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1  |  INTRODUC TION

A central tenet of ecosystem management is identifying trade-offs 
among multiple ecosystem goods and services and the attendant 
consequences of those trade-offs for biological, economic, and social 

objectives (Fogarty, 2014; Hilborn, 2011; Larkin, 1996; Link, 2010a; 
Link & Marshak, 2019; McLeod & Leslie, 2009; Pikitch et al., 2004). 
Failure to consider trade-offs can lead to unintended manage-
ment outcomes, unrealistic expectations among stakeholders, and 
further degradation of marine ecosystems (Andersen et al.,  2015; 
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Abstract
The implementation of ecosystem management requires ecosystem modelling within 
the context of a natural resource management process. Ecopath with Ecosim (EwE) 
is the most widely used modelling platform for investigating the dynamics of marine 
ecosystems, but has played a limited role in fisheries management and in multi-sector 
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(4) early and iterative engagement among scientists, stakeholders, and managers; (5) 
integration within a collaborative management process; (6) a multi-model approach; 
and (7) a rigorous review process. Our review suggests that existing management 
frameworks are as much or more of a limitation to the operational use of EwE than 
technical issues related to data availability and model uncertainty. Ecosystem models 
are increasingly needed to facilitate more effective and transparent decision-making. 
We assert that the requisite conditions currently exist for enhanced strategic and tac-
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Holsman et al., 2020; Karnauskas et al., 2021; Siple et al., 2019). A 
broader consideration of the interactions among ecological dynam-
ics, socio-economic factors, and governance systems is needed to 
facilitate more effective resource management and decision-making 
(Arkema et al., 2006; Dickey-Collas, 2014; Harvey et al., 2017; Levin 
et al., 2009; Marshall et al., 2018; Stephenson et al., 2017). In re-
sponse to these concerns, an ecosystem approach to marine resource 
management is a stated goal of many nations (U.S. Ecosystem-
Based Fisheries Management Road Map, NOAA,  2016; European 
Union (EU) Common Fisheries Policy, Jennings & Rice,  2011; EU 
Marine Strategy Framework Directive (MSFD), Ramírez-Monsalve 
et al., 2016; Australia's Ocean Policy, Vince et al., 2015; Canadian 
Oceans Act, Jessen, 2011), with articulated principles and best prac-
tices for developing ecosystem approaches now codified by many 
intergovernmental organizations (FAO, Garcia et al.,  2003; IUCN, 
Rodríguez et al., 2015; UNEP, Ferreira et al., 2022; ICES, Ballesteros 
et al., 2018; PICES, Kim et al., 2014).

Ecosystem approaches vary along a continuum from sin-
gle species management with ecosystem considerations to ho-
listic, ecosystem-based management (Dolan et al.,  2016; Link & 
Browman, 2014). On one end of the spectrum, single species fish-
eries management is focused on single stocks with no explicit eco-
system considerations, though ecosystem processes often can be 
implicitly incorporated (Burgess et al., 2017; Methot, 2009; Plagányi 
& Butterworth, 2004). The ecosystem approach to fisheries (EAF) 
maintains a focus on single stocks but includes explicit consider-
ation of one or more ecosystem processes, such as oceanographic 
effects on recruitment (Tolimieri et al.,  2018) and predator ef-
fects on natural mortality (Dorn & Barnes, 2022; see also Marshall 
et al., 2019). Similar to EAF, ecosystem-based fisheries management 
(EBFM) focuses solely on fisheries, but considers the entirety of the 
natural resource system (e.g., multiple target and bycatch species 
and their predators and prey), including multispecies interactions 
and environmental drivers that influence the broader community 
or ecosystem (Hollowed et al., 2000; Karp et al., 2023; Link, 2018; 
Plagányi et al.,  2014). Ecosystem-based management (EBM) is a 
holistic approach that extends beyond fisheries to include the ob-
jectives and trade-offs associated with multiple ocean use sectors 
(e.g., petroleum extraction, aquaculture, renewable energy; Arkema 
et al., 2006; Ruckelshaus et al., 2008; Long et al., 2015). The common 
underlying principle of these approaches is that effective resource 
management increasingly requires consideration of a more compre-
hensive range of biological, socio-economic, and institutional factors 
related to human use of the ocean.

The practical implementation of ecosystem approaches to 
management almost always requires some form of ecosystem 
modelling within the context of a natural resource management 
process (Collie et al., 2016; Espinoza-Tenorio et al., 2012; Fulton 
et al.,  2011; Hollowed et al.,  2011; Lehuta et al.,  2016; Pascoe 
et al., 2017; Plagányi et al., 2014; Townsend et al., 2019). Decision-
makers rely on the outputs from models to (1) understand the 
past, current, and potential future state of living marine resources, 
(2) evaluate the likely outcome of alternative policy options, (3) 

explore trade-offs that arise from ecological processes, manage-
ment interventions, or among stakeholders, and (4) develop stra-
tegic and tactical resource management advice. Ecosystem models 
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include a range of qualitative and quantitative representations of 
all or selected parts of an ecosystem and typically include effects 
such as environmental variability, species interactions, and socio-
economic factors.

We refer to models that are used to support and inform resource 
management as ‘operational models’. Operational models are char-
acterized by (1) use of established methodological approaches and 
best practices during model development, (2) regular use of the 
model to provide information in support of a resource management 
process, (3) use of the most recently available data that has been 
quality-controlled, archived, and is easily accessible, (4) model out-
puts that can inform actionable choices from a defined set of alter-
natives, and (5) ideally, evaluation of trade-offs among ecological, 
socio-economic, and policy objectives. Operational models are 
also regularly updated using established procedures and their out-
puts are familiar to decision-makers. For example, the International 
Council for the Exploration of the Sea (ICES) develops ‘key runs’ 
using reviewed EwE models that are routinely updated and used to 
inform ecosystem status, stock status, and resource allocation deci-
sions (ICES, 2019).

Ecosystem models can be used to provide both strategic and 
tactical management advice as well as provide the context within 
which management decisions are considered. Strategic and tactical 
applications are two different but related aspects of the operational 
use of ecosystem models (Collie et al., 2016; Gavaris, 2009; Plagányi 
et al.,  2014). Strategic model applications are related to decisions 
about what will or can be done to achieve specific goals and objec-
tives, while tactical model applications are related to how the spe-
cific strategy will be implemented, usually via short-term decisions 
that can be adjusted on a regular basis (Gavaris, 2009). Strategic ap-
plications are typically focused on relatively long time scales (e.g., 
5–20 years) while tactical applications are focused on relatively short 
time scales (e.g., 1–5 years). For example, a strategic decision has 
been made in many jurisdictions to maintain fishing mortality at lev-
els that will support the long-term maximum sustainable yield (MSY) 
from a stock, while a tactical decision is the short-term adjustments 
to catch limits needed to maintain this fishing mortality rate. While 
the use of ecosystem models in an operational resource manage-
ment context is increasing, they have generally played a limited role 
in the decision-making process for most fisheries and ecosystems 
(Cowan et al., 2012; Karp et al., 2023; Skern-Mauritzen et al., 2016).

Ecosystem models that focus on food webs attempt to un-
derstand how trophic interactions affect the flow of matter and 
energy among different species and functional groups in aquatic 
ecosystems (Belgrano et al.,  2005). Ecopath with Ecosim (EwE) 
is the most widely used food web modelling approach in marine 
ecosystems (Christensen & Walters,  2004; Colléter et al.,  2015; 
Pauly et al., 2000; Polovina, 1984; Steenbeek et al., 2016; Walters 
et al., 1997). Ecospace is a spatial representation of EwE that allows 
for the movement of represented groups (Steenbeek et al.,  2021; 
Walters et al., 1999). EwE explicitly incorporates trophic interactions 
among multiple species and functional groups, while the broader 
food web is simultaneously constrained by the conservation of mass. 

As a result, EwE can be used to evaluate the effects of bottom-up 
(Piroddi et al.,  2021), top-down (Christensen & Pauly,  2004), and 
middle-out (Lamb et al., 2019) processes on various components of 
the ecosystem. These characteristics make EwE particularly useful 
for quantifying trade-offs that arise from natural or anthropogenic 
perturbations or management interventions, disentangling direct 
and indirect effects that are mediated through food web interac-
tions, and assessing the cumulative impacts of multiple anthropo-
genic stressors on marine ecosystems (Christensen & Pauly, 2004; 
Coll et al., 2015; Villasante et al., 2016). As such, EwE models can 
help decision-makers understand the range of possible ecosystem 
responses and trade-offs that can occur due to human activities. 
EwE also has a large and collaborative user community with hun-
dreds of models constructed to address an increasing array of issues 
(Colléter et al., 2013, 2015), multiple symposia and syntheses to doc-
ument and evaluate technical advances and model uses (Christensen 
& Pauly, 2004; Coll et al., 2015; Villasante et al., 2016), free and easily 
accessible software with tested applications, modular subroutines, 
technical support (www.ecopa​th.org), and diagnostic and best prac-
tices protocols (Ainsworth & Walters, 2015; Heymans et al., 2016; 
Lassalle et al.,  2014; Link,  2010b; Steenbeek et al.,  2018). Hence, 
EwE is well-positioned for operational use in fisheries and in natural 
resource management in general.

In this paper, we review selected case studies where an Ecopath, 
Ecosim, or Ecospace (hereafter ‘EwE’) model has been developed 
within an operational context to inform fisheries or multi-sector re-
source management. Prior reviews of EwE models have focused on 
use of the model over decadal time scales (Colléter et al., 2015), ap-
plications in ecosystems of particular interest (Coll & Libralato, 2012; 
Woodstock & Zhang, 2022), technical aspects of the model (Plagányi 
& Butterworth,  2004), applications to particular species groups 
(e.g., predatory fishes, Christensen et al.,  2003; jellyfishes, Lamb 
et al., 2019; forage fishes, Pikitch et al., 2014), and the development 
of management-relevant outputs (Heymans et al.,  2014). The ad-
vantages and limitations of EwE as an operational tool to support 
fisheries and multi-sector resource management have rarely been 
considered. Our premise is that developing a functional model is 
only one step required for operational use, and so we emphasize is-
sues beyond the technical aspects of model development, testing, 
and validation (Plagányi & Butterworth, 2004). While we focus on 
EwE models because the platform has many characteristics amena-
ble to operational use, our conclusions are relevant to other types of 
ecosystem models as well. Our primary assertion is that the requisite 
conditions for enhanced operational use of EwE and other ecosys-
tem models exists, and we recommend explicit criteria to facilitate 
the use of these models to support fisheries and natural resource 
management.

2  |  C A SE STUDIES

We describe 10 case studies where an EwE model is being used to 
inform a fisheries or multi-sector resource management issue. The 

http://www.ecopath.org
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case studies are mostly taken from the primary literature and based 
on ecosystems in North America and Europe, though we include one 
case study from a developing region and one based on gray litera-
ture. We sought examples that were developed within the context of 
different levels of ecosystem management (EAF, EBFM, EBM; Dolan 
et al., 2016) and that addressed a broad range of issues, including 
fisheries management, pollution and habitat, multi-sector use of 
marine ecosystems, and conflicting policy objectives or legislative 
mandates. The case studies are ordered along a continuum from EAF 
(2 examples) to EBFM (4 examples) to EBM (4 examples). For each 
cases study, we provide a brief synopsis of the management issue, 
how EwE models are informing the issue, and notable outcomes, les-
sons learned, and challenges. Given the central role that trade-offs 
play in resource management, we also note the type of trade-off that 
motivated each case study.

2.1  |  Ecosystem approaches to fisheries

2.1.1  |  Forage fisheries—Trade-offs in the 
management of Atlantic Menhaden

The management issue—Atlantic Menhaden (Brevoortia tyrannus, 
Clupeidae; hereafter ‘Menhaden’) is an important forage species 
along the US Atlantic seaboard that is the target of a large indus-
trial fishery (Ahrenholz et al.,  1987). The Atlantic States Marine 
Fisheries Commission (ASMFC) has the dual objectives to simulta-
neously support the directed commercial fishery for Menhaden and 
to sustainably manage several recreationally harvested piscivores 
that depend on Menhaden for food, including Striped Bass (Morone 
saxatilis, Moronidae), Weakfish (Cynoscion regalis, Sciaenidae), and 
Bluefish (Pomatomus saltatrix, Pomatomidae) (Anstead et al., 2021). 
Trade-offs in the management of forage species to simultaneously 
support directed fisheries and important piscivores is a concern in 
a number of marine ecosystems (Essington & Munch, 2014; Hilborn 
et al., 2017; Pikitch et al., 2014; Siple et al., 2019; Tyrell et al., 2011).

How are EwE Models informing the issue? An EwE model of inter-
mediate complexity for ecosystem assessments (MICE, Chagaris 
et al.,  2020) was developed from an existing, more complex EwE 
model (Buchheister et al., 2017) as part of a multi-model approach to 
provide quantitative information on the trade-off between fishery 
removals of Menhaden and biomass of recreationally harvested pi-
scivores, particularly Striped Bass (Drew et al., 2021). The MICE EwE 
model was ultimately chosen to provide tactical management advice 
because it adequately captured the relationship between Striped 
Bass biomass and Menhaden fishing mortality, gave qualitatively 
similar results to the other models (full EwE, multi-species statistical 
catch-at-age, and two surplus production models; Drew et al., 2021), 
and was relatively efficient to run and evaluate. The ecological ref-
erence point (ERP) from the MICE EwE model was the Menhaden 
fishing mortality rate (F) that maintained striped bass biomass (B) at 
the target level when Striped Bass was fished at their target F and all 
other species were fished at status quo levels (Chagaris et al., 2020). 

This ERP (i.e., Menhaden F) was then fed back into a single species 
catch-at-age model to generate catch advice for Menhaden that 
would simultaneously provide sufficient forage to support predator 
populations while also supporting the Menhaden fishery.

Outcomes, lessons learned, and challenges: The catch advice based 
on the ERP from the MICE EwE model was adopted by the ASMFC 
for the 2021 and 2022 fishing seasons (ASMFC, 2022). The use of 
EwE to provide tactical fisheries management advice was facilitated 
by the existence of a clear trade-off (Table  1), explicitly defined 
management objectives, an engaged stakeholder community, and 
a well-defined management process (Anstead et al.,  2021; Drew 
et al., 2021; Howell et al., 2021). The approach leveraged the ability 
of EwE to account for direct and indirect trophic interactions and 
the ability of the single-species catch-at-age model to account for 
the details of Menhaden population dynamics (e.g., recruitment vari-
ability, fleet selectivity). By focusing on two species, the EwE model 
outputs could be presented in terms that were familiar within the 
existing management framework (Menhaden F and Striped Bass B). 
The consideration of five structurally different models using a com-
mon set of data was particularly beneficial during the review process 
and facilitated confidence in the model results among stakeholders. 
However, the time and resources required to develop and review 
multiple ecosystem models was a challenge (~5 years), despite a 
long-history of coastwide management during which Menhaden's 
role as a forage fish was well known (Anstead et al., 2021). Tailoring 
the model to a specific purpose (i.e., quantifying trade-offs between 
Menhaden F and Striped Bass B) facilitated its use for tactical man-
agement advice but may have limited a more comprehensive explo-
ration of other trade-offs or indirect effects, and it was assumed that 
conditions favourable for Striped Bass would also be favourable to 
other piscivores of concern (e.g., Weakfish, Bluefish). Further, while 
management of Menhaden and several recreationally harvested pi-
scivores are under the purview of the ASMFC, species-specific regu-
lations are still determined by separate species management boards. 
As a result, the extent to which the assumptions under which the 
ERP was developed (i.e., sustainable harvest of Striped Bass and 
status quo harvest of other species) will be met through effective 
management of other relevant species is not yet known.

2.1.2  |  Informing sustainable fishing rates—The Irish 
Sea groundfish fishery

The management issue—Article 13 of the EU Reformed Common 
Fisheries Policy (CFP) calls for the implementation of ecosystem 
approaches to fisheries management in EU waters (Prellezo & 
Curtin,  2015). Several commercially important fish stocks in the 
Irish Sea have declined in recent years (Herring, Clupea harengus, 
Clupeidae; Cod, Gadus morhua, Gadidae; whiting, Merlangius mer-
langus, Gadidae; Nephrops norvegicus, Nephropidae), and stakehold-
ers have expressed concern regarding the lack of recovery despite 
reductions in fishing effort (Bentley et al., 2020, 2021). Changes in 
temperature, phytoplankton, and secondary productivity (e.g., large 
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zooplankton) may be limiting the recruitment of several species and 
slowing their response to management actions intended to reduce 
fishing mortality. Scientific advice on harvest rates consistent with 
MSY is provided by ICES based on single-species stock assessments 
and consists of a range around a target Fmsy intended to result in 
no more than a 5% reduction in long-term yield (‘pretty good yield;’ 
Hilborn, 2010; Rindorf et al., 2017). Despite this flexibility in quota 
setting, there are currently no guidelines for how to choose a target 
F within this range.

How are EwE Models informing the issue? An EwE model of the 
Irish Sea ecosystem was used to determine a target F within the 
specified range around Fmsy that took ecosystem considerations 
into account (Feco, Bentley et al.,  2021). The EwE model was used 
to identify important correlates of fishery yield in the system, from 

which either new empirical times series (e.g., temperature, zooplank-
ton biomass) or EwE-generated indicator time series (e.g., predation 
mortality, trophic indices) were developed (Bentley et al., 2020). The 
status of these time series in the terminal year of the model rela-
tive to their long-term mean was then used to scale Fmsy up or down 
within the specified bounds determined from the single-species 
assessment model. Stock status, reference points, and target Fmsy 
ranges are still computed from the single-species assessment model. 
Indicators identified or taken directly from the EwE model are then 
used to re-scale the target F within the acceptable range to be more 
precautionary when ecosystem conditions are poor while allowing 
higher fish mortality when ecosystem conditions are good (Feco).

Outcome, lessons learned, and challenges: Use of the Irish Sea 
EwE model to provide tactical fisheries management advice was 

TA B L E  1  Key trade-offs addressed for each of the 10 case studies.

Level of EM Case study Key trade-offs

EAF Forage Fisheries—Trade-offs in the Management of 
Atlantic Menhaden

•	 Direct commercial harvest versus forage fish to support recreationally 
important piscivores

Informing Sustainable Fishing Rates—The Irish Sea 
Groundfish Fishery

•	 Maximizing yield and associated food production versus impaired 
reproductive potential of individual commercially harvested stocks

EBFM Mixed Species Fisheries—Is MSY Achievable? •	 Maximizing yield and associated food production versus overfishing 
less productive stocks within a multispecies complex

Discarding—The EU Landing Obligation •	 Discards to support human uses (e.g., industrial fish meal) versus 
support for marine scavenger populations, some of which are 
protected species

•	 Current yield in the form of landed discards versus potential future 
yield of returned discards that survive and grow to a larger, more 
valuable size

•	 Fisher costs of processing discards versus revenues and employment 
in fish meal processing and other economic activities that use 
otherwise discarded fish

Reconciling Single and Multispecies Models—The 
Northeast Groundfish Assessment Review

•	 Maximizing single species yield versus ecosystem overfishing

Limited Data, Models, and Governance—The African 
Great Lakes

•	 Maximizing fishery economic value versus food security versus 
employment opportunities

•	 Maximizing fishery objectives versus preserving ecosystem structure 
and productive capacity

Fishing, Habitat, and Climate Effects on Coral Reef 
Ecosystem Services

•	 Land-based human activities versus maintaining the integrity of coral 
reefs

•	 Anthropogenic activities that increase temperatures versus 
preservation of coral reef habitats

•	 Non-extractive use of coral reef ecosystems (e.g., recreational diving) 
versus extractive use (e.g., commercial and recreational fishing)

EBM Wetland Restoration—Mississippi River Sediment 
Diversions

•	 Restoring wetlands versus support of habitat-dependent estuarine 
species and fisheries

Good Environmental Status (GES)—Reconciling 
Fisheries and Ecosystem Policy

•	 Maximizing long-term sustainable yield of all commercially exploited 
stocks versus maintaining ecosystem integrity and ecosystem 
services to support other human activities

Marine Spatial Planning—Offshore Wind Farms 
(OWFs)

•	 Energy production versus fisher access to marine waters
•	 Energy production versus negative effects on species of conservation 

concern (i.e., marine mammals, birds)
•	 Fishing access restrictions versus enhanced productivity from ‘reef’ 

and ‘reserve’ effects

Note: See text for definitions.
Abbreviations: EAF, ecosystem approach to fisheries; EBFM, ecosystem-based fisheries management; EBM, ecosystem-based management; EM, 
ecosystem management.
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facilitated by a specific question related to a pending manage-
ment decision (i.e., what target F to choose within a prescribed 
range), an invested stakeholder and management community 
that worked together to co-produce relevant knowledge and in-
formation (Bentley, Hines, Borrett, Serpetti, Hernandez-Milian, 
et al., 2019; Bentley, Serpetti, Fox, Heymans, & Reid, 2019), and 
a vetted and reviewed EwE model developed according to best 
practices (Bentley et al.,  2020, 2021; Bentley, Hines, Borrett, 
Serpetti, Fox, et al.,  2019). At least six stakeholder workshops 
were conducted, and model review occurred at multiple levels, 
including informal review through the workshop process, peer-
reviewed publications, and formal review through the ICES 
Working Group on Multispecies Assessment Methods (WGSAM) 
(Bentley et al., 2021; ICES, 2019). Similar to the Menhaden case 
study, multiple distinct ecosystem models have been developed 
for the Irish Sea (cited in Bentley et al., 2021), providing the op-
portunity to address structural model uncertainty, but only the 
EwE model has been approved for catch advice. Also similar to 
Menhaden, because the Irish Sea EwE model was used to mod-
ify outputs from single-species models, significant modifications 
to the existing assessment and management process were not 
required, which facilitated the incorporation of ecosystem in-
formation into tactical management advice (Howell et al., 2021). 
However, the need to conform to the existing management 
framework also limited the use of the model to a fairly narrow 
scope (i.e., setting target F levels within a pre-specified range for 
four key species). Also, the approach as currently designed can-
not be used for data-limited stocks or those without Fmsy ranges 
from single species assessments (Bentley et al.,  2021). Further, 
the use of an indicator-based approach to inform short-term man-
agement advice is challenging due to uncertainty in whether the 
EwE model adequately captures the current and historical states 
of the Irish Sea ecosystem, potential alternative functional re-
lationship (i.e., other than linear) between particular indicators 
and stock productivity, and lack of a standardized approach for 
combining and weighting indicators (Bentley et al., 2021; Thorpe 
et al., 2021).

2.2  |  Ecosystem-based fisheries management

2.2.1  |  Mixed-species fisheries and discarding

The management issue: The reformed CFP policy for EU fisheries 
has highlighted trade-offs (Table  1) around two issues relevant to 
fisheries that harvest multiples species and size classes: (1) the fea-
sibility of obtaining single-species MSY simultaneously for all har-
vested stocks in a complex (i.e., the mixed-species fishery problem; 
Fulton et al., 2022; May et al., 1979; Worm et al., 2009) and (2) a 
requirement to land all species subject to catch limits or minimum 
size limits (i.e., the Landing Obligation (LO) or discard ban; Catchpole 
et al., 2017; Christou et al., 2019; Guillen et al., 2018). In the case of 
mixed-species fisheries, the trade-off is between maximizing food 

production and the economic benefits to the fishery while avoiding 
overfishing thresholds for all species in a mixed-species complex. In 
the case of discards, trade-offs (Table 1) have been identified be-
tween (1) processing costs to fishers versus the additional revenue 
from the sale of previously discarded fish, (2) the current harvest 
of undersized individuals versus the future harvest of surviving 
discards at a larger, more valuable size, and (3) the trophic subsidy 
that discards provide for scavenger populations, some of which are 
species of conservation concern (e.g., marine birds, dolphins), versus 
societal values regarding resource use and waste (Celić et al., 2018; 
Guillen et al., 2018; Onofri & Maynou, 2020).

2.2.2  |  Mixed-species fisheries—Is MSY achievable?

How are EwE Models informing the issue? EwE models are being used 
to evaluate the sustainability of mixed-species fisheries in the North 
Sea (Heymans et al.,  2011; Mackinson et al.,  2009, 2018; Stäbler 
et al., 2016, 2019) and off the west coast of Scotland (Alexander 
et al., 2015; Baudron et al., 2019). Similar to other north tempera-
ture ecosystems (Kempf et al., 2016; Lucey et al., 2012; Mueter & 
Megrey,  2006), the general conclusion from these models is that 
simultaneously achieving MSY from single-species stock assess-
ments for all species in a mixed-species fishery is not possible due to 
trade-offs among different fleets or among species that are linked 
by trophic and bycatch interactions. For example, an EwE model 
that explored trade-offs among demersal fish and shrimp trawl 
fleets in the southern North Sea that harvest predators (European 
Cod), prey (Brown Shrimp, Crangon crangon, Crangonidae), and 
both adults and juveniles (as bycatch) of the same species (e.g., 
flatfishes; European Plaice, Pleuronectes platessa, Pleuronectidae; 
Common Sole, Solea solea, Soleidae) concluded that alternative 
fishing regimes could sustainably harvest only 30% of the single-
species MSYs simultaneously for each stock (Stäbler et al., 2016). 
Significant effort reductions (i.e., 20%–50%) may be required for 
some fleets in order to achieve sustainable harvest rates for all 
species (Mackinson et al., 2009; Stäbler et al., 2019). EwE models 
have also been used to evaluate how both environmental (ma-
rine mammal predation, changes in primary productivity; Stäbler 
et al., 2019) and economic (fishery subsidies, Heymans et al., 2011) 
factors external to the harvesting system alter sustainable yields 
from mixed-species fisheries, and to prioritize alternative manage-
ment actions (Mackinson et al., 2018). For example, a management 
strategy evaluation (MSE) that used an EwE model of the North Sea 
as an operating model indicated that alternative regulatory options 
related to discarding had much larger consequences for meeting 
fishery objectives compared to other management decisions (e.g., 
choice of target F within the range of pretty good yield, recovery 
time frames). Alternative approaches to managing discards also had 
large consequences for species of conservation concern. This infor-
mation is being used to identify key issues that are critical to meet-
ing the objectives of the proposed North Sea multi-annual plan for 
North Sea demersal fisheries (Mackinson et al., 2018).
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2.2.3  |  Discarding—The EU Landing Obligation

How are EwE Models informing the issue? EwE models are being used 
to evaluate the consequences of the LO policy to limit discards 
both for fisheries and for the broader ecosystem (Celić et al., 2018; 
Moutopoulos et al.,  2013, 2018; Pennino et al.,  2020). For some 
systems, results from EwE and other food web models (Angelini 
et al., 2016) suggest that the LO will have negative or only modest ef-
fects on commercially harvested species due to compensatory trophic 
interactions, the removal of biomass that otherwise would be recy-
cled within the system, and the limited reliance of some economically 
important species on discards as a food resource (Celić et al., 2018; 
Moutopoulos et al., 2013, 2018). An EwE model of the Adriatic Sea 
suggested the additional revenues generated from the sale of under-
sized or nontarget species for fishmeal was unlikely to compensate 
for the increased processing and infrastructure costs to fishers from 
landing small fish with limited marketability, so that the net economic 
effect on the fishery may be negative (Celić et al., 2018). However, 
linked EwE and species distribution models suggest more significant 
positive and negative effects of limiting discards that differ across 
species (Pennino et al., 2020). Whether the LO has net positive or 
negative effects may also differ between fisheries that are regulated 
by effort controls compared to those regulated by catch limits due 
to different incentives for selective harvesting (Celić et al.,  2018; 
Mackinson et al., 2018). EwE models also suggest the effects of the 
LO will depend on the status of the relevant populations, with over-
fished species benefiting more from reductions in fishing effort than 
in discarding, whereas limiting discards has greater effects for species 
where landed catch is near sustainable levels (Mackinson et al., 2018; 
Moutopoulos et al., 2018). A general result that has emerged from 
EwE models of multiple ecosystems is the potential negative effects 
of limiting discards on scavenger populations, particularly marine 
birds but also marine mammals and sea turtles, that have come to rely 
on discards as a food resource (Celić et al., 2018; Fondo et al., 2015; 
Mackinson et al., 2018; Moutopoulos et al., 2018).

Outcomes, lessons learned, and challenges: EwE models of fish-
ery systems with multiple target and bycatch species are helping 
to diagnose the trade-offs among fleets and harvested populations 
that result from the direct and indirect effects of fishing and trophic 
interactions. These models are also helping to determine whether 
current management practices are consistent with sustainable 
harvest objectives, identify the most consequential regulatory op-
tions, and determine whether particular policies are likely to meet 
stakeholder expectations. The general conclusion that fishery ob-
jectives based on single species approaches are unlikely to be met 
in systems with strong predation and bycatch interactions among 
species harvested by multiple fleets is not surprising. However, the 
EwE results are providing specific guidance in particular ecosystems 
as to the species and fisheries most at risk, the extent to which sus-
tainable yields from single-species models may be overestimated, 
and the economic implications associated with different harvest-
ing practices. This information is being used to evaluate and refine 
fishery management plans and discards plans, which should improve 

future decision-making (Damalas,  2015; Mackinson et al.,  2018; 
Pennino et al., 2020). However, EwE results of fishery systems are 
sensitive to the amount and quality of diet data and information on 
the behavioural responses of fishing fleets to changing economic 
and regulatory incentives, both of which are often assumed static in 
time (Mackinson et al., 2018; Romagnoni et al., 2015). Heterogenous 
spatial and temporal patterns in fishing effort, catch, and discarding 
can be difficult to adequately capture with EwE. Hence, while EwE 
is useful for diagnosing when existing or proposed fishery policies 
may not have intended effects and for identifying particular ecolog-
ical and fishery trade-offs, complementary tools may be needed to 
develop specific technical or regulatory solutions to mixed-species 
fisheries and discarding issues.

2.2.4  |  Reconciling single and multispecies models—
The US Northeast Groundfish Assessment Review

The management issue: The northwest Atlantic has supported some 
of the most productive commercial fisheries in the world for cen-
turies (Link et al.,  2011). Several groundfish species off the US 
Northeast shelf collapsed in the early 1990s and despite increas-
ingly stringent management, many species have experienced limited 
recovery (Brodziak et al., 2008; Fogarty & Murawski, 1998; Hilborn 
& Litzinger, 2009). Multiple stakeholder groups have expressed con-
cern as to whether the ecosystem can support the sustainable har-
vest of the managed groundfish stocks at their biological reference 
points determined from single-species stock assessments. In 2007, 
the NOAA Northeast Fisheries Science Center (NEFSC) convened a 
regional scientific review process called the Groundfish Assessment 
and Review Meeting (GARM III) to provide benchmark stock assess-
ments for 19 groundfish stocks managed by the New England Fishery 
Management Council. Consideration of ecosystem processes, in par-
ticular whether the overall productivity of the Northeast shelf eco-
system is sufficient to support the estimated harvest levels, was a 
specific term of reference for the review.

How are EwE Models informing the issue? The regional review was 
conducted via a series of technical workshops that synthesized the 
available information on biological reference points for nearly all 
fishery species (landed and bycatch) in the Northeast shelf ecosys-
tem (Overholtz, Link, et al., 2008). The results suggested that bio-
mass of the 19 groundfish species was 59% of the combined Bmsy 
target level, indicating the complex was overfished. To put these 
results within a broader ecosystem context, an Ecopath model of 
the Northeast shelf was developed to identify ecological constraints 
on the system and determine how biomass would be re-distributed 
among trophically-linked, harvested groups under various fish-
ing scenarios (Link et al.,  2006; Link, Overholtz, et al.,  2008). The 
Ecopath model was part of a multi-model approach that included 
aggregate (Overholtz, Fogarty, et al., 2008) and multispecies (Link, 
Gamble, et al., 2008) surplus production models and a bottom-up, 
trophic transfer model (Fogarty et al., 2008). While the details dif-
fered among the models, the overall fishery yield indicated by the 
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ecosystem models was less than the summed single species refer-
ence points, as has been found in other north temperate marine 
ecosystems (Fogarty et al.,  2012; Lucey et al.,  2012; Mueter & 
Megrey, 2006). This led to a reconsideration of some parameters in 
the single-species assessments to better align the results with those 
from the ecosystem models, which enhanced the acceptance of the 
resulting catch advice by managers and stakeholders (NEFSC, 2008). 
A key conclusion from the ecosystem models was that pelagic stocks 
should be managed at a higher biomass than suggested by single-
species assessments, and that a second layer of management con-
sideration for the groundfish stocks that addresses the system-level 
productivity of the Northeast shelf is warranted.

Outcomes, lessons learned, and challenges: The consideration of 
single species and ecosystem models within the same review frame-
work, as during GARM III, illustrates the utility of simultaneously 
developing and evaluating multiple models with different underly-
ing assumptions (NEFSC, 2008). The use of standardized data inputs 
and explicit model comparisons led to a better understanding of the 
strengths and limitations of the different models. The ecosystem 
models resulted in general management recommendations as well 
as information that improved the single-species stock assessments. 
Periodic evaluation of ecosystem models within a resource manage-
ment process can provide a check on some of the primary assump-
tions of single-species models (e.g., stationary, Chen et al.,  2022), 
even if they are not used directly to generate catch advice. This 
case study also illustrates the importance of a formal review pro-
cess characterized by thorough documentation, transparency, 
and independent review panels (NEFSC,  2008; see also Kaplan & 
Marshall, 2016). The GARM III process included four, 1-week work-
shops, four review panels, 18 reviewers, and thousands of pages of 
documentation. Because the ecosystem models were developed for 
a time period when many stocks were already depleted, the eco-
logical limits to fishery yields inferred from the ecosystem models 
were not an immediate management concern. However, there was a 
recognition that consideration of these limits would be increasingly 
important as stocks rebuild (NEFSC, 2008). More formal comparison 
of the ecosystem models and the single-species assessment models 
in terms of actual fishery management performance (e.g., using MSE; 
Gaichas et al., 2017; Lucey et al., 2021) would help further assess the 
utility of these models for providing management advice.

2.2.5  |  Limited data, models, and governance—The 
African Great Lakes

The management issue: African inland lakes are a critical source of 
food, income, and employment for that region's population, directly 
or indirectly employing 4–5 million people, accounting for a third 
of the continent's fishery production, and providing a third of the 
total animal protein for landlocked African countries (Funge-Smith 
& Bennett, 2019; Kolding et al., 2019). Lake Victoria is the largest 
of the African inland lakes, both in terms of size and fishery produc-
tion, and generates approximately one million tons of fish annually 

(Natugonza et al., 2022). The introduction of piscivorous Nile perch 
in the 1950s, which was intended to increase the economic value 
of Lake Victoria's fisheries, led to significant declines in native 
haplochromine cichlids (previously about 500 species), which also 
supported significant subsistence fisheries in the three bordering 
countries (Uganda, Tanzania, and Kenya). The catchment basin for 
Lake Victoria has one of the highest population densities in Africa 
(~500 people per km2), and fishing is one of the few sources of liveli-
hood for local communities (Ogutu-Ohwayo et al., 2020). There is a 
need to better understand the trade-offs among economic (fisheries 
profits), social (employment), and conservation (ecosystem structure 
and resilience) objectives in order to develop effective fisheries poli-
cies, though limited resources to support data collection, modelling, 
and fisheries governance and enforcement have hindered resource 
management efforts (Musinguzi et al., 2017).

How are EwE Models informing the issue? A systematic evaluation 
of prior ecosystem modelling efforts in the region led to an updated 
EwE model for Lake Victoria (Natugonza et al., 2016, 2019, 2020a, 
2020b). The model was tuned using time series of survey and landings 
data, calibrated using standard approaches (i.e., vulnerability param-
eters and the diet composition matrix), and subject to multiple model 
diagnostics (Heymans et al., 2016), including PREBAL (Link, 2010a, 
2010b), pedigree analysis (Christensen & Walters,  2004), and skill 
assessment (Olsen et al.,  2016). The model and associated docu-
mentation is also readily available (https://doi.org/10.6084/m9.figsh​
are.73068​20.v4). The EwE model and a recently developed Atlantis 
model (Nyamweya et al., 2016, 2017) were used to evaluate alterna-
tive fisheries policies with an emphasis on the trade-offs among eco-
nomic, social, and conservation objectives (Natugonza et al., 2020b), 
as described in the Lake Victoria Management Plan III (2016–2020) 
(LVFO, 2022). Projected future outcomes of alternative fishery poli-
cies for Nile Perch and haplochromine fishes were qualitatively sim-
ilar between EwE and Atlantis for the major harvested groups and 
indicated a need for reductions in fishing effort. Further, the models 
suggested that maximizing fishery profits was more compatible with 
maintaining ecosystem structure of Lake Victoria than maximizing 
catch or employment in the fishing sector. Given that fishing is open 
access and alternative livelihood opportunities are limited in the re-
gion, effort reductions could impose high social costs, an issue that 
is exacerbated by illegal fishing and limited enforcement. A synthesis 
of multiple Ecopath models for Lake Victoria indicated that recent 
enforcement of minimum size limits, the predominant tactical man-
agement measure, is causing the overharvest of large-bodied species 
and the underharvest of small-bodied species (‘unbalanced harvest’, 
Garcia et al., 2012; Natugonza et al., 2022). More balanced harvest 
across trophic levels could produce food resources to support an 
additional 8 million people compared to current harvest patterns 
(Kolding et al., 2019), but would require a significant reconsideration 
of the objectives and current regulatory practices for the fishery.

Outcomes, lessons learned, and challenges: The Lake Victoria case 
study demonstrates that rigorous development of ecosystem models 
to inform strategic policy decisions and tactical regulatory measures 
is feasible for developing regions with limited data. The Lake Victoria 

https://doi.org/10.6084/m9.figshare.7306820.v4
https://doi.org/10.6084/m9.figshare.7306820.v4
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EwE model was constructed based on a synthesis and extension of 
prior models for the system, made efficient use of the most recently 
available data, was subject to multiple model diagnostics, explored 
policy trade-offs, was compared to a structurally different model (i.e., 
Atlantis), and is transparent and easily accessible. By revealing trade-
offs among economic, social, and conservation objectives (Table 1), 
the model is serving as an important decision support tool to aid 
long-term strategic planning for the region. The synthesis of multiple 
Ecopath models also raises questions about the efficacy of current 
regulatory practices (i.e., minimum size limits) for maximizing food 
security, which should ultimately lead to a better alignment between 
tactical management regulations and the strategic objectives for the 
fishery. However, data limitations remain a significant issue, given 
the limited historical time series and diet data, particularly for non-
harvested groups (Natugonza et al., 2019, 2020a). In addition, while 
there was active engagement with other scientists during model 
development, engagement with managers and other stakeholders 
occurred mostly after the models had already been published. As a 
result, stakeholder considerations were only incorporated indirectly 
into the model through the Lake Victoria fishery management plan 
development process, which is highly consultative in nature (Lake 
Victoria Fisheries Organization, 2022). Direct engagement with the 
stakeholder community as well as a formal review process (beyond 
peer-reviewed publications) would enhance the utility of the model 
for informing tactical management decisions.

2.3  |  Ecosystem-based management

2.3.1  |  Fishing, habitat, and climate effects on coral 
reef ecosystem services

The management issue: In the United States, coral reef ecosystems 
are protected and managed under multiple legislative mandates, in-
cluding the Coastal Zone Management Act, the Magnuson-Stevens 
Fishery Conservation and Management Act, the Endangered Species 
Act, and the Coral Reef Conservation Act (Foran et al., 2016). Many 
coral reef ecosystems are degraded due to a combination of land-
based pollution (i.e., nutrients and sedimentation), fishing, and 
increasing temperatures that lead to coral damage and disease 
(Ateweberhan et al., 2013; Sully et al., 2019; Tebbett et al., 2021) 
and altered fish and invertebrate communities (Strona et al., 2021). 
Nearshore reef ecosystems of the Hawaiian Archipelago exemplify 
many of these stressors. For example, coral cover and reef fish pop-
ulations on fringing coral reefs off Hawai‘i Island declined by 35% 
and 50%, respectively, from 1980 to 2007, and reef fish landings 
decreased by 20% despite increasingly stringent fishing regulations 
(Weijerman, Gove, et al., 2018). Wastewater inputs to coastal wa-
ters have increased due to a growing local population with greater 
access to the coast. Elevated ocean temperatures in 2015 led to a 
severe bleaching event on Puako, a fringing reef on the west coast of 
Hawai‘i Island, that resulted in the loss of nearly half of the reef's live 
corals. In 2016, a pledge by the governor of Hawai‘i to effectively 

manage 30% of the coastline by 2030 (DAR, 2022) catalyzed a state-
led, multi-year planning effort to identify a suite of fishery and land-
based management options that would maintain the capacity of the 
fringing reefs to support dive tourism and fishing, while also improv-
ing reef resilience to climate change (Weijerman, Gove, et al., 2018).

How are EwE Models informing the issue? EwE models are being used 
to evaluate alternative management strategies related to maintaining 
or enhancing dive tourism, recreational and commercial fishing op-
portunities, and land-based run-off while also enhancing the capacity 
of coral reefs to recover from perturbations, such as temperature-
induced bleaching events (Weijerman et al., 2021; Weijerman, Gove, 
et al., 2018). Medium-term (15–30 years) forecasts of alternative man-
agement interventions, including different fishing practices (i.e., traps, 
lines, spears, and nets), the implementation of marine protected areas 
(MPAs), and decreases in land-based pollution, found that no single 
strategy clearly outperformed all others, but that current management 
underperformed all of the other scenarios. Fishing only with line gear 
in combination with nutrient and sediment reductions led to the most 
balanced trade-off among the economic value of the fishery, tourism, 
and reef resilience, though other management strategies, such as lim-
iting harvest of herbivorous fishes and no-take MPAs, led to viable 
though different trade-offs. Further, the EwE model indicated that 
the loss of coral cover due to projected increases in bleaching events 
could be partially mitigated by reductions in land-based nutrients, sug-
gesting that local watershed management actions could offset some 
of the anticipated effects of climate change on coral reef ecosystems 
(Weijerman, Gove, et al., 2018).

Outcomes, lessons learned, and challenges: In the case of Hawai‘i 
coral reefs, EwE models are serving as decision-support tools to 
clarify the trade-offs associated with alternative fishing and land-
based management interventions while accounting for the effects 
of climate change. An important result of the EwE models is that 
status quo management is not a viable strategy and that both ma-
rine- and land-based approaches are needed to preserve or restore 
the multiple ecosystem services provided by coral reefs. Further, 
a defined set of management alternatives led to different types of 
trade-offs, which highlighted a need to better characterize the social 
and economic objectives of stakeholders (Weijerman et al., 2021). 
Alternative models addressing similar issues have been developed 
for Hawai‘i coral reef ecosystems (HiReefSIM, Weijerman, Veazey, 
et al., 2018; Atlantis, Weijerman, 2020), but have not yet been in-
tegrated into a multi-model approach. Multiple planning and model 
development workshops have been critical for enhancing communi-
cation with stakeholders, clarifying ecological, economic, and social 
objectives, and increasing familiarity with the outputs of ecosystem 
models (Weijerman et al., 2019, 2021). However, given the diversity 
of stakeholder interests and multiple management authorities (local, 
state, and federal), formalizing a model evaluation and review pro-
cess has been challenging. Similarly, the multi-jurisdictional nature 
of the issues affecting coral reef ecosystems has led to a complex 
and highly decentralized decision-making process regarding the 
management measures suggested by the ecosystem models that is 
currently ongoing.
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2.3.2  |  Wetland restoration—Mississippi River 
sediment diversions

The management issue: The Mississippi River delta region of south-
ern Louisiana is one of the largest and most economically important 
coastal systems in North America, encompassing over 25,000 km2 
of freshwater and coastal wetlands (Day et al.,  2009). During the 
1900s, about a quarter (>5000 km2) of the coastal wetlands in this 
region were lost due to changes in hydrology associated with chan-
nelization of the Mississippi River, along with land subsidence from 
sea level rise and petroleum extraction (Reed et al.,  2020). The 
Coastal Protection and Restoration Authority (CPRA) was formed 
to organize state and federal management agencies with mandates 
related to coastal wetlands, nearshore fisheries, and habitat restora-
tion in the region (CPRA, 2017). A multi-agency project development 
team was assembled to evaluate a suite of river diversion projects 
designed to redirect water, sediments, and nutrients back to the 
deltaic plain in order to rebuild coastal wetland habitat. The poten-
tial consequences of the proposed diversions for recreationally and 
commercially important fisheries in the nearshore coastal zone are 
of particular concern.

How are EwE Models informing the issue? Because the Mississippi 
watershed drains 54% of the conterminous US, ecosystem models 
capable of linking terrestrial, aquatic, and marine ecosystems are 
needed to evaluate the potential efficacy of sediment diversions and 
the attendant consequences for marine and fishery resources. EwE 
models have been developed to provide a coupling of watershed 
dynamics and river flow to the biomass and spatial distribution of 
important coastal fish and shellfish species in estuaries along the 
Louisiana coast (de Mutsert et al.,  2012, 2017, 2021). The results 
suggest that river diversions will lead to the re-distribution of im-
portant harvested species (e.g., Brown Shrimp, Farfantepenaeus 
aztecus, Penaeidae; White Shrimp, Litopenaeus setiferus, Penaeidae; 
Gulf Menhaden, Brevoortia patronus, Clupeidae; Red Drum, Sciaenops 
ocellatus, Sciaenidae; Spotted Seatrout, Cynoscion nebulosus, 
Sciaenidae) within estuarine ecosystems, but will have only modest 
effects (both positive and negative) on total species biomass. Spatial 
patterns in biomass associated with river diversions differ consider-
ably among species and across different estuaries, highlighting the 
importance of local and species-specific responses to changing sa-
linity and other factors. Simulations of multiple planned restoration 
activities that also incorporate long-term projected sea-level rise 
(SLR) suggest that some potential beneficial effects of sediment di-
versions on coastal fishery species may be offset by future increases 
in SLR (de Mutsert et al., 2021). Systematic comparison of the EwE 
model and a structurally different food web model (Comprehensive 
Aquatic Systems Model, CASM; Bartell et al., 2020) led to a broader 
understanding of the structure and energy flow of the estuarine 
food web as well as a common set of indicators that can be used 
across models to evaluate food web responses to coastal restoration 
activities (Lewis et al., 2021).

Outcomes, lessons learned, and challenges: The large-scale res-
toration of wetland habitat in coastal Louisiana demonstrates the 

use of EwE models to inform restoration planning within the context 
of a long-term, complex policy-making process with multiple man-
agement authorities, legislative mandates, and stakeholder inter-
ests. The ecosystem modelling efforts to support decision-making 
regarding sediment diversions and other restoration activities have 
evolved over more than a decade and required long-term collabora-
tions among scientists, managers, and stakeholders within a multi-
agency project development, evaluation, and review process. The 
EwE model, along with multiple other models, helped to inform the 
decision to further consider two specific river diversion projects 
(Middle Barataria Bay and Middle Breton Sound) among the mul-
tiple projects that were initially proposed. While different from the 
tactical decisions common in fisheries, this case study represents 
a tactical application of an EwE model in another ocean use sector 
because it is being used to directly inform actionable decisions re-
garding alternative management interventions to support wetland 
restoration. Similar to the Hawai‘i coral reefs case study, the EwE 
model incorporates the projected effects of climate change (i.e., 
increasing SLR) to better inform manager and stakeholder expec-
tations regarding the long-term consequences of the proposed res-
toration activities (de Mutsert et al., 2021). However, a number of 
technical and procedural challenges were encountered in developing 
the EwE model and integrating it within the policy process. Lack of 
long-term data, particularly on spatial processes, is a common chal-
lenge for parameterizing and validating spatially-explicit EwE models 
(i.e., Ecospace; Steenbeek et al.,  2021). Coordinating the multiple, 
one-way coupled models needed to link processes in the Mississippi 
watershed to downstream effects on Louisiana estuaries was a par-
ticular technical and collaborative challenge that was compounded 
by specific management deadlines. Further, ecosystem modelling 
has little precedent in environmental impact assessment (EIA) and 
permitting, which is also a challenge for integrating model results 
into the decision-making process (USACE, 2022).

2.3.3  |  Good Environmental Status (GES)—
Reconciling fishery and ecosystem policy

The management issue: The overarching goal of the Marine Strategy 
Framework Directive (MSFD, EC,  2008) is to integrate ecosystem 
considerations into all relevant policy decisions in EU marine wa-
ters by requiring each member state to reach ‘Good Environmental 
Status’ (GES; Borja et al., 2013). GES is defined by 11 descriptors, 
three of which are highly relevant to fisheries (biological diversity, 
commercially exploited fish and shellfish, and marine food webs). 
While the most recent reform of the CFP also promotes the incorpo-
ration of ecosystem considerations into fisheries management, a pri-
mary objective remains to maximize the long-term sustainable yield 
of all commercially exploited stocks, leading to potential conflicts 
between the two policies. Approaches to implementing the MSFD 
(Newton et al., 2015), as well as the extent to which fisheries ob-
jectives of the CFP, are consistent with the ecosystem objectives 
of the MSFD are areas of active research (Elvarsson et al.,  2020; 
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Fock et al., 2011; Kopp et al., 2016; van Hoof, 2015). Meeting the 
dual goals of these two policies will require both an extension of 
the existing fisheries assessment process to include consideration 
of the ecosystem effects of fishing (Baudron et al., 2019; Lynam & 
Mackinson, 2015; Stäbler et al., 2016) as well as the development 
of specific ecological indicators and reference points that reflect 
the GES descriptors (Bourdaud et al., 2016; Fu et al., 2019; Lynam 
et al., 2016; Piroddi et al., 2015; Tedesco et al., 2016).

How are EwE Models informing the issue? EwE models have been 
used to identify conflicts and clarify trade-offs between fisheries 
management objectives and the ecosystem objectives embodied in 
the GES descriptors (Baudron et al., 2019; Lynam & Mackinson, 2015; 
Stäbler et al.,  2016). While reductions in fishing effort consistent 
with single-species fishing mortality targets lead to improvements 
in some EwE-derived indicators of GES (e.g., biodiversity, food web 
structure; Lynam & Mackinson,  2015), trade-offs between fishery 
and ecosystem objectives may still occur even when fishing is sus-
tainable. For example, fishing effort scenarios that simultaneously 
achieved MSY for three southern North Sea demersal fleets (beam, 
shrimp, and demersal trawl fisheries) resulted in trade-offs with mul-
tiple GES indicators (e.g., abundance of large fish, biomass of target 
species; Stäbler et al., 2016, see also Uusitalo et al., 2022). An EwE 
model of the west coast of Scotland indicated that fishery recovery 
scenarios for multiple depleted demersal stocks had positive effects 
on most GES descriptors (e.g., biomass, diversity, size, and trophic 
status), but under the best fishery management scenario, conflicts 
remained between biodiversity and food web indicators (Baudron 
et al., 2019), suggesting it may not be possible to maximize multiple 
GES descriptors simultaneously. In contrast, an EwE model of the 
Baltic Sea indicated that reducing Cod fishing mortality to sustain-
able levels had relatively small effects on biomass, biodiversity, and 
food web indicators (Lassen et al., 2013).

Outcomes, lessons learned, and challenges: This case study illus-
trates the use of EwE models to help reconcile conflicting policy 
objectives from different legislative mandates (i.e., CFP and MSFD) 
related to human use of the marine environment. EwE models 
suggest that fishery management strategies intended to optimize 
MSY-related objectives can have beneficial, detrimental, or little 
consequence for achieving ecosystem objectives under the MSFD, 
highlighting that the nature of this trade-off is specific to the ecosys-
tem and particular GES descriptors of interest. Even so, EwE models 
indicate that the direct effect of fishery removals and the indirect 
effects of fishing on the broader food web are both important con-
siderations in assessments of GES. An emerging result from the 
EwE models is that conflicts between maximizing fishery yields and 
achieving GES are likely to occur even when fisheries are sustain-
ably managed, highlighting the importance of evaluating trade-offs. 
EwE models are helping to identify which GES descriptors are most 
responsive to changes in fishing pressure, as well as specific manage-
ment interventions to better align fishery and ecosystem objectives. 
However, identifying appropriate indicators that reflect GES and 
achieving consensus on standardized approaches for their evalua-
tion is an ongoing challenge (Fu et al., 2019; Heymans et al., 2014; 

Queirόs et al., 2016; Reed et al., 2017; Shannon et al., 2014). There 
is also considerable uncertainty about how to include MSFD conser-
vation objectives into new or existing management frameworks with 
explicit protocols for resolving conflicts (van Hoof, 2015).

2.3.4  |  Marine spatial planning—Offshore wind 
farms (OWFs)

The management issue: Marine spatial planning and comprehensive 
ocean zoning are frameworks to manage the interactive and cumu-
lative effects of multiple ecosystem stressors across ocean use sec-
tors (Alexander & Haward,  2019; Smythe & McCann,  2018, 2019). 
Renewable energy development through the construction and op-
eration of offshore wind farms (OWFs) is a rapidly expanding sector 
of ocean use (Esteban & Leary, 2012). OWFs typically require spatial 
restrictions in the form of fishing exclusion zones, but also induce a ‘re-
serve effect’ that increases harvestable biomass via the spillover of fish 
into areas accessible to fisheries (Punt et al., 2009). OWFs also induce 
a ‘reef effect’, whereby colonization of OWF structures by epibenthic 
and benthic organisms provides an additional food resource for upper 
trophic levels (Raoux et al., 2017). The construction of OWFs also has 
consequences for apex predators that are often of conservation con-
cern, such as marine birds (Furness et al., 2013) and marine mammals 
(Teilmann & Carstensen, 2012). As a result, the construction and op-
eration of OWFs induces trade-offs both within (i.e., fishing restriction 
vs. fisheries production) and between (i.e., renewal energy vs. fisher-
ies) ocean use sectors and with protected species that occurs within an 
often-contentious regulatory environment (Lester et al., 2018).

How are EwE Models informing the issue? EwE models are being 
used in multiple marine ecosystems to evaluate the effects of pro-
posed OWFs on the structure and function of marine food webs, to 
address trade-offs with marine capture fisheries, and to assess the 
consequences for species of conservation concern (west coast of 
France: Halouani et al., 2020; Nogues et al., 2022; Pezy et al., 2020; 
Raoux et al., 2017, 2019, 2020; The Yellow Sea: Wang et al., 2019; 
west coast of Scotland: Alexander et al., 2016; Serpetti et al., 2021). 
For example, an EwE model for the northwest coast of France sug-
gested the increase in biomass from spillover effects around a pro-
posed OWF site would mitigate the negative impact of fishing access 
restrictions, leading to an increase in localized catch comprised of a 
higher proportion of more valuable species (Halouani et al., 2020). 
In contrast, an EwE model of the west coast of Scotland that in-
cluded both reef and exclusion zone effects concluded the overall 
effects of OWFs were weak at both local (6.25 km2) and shelf-wide 
(110,000 km2) spatial scales and that increases in fishery productivity 
around proposed OWFs sites would not necessarily mitigate access 
restrictions for some fisheries (Alexander et al., 2016). While studies 
to date vary in spatial scale and the particular trade-offs considered, 
EwE models of proposed OWFs often indicate negative effects on 
fisheries and local ecosystems during the construction phase, but no 
or potential positive effects over longer time scales due to the com-
bined effects of bottom-up and biomass spillover processes.
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Outcomes, lessons learned, and challenges: While a consensus on 
the long-term effects of OWFs has yet to emerge, EwE models are 
clarifying specific trade-offs related to how OWFs will affect the 
structure of marine ecosystems, access to fishing grounds, and fish-
ery production. The construction of OWFs typically requires an EIA 
(Bailey et al., 2014; Leung & Yang, 2012), and the focus of traditional 
EIA primarily on a few species or groups of conservation concern 
(birds, marine mammals, and fish) is a recognized issue with respect 
to OWFs (Wilding et al., 2017). EwE models are complementing and 
expanding traditional EIA approaches by providing a more holistic 
assessment of OWF effects on the ecosystem (Pezy et al.,  2020). 
Similar considerations apply to other ocean uses sectors that have an 
inherent spatial component, such as offshore aquaculture systems 
(Froehlich et al., 2017) and the construction and decommissioning of 
oil and gas platforms (Bull & Love, 2019). A particular technical chal-
lenge in applying EwE to spatial planning issues is the need for data 
and methods to parameterize and validate spatially explicit ecosys-
tem models (i.e., Ecospace) that include multiple, scale-dependent 
processes (Alexander et al.,  2016; Bailey et al.,  2014; Steenbeek 
et al., 2021). This is a particular challenge in the case of OWFs be-
cause it is unclear how far the ecological and fishery effects extend 
beyond the immediate OWF site. Similar to the Wetland Restoration 
case study, there is not a strong precedent for using EwE or other 
ecosystem models in the permitting process for OWFs, which has 
limited there use in the EIA process. Similar to other multi-sector 
resource issues, a formal multi-jurisdictional management and 
decision-making authority to address multi-sector trade-offs with 
respect to OWFs is generally lacking. As a result, there is less for-
mal engagement of stakeholders in the model development process 
and multi-model approaches and formal review of EwE and other 
ecosystem models for use in EIA and related decision-making is not 
common.

3  |  DISCUSSION

3.1  |  Use of EwE within an operational 
management context

Each of the case studies reviewed here illustrates how an EwE 
(Ecopath, Ecosim, or Ecospace) model is being used to inform 
decision-making within an operational resource management con-
text. In the Menhaden and Irish Sea Groundfish examples, EwE mod-
els are directly informing tactical fisheries management decisions by 
providing quantitative information to determine short-term catch 
levels and target fishing mortality rates that account for the require-
ments of predators or ecosystem effects on stock productivity. EwE 
models in the Mixed Species Fishery, EU Landing Obligation, and US 
Northeast Groundfish Assessment Review examples identified key 
ecological or economic trade-offs among fisheries, between fisheries 
and protected species, or highlighted the limits to harvest imposed 
by the productive capacity of marine ecosystems. The EwE model 
for Lake Victoria is informing policy decisions regarding alternative 

fishery management objectives (i.e., optimizing profits, catch, or 
employment) in a developing region where food security and live-
lihood opportunities are important social considerations. The EwE 
model of Hawai‘i coral reefs is informing discussions about how to 
restore or sustain the multiple ecosystem services provided by coral 
reef habitat in order to meet the goal of effectively managing 30% 
of the coastline by 2030. The EwE model in the Mississippi River 
Wetland Restoration example is contributing to near-term decisions 
about which of several specific river diversion projects to consider 
for further evaluation within a long-term, multi-agency evaluation 
and planning process. EwE models in the EU Good Environmental 
Status (GES) example are informing efforts to reconcile broad fish-
ery (CFP) and ecosystem (MSFD) policy objectives. EwE models 
in the Offshore Wind Farm (OWF) example are clarifying specific 
trade-offs related to fisheries access restrictions and associated ef-
fects on fish production around proposed OWF sites that are help-
ing to inform environmental impact assessments. Collectively, these 
case studies illustrate the use and potential for EwE models to in-
form decision-making in an operational management context across 
multiple ecosystem types (lakes, estuaries, continental shelves) and 
across multiple levels of ecosystem management, including single-
species, multispecies, and multi-sector resource management.

A common element across the cases studies was the central 
role that trade-offs played in the development and application of 
EwE models (Table  1). In each of the examples, there were clear 
trade-offs across taxa, fisheries, ocean use sectors, or legislative 
mandates. As the Mixed-Species Fisheries, Landing Obligation, and 
GES examples illustrate, there are often competing management 
authorities and legislative mandates whose objectives are difficult 
to simultaneously achieve or, in some cases, are incompatible. The 
value of ecosystem models like EwE is that they not only reveal the 
existence and nature of specific trade-offs, but provide a framework 
for quantifying the consequences of a defined set of alternative pol-
icies or management options, ultimately helping to make better in-
formed and more transparent decisions. Trade-offs are ubiquitous in 
marine resource management (Table 1). Failure to explicitly identify 
and evaluate trade-offs can lead to unintended outcomes and more 
controversial future decisions under a more restrictive set of man-
agement options.

3.2  |  Factors that enhance the use of ecosystem 
models to support resource management

The case studies illustrate several common elements that facilitate 
the use of EwE models in an operational setting to inform resource 
management decisions (Table  2). Ecosystem models should ad-
dress a clear policy issue within a defined management context or 
process (Figure 1, Townsend et al., 2019). This criterion was most 
clearly satisfied for the case studies that addressed tactical fish-
eries management decisions, such as setting catch (Menhaden) or 
fishing mortality (Irish Sea Groundfish) targets, where a structured 
decision-making process is already established. The Hawai‘i Coral 
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Reef and Wetland Restoration examples involve broad management 
authorities that consist of multiple agencies and stakeholder groups 
where the decision-making process is more complex compared to 
the fisheries management examples. Some case studies are address-
ing important policy issues but are less connected to a formal man-
agement process due to limited governance (African Great Lakes) or 
precedent for the use of ecosystem models (Offshore Wind Farms), 
or relatively new policy mandates for which management processes 
and operational criteria are not yet well-defined (GES example). The 
main point is that for EwE models to inform operational decision-
making, they need to be developed and used within a management 
framework, irrespective of the extent to which that framework is 
formalized or well-established.

Building and documenting an EwE model that both captures the 
primary processes of interest and can be used to evaluate the man-
agement options available to decision makers is critical (Figure  1). 
All of the case studies used the available data in model develop-
ment and evaluated multiple diagnostics to ensure the models were 
a reasonable representation of the structure and dynamics of the 

relevant ecosystem. A number of treatises on ‘best practices’ and 
recommendations for the development of EwE models (Ainsworth & 
Walters, 2015; Heymans et al., 2016; Link, 2010a, 2010b; Plagányi & 
Butterworth, 2004), and ecosystem models in general (AORA, 2018; 
Collie et al., 2016; FAO, 2008; Geary et al., 2020; Grüss et al., 2017; 
Rose et al., 2010, 2015; Schmolke et al., 2010) are available to help 
guide the model development process. The African Great Lakes case 
study is of particular note as an example of a rigorously developed, 
well-documented, and accessible EwE model for a region with lim-
ited resources to support data collection and model development 
(Natugonza et al., 2020b).

Early and iterative communication is necessary to facilitate the 
use of ecosystem models to support resource management (Figure 1, 
Table 2; Boschetti et al., 2018; Fulton et al., 2011). The Menhaden, 
Irish Sea Groundfish, Hawai‘i Coral Reef, and Louisiana Wetland 
Restoration case studies in particular involved extensive communi-
cation that, in effect, led to the co-production of knowledge among 
scientists, managers, and stakeholders (Anstead et al., 2021; Bentley 
et al., 2021; de Mutsert et al., 2021; Weijerman et al., 2021). Early 

F I G U R E  1  Conceptual diagram of steps to facilitate the use of ecosystem models in operational resource management: (1) identify 
a policy issue (upper left), (2) model development (middle), (3) operational use to support resource management (bottom right), and (4) 
application to new policy issues (bottom left). Light-shaded boxes indicate specific activities related to the above dark-shaded box. Double-
headed arrows indicate steps where iterative two-way communication among modelers, managers, and stakeholders is particularly 
important.
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and iterative communication ensures that scientists understand the 
policy issue, stakeholders understand the capabilities and limitations 
of the model, the modelling objectives are well-aligned with the pol-
icy question and can inform the available management options, and 
appropriate model outputs are agreed upon (Fulton et al.,  2015; 
Jones & Seara, 2020; Tommasi et al., 2021). Effective communica-
tion builds familiarity, credibility, and confidence while also promot-
ing transparency, trust, and an understanding of the political arena in 
which decisions are made (Djenontin & Meadow, 2018).

Periodic review throughout the model development process and 
formal external review of final models is typically a prerequisite for 
use of model results in resource management (Figure 1; Kaplan & 
Marshall,  2016; Townsend et al.,  2008, 2014, 2019). The level of 
review is generally beyond that required for peer-reviewed publi-
cation, and typically involves independent expert panels, extensive 
documentation, in-person workshops, real-time model runs, and 
both independent and consensus reviewer reports. Though the ex-
tent and formality of external review varied, five of the 10 case stud-
ies, and all of those used for tactical decision-making, underwent 
external review that focused on the utility of the model to support 
management decisions. The US Northeast Groundfish Assessment 
Review case study in particular illustrates the extensive level of doc-
umentation and review that is often required for the use of models 
in resource management (NEFSC, 2008).

Five of the 10 case studies developed an EwE model as part of 
a larger suite of models that included at least one and sometimes 
up to four other ecosystem models (Table 2). Developing multiple 
models addresses structural uncertainty (i.e., variability arising 
from the particular mathematical representation of the system; 
Walker et al., 2003), and increases the confidence and acceptance 
of the model results (Reum, Kelble, et al., 2021; Reum, Townsend, 
et al., 2021). Given the time and resources needed to develop eco-
system models, opportunistically leveraging and adapting existing 
models to address new questions is also not uncommon (Figure 1). 
Essington and Plagányi (2014) describe some of the pitfalls of recy-
cling ecosystem models and provide guidelines for adapting existing 
models to address new questions. Documenting the model struc-
ture, spatial and temporal resolution, required data inputs, adequacy 
of modelled trends, and sensitivity to key parameters can help avoid 
pitfalls and identify where existing models have further applications, 
hence, streamlining the model development process.

3.3  |  Challenges to the operational use of 
ecosystem models

Management frameworks, policy considerations, and jurisdictional 
issues—It is clear from many of the case studies that the manage-
ment framework often imposes limitations on the operational use of 
EwE and other ecosystem models, either because it is highly struc-
tured with fairly limited opportunity for new information and ap-
proaches (e.g., Menhaden and Irish Sea Groundfish), not sufficiently 
developed to support decision-making based on model outputs (e.g., 

Landing Obligation and Good Environmental Status), or simply lacks 
precedent for using ecosystem models (e.g., EIAs for Offshore Wind 
Farms and Wetland Restoration). This seems to be as much or more 
of a limitation to operational use than technical issues related to data 
availability and model uncertainty that are often noted with respect 
to EwE and other ecosystem models.

Integrating ecosystem models within a well-developed man-
agement process that does not have a strong history of ecosys-
tem considerations can be challenging. In the Menhaden example, 
there was a long history of considering predator–prey interactions 
in assessment and management prior to the formal development 
of ecosystem models (Anstead et al., 2021). This history, in com-
bination with a common management authority for the species of 
concern, enhanced the familiarity of stakeholders with the issue, 
which led to the formulation of clear policy objectives and action-
able management options. A somewhat similar situation exists 
in the Irish Sea Groundfish example, where multiple species are 
managed based on ICES advice provided to a Council of Fisheries 
Ministers, and consensus has been growing among stakeholders 
that significant ecosystem changes influencing the productivity 
of multiple stocks has occurred (Bentley et al.,  2021). The EwE 
models in these cases were used in combination with existing 
single-species assessment models to address specific and well-
defined questions, which facilitated their use within the existing 
management frameworks (Howell et al., 2021), but also limited a 
more comprehensive analysis of trade-offs, and indirect and cu-
mulative effects. Where management systems and associated 
modelling approaches are well-established, the burden of proof 
will often be to demonstrate that alternative approaches result in 
improved management performance. MSE can be helpful in this 
regard, and the use of EwE (Mackinson et al.,  2018) and other 
multispecies (Trijoulet et al., 2019, 2020) and ecosystem models 
(Kaplan et al.,  2021) to evaluate the performance of alternative 
management strategies is growing. Even so, single-species and 
single-sector models will only be useful for answering questions 
about the status, trends, and trade-offs within a particular species 
or sector of ocean use (e.g., fishing). Nearly all management deci-
sions involve trade-offs that often extend beyond single species or 
sectors (Table 1). EwE or other ecosystem models are the best op-
tion for identifying, quantifying, and addressing these trade-offs 
in a direct and transparent manner.

Less formalized management frameworks, characteristic of 
multi-sector resource issues, may be more amenable to the use of 
EwE and other ecosystem models. However, stakeholder objectives 
are often not sufficiently defined and a formal decision-making pro-
cess to address cross-jurisdictional trade-offs and conflicts rarely 
exists. For instance, the Hawai‘i Coral Reefs example has shown that 
the status quo is the least desirable option for sustaining the multi-
ple ecosystem services provided by coral reefs (Weijerman, Gove, 
et al., 2018). However, the set of alternative management options 
to enact suitable changes is spread across multiple jurisdictions (i.e., 
fisheries, tourism, land use), which requires a complex decision-
making process and significant effort to characterize the specific 
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social and economic objectives of multiple stakeholder groups 
(Weijerman et al., 2021). A similar situation exists in the Wetlands 
Restoration example, where proposed sediment diversion projects 
have implications for land restoration, storm protection, fisheries, 
and protected species (de Mutsert et al.,  2021; USACE,  2022), as 
well as the other multi-sector (e.g., GES, Offshore Wind Farms) and 
even within sector (e.g., Landing Obligation) case studies. Lack of 
clearly defined objectives and a structured management framework 
for identifying and addressing trade-offs should not be construed 
as a limitation of ecosystem models to address policy-relevant 
questions.

To address these challenges, stakeholder objectives, desired or 
acceptable states of ecosystems, and criteria for making decisions 
regarding trade-offs need to be as explicit as possible and revis-
ited and increasingly refined over time. As ecosystems change due 
to natural or anthropogenic factors and as multi-sector resource 
use of marine systems increases, highly structured management 
frameworks will need to enhance procedural flexibility and de-
velop protocols to accommodate a broader range of issues and 
alternative modelling approaches. Less formalized management 
frameworks will need to sufficiently define stakeholder objec-
tives and develop processes for trade-off evaluation and conflict 
resolution that quantitative ecosystem models can then address. 
Addressing these challenges will require balancing the need to 
provide useful and robust management advice to decision-makers 
in a familiar and efficient manner, while also allowing for innova-
tion and new sources of information and modelling tools. Useful 
ecosystem modelling can certainly occur outside of a management 
framework, but there is a lower probability that it will address 
stakeholder objectives or significantly influence the decision-
making process, and a higher probability that the scope of the 
model will become too large, which can actually impede its use 
for management.

Data, uncertainty, and the use of ecosystem models in resource 
management—A common perception of EwE and ecosystem models 
in general is that high model complexity, combined with the lack of 
easily applied procedures to address uncertainty and model perfor-
mance, limits their utility for tactical management applications (Collie 
et al., 2016; Fulton et al., 2003; Hyder et al., 2015; Link et al., 2012; 
Skogen et al., 2021). Limited data to parameterize and validate EwE 
models is a real concern for many ecosystems, and some model 
outputs will have a high degree of uncertainty compared to those 
from single-species or -sector models. While EwE models are not 
parameterized by fitting to data to the same extent as most single-
species models, they are increasingly tuned to historical times se-
ries, estimate several model parameters, and are increasingly subject 
to an array of model diagnostics (Heymans et al.,  2016; Lassalle 
et al., 2014; Link, 2010a, 2010b; Olsen et al., 2016; Scott et al., 2016; 
Steenbeek et al.,  2018, 2021). Methods to assess uncertainty are 
increasingly applied to EwE (Essington, 2007; Gaichas et al., 2012; 
Guesnet et al., 2015; Whitehouse & Aydin, 2020) and to other eco-
system models (Bauer et al.,  2019; Gårdmark et al.,  2013; Spence 
et al., 2018), and approaches for effective decision-making in the face 

of uncertainty exist (Garrand et al., 2017). Parameter uncertainty is 
often the basis for assertions that EwE is not appropriate for tactical 
management, but should be considered within the context of other 
types of uncertainty that are relevant to any model for resource 
management, including implementation and outcome uncertainty, 
uncertain management objectives, inadequate stakeholder com-
munication, natural variability, and bias-variance trade-offs (Collie 
et al., 2016; Fulton et al., 2003; Link et al., 2012; Peterman, 2004; 
Townsend et al.,  2017). The Mixed Species Fisheries example is a 
good illustration of a bias-variance trade-off, where simple (single 
species) modelling approaches applied to complex (multispecies) 
fisheries has resulted in overly optimistic management advice. While 
EwE and other ecosystem models have the potential for high dimen-
sionality, complexity, and associated uncertainty, they can often 
be structured in a way that balances the desire for increased real-
ism while limiting model uncertainty to levels that are acceptable 
within a resource management context (Chagaris et al., 2020; Collie 
et al., 2016; Plagányi et al., 2014).

3.4  |  Tactical and strategic model applications

EwE was originally envisioned as a strategic tool to help support fish-
eries management by screening alternative policy options, conduct-
ing scenario analyses, and identifying management approaches that 
are robust to uncertainty (Walters et al., 1997), and these applica-
tions remain an important use. However, the increasing capability of 
EwE to explore model fits to data and the development of model di-
agnostics and best practices have made the platform more amenable 
to tactical applications. There is also a need to broaden the consid-
eration of what constitutes a tactical application of ecosystem mod-
els to support resource management decisions. For example, there 
are many tactical decisions in fisheries beyond setting annual catch 
limits that could be informed by EwE, such as determining when and 
where to implement annual spawning season and other closures, 
setting opening dates for fisheries, and identifying areas and times 
where bycatch interactions should be monitored or limited. The key 
point is that strategic and tactical decisions are related, both are as-
pects of the operational use of models to support resource manage-
ment, both are critical for effective decision-making, and both can 
benefit from the use of EwE and other ecosystem models.

EwE models are helping to inform tactical decisions in ocean 
use sectors in addition to fisheries, as illustrated by the Offshore 
Wind Farms and Wetland Restoration case studies. The strategic 
decisions to pursue offshore wind farms (to support renewable en-
ergy production) and sediment diversions (to support wetland resto-
ration) have already been made. Which sediment diversion projects 
to pursue and how best to operate gated diversion structures (i.e., 
timing, duration, and magnitude of water releases) to support wet-
land restoration while minimizing impacts to key fishery species is a 
tactical decision. Similarly, the specific siting of wind farms and the 
logistics of their operation while minimizing impacts to fisheries and 
protected species is a tactical decision. In the Hawai‘i Coral Reefs 
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example, the EwE model identified limiting nutrient and sediment 
runoff as important for preserving reef-dependent fisheries (a stra-
tegic application), but could also be used to inform specific nutrient 
reduction targets and evaluate the efficacy of associated regulatory 
measures, such as the operation of septic systems or remediation 
measures, to meet those targets (a tactical application). Other case 
studies illustrate the potential for EwE models to inform tactical 
decision-making, even if they are not the primary model on which 
short-term management advice is based. For example, the Mixed 
Species Fisheries and US Northeast Groundfish Assessment Review 
case studies evaluate the feasibility of obtaining sustainable yields 
estimated from single-species models from a multispecies complex, 
and, hence, are helping to evaluate and refine the management ad-
vice based on current single-species assessment approaches. The 
use of EwE to retrospectively evaluate current policies, as these 
particular examples illustrate, is a first step toward the use of eco-
system models to provide tactical management advice (Mackinson 
et al., 2018).

4  |  SUMMARY AND CONCLUSIONS

Our primary assertion is that the requisite conditions for enhanced 
operational use of EwE to support and inform resource manage-
ment decisions exists, and these models can contribute to both stra-
tegic and tactical management decisions (Fulton et al., 2018; Karp 
et al., 2023; Lehuta et al., 2016). Based on the case studies presented 
here, the successful use of EwE in an operational resource manage-
ment context requires: (1) a well-defined management objective 
that can be addressed through modelling, (2) a clear trade-off and a 
management process receptive to the evaluation of trade-offs, (3) an 
accessible and well-documented model that follows best practices, 
(4) early and iterative engagement among scientists, stakeholders, 
and managers, (5) a model development process that is collaborative, 
interactive, and iterative in nature, (6) a multi-model approach, and 
(7) a rigorous and tailored review process. Many of these elements 
have been recognized with respect to multispecies and ecosystem 
models in general (Anstead et al., 2021; Bentley et al., 2021; Karp 
et al., 2023; Reum, Kelble, et al., 2021; Reum, Townsend, et al., 2021; 
Townsend et al., 2019), but the case studies reviewed here demon-
strate their particular application with respect to a suite of recent 
EwE models that span a broad range of ecosystem management 
approaches (i.e., EAF, EBFM, EBM). EwE and ecosystem models 
in general are particularly useful for identifying and quantitatively 
evaluating trade-offs, which are a near universal feature of marine 
resource management. Hence, EwE and other ecosystem models 
should be routinely used in concert with existing approaches to pro-
vide more robust decision-making support.
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