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ABSTRACT

Formulas in an Eulerian framework are presented for the absolute velocity and vorticity of individual
parcels in inviscid isentropic flow. The analysis is performed in a rectangular Cartesian rotating coordinate
system. The dependent variables are the Lagrangian coordinates, initial velocities, cumulative temperature,
entropy, and a potential. The formulas are obtained in two different ways. The first method is based on
finding a matrix integrating factor for the Euler equations of motion and a propagator for the vector vorticity
equation. The second method is a variational one. Hamilton’s principle of least action is used to minimize the
fluid’s absolute kinetic energy minus its internal energy and potential energy subject to the Lin constraints and
constraints of mass and entropy conservation. In the first method, the friction and diabatic heating terms in the
governing equations are carried along in integrands so that the generalized formulas lead to Eckart’s circu-
lation theorem. Using them to derive other circulation theorems, the helicity-conservation theorem, and
Cauchy’s formula for the barotropic vorticity checks the formulas further.

The formulas are suitable for generating diagnostic fields of barotropic and baroclinic vorticity in models if
some simple auxiliary equations are added to the model and integrated stably forward in time alongside the
model equations.

1. Introduction modeler usually resorts to computing how circulation
evolves around a material circuit drawn around the
near-ground vorticity maximum and traced back to an
arbitrary ““initial time’’ using computed backward parcel
trajectories (Rotunno and Klemp 1985; Davies-Jones and
Brooks 1993; Adlerman et al. 1999; Markowski et al.
2012). This method allows the analyst to determine the
barotropic (i.e., the initial) circulation and the change in
circulation around the circuit, which is the baroclinic
circulation plus circulation generated by frictional tor-
que (when significant). Computational restraints gen-
erally limit the analysis to only one circuit. A diagnostic
method using millions of forward trajectories has been
developed recently (Dahl et al. 2014), but the resulting
evaluations of barotropic and nonbarotropic vorticity
(the latter computed as the residual vorticity) are along
individual trajectories, which are spaced irregularly in
Eulerian coordinates. The barotropic and baroclinic
vorticity cannot be presented easily as fields by this
method.

. . This paper develops formulas for the velocity and
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Understanding of atmospheric vortices, such as tor-
nadoes [see reviews by Davies-Jones et al. (2001) and
Davies-Jones (2015)], lee vortices (Smolarkiewicz and
Rotunno 1989; Davies-Jones 2000), and larger-scale
cyclones (Lackmann 2011, 101-102) often involves de-
termining the mechanisms by which air parcels obtain
large vorticities. One approach to investigating torna-
dogenesis is to use a “‘bare-bones computer model’’ that
forms a tornado (Davies-Jones 2008). The results are
easy to interpret, but a loss of realism naturally comes
with the simplifying assumptions. More realistic three-
dimensional models of supercell storms produce tor-
nadoes in favorable environments, but the origins of
these simulated vortices are difficult to decipher, be-
cause these models are complex and use Eulerian
coordinates, whereas the laws governing vorticity are
Lagrangian in nature (Salmon 1988, p. 226). The
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equations are added to the model and integrated for-
ward in time alongside the model equations. The for-
mulas are relatively simple if the flow is isentropic and
inviscid. We use a rectangular Cartesian coordinate
system that is rotating with Earth rather than the inertial
systems used in previous work and assume that all fields
are continuous and differentiable. The Lagrangian co-
ordinates and initial velocities appear in the formulas as
dependent variables. We find a matrix integrating factor
for integration of the Euler equations of motion and a
propagator for integration of the vector vorticity equa-
tion. We then show how the formulas can be obtained
variationally from Hamilton’s principle of least action.
We check the formulas by showing that the barotropic
part of the vorticity is equivalent to Cauchy’s formula
(Dutton 1976, p. 385) and by using them to derive Ertel’s
potential vorticity theorem, the helicity-conservation
theorem, and the circulation theorems.

2. Previous work

The quest for these formulas starts with the fact that a
velocity field (or any other vector field) u and its curl
{ can be represented locally by

u=—-V¢+¢yVy and ¢8)
{=VXu=VyXVy, (2)

(Truesdell 1954) where ¢, ¢, and y are called Clebsch
potentials (Lamb 1932; Serrin 1959) or Monge poten-
tials (Truesdell 1954; Aris 1962). These solutions predict
that flows in which all the vortex tubes are closed have
no helicity H (Bretherton 1970; Salmon 1988, p. 241),

because
[ o2l

- _”J_V ($0) dE = —ﬁzqsg ndz=0. (3)

=1

H

(Here, E is the fluid volume, X is its bounding surface,
and n is the outward unit normal to the surface.) Thus,
they fail to represent all flows. For instance, they exclude
the Beltrami flows in closed domains (e.g., Davies-Jones
2008). Consequently, the representation (1) is generally
local rather than global. We can make the formulas
global by adding more terms such that

u=-Vo + % ,Vy, and 4)
i=1

VXu= %V%xvxi. (5)

i=1
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According to Salmon (1988, 236-237), two is the
minimum value of N for representing either a gen-
eral homentropic (uniform entropy) or a general
isentropic flow.

For further elaboration, we need the following defi-
nitions. The Eulerian coordinates are (x, y, z, t), where ¢
is the current time and x = xi + yj + zk is the position
vector in terms of eastward, northward, and upward unit
vectors i, j, and k. The corresponding Lagrangian co-
ordinates are (X, Y, Z, 7), where 7 is the symbol for time
in the Lagrangian system, and X = Xi + Yj + Zk is the
initial position vector of a parcel at the initial time 7.
The coordinates are measured from the origin of a
tangent plane, which is rotating with the earth. The
trajectory of a parcel is denoted by

x(7) for 7,=7=7 where f((TO) =X, x(1)=x,

(6)

where the tilde denotes quantities at time 7 The cur-
rent and initial velocities of a parcel are u = (u, v, w)
and U = (U, V, W), respectively. The gradient operator
in Lagrangian coordinates is

R ) F) 9
0 9 9
Veix iy Tz )
and it is
Vveilsjlikl 8)

ax “Jy 9z

at an intermediate time 7 in X space. The material de-
rivative in the rotating frame is D/Dt in the Eulerian
framework and 9/t in the Lagrangian one. Thus,
0x/01 = u = uVx + vVy + wVz, 0X/dr = oU/oT = 0, and
U=UVX + VVY + WVZ. The potential energy of a
parcel is gz, where g is the gravitational acceleration.
The thermodynamic properties of a parcel are its en-
tropy S; its specific volume «; its density p = 1/e; its
pressure p; its enthalpy ¢, T, where T is its temperature
and ¢, is the specific heat at constant pressure; and its
internal energy E = ¢, T, where ¢, is the specific heat at
constant volume (Salmon 1988, p. 47). By the ideal gas
law, pa = RT, where R = ¢, — ¢, is the gas constant for
air. The internal energy is related to « and S by

InE(e,S) = Slc, — (R/c,) Ina + constant. 9
Consequently,

oE oE oF
-~ =T, i =-p, —al— +E=cT.
as/, da ) g da / P

(10)
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Ertel’s potential vorticity is aw-VS. It is conserved
following a parcel in inviscid isentropic flow.

In inertial reference frames, Serrin (1959), Dutton
(1976), Mobbs (1981), Epifanio and Durran (2002), and
Davies-Jones (2000, 2006, hereafter DJ06) found in-
tegrals of the vector vorticity equation for inviscid is-
entropic flow and decomposed the vorticity e into a
barotropic part wgt and a baroclinic part wgc. Serrin
generalized Weber’s transformed equations of motion
to isentropic flow by adding an additional term. Trans-
formation back to Eulerian coordinates results in the
N = 4 formula for parcel velocity:

u=-V¥+UVX +VVY+WVZ+AVS (11)
(Mobbs 1981), where A is the parcel’s cumulative tem-
perature or the integral over time of its temperature T
from the initial time 7, to the current time 7, ¥ is defined
by DV/Dt = ¢, T + gz — w-w2, ¥ = 0 initially. By
definition, A = 0 initially, and DA/Dt = T. The corre-
sponding vorticity formula is

VXu=VUXVX+VVXVY +VWXVZ+VAXVS,
(12)

where the last term is the baroclinic vorticity, and the
remaining terms on the right are the barotropic vorticity.
Alternatively, the barotropic vorticity is expressed by
Cauchy’s formula, which dates back to 1815 (Dutton
1976, p. 385). In general, there is a frictional part to vor-
ticity. For nonisentropic flows with friction, Epifanio
and Durran (2002) and DJ06 derived more complicated
formulas involving propagators, also known as state-
transition matrices.

Using variational analysis in the Eulerian framework
with constraints of entropy and mass conservation but
without the Lin constraints, Sasaki (2014) obtained
formulas of the types of equations (1) and (2) for inviscid
isentropic flow: namely,

u=—V¢ — SVA,
w=VAXVS

and (13)

(14)

where ¢ and A (a and B in Sasaki’s notation) are La-
grange multipliers for mass and entropy conservation,
and S is entropy. The rotational velocity is not unique
because it contains an arbitrary irrotational part that can
be exchanged with the potential term. For example, an
equally valid decomposition of the wind is

u=—V(¢p+ AS) + AVS. (15)

Since N = 1, these formulas must apply only to a subset
of solutions of the perfect-fluid equations (Salmon 1988,
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p- 234). The vorticity in (14) is, in fact, the baroclinic
vorticity in isentropic flow wgc (Dutton 1976). The
formulas exclude homentropic flows with barotropic
(i.e., initial) vorticity, all flows with nonzero potential
vorticity, and some flows with nonzero helicity (see
above). The barotropic vorticity is missing because it
depends only on the initial and current states of the flow,
which is when the variations vanish, not on the flow
configurations at intermediate times, which is when
variations are allowed.
The Lin constraints are

Da
D 0, (16)
where a = (a, b, ¢) is a unique parcel label or identifier.
Justification for the Lin constraints is provided in section 7.
Classically, the initial position vector (X, Y, Z) is used to
identify each parcel, but other conserved quantities can
serve as labels provided that the labeling is unique.
Salmon (1988, 1998, 327-329) included the Lin con-
straints, with (X, Y, S) as the labels and obtained the
following compact formulas with N = 2:

u=—Vé+AVX + AVS,
®=VAXVX +VAXVS.

and (17)

(18)

Even though the variations are still assumed to vanish at
the beginning and end times, the initial velocity field
enters the analysis as the Lagrange multipliers of the Lin
constraints (see section 7). Thus, (18) allows barotropic
vorticity and nonzero potential vorticity. However, the
physical significance of the apparently nonmeteorological
Lagrange multiplier A associated with the X label con-
straint is unclear, and there are generally insufficient de-
grees of freedom to enter a parcel’s 3D initial position
when N = 2. Consequently, the formula does not seem
useful for following the evolution of a parcel’s vorticity.

Dellar (2011) used variational analysis in the Hamil-
tonian framework to derive equations of motion for
generalized B planes that incorporate the vertical and
horizontal components of the rotation vector and their
changes with latitude. Since they are derived from
Hamilton’s principle, the equations conserve energy,
angular momentum, and potential vorticity.

3. The velocity due to the earth’s rotation in a
tangent plane

To find a formula for parcel velocity in a non-
traditional f plane (i.e., a tangent plane in solid-body
rotation with both a horizontal and vertical component)
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or a nontraditional B8 plane, we first need a formula for
the planetary velocity (the velocity relative to the fixed
stars of a point in the atmosphere that rotates with the
earth). The planetary velocity is the vector

u, =0 Xr, 19)
where Q = Q(cos¢j + singk) is the earth’s angular ve-
locity (with magnitude Q), r = x + ak is the position
vector from the earth’s center, x = xi + yj + zk is the
position vector from the tangent plane’s origin (at r =
ak), ¢ is latitude, and a is the earth’s radius. Note that ug
is a vector potential for 2 because V X ugp = 2€. The
derivative of (19) following a parcel is

Du,/Dt = Xu, (20)
where D/Dt is the material derivative in the rotating
frame of the earth. (Note that Dug/Dt # 0, despite
dug/dt = 0.) Thus, the material derivative of ug supplies
one-half of the Coriolis acceleration in the derivation of
the equations of motion.

On a nontraditional f plane, the earth’s angular ve-
locity is the constant value (0, cos¢yg, singg), where
¢y is the latitude at the origin. In terms of the Coriolis
parameters fy = 2Q)sin¢g and ko, = 2() cos¢, the plan-
etary velocity on the f plane is
u = (QOR, + Kkyz2/2 = fy2)i + (fx/2)] — (kx12)k, (21)
where Ry = acosgy is the distance from the earth’s axis
to the origin. This velocity field is one of solid-body ro-
tation with planetary vorticity (0, o, f). It satisfies (19)
and (20).

In Grimshaw’s (1975) nontraditional B-plane ap-
proximation, the horizontal component k of the Coriolis
parameter is constant (=kg), and the vertical component
f varies with latitude according to f = fy + By, where
B = ko/a. In Cartesian geometry, ug must now have
deformation and thus cannot be a field of solid-body
rotation. Consequently, it cannot be obtained from (19)
or as a solution of (20). It can only be determined up
to the additive gradient of an indeterminate potential
Bx(x,y) because a 3 plane is unphysical. For the analysis
in section 6, it is convenient to define

u, =, + (74 + (2]

= (QR, + k212 = F12)i + (fx12)j — (kx/2)k (22)
where F = fyy + By*/2. The planetary velocity is up =
ug + BVx(x, y). This choice of planetary velocity is per-
missible because it reduces to uyin the case § = 0 and
yields the correct planetary vorticity 2Q = (0, kg, f).
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Dellar (2011) defined a vector potential for 2€
[his (B4)] that, for Grimshaw’s B8 plane, is compatible
with up.

The absolute velocity of a parcel is

u, =u+u, +pVx(x,y), (23)
and its initial value is
U, =U+U, +BVx,(X,Y), (24)
where
U, = (QR, + K, ZI2 = f,Y12 = BY?/4)i
+ (fyX12+ BXY/2)j — (k, X/2)k, (25)

and Y, is the parcel’s initial value of y. The initial ab-
solute vorticity is

@) =V XU+ (0,k,.f, + BY) =VUX VX +VV X VY
+VW X VZ+k,VZXVX +(f,+BY)VX X VY.
(20)

4. Useful matrices

In this section, we introduce some important matrices
and investigate their properties. We can think of the
Lagrangian coordinates X, Y, and Z either as curvilinear
coordinates that are dragged by the flow through loca-
tion space, the space with Eulerian coordinates (x, y, z)
as a Cartesian system, or as Cartesian coordinates in
label (X) space (Salmon 1998, p. 5). By the chain rule,

dx 0x/0X 0x/0Y 0x/0Z7 [dX
ax= {dy]= ayloX oayloY ayleZ | | dY | =JddX,
dz 0z/0X 09z/dY 0z/0Z ] L dZ
(27)
where
0x/0X 09x/0Y ox/oZ
J= | dy/oX 09y/loY ayloZ (28)
d0z/0X 0z/0Y 0z/0Z

is the Jacobian matrix of the transformation T = x(X, 7)
from Lagrangian to Eulerian coordinates. For consis-
tency, we use square brackets for matrices throughout
this paper. The columns of J, x/9X, dx/dY, and 9x/9Z,
which are tangent to the coordinate curves of X, Y, and
Z,respectively, are the covariant basis vectors ey, e,, and
e3 (Margenau and Murphy 1956, p. 193). This fact is
expressed in the notation
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(29)

Hence, the elements of the column vector dX are the
differentials of the contravariant coordinates. More
generally, for a generic vector A with contravariant
components Al A% and A3,

A-i Al
[A-j =J| A? =A1e1 -l-Aze2 +A3e3. (30)
Ak A3

Thus, the matrix J (J~') operating on the column vector
of contravariant (Cartesian) components of a vector
yields its Cartesian (contravariant) components. The
Jacobian of T is the determinant of J, detd, which =
e, - (e; X e3). The inverse of (27) is

dX =J ldx, (31)

where J™! is the Jacobian matrix of the reverse trans-
formation T™! = X(x, 1), and, by the chain rule,

dX/ax d0X/dy 9X/oz
J'= {8Y/8x aY/dy aY/az] : (32)
daZlox dZldy 0Zldz
The determinants of J and J ~! are related to a parcel’s
specific volume by the Lagrangian continuity equation
and its reciprocal as follows:

a _ d(x,y,2)

@ AnyD)

o, aX.v.z) Gt e e Xe, and (33)
)(X,Y.Z i

% IOV 2) _ oy T=el . e&?Xxé, (34)

a  A(xy,z2)

where « is the parcel’s initial specific volume at time 7,
and e, €%, and e’ are the contravariant basis vectors
(Borisenko and Tarapov 1979, p. 25).

We can obtain a different expression for J~! by ex-
panding (29) into the form

ey
') e
e

3'i
.] 3
2'k

s (35)

2
J= 2

o o o
L oe e

taking the transpose of the matrix of cofactors of J and
dividing the result by the determinant of J. The identity
of Lagrange (Kreyszig 1972, p. 215) is useful here. For
example, the cofactor

(ez'j)(e3' k) - (ez' k)(eg,j) = (ez X e3) : (j X k)

=(e, X e,)-i. (36)
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. e, Xe;-i e Xe;-j e, Xe; -k
-1 _ . .
J —m e3><e1'l e3><e1'J e3><e1'k
1 2 3 . .
e Xe,-i e Xe,-j e Xe, k

el-i e'j ek

= 2

=|ei ej e k]|,

ei ej ek

(37)

where the rows of J ™!, are the reciprocal or contra-
variant basis vectors, and e' = e, Xes/[e; - (e, X e3)], etc.
(Borisenko and Tarapov 1979, p. 25). From (37) and
(32), it is apparent that ¢! = VX, e* = VY, and e’ = VZ.
Substituting for the covariant basis vectors in (37) gives

[ 0(v,2)  A(z,x)  A(xy) ]
aY,z) oY,Z) oY,Z)
Jfl — a(Xv Y’ Z) a(y, Z) a(zvx) a(x7y) (38)
ax,y,z2) |0(Z,X) 9Z,X) o(Z,X)
ay.z)  Azx)  A(xy)
|0(X,Y) 9(X,Y) 4(X,Y)]

via (33). We can form the inverse of J~! similarly. This
yields the alternative form for J:

(Y, Z) 9(Z,X) a(X,Y)]

ay.z) A,z Ay.z2)
_A(x,y,.z) |0(Y,Z) AZ,X) I(X,Y)
= AX,Y,Z) | a(z,x) d(z,x) d(z,x) (39

aY,Z) ¥a(Z,X) aX.,Y)
L a(e,y)  a(xy)  a(x,y) |

The generic vector A also has the following expansion
with respect to the contravariant basis e!, €2 and e

_ 1 2 3
A=Ae +Ae +Ape, (40)
where Ay, A,, and A; are its covariant components.
Taking the dot product with the unit vectors i, j, and k
gives us

Ai rel-i ei e-i][4,
Adl=|ed e ei|]a
Ak Lel 'k e’k e k] LA,

roX/ox oYlox oZlox7 [A,
= |aXlay aYlay aZlay | |A,
LoX/dz aYloz 0Zlaz] LA,

(41)
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The square matrix in (41) we define as

roX/ox
dX/dy

L0X/0z
- 1.-

oY/ox 0Z/dx
aY/ay 9Z/dy
0Y/oz 9Z/9z

M[x(7), X(7,)] =

Jl=EhH @)

where x(7) = x, X(79) = X from (6), superscript T de-
notes transpose, and, hereinafter, the arguments of M
(and P below) will be shortened to (7, 7p). Note that M
operating on the column vector of covariant compo-
nents of a vector yields its Cartesian components, and
M~! performs the reverse transformation. These ma-
trices are important because M~ converts any gradi-
ent Vo in location space to the corresponding gradient
in label space, and M transforms the gradient back to
location space. This follows from the chain rule, whereby

DAVIES-JONES
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or
Vo = M(r, T())@a'. (44)
The reverse transformation is
Vo=M"! (r,7,)Vo, (45)
where
ax/dX 9yloX 9z/0X
M (r,7)=d" = [ax/ay ayloy az/aY} . (46)
ax1oZ 9yldZ 9z/0Z

The columns of M are the contravariant basis vectors, so

Jo Jo
Vo=_—e' +_ ¢
X Y

9o 4

4
27 (47)

which shows that in location space do/0X, do/9Y, and
do/dZ are the covariant components of Vo.
We will also need to find a matrix operator P such that

da/dx 0X/ox 0dY/ox 0Z/dx7] [da/oX VA X VB = P(r, To)vA v ?B, and (48)
Vo= |daldy | = | aX/dy 9Y/dy 9Z/dy | | dd/dY |, » . .
doloz aXloz oYlaz oZloz] Laoloz P~ (7,7,)VAX VB =VAXVB. (49)
(43)  With the aid of the rule (47) applied to A and B, we obtain
IA | 9A ,  9A OB , 9B , 9B,
XVB=—e'+—e*+—¢€ | x [ —e' + —e> +—e¢
VA X VB (axe ayt " az" > <aX° oyt "ozt
a(A’B) 2 3 a(A’B) 3 1 B(A,B) 1 2
= = + 3 + ><
3,2 " Tazx) T Tax ) T
a(A,B)  aA,B)  a(A,B)
—el. o2 x @3
erene [a(Y,Z)el (2, X) 2 ax, 1)’ (50)
because e; = e* X e/[ e' - (e* X )], etc. This becomes  after use of (29) and (34). Thus,
[9(A,B) ] (Y, Z) a(Z,X) a(X,Y)T
a(y,z) Wy.z)  a(y,2)  A(y.2)
@ aY,Z2) aZ,X) XY
(A, B) . P(r,7))=—"d= (V.2) AzX) ¥X.Y) , and
VAXVB= =detd ")[e, e, e] a a(z,x)  a(z,x)  a(z,x)
0(z,%) aY.Z) aZ,X) a(X,Y)
(A, B) La(x,y)  a(xy)  a(x,y) |
L a(x,y) | (52)
T9(A,B) ] ay,z)  az,x)  I(x,y)
aY,Z) ay,z) aY,zZ) oY,Z)
P*I(T T) — ngl — a(y’z) a(z,x) (:)(x,y)
~ >0
(| IAB) | ey o on 51) a, WZ.X) aZ.X) o(ZX)
W(Z,X)| «a y,z)  A(zx)  ax,y)
Lo(X,Y) ] (53)
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from (38), (39), (33), and (34). It is shown in the appendix
that P~ is the propagator for a directed material element
of area. Hence, P is related to vortex-tube stretching.

From (51) and (30), itis evident that ayd(A, B)/a(Y, Z),
agd(A, B)/d(Z, X), and agd(A, B)/d(X, Y) are the con-
travariant components of «VA X VB in location space.
Even though VA X VB, like vorticity, is an axial vector
(or pseudovector) that transforms differently from a true
vector (Springer 1962, p. 76), aVA X VB, like « times
vorticity, is a true vector.

5. Parcel velocity formula via integration

We now seek an expression for the velocity of a parcel.
The equations of motion, continuity, and entropy equa-
tions in a frame rotating with the earth are

%—FZQXu——an Vo +F

=TVS—V(c,T+®)+F, (54)

‘2" +V-(pu)=0, and (55)
rox dy 0z 7

X 9X 9X

_ J

M (7, Tﬂ)i‘: ox 9y 9z

T Y 9Y oaY

ax dy 9z
LoZ 9Z 09Z-

JOURNAL OF THE ATMOSPHERIC SCIENCES

= —(qu +uVy + wVz) — V(

since dx/07 = u. We also have

M~ (7,7,)(2Q xu)=M"'(r,7))

(ax VF -
oT
But
ax - P a? av
—fo——fo——(fo Fx) - VT OV
T oT
(60)
and
Mor-Ty v("_xf —£x> vy
oT oT oT oT T oT
(61)
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DS _J

S=""
Dt T

(56)

where ® = gz — ug - ug/2 is the sum of gravitational and
centrifugal potentials, F = F,Vx + F,Vy + F5Vz is the
friction force, S is the rate of entropy production in the
parcel, and J is the diabatic heating rate.

The steps to obtaining a velocity formula are (i) use
the matrix M™' to convert (54) to Lagrangian co-
ordinates, (i) utilize M~! as an integrating factor,
(iii) integrate over time, and (iv) multiply by the inverse
matrix M to convert the resulting formula back to Eu-
lerian coordinates.

When we pre-multiply (54) by M~
get

Land use (45), we

M~ (7, TO)< +29><u> =TVS = V(c,T +®)

+F Vx+F,Vy + F,Vz.

(57)
By (46),
ou ]
ot
o ——V + g +—V
or ot y ¢
a_w
L o1 4
uw? + v +w?
f) , (58)
—fu+K,w
fu
—KU
oF » 07 ~ X ~
+ - _—
pye Vx> K, <87 Vx P Vz> (59)
Adding (60) and (61) gives
0x » OF ~ 19 oF
—VF——Vx=-— +V(F=—x—).
aTV]-' o Vx = 26T(xV}' FVx) V(?—' e xaT)
(62)
Similarly,
0z ~ 0x » Ky 0 o - Kye [ 02 0x
_— _ = __ — + _Y  — 5
“ (37 Vo VZ) 2 57 EVF VTS V( p 37)
(63)
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Therefore,

M~ (7,7,)(2Q X u)

i

Q’\Q’ 9’1|><

= E(uﬁVx + vBVy + wBVz) —V(u- u,)

from (59), (62), (63), and (22). Inserting (58) and (64)
into (57) then gives

0 . . .
P (ugVx +v,Vy + w, Vz)
u

=T@S—@(CPT+<I)—HT—u~u

5) +FVx

+E¥y + E¥z, (65)

where ug = (up, vg, wg) = u + ug. We now integrate

(65) over time from the initial time 7 to the current time

7, and apply the initial conditions x = X, ug = Ug at 7,

where Ug = U + Ug. We get

uB?x + vB@y + WB?Z —U,= Vi

+ J [T(FVS@) + F,(7)\Vi + F,()V§ + F,(7)VZ] d.,
70

(66)

where

lszT (cpT+<D—¥—u-uﬁ)d%. (67)

70

After integration by parts and use of (56), this
becomes

uB©x+vB@y + wBﬁz - U,

= A(7)VS(r) — Vip(7) + j G(F)d7,  (68)

To

where A is the cumulative temperature defined in sec-
tion 2, and

G(7) =F,(F)Vx + F(F)Vy + F,(7)Vi — A(F)VSHE) (69)

is the integrand of a Lagrangian integral (integral over
time following a parcel). For frictionless isentropic flow
(G =0) in a nonrotating system, (68) reduces to Serrin’s
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——Vx) + K < Vx—a—x@z)
ot

(Osz—}'Vx+foy—Ksz)+ V(fu—K zu — fxv + K xw)

(64)

(1959) generalization to isentropic flow of Weber’s trans-
formation of the equations of motion for homentropic
flow.

Finally, we pre-multiply (68) by M(7, 7o). Note first
that
aX/ox 9Ylax aZlox [ U, — Bax,/oX
oX/oy oYlay oZlay||V,—Bdx,dY
0X/oz 0Yloz 0Z/dz W,
=UVX+V VY +WVZ-BVy,

M(r,7,)U, =

(70)
via (24). We thus obtain
u =UVX+VVY+WVZ-V¥+AVS
+ M(r.7,) J G(7) d (71)

70

on the Grimshaw B plane where ¥ = ¢ — B(x — xo)- On
the nontraditional f plane, the potential term is
simply —V¥, where ¥ is now

RS d.

v = JT (cpT—l—gz—u

7o

(72)

The velocity formula is implicit through the defini-
tion of ¥. However, the implicitness affects only the
irrotational part of the wind. If the normal velocity is
known at the boundaries of the domain, we may de-
termine W at time 7 as the solution of the elliptic partial
differential equation obtained by substituting the ve-
locity formula into the continuity equation [(55)] (Hunt
and Hussain 1991).

From the curl of (71) or, alternatively, PV X (68), we
obtain the following explicit formula of the form (5) for
the absolute vorticity w of a parcel on a nontraditional

B plane:

@ =VUXVX+VVXVY +VWXVZ+KkVZXVX

+(f, + BY)VX X VY + VA X VS + P(r, To)j
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V X G(7) d7. (73)

To
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6. Vorticity integral via propagator

An integral of the vector vorticity equation cir-
cumvents the complication caused by a 8 plane not
having a unique planetary velocity. The vorticity
equation is
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Dw/Dt — (@ - V)u+ @V - u=VT X VS + VX F

=VpXVa+VXF, (74)

and the corresponding homogeneous equation, ob-
tained by equating the left side to zero, is the barotropic
vorticity equation.

Note that
[du/ox duldy duloz 1
(@ -Vu—wV u=| olox aldy ooz |w—— a—a
a ot
Low/ox ow/dy owldz
[ou/oX ouldY ouloZ 0X/ox aX/dy 0X/dz 1o
= | wloX ovloY awaz] aYlox aYldy oYz |w—— —Jd e
T
Low/oX owldY ow/oZ | | dZlox 9Z/dy 0Z/dz
d 109 _ d _ oP(r, -
_ (M1, lo=" (%) %y o= P Tpo1 (1 (75)
JT  « 0T IT \« a, oT

by continuity, the chain rule, (28), (32), (52), and (53).
The vorticity equation now becomes

o dP(r, 7'0)

satisfying its own homogeneous equation, the propagator
has the following properties:

P! (r.7y) =P(7,,7),

- - P (r,7)w = VI XVS+VXF.  (76)
T T P(r,7,) =P(r,7)P(7, 7,), P(r,m)=1, (77)
Clearly, P(r, 1) satisfies the homogeneous version of
(76) (i.e., the barotropic vorticity equation) and is thus ~ where | is the 3 X 3 unit matrix.
the propagator for the equation (DJ06). As well as Pre-multiplying (76) by P~!(, 7) gives us
Y 0P __ . R -
P2 _p 1Py + VT X VS +P 'VXF
a7 aT
P'P P! L
_ 9 g )bl — aa—PP’lw + VT X VS + P '(VF, X Vx + VF, X Vy + VF, X Vz)
T T -
oP ! - . . A A . - -
= @+ VT XVS+VF, XVx+ VF, XVy+VF, XVz (78)
T
after use of (49). Hence,
P 'w) - . . . . . .
T—VTXVS+VF1><Vx+VF2><Vy+VF3><Vz. 79)
Integrating (by parts in some places) over time from 7 to 7 yields the formula for the initial vorticity:
w(r,) =P~ (1,7))e(T) — J [VT(7) X VS(7) + VF,(7) X Vi + VF,(7) X Vj + VF,(7) X VZ] d7
o
— P (r,7,)(r) — VA(r) X VS(r) — J H(7) d7. (80)
o
where w(1) =P(r, ’To)w(TO) + VA(1) X VS(1)
H(7)=V >f G(7)= YFl(T? X Vx +AVE2(T) X Vy +P(r, TO)J H(7) d7, (82)
+ VE,(7) X VZ — VA(7) X VS (81)

is the vector integrand of the Lagrangian integral [after
use of (56)]. We then pre-multiply (80) by P(r, 7o) and
utilize (48) to get
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where the first term on the right is the barotropic vor-
ticity, the second term is the baroclinic vorticity if the flow
is isentropic, and the last term includes the frictional



OCTOBER 2015

vorticity and an alteration to the baroclinic vorticity ow-
ing to diabatic heating. Equation (82) is the same as (3.8b)
in DJO6. It is demonstrated in section 8 that all the cir-
culation theorems follow from (82). In inviscid isentropic
flow, the integral term vanishes, leaving

o(r) =P(, To)w(TO) + VA(7) X VS(7), (83)
where the first and second terms on the right are the baro-
tropic and baroclinic vorticity, respectively. Unlike the baro-
clinic and frictional vorticities, the barotropic vorticity is
independent of the path that the parcel takes between X and x.

The barotropic vorticity in (83) may be written in

several different forms. By (52),
@y (1) =P(7,7)0(7)) = (0 /a)deo(7,), (84)

which is Cauchy’s formula. The inverse of (84), w (1) =
P 'wgr(r), is (2) in Article 146 of Lamb (1932).
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Inserting (26) for the initial vorticity into (84) and using
(48) produces

@y (1) =VU X VX + VV X VY + VW X VZ

Tk, VZX VX + (fy +BY)VX X VY. (85)
We can relate the barotropic vorticity to the initial
vorticity by expanding VU, VV, and VW by the chain
rule. For example,

519) U oU
XVX=|— — — X
VU X VX <8XVX + aYVY + aZVZ) VX

U oU

=—VZXVX ——VX XVY.
7 VZXVX = SoVX X VY (86)

Substituting this and similar expressions for VV X VY
and VW X VZ into (85) gives us

aw 9V oUu oW
=|l—=—-= XVZ+ (———=+ X
@g(7) (BY aZ>VY vZ (aZ X KO)VZ VX
avV U

+—=—-——=+f+ X VY.

(a < oy th BY) VX X VY (87)
Inserting (85) into (82) gives us the general formula for the vorticity of a parcel on a Grimshaw 3 plane:
(1) =VU X VX + VV X VY + VW X VZ + kK, VZ X VX + (f, + BY)VX X VY

+ VA X VS +P(r, TO)J H(?) d7, (88)

7o

where P and H are given by (52) and (81). This is
(73) again.

7. Velocity formula by calculus of variations

We now show how the isentropic frictionless version of
velocity (71) can be derived from an Eulerian form of
Hamilton’s principle of least action (Salmon 1988, 234
235). The action, a functional, is defined as the integral over
volume and time of the Lagrangian density function L. The
Lagrangian density is the absolute kinetic energy of the
fluid minus its internal and potential energies (all per unit
volume). Hamilton’s principle in particle dynamics states
that the action is stationary with respect to small virtual
displacements of the particles from their actual motion
(Feynman et al. 1964). Because the Eulerian coordinates
are independent variables here, the action is stationary with
respect to small changes 6X in the Lagrangian coordinates
at each point rather than changes in the locations of indi-
vidual particles (Salmon 1988, p. 234). The analysis has to
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account for the relationships between 6X and the variations
ou, da, and S in the other dependent variables. Solving
DX/Dt = 0 for the velocity field yields u = —J9X/0t, so the
variation in u is dependent on the Lagrangian coordinates
as well as x and 7 (Salmon 1988, p. 234). The same is true for
the density field because it is related to X via the continuity
equation [(34)], and also for entropy, which is a function of
X because it is conserved. However, the variations in «, S,
and u can be considered independent of X if constraints are
added to the Lagrangian density (Hildebrand 1965, 139-
142). Therefore, we add constraints of mass and entropy
conservation and the Lin constraints to L.
Thus, the variational problem is

t

r
ozaj dtJ dEL(u,p, $,X) = J

L f

dtj dE5L(u, p, S, X),

(89)

where E is the 3D spatial domain with surface boundary
Y, the time integral is from the initial time #, to the
current time ¢, and
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Y 42— pE(a,S) — ng-‘I’*( t+u Vp + pV - ll)

d X Y 0Z
—A*p<a—f+u~VS> - U*p(ﬁﬁ-u-VX) - V*p<W+H-VY> —W*p(E-i-u-VZ). (90)

Here, ¥*, A*, U*, V* and W* are the Lagrange multi-
pliers. In the case of a nonrotating atmosphere, (89) and
(90) reduce to Bretherton’s (1970) (10). We take the

f

13
—Jdr
1,

0

J dE[V=8p + pA=5S + pUs - SX]t ,

where n is the unit outward normal on X, and we have
omitted groups of terms that cancel owing to the
constraints. Because the variations are arbitrary, we
must have

u (1) = —VW* + A*VS + U*VX + VEVY + WHVZ,

(92)
D¥*/Dt=c, T +gz—wu,-u,/2, (93)
DA*/Dt=T, and (94)
DU*/Dt=0 (95)

The natural boundary conditions are that the normal
velocity vanishes on X and that the variations ép, 85,
and 6X vanish at the beginning and end times. We
stipulate that ¥* = 0 and A* = 0 initially. Then A*
becomes identical to the cumulative temperature A,
and (92) evaluated at the start gives us

u (t,) = U*i + V*j + Wk, (96)
so U* is the initial absolute velocity U, given by (24) and
(25) with B = 0. Thus, (92) becomes

variations and use integration by parts where necessary in
the manner prescribed by Hildebrand (1965, 135-136).
After using (10) and the divergence theorem, we obtain

‘ du-p(u, + VW* — A*VS — U¥VX — VIVY — W*VZ)
0= | ar| a=
J JH +8p(u, -u,/2 — ¢, T — gz + DW¥IDr) + 8S[p(DA*/Dt — T)] + 8X - (pDU*/D1)

ﬁ; dX[V*pdu - m+ (W#5p + pA*8S + pU* - §X)u - n]
>

1)

w ()= —-VV*+AVS+ U VX +V,VY + W VZ. (97)

By calculus of variations, we have found for a non-
traditional fplane the inviscid isentropic version of (71),
the velocity formula obtained by integration.

8. Conservation and circulation theorems

We now show that the formulas are fundamental to
conservation of potential vorticity and the circulation
theorems. Conservation of Ertel’s potential vorticity
derives from the vorticity formula. For any scalar fields
A, B, and O, we have

a(x,y,z) 9(A,B,0)
(X, Y,Z) a(x,y,2)
_ 4(A,B.0)
~ %X, Y, 2)

a(VAXVB)-VO =q

(98)

with use of (33). Taking the scalar product of (88) with
aVO, where 0 is any conserved variable, and applying
(98) to each term on the right gives

_[aO.U) | a(0,V)  a(0,W) L 9(A,S.0)
ae(r) VO =q, {a(Y, 7)) azx) iy ® UaY 7 o+ BY) TAxLY, Z)}
B oW av\ 4@  [aU oW 90  (aV aU L 9(A,5,0)
B Kay az> ax <ﬁ )¢ oY (ﬁ v o +BY) a(X Y Z)}
B ) (A, S, ©)
= aow(TO) . V@ + aom (99)
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when H = 0. In inviscid isentropic flow, setting ® = §
eliminates the baroclinic term and proves potential
vorticity conservation. We may also take the baroclinic
term out of the equation by just considering the baro-
tropic vorticity. Setting ® equal to X, Y, and Z, in turn,
gives us the conservation laws

e! i
e | -awy (1) = |:J ] ca,(7)), (100)
e’ k

because VX = e, etc. Thus, the contravariant compo-
nents in location space of aw(7) are equal to the initial
components of this vector and hence are conserved fol-
lowing the motion (Salmon 1998, p. 202; Dahl et al. 2014).
The effects of vortex-tube stretching and tilting on a
parcel are incorporated solely into the changing co-
variant basis vectors that are attached to the parcel. In-
cidentally, by (37), we may write (100) as J 'aeg (1) =
agw(1g), which is simply the inverse of Cauchy’s formula.

The baroclinic vorticity term VA X VS is a solenoidal
vector field and thus has its own vortex tubes. In
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isentropic flow, the baroclinic vortex lines are the inter-
sections of the isentropic surfaces with the surfaces of
constant A because wgc is normal to both VA and VS
(Davies-Jones 2000). The terms that compose the baro-
tropic vorticity wgT in (85) are all solenoidal and indi-
vidual solutions of the barotropic vorticity equation.
Therefore, these fields [or, more strictly, o times these
fields—Salmon (1998, p. 199)] are frozen into the fluid.
The vortex lines of the term VU X VX are the inter-
sections of the surfaces of constant U and constant X, and
similarly for the other terms in wgr.

Helicity is conserved over a material volume = of
homentropic inviscid flow if the volume is made up of
closed vortex tubes (zero vorticity flux on the bounding
surface X). This follows from (71) and (87), which, for
homentropic inviscid flow in an inertial frame, reduce to

u(r)=UVX +VVY +WVZ—-V¥ and
(1) = VY XVZ+qVZX VX +{ VX X VY,

(101)
(102)

where (o, Mo, o) is the initial vorticity w(rg). The hel-
icity density is

u(r) o(r) = (U, + Vn, + WQ“O)VX- (VY XVZ) = V¥ - (1)

=U- (1)

and the helicity is therefore
J” u(r) - o(r) dx dy dz = m U w(n)dX dY dZ
E(7) JE()
- ﬁ Ve (r) - nds.
Z(r)

(104)

Hence, helicity is conserved if w « n = 0 on the bounding
surface. The flow then has nonzero helicity only when
the vortex tubes of Vu X Vx, Vv X Vy, and Vw X Vz are
interlinked (Moffatt and Tsinober 1992, p. 283).

Eckart’s (1960) circulation theorem follows imme-
diately from the velocity (68). For the generic scalar
fields A and B,

) 9B 9B 9B
-dX = —dX +—dY +— = .
}AVB dx %A(a dX +55dY aZdz> igAdB
(105)

Hence, applying the line-integral operator §.-dX to (68)
and using (105), (23), and (24) yields
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WX.Y,Z)
a(x,y,2)

V. [Yo(r)], (103)

f‘; ua-dx—fF U, -dX
C(r) C(Tu)

= AdS — J dr
C(r)

(O]

fj;cmA(%) ds(z) + fﬁc RIGE d)z},

7o

(106)

which is Eckart’s theorem for the circulation around a
material curve C (Dutton 1976, p. 374). The barotropic
circulation, obtained by setting the right side to zero,
is constant, in agreement with Kelvin’s circulation
theorem.

The circulation theorems can also be obtained from
the vorticity (82). The element of vorticity flux is given
by the scalar product of the vector element of material
area and the vorticity vector. Note that a scalar product
is equivalent to a 1 X 3 row vector times a 3 X 1 column
vector. After integration over a finite material surface
area and use of (A4), we obtain

Flux = ”{r(T)do(T) co(r) = ”{r( :

To

do(r,) - P (1,7)e(),

(107)
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where do is a row vector, and w and P™'w are column
vectors. Inserting (82) and then (A4) into (107) yields

‘”U(T)da(r) [(r) — VA X V5]

Il

0

do(r,) - [w(fo) + J H(7) d%}. (108)

To

T

”a<70)d0(70) . J diVA(+) X VB(7) = J

To To

0

To
Thus, (108) becomes

”U(T)do-(q-)[w(q-) —VAXVS]= “U

7o

7o

Stokes’ theorem then gives us

} (ua—AVS)~dx—§’\> U, -dX
C(r)

C (T(])

- [ dﬂ; [FG)— AV S@)] - dx, (112)
Jz, @)
which is (106) again.

In moist convection, dry entropy S is not conserved. It
is better to use the —aVp form of the pressure gradient
term [see (54)], where a is the reciprocal of the density
of the air and water system (e.g., Davies-Jones 2015).
Then, (112) converts to

% u, - dax — Ua -dX
C(7) C(y)
- J @ H 2(7) da(#) ++ F(%)-di]. (113)
o C(7) C(7)
For shallow convection,
b p@dam~§ b@am.
Cc(7) Cc(7)

where b is the buoyancy force.
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Applying (48) at time 7 gives us
VA(7) X VB(7) = P(1,7,)VA(7) X VB(7). (109)

From (81), H is the sum of terms of the form VA(F) X
VB(7). By (109) and (AS),

d%”g T do(r,) - VA7) X VB(7)

o)

LT d%”a(e)dg(%)lr1 (7,7,) - P(7,7,)VA(F) X V B(7)

JT d%” o). V A7) X V B(7). (110)
)da'(’r())w(’ro)
” Odo-(%)[ﬁ X F(7) — V A(F) X V S(7)]. (111)

9. Concluding remarks

Equation (71), obtained by integrating the equations
of motion, expresses the velocity of a parcel in a general
flow with friction and diabatic heating on Grimshaw’s
(1975) nontraditional B8 plane. The restriction of this
formula to frictionless isentropic flow on a nontraditional
f plane is obtained variationally from Hamilton’s
principle of least action by utilizing the vifal Lin con-
straints in an Eulerian framework.

Although the velocity formula is implicit, the rota-
tional velocity is explicit. Thus, the curl of (71) provides
the explicit (73) for a parcel’s absolute vorticity in
general flow. This same formula is obtained by in-
tegrating the vector vorticity equation using the prop-
agator P defined in (52). The propagator method is
more powerful than the variational one because it
produces a vorticity formula for general flows on a
B plane instead of just inviscid isentropic flows on an
fplane.

The formulas pertain to individual parcels. If we knew
all the trajectories x(X, 7), then we would have complete
knowledge of the motion of the fluid. Simulations that
use the Lagrangian description of fluid would provide
this knowledge. However, keeping track of all the parcel
trajectories is computationally expensive, and the tra-
jectories may be chaotic, so almost all models use the
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mathematically simpler Eulerian description. The latter
give us a subset of this knowledge: namely, the de-
pendent variables (velocity, entropy, and specific vol-
ume) as functions of the Eulerian coordinates. The
Eulerian method works with incomplete knowledge (the
parcel paths are unknown), because the governing
equations are independent of how the parcels are la-
beled (Salmon 1998, p. 337).

For physical understanding, however, this subset of
knowledge is often insufficient. It does not tell us, for
instance, how an intense vortex forms in a model simu-
lation. To understand why the vortex is there, we need at
least some trajectory information. In particular, we need
to find out the paths of the parcels that end up in the
vortex and to determine the deformations and the tor-
ques that these parcels experience along the way. We
can do this by adding passive auxiliary equations to the
model. If the diabatic heating and friction is weak, we
might be able to diagnose the origin of a concentrated
vortex by adding the equations DX/Dt = 0, DU/Dt = 0,
DS/Dt = 0, and DA/Dt = T (with A = 0 initially) and
marching them forward for a short while from an
appropriate starting time using a stable, accurate, high-
order, upstream-differencing scheme. The auxiliary equa-
tions cannot be integrated for too long, because the surfaces
of constant X etc., become increasingly convoluted. The
relative strengths of the solenoids of the variable pairs, A
and S, U and X, etc., at the time of vortex formation might

y,z) daz,x) A(xy)
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APPENDIX

The Propagator for a Material Surface Element

Following Dutton (1976, p. 386), we let the material
surface be described by the equation x = x(A, u, 7) where
A and w are parameters of the surface, and 7 is time. The
vector element of area on this surface is

5) J
do(7) = £ X a—did,L or
"

a(y,z) dz,x) A(x,y)
A, p) 9, pm) a(A,p)

do(r) = [ ]d)\dp, (A1)

when written as a row vector. At the initial time 7, this
area element is given by

WY.Z) a(Z,X) aX.Y)
oA ) oA ) oA, )

do(r,) = [ }dm“. (A2)

By the chain rule for Jacobians (Margenau and Murphy
aY,Z) dZ,X) IX,Y)

determine the origin of rotation.

aA,m) 9, p) a(A,p)

Thus,

do(t)= dO’(TO)Pil(T, 7,)s (A4)

which shows that P~! must be the propagator of a ma-
terial surface element.
At any intermediate time 7,

do(7,) =do(7)P(7,7,). (A5)
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|

1956, p. 20),

aA,p)  aA,p) A, p) }

[ 0(y.2)  A(z,x)  A(x,y) ]
WY,Z) oY,Z) oY.,Z)

ay,z)  Az,x) I(x,y)
WZ,X) oaZ,X) o(Z,X)

(A3)

ay,z)  Az,x) I(x,y)
La(X,Y) a(X,Y) a(X.,Y)]
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