the origin of a concentrated

vortex by adding the equationsDX/Dt5 0,DU/Dt5 0,

DS/Dt 5 0, and DL/Dt 5 T (with L 5 0 initially) and

marching them forward for a short while from an

appropriate starting time using a stable, accurate, high-

order, upstream-differencing scheme. The auxiliary equa-

tions cannot be integrated for too long, because the surfaces

of constant X, etc., become increasingly convoluted. The

relative strengths of the solenoids of the variable pairs, L
and S,U andX, etc., at the time of vortex formation might

determine the origin of rotation.
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APPENDIX

The Propagator for a Material Surface Element

Following Dutton (1976, p. 386), we let the material

surface be described by the equation x5 x(l,m, t) where

l and m are parameters of the surface, and t is time. The

vector element of area on this surface is

ds(t)5
›x

›l
3

›x

›m
dldm or

ds(t)5

�
›(y, z)

›(l,m)

›(z, x)

›(l,m)

›(x, y)

›(l,m)

�
dldm (A1)

when written as a row vector. At the initial time t0, this

area element is given by

ds(t
0
)5

�
›(Y,Z)

›(l,m)

›(Z,X)

›(l,m)

›(X,Y)

›(l,m)

�
dldm . (A2)

By the chain rule for Jacobians (Margenau and Murphy

1956, p. 20),

�
›(y, z)

›(l,m)

›(z, x)

›(l,m)

›(x, y)

›(l,m)

�
5

�
›(Y,Z)

›(l,m)

›(Z,X)

›(l,m)

›(X,Y)

›(l,m)

�

3

2
66666666664

›(y, z)

›(Y,Z)

›(z, x)

›(Y,Z)

›(x, y)

›(Y,Z)

›(y, z)

›(Z,X)

›(z, x)

›(Z,X)

›(x, y)

›(Z,X)

›(y, z)

›(X,Y)

›(z, x)

›(X,Y)

›(x, y)

›(X ,Y)

3
77777777775

(A3)

Thus,

ds(t)5 ds(t
0
)P21(t, t

0
) , (A4)

which shows that P21 must be the propagator of a ma-

terial surface element.

At any intermediate time ~t,

ds(t
0
)5 ds(~t)P(~t, t

0
) . (A5)
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