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ABSTRACT

In this study, we investigate links between Arctic sea ice loss and the variability of 2-m temperatures over a

6-month period (November–April) over two domains centered over northern Eurasia and northern North

America. Based on data from the Climate Forecast SystemReanalysis (CFSR), there has been an increase (a

decrease) in recent seasonal temperature variability over Eurasia (North America), which can be attributed

to cooling (warming) during the winter months. Decreases in the intraseasonal variability of temperature

anomalies, however, are noted in both regions for the November–April period. This study investigates the

role of different forcings on the changes seen in the reanalysis product using Atmospheric Model In-

tercomparison Project simulations forced with repeating sea surface temperature, sea ice, and carbon dioxide

concentration relative to climatologies from two different base periods, 1981–90 and 2005–14. The seasonal

temperature and intraseasonal anomaly variabilities are examined, and we find that only the simulations with

reduction in sea ice (2005–14 base-period sea ice concentration) produce significant decreases in intraseasonal

temperature anomaly variability over these regions, agreeing with the CFSR analysis. Runs that reduce sea

ice also result in a significant decrease in the frequency andmagnitude of extremewarm and cold temperature

anomalies. It is proposed that the weakened latitudinal temperature gradient, resulting from decreased sea

ice, leads to reduced meridional temperature advection variability, which in turn contributes to the reduction

in the variability of temperature anomalies.

1. Introduction

DecliningArctic sea ice and its impacts onmidlatitude

weather and climate has been a major topic of scientific

debate in recent years. Sea ice loss leads to additional

Arctic warming through the ice–ocean albedo feedback

(Kumar et al. 2010; Screen and Simmonds 2010). Be-

cause open water has a lower albedo than sea ice, a re-

gion with open water absorbs more solar radiation than

ice, thus increasing the temperature further than if the

same region were covered by ice. LaJoie and DelSole

(2016) show that, in addition to mean warming in the

twenty-first century, 2-m temperature variance de-

creases in seasonal ice marginal zones (regions that ex-

perience sea ice melt and refreeze each year) because of

the larger heat capacity of newly exposed water. The

overarching question is whether sea ice loss and asso-

ciated Arctic amplification produce only local impacts

with a small influence on the global climate or whether

they can also trigger atmospheric circulation changes,

which can have a larger effect on the global climate.

Francis and Vavrus (2012, 2015) claim that Arctic

amplification, by reducing the north–south temperature

gradient, weakens the zonal jet stream allowing formore

persistent weather patterns and a greater likelihood of

extreme events. Other studies have also argued for at

least some impact on midlatitude weather from sea ice

loss. Examples include decreased temperature variance

in the northern midlatitudes (Screen 2014), a more

negative phase of the Arctic and North Atlantic Oscil-

lations (Liu et al. 2012; Nakamura et al. 2015; Screen

2017), and an increase in surface atmospheric pressure

over Siberia (Honda et al. 2009; Cohen et al. 2012; Inoue

et al. 2012; Zhang et al. 2012; Tang et al. 2013; Zappa

et al. 2018). Conversely, several studies also suggest no

significant attributable linkages between Arctic ampli-

fication and midlatitude seasonal climate and argue that

internal variability is the dominant factor in recent ob-

served changes (Barnes 2013; Barnes et al. 2014; Screen

and Simmonds 2013, Screen et al. 2014; Perlwitz et al.

2015; McCusker et al. 2016; Sun et al. 2016; Collow et al.
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2018; Ogawa et al. 2018). Despite considerable research,

however, issues with the use of inconsistent methodolo-

gies, differences in dynamical models (and associated

simulations), and limited observations make deducing

linkages between Arctic sea ice decline and lower-latitude

climate variability a challenging task (Cohen et al. 2014).

Following on previous research, this study assesses

changes in daily temperature variability in the Climate

Forecast System Reanalysis (CFSR; Saha et al. 2010),

focusing on the near-surface (2m above ground) tem-

perature. Atmospheric Model Intercomparison Project

(AMIP) simulations using the atmospheric component

of the Climate Forecast System, version 2 (CFSv2; Saha

et al. 2014), model are then used to attribute the changes

in temperature variability to the evolution in different

forcings—namely, sea ice cover, sea surface tempera-

tures (SSTs), and carbon dioxide (CO2) concentration—

over the recent decades. Whereas the Collow et al.

(2018) study focused on mean temperature changes on a

seasonal time scale, this analysis looks into temperature

variability within the late autumn and winter seasons,

with an emphasis on the northern midlatitudes as these

regions have been argued to have a reduction in vari-

ability resulting from sea ice loss (Screen 2014; Screen

et al. 2015; Blackport and Kushner 2016; 2017). Our

study benefits from a systematic use of model sensitivity

experiments that can isolate the impacts of sea ice loss,

SST increase, and CO2 concentration increase in recent

decades. We aim to address the following questions in

the context of AMIP simulations using CFSv2: 1) Can

the AMIP simulations represent the observed changes

in the variability of northern midlatitude temperatures?

2) How is the overall intraseasonal temperature anom-

aly distribution affected by the different forcings?

3) Can a physical pathway be established that links the

boundary condition perturbations with the changes in

temperature variability?

2. Methods

a. Model simulations

The model used for this study is the atmospheric

component of CFSv2 (Moorthi et al. 2001), which uses a

T126 horizontal grid (approximately 100-km grid spac-

ing) and 64 sigma-pressure hybrid layers, with the top

layer being at 1-hPa pressure level. Five sets of simula-

tions are done with repeating annual cycle having

combinations of monthly mean sea ice concentration

(SIC), SST, and CO2 concentration boundary conditions

for 101 yr. The specified boundary conditions are gen-

erated by taking the 10-yr monthly means of SIC and

SST data from the merged Hadley–NOAA/optimum

interpolation (OI) dataset (Hurrell et al. 2008), and CO2

data from the NCEP operational archive. Specifically, the

combinations used are listed in Table 1 and are the control

run, referred to as 8190ALL (SST, SIC, and CO2 1981–90

mean), 0514SST (SST 2005–14 mean; SIC and CO2 1981–

90 mean), 0514ICE (SIC 2005–14 mean; SST and CO2

1981–90 mean), 0514CO2 (CO2 2005–14 mean; SST and

SIC 1981–90 mean), and 0514ALL (SST, SIC, and CO2

2005–14 mean). The model runs are postprocessed with

data output every 12h on a 18 3 18 latitude/longitude

horizontal grid. The same set of simulations was used in

Collow et al. (2018).

b. Analysis

For the variables of interest in this study (2-m tem-

perature and 10-m meridional wind), we average the 12-

hourly output into a daily mean at each grid point. Then,

starting from November of the first year, we group the

data into 6-month bins (from November through the

following April), and there are 100 total groupings (or

samples) of daily data from the beginning ofNovember to

the end of the followingApril. This procedure is repeated

for the five simulations with different configurations of

boundary conditions.

We analyze two parameters in this study. The first is of

the seasonal cycle of 2-m temperatures. The seasonal cycle

provides an overall assessment of the temperature pattern

for the entire 6-month period and is used to determine low-

frequency changes in variability due to each forcing. For

each of the five configurations, we quantify the strength of

the seasonal cycle based on the standard deviation of the

daily mean temperatures across all 100 years of the model

simulations; hereinafter this quantity is referred to as

seasonal cycle and is computed at each grid point. The

seasonal-cycle parameters are computed as follows:

T(d)5
�
100

d51

T(d, y)

100
, (1)

T5
�
181

d51

T(d)

181
, and (2)

TABLE 1. Model simulations and initial-condition years used in

this study.

Model simulation SST SIC CO2

8190ALL 1981–90 1981–90 1981–90

0514ALL 2005–14 2005–14 2005–14

0414SST 2005–14 1981–90 1981–90

0514ICE 1981–90 2005–14 1981–90

0514CO2 1981–90 1981–90 2005–14
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In the above equations (and all that follow), the index d

denotes the day and ranges in value from 1 to 181 (cor-

responding to 1 November–30 April of the following year,

with no leap days). The index y corresponds to the year

of the model run (for the AMIP simulations this would be

1–100). The variable T(d) represents the daily mean value

of temperature [Eq. (1)], andT denotes the seasonalmean

value of the daily mean values [Eq. (2)]. Here, Tstd_sc(y) is

the standard deviation ofT(d) and represents the strength

of the seasonal cycle [Eq. (3)]. An increase inTstd_sc would

represent a more pronounced seasonal cycle—for exam-

ple, warming during the early months and cooling in the

middle period, creating a larger range in the temperature

values over the entire season. Conversely a decrease in

Tstd_sc would signify a dampening of the seasonal cycle or a

smaller range in seasonal temperatures.

Because the seasonal-cycle variability will not provide

any information regarding variability at higher fre-

quencies, we then assess the variability of temperature

anomalies within a season, which removes the low-

frequency seasonal cycle, leaving the intraseasonal

anomalies. In this part, we subtract the daily tempera-

ture climatology calculated in Eq. (1) from the raw

temperatures and compute the standard deviation of the

daily anomalies within a season. This yields an analysis

of temperature variability independent of the seasonal

cycle. The computation is outlined below:

T
anom

(d, y)5T(d, y)2T(d) , (4)

where Tanom(d, y) is the total daily anomaly that results

from removing the daily temperature climatology. Fol-

lowing removal of the climatology, the process for

quantifying variability within a season is the same as that

of quantifying the strength of the seasonal cycle:

T
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where Tanom(y) is the 6-month mean value of the temper-

ature anomalies for each year, representing interannual

variations of the 6-month mean, and Tstd_ia(y) is the

‘‘intraseasonal-anom’’ temperature standard deviation

calculated each year. A two-tailed t test was performed

comparing the 100 combinations of 8190ALL with the

other configurations to determine significance of the

differences between the standard deviations in alternate

configurations and the control; 95% is chosen as the

confidence interval.

The above analyses are repeated with CFSR data

that are grouped into two 10-yr periods, 1981–90 and

2005–14, to match those of the boundary conditions in

the model simulations (data from November 1981–

April 1982 through November 1990–April 1991 are

used to represent 1981–90, and data from November

2005–April 2006 through November 2014–April 2015

are used to represent 2005–14). Thus for the CFSR, we

have 10 samples from November to April under similar

forcings as opposed to 100 for the model simulations.

Like for the model simulations, seasonal-cycle and

intraseasonal-anom standard deviations are computed

following the above equations (except with 10 years

instead of 100, making the maximum value of y equal to

10). For intraseasonal-anom, the mean for the 1981–90

period is removed from the 1981–90 dataset, and the

mean for the 2005–14 period is removed from the 2005–

14 dataset. Treating the periods separately and using

two sets of means (rather than removing the samemean

from both datasets) is more representative of the

analysis done with the model simulations. Like the

model simulations, a significance test is also performed,

but only with 10 samples as opposed to 100.

Area-weighted mean temperatures and anomalies

(with seasonal cycles removed) are computed in the

boxed regions that represent the greatest changes in

standard deviations in CFSR and the model simulations.

These boxes are defined as Eurasia (508–708N, 608–
1208E) and North America (508–708N, 608–1208W) and

are shown in Fig. 1 and all subsequent spatial maps.Other

regions were tested (not shown), and it was found that

these particular regions produced the most coherent re-

sults. For each box, we compute the average 2-m tem-

perature anomalies to select the top 10% warmest and

coldest extremes (defined as the means of the coldest and

warmest 18 days of the total 181-day period).

We demonstrate the impact that changes in meridional

winds and the temperature gradient have on temperature

extremes, as sea ice loss strongly affects the meridional

temperature gradient, which may also modulate the

temperature extremes. The contribution of the meridio-

nal temperature advection to temperature tendency is

dT

dt
(d, y)52y(d, y)3

dT

dY
(d, y). (7)
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For simplicity, hereinafter we will refer to the resultant

dT/dt term (which represents the meridional temper-

ature advection) as Advm; T is the temperature, y is

the meridional wind component, and y represents the

geographic distance in the latitudinal direction. The

latitudinal temperature gradient is computed using

central finite differencing with a grid spacing of 208
latitude, equal to the width of the domains being ana-

lyzed in this study. As in the previous equations, d and

y denote day and year, respectively, for each model

configuration or CFSR data. Using Eq. (7), a simple

argument can be made that under the same-magnitude

northerly winds (negative y), and a weaker north–south

temperature gradient (positive dT/dy), the Advm term

would increase (become less negative). The opposite

would be true with southerly winds; that is, the ad-

vection term would become less positive. This result

would argue the case for smaller magnitudes of warm

and cold extremes as associated temperature advection

would presumably be weaker.

We compute the subseasonal meridional temperature

advection standard deviation (Advm_std) to illustrate the

variability within each 6-month season:

Adv
m
(y)5

�
181

d51

Adv
m
(d, y)

181
and (8)

Adv
m_std

(y)5
�
181

d51

[Adv
m
(d, y)2Adv

m
(y)]

2

180

8>>><
>>>:

9>>>=
>>>;

1/2

. (9)

In Eqs. (8) and (9), Advm denotes the 6-month mean of

meridional temperature advection computed for each

November–April period in the AMIP simulations and

CFSR.

3. Results

a. Analysis of subseasonal 2-m temperature

Temperature differences in CFSR between 1981–90

and 2005–14 show warming across much of the Northern

Hemisphere (Fig. 1a), with the largest and statistically

significant increases in the Arctic (average of 2.3K for

all points north of 708N). These large changes in the

Arctic extend southward into the North America region

(mean increase of 2.1K) but are more moderate over

Eurasia (mean increase of 0.35K). Mean temperature

gradients are likewise affected (Fig. 1b), with mean in-

creases of 0.62 and 0.60K per 1000km for Eurasia and

North America, respectively. These increases represent

a weakening of the amplitude of the negative north–

south gradient (warm in the south but less cold in the

FIG. 1. The 2-m temperature differences in CFSR from 1 Nov through 30 Apr of the following year (2005–14 minus 1981–90): (a) mean

difference (K), (b) latitudinal gradient mean difference (dT/dy; K per 1000 km), and mean (c) seasonal-cycle (Tstd_sc; K) and

(d) intraseasonal-anom (Tstd_ia; K) standard deviation difference. Hatching in (a), (b), and (d) represents statistical significance at 95%

confidence.
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north). The seasonal-cycle standard deviation (Fig. 1c)

increases by 1.11K in Eurasia and decreases by 0.71K

over North America. Removal of 6-month seasonal

anomalies (Fig. 1d) produces reductions in standard

deviations of daily temperature anomalies in both re-

gions with mean changes of 20.51 and 20.79K for

Eurasia and North America, respectively.

Figure 2 shows the 2-m mean temperature and tem-

perature gradient changes in the model simulations.

Simulations that have reduced sea ice (0514ALL and

0514ICE) have the largest amount of warming in the

Arctic, similar to that seen in CFSR. Mean 2-m temper-

ature change for 0514ALL and 0514ICE relative to

8190ALL for all points north of 708N is 3.1 and 2.5K,

respectively, withmuch smaller amounts (less than 0.4K)

for the other simulations. Mean temperature changes in

the Eurasia and North America domains in 0514ALL are

0.82 and 0.89K, respectively, and for 0514ICE are 0.48

and 0.76K, respectively. The temperature changes are

significant throughout most of the Northern Hemisphere

for 0514ALL and 0514SST, but limited to the higher

latitudes for 0514ICE. Significance is not widespread in

0514CO2. The gradient differences in the AMIP simula-

tions aremost comparable toCFSR in 0514ALL (Fig. 2e)

and 0514ICE (Fig. 2g), with minimal changes in 0514SST

(Fig. 2e) and 0514CO2 (Fig. 2h).

Model simulated seasonal-cycle and intraseasonal-

anom standard deviation differences are shown in

Fig. 3. Only modest changes in the seasonal-cycle stan-

dard deviations are found in the model simulations, with

0514ICE showing the greatest increases (decreases) in

standard deviation over Eurasia (North America),

consistent with the changes in CFSR. Significant de-

creases were found in 0514ALL and 0514ICE (runs in

which sea ice was decreased) for intraseasonal-anom.

For Eurasia the changes were 20.26 and 20.30K for

0514ALL and 0514ICE, respectively, and for North

America the differences were 20.36 and 20.33K for

0514ALL and 0514ICE, respectively.

The mean seasonal cycles of 2-m temperature differ-

ences from November to April are shown in Fig. 4a

(Eurasia) and Fig. 4b (North America) for CFSR (2005–

14 minus 1981–90) and the AMIP simulations (relative

to 8190ALL). We use a 30-day running average to fur-

ther smooth the differences. A mean decrease of21.1K

over Eurasia is found from 15 January to 15 February in

CFSR. However, this decrease is not statistically sig-

nificant. Significant increases in 2-m temperature do

exist in CFSR after 15 March. The decrease in mid-

winter temperatures in CFSR over Eurasia, in addition

to the increase in spring temperatures, would explain the

higher standard deviations seen in the seasonal-cycle

standard deviations in Fig. 1c as a result of a stronger

seasonal cycle, and the increase in midwinter tempera-

tures over North America would explain the decrease in

standard deviations in Fig. 1d due to a dampened

seasonal cycle.

The AMIP simulations are more modest with tem-

perature changes; however, because of the larger sam-

ple, they have a higher significance, particularly for the

simulations with reduction in sea ice. Over Eurasia,

significant temperature increases are found in 0514ALL,

0514SST, and 0514ICE early in the period (15 November–

15 December) but not in the remainder of the period (the

exception is a small amount of significance found in

0514ALL around 1 February). The fact that the model

simulations do not show the winter cooling over Eurasia,

and the subsequent increased standard deviation that is

present in CFSR, suggest that the temperature changes in

CFSR might be more related to internal variability (also

see the analysis below), agreeing with the results of Collow

et al. (2018). Conversely, over North America, there are

significant temperature increases found in 0514ALL and

0514ICE corresponding to the changes in CFSR, although

they are much smaller in magnitude (0.85 and 0.74K, re-

spectively), which can likely be attributed to the smaller

sample size (10 vs 100 model years).

Next, we test whether random 10-yr model sample

differences can capture the pattern seen in the CFSR

difference. This is done both to assess model fidelity, in

terms of whether the model is capable of representing

the observed pattern, and to provide an assessment of

internal variability. Using the smoothed time series

data discussed above, we took the mean of 10 random

model years and took the difference relative to the

mean of 10 random samples of 8190ALL. We repeated

this 5000 times for both domains, and for each instance

computed the root-mean-square error (RMSE) with

respect to the CFSR differences in Figs. 4a and 4b.

Figures 4c and 4d show the best 10-yr difference

(lowest RMSE) for Eurasia and North America, re-

spectively. All of the model simulations are capable of

capturing the observed cooling over Eurasia and the

warming over North America. Figures 4e and 4f show

the distribution of RMSE as a percentage of the 5000

samples. For Eurasia (Fig. 4e), the distribution is fairly

uniform, with 0514ALL being a bit on the warmer side

of the other simulations. This would argue that the

observed cooling over Eurasia is more likely a function

of internal variability. For North America (Fig. 4f), it is

clear that simulations that reduce sea ice (0514ALL

and 0514ICE) are more capable of reproducing the

observed increase in temperature as the RMSE distri-

butions of those model configurations are both shifted

in the direction of lower RMSE values relative to

0514SST and 0514CO2.
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FIG. 2. The 2-m temperature (left) mean (K) and (right) latitudinal mean gradient (dT/dy; K per 1000 km), differences from CFSv2

AMIP simulations: (a),(e) 0514ALL minus 8190ALL; (b),(f) 0514SST minus 8190ALL; (c),(g) 0514ICE minus 8190ALL; and

(d),(h) 0514CO2 minus 8190ALL. Hatching represents statistical significance at 95% confidence.
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FIG. 3. As in Fig. 2, but for (left) seasonal-cycle (Tstd_sc; K) and (right) intraseasonal-anom (Tstd_ia; K) standard deviation differences.

Hatching in (e)–(h) represents statistical significance at 95% confidence.
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Changes in the amplitude of temperature anomaly

extremes are investigated in Fig. 5a (cold extremes) and

Fig. 5b (warm extremes). We note that in model simu-

lations this analysis is relative to its own climatology,

while in observations it is relative to its own 10-yr base

period. The extreme values in each 6-month season are

determined based on the top and bottom 10% of the

temperature anomaly distribution from each season.

The lowest 10%of temperature anomaly values for each

of the 100 seasons (AMIP) or 10 seasons (CFSR) are

averaged together to determine the mean temperature

anomaly for cold extremes, and the process is repeated

with the top 10% of values for the warm extreme

anomaly mean. An average of all cold and warm ex-

treme anomalies is taken over all years and is shown in

Figs. 5a and 5b. There is a significant reduction in cold

temperature anomaly extremes for the Eurasia domain

in 0514ICE, by a magnitude of 0.60K, suggesting that in

the new mean state that results from sea ice loss the

coldest temperatures deviate less from the mean than

they did in the mean state for 8190ALL. For 0514ALL,

the cold anomaly extreme change was 0.46K but was not

significant. Over North America, the amplitude of re-

duction in cold extreme anomalies was 0.57 and 0.49K,

and both were significant for 0514ALL and 0514ICE,

respectively. CFSR also showed warming of cold ex-

treme anomalies that were higher in magnitude than

the model but were not significant (increases by 0.88

and 0.66K for the Eurasia and North America domains,

respectively). Warm extremes show the same relationship

FIG. 4. (a),(b) seasonal cycle of 2-m temperature differences [the thick lines denote statistical significance with respect to 1981–90

(CFSR) and 8190ALL (AMIP simulations)]; (c),(d) best 10-yrmeanmodel differenceswith respect to 8190ALLdetermined by finding the

lowest RMSE of 5000 random samples relative to the CFSR difference; and (e),(f) RMSE distribution for the (left) Eurasia and (right)

North America domains.

5028 JOURNAL OF CL IMATE VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 05:29 PM UTC



with the extremes deviating less from the new mean

state. Changes of 20.48 and 20.35K are found in

0514ALL for the Eurasia and North America domains,

respectively (significant over the North America do-

main); for 0514ICE, the changes are 20.47 and

20.37K, respectively, for Eurasia and North America

(results from both domains are statistically significant).

In the Eurasia domain the change in magnitude in

CFSR is 20.24K; for the North America domain the

change is20.98K. Neither of these changes in CFSR is

significant.

Figures 5c and 5d illustrate the change in the distri-

bution of intraseasonal temperature anomalies by as-

signing three possible bins (,25, 25 to 5, and .5K),

and determining the average frequency of occurrence

over 100 yr for the AMIP simulations and 10 yr for

CFSR. The values plotted are differences from the dis-

tribution relative to 8190ALL or the CFSR 1981–90

period. It is evident that for both the Eurasia and North

America domains there are decreases in the occurrences

of both warm and cold temperature extremes (defined

here as temperature anomalies colder than 5K for cold

extremes and warmer than 5K for warm extremes, with

anomalies in between denoted as neutral). Over the

Eurasia domain, changes in the frequency of occur-

rences of extremes for CFSR are23.5 days yr21 for cold,

1.7 days yr21 for neutral, and 1.8 days yr21 for warm.

For North America, these values are 21.3, 2.4, and

21.1 days yr21 for cold, neutral, and warm, respectively.

Patterns were more robust for the model simulations,

likely because of the larger sample size. The results for

simulations that reduce sea ice are the most noteworthy.

Changes in extremes over the Eurasia domain were

22.1, 4.9, and 22.8 for 0514ALL for cold, neutral, and

warm, respectively; for 0514ICE they were 24.3, 8.2,

and 24 days yr21 for cold, neutral, and warm extremes,

respectively. Over the North America domain, a similar

pattern is seen, with changes for 0514ALL being

23.8 days yr21 for cold extremes, 6.2 for neutral, and

22.4 for warm extremes. For 0514ICE, the values

FIG. 5. (a),(b) Mean change in the bottom 10% (‘‘COLD’’) and top 10% (‘‘WARM’’) temperature extremes

(K) from intraseasonal-anom computed for each 181-day period (for CFSR the differences are 2005–14 minus

1981–90; for the AMIP simulations the differences are relative to 8190ALL) and (c),(d) mean change in the

temperature anomaly distribution (days per year) for the (left) Eurasia and (right) NorthAmerica domains. Shaded

bars represent statistical significance at 95% confidence.
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were22.6, 4.9, and22.4 days yr21 for cold, neutral, and

warm extremes, respectively.

b. Proposed mechanism for decrease in the
magnitude of extremes

Next, we investigate a potential mechanism for the

decrease in magnitudes of both warm and cold tem-

perature extremes. First, we examine changes in the

mean and the variability of themeridional wind, which is

shown in Fig. 6. In CFSR, significant increases in mean

southerly winds are noted in the vicinity of the Barents

and Kara Seas (Fig. 6a), which may signify an increase in

the strength of the Siberian high, although significant

changes in the wind over Eurasia were not observed.

Cohen et al. (2001) established that the Siberian high

was a dominant source of climate variability over Eur-

asia during the winter. Unlike in other studies that

showed that this anticyclonic flow occurs more fre-

quently (Honda et al. 2009; Zhang et al. 2012; Zappa

et al. 2018) resulting in more frequent cold extremes, in

our model simulations we did not find significant

changes in the surface meridional wind, in terms of both

the mean and the variability over the Eurasia and North

America domains, and show only significant changes lo-

cally where the sea ice decreases took place (Figs. 6b,d,g,i).

The changes in wind magnitude at the middle and lower

latitudes are more attributed to changes in SST and not to

changes in sea ice (Fig. 6c).

Figure 7 examines the Advm and Advm_std terms cal-

culated in Eqs. (8) and (9), respectively, for CFSR, and

the AMIP simulations. In terms of the mean meridional

temperature advection, significant changes are sparse in

CFSR (Fig. 7a) but more apparent in AMIP simulations

that reduce sea ice over theNorth Pacific (Figs. 7a,d). SST

changes also result in somepositive increases in advection

in this region, but are not as robust as with the sea ice

changes. Of note, these positive changes are reductions in

negative meridional temperature advection. CFSR

shows a fairly large decrease in the variability of meridi-

onal temperature advection across the northern mid-

latitudes in the 2015–14 period relative to the 1981–90

period, with some areas significant (Fig. 7e). Decreases

for Eurasia and North America were 20.18 and

20.12K day21, respectively. The AMIP simulations

where sea ice was reduced were most robust in high-

lighting the changes over North America,20.13K day21

for both 0514ALL (Fig. 7f) and 0514ICE (Fig. 7i). For

Eurasia, changes were more modest but there were some

areas of significant reductions in 0514ICE. Area mean

values were 20.04 and 20.05K day21 for 0514ALL and

0514ICE, respectively. Both CFSR and the AMIP solu-

tions showed very large decreases over the North Pacific

and in the vicinity of Alaska. As with the winds, changes

in themeridional temperature advection variability in the

middle and lower latitudes could only be duplicated in

0514SST (Fig. 7h). Changes in zonal temperature ad-

vection were also investigated (not shown) and were

found to be less robust than in themeridional component.

Tables 2 and 3 show the area mean values for merid-

ional temperature advection standard deviation and

intraseasonal-anom 2-m temperature standard deviation

for the Eurasia and North America domains, respec-

tively. We conclude that the reduced meridional tem-

perature gradient that results from sea ice loss leads to a

decrease in the variability of meridional temperature

advection (3%–4% decrease over Eurasia in the AMIP

runs that reduce sea ice, and 7%–8%decrease overNorth

America), and therefore smaller temperature deviations

from the mean state, reducing the intraseasonal vari-

ability. This mechanism was most robust over North

America, but significant changes were apparent over

Eurasia as well despite the small decreases.

4. Discussion and conclusions

Results of this study build on our previous work

highlighting the role of sea ice loss in northern mid-

latitude surface temperature variability. The experi-

ment design allowed us to isolate the impacts of changes

in SST, sea ice, and CO2 concentration on subseasonal

2-m temperature variability in the November–April pe-

riod. In the CFSR reanalysis, seasonal-cycle November–

April temperature variability increased over Eurasia

along with winter cooling in the recent decade, similar

with results in Cohen (2016). However, none of the 100-

yr means of the model simulations exhibited the cooling

or the increase in temperature variability shown in

CFSR, indicating that the recent cooling over Eurasia

may bemore related to internal variability of the climate

system rather than to any external forcing (McCusker

et al. 2016; Sun et al. 2016; Collow et al. 2018). However,

the AMIP simulations that include the reduced Arctic

sea ice best represent the decrease in intraseasonal-

anom standard deviations as seen in CFSR over both

Eurasia and North America, but with a smaller magni-

tude. The larger amplitude in reanalysis data than in the

model simulations suggests that the observed trend may

have been amplified by internal variability. Nonetheless,

results show that Arctic sea ice loss plays some role in

modifying the nonlocal climate. Several studies (Screen

et al. 2014, 2015; Blackport and Kushner 2016; Sun et al.

2016) conclude a decrease in the variability of surface

temperatures in the northern midlatitudes due to the

decreased temperature gradients imposed by sea ice

loss. This study takes the analysis a step further by of-

fering insight into how reduced gradients play a role in
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FIG. 6. Differences in the (left) mean and (right) subseasonal standard deviation of the meridional wind speed (m s21) for (a),(f) CFSR;

(b),(g) 0514ALL; (c),(h) 0514SST; (d),(i) 0514ICE; and (e),(j) 0514CO2 (for CFSR the differences are 2005–14 minus 1981–90; for the

AMIP simulations the differences are relative to 8190ALL). Hatching denotes statistical significance at 95% confidence.
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FIG. 7. Differences in the subseasonal (left) mean and (right) standard deviation of meridional temperature advection (K day21) for

(a),(f) CFSR; (b),(f) 0514ALL; (c),(g) 0514SST; (d),(h) 0514ICE; and (e),(i) 0514CO2 (for CFSR the differences are 2005–14minus 1981–

90; for the AMIP simulations the differences are relative to 8190ALL). Hatching denotes statistical significance at 95% confidence.
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temperature advection over two key regions, and how

changes in the variability of temperature advection im-

pact the frequency of temperature extremes.

The model simulations with changed sea ice have the

greatest amount of surface warming in the Arctic with

less in the lower latitudes. This reduces the north–south

temperature gradient as pointed out in previous studies

(e.g., Francis and Vavrus 2012). However, we did not see

substantial changes in temperatures above the surface

[seeCollow et al.’s (2018) Fig. 5 as a reference], indicating

that the surface temperature changes alone are the pri-

mary driver for the changes in variability. Our results are

more in line with previous work by Holmes et al. (2016)

that showed that changes in the mean state temperature

gradients account for the majority of the changes in

temperature variability. Schneider et al. (2015) explain

that Arctic amplification of global warming leads to less

frequent cold outbreaks than just a warmer climate itself,

meaning that again the decreased gradients play a key

role. Screen et al. (2014) also established a reduction in

temperature variability in the northern midlatitudes due

to a smaller difference in temperature advection between

northerly and southerly winds.

Our study found that the variability of the subseasonal

temperature advection decreased owing to a decrease in

both anomalous warm and cold extremes, thus reducing

2-m temperature variability. We did not note any sig-

nificant changes in winds (zonal or meridional) remotely

due to sea ice loss. Blackport and Kushner (2016)

showed only very weak decreases in Arctic upper-level

zonal winds and concluded that additional work is

needed to determine whether or not those changes are

the result of sea ice loss, or an overall consequence of

mean global warming. As in our study, their mean

temperature changes were confined to the lower tropo-

sphere of the high latitudes. Although we only focused

on surface winds (10m), we conclude that changes are

more likely the result of SST increases and not sea ice

loss. Since the winds are generally unchanged, we con-

clude that the reduced temperature gradient is respon-

sible for the reduction in surface temperature variability

and does so through weaker warm and cold tempera-

ture advection, seen through the reduced standard

deviations.

Themost robust results occurred overNorthAmerica,

which had more warming and temperature gradient

TABLE 2. Meridional temperature advection (K day21) and intraseasonal-anom standard deviation (K) area mean values and differ-

ences over the Eurasia domain. For CFSR the difference is the 2005–14 period relative to the 1981–90 period, and for the model simu-

lations the differences are relative to 8190ALL. Boldface type denotes that the differences are significant at the 95% confidence interval.

Meridional

temperature advection

std dev area mean

Meridional

temperature advection

std dev diff

Meridional

temperature advection

std dev % diff

Intraseasonal-

anom std dev

area mean

Intraseasonal-

anom std

dev diff

Intraseasonal-

anom std

dev % diff

CFSR

1981–90 1.23 6.46

2005–14 1.05 20.18 214.63 5.95 20.51 27.90

AMIP

8190ALL 1.26 7.19

0514ALL 1.22 20.04 23.17 6.93 20.26 23.62

0514SST 1.26 0.00 0.00 7.09 20.10 21.39

0514ICE 1.21 20.05 23.97 6.89 20.30 24.17

0514CO2 1.26 0.00 0.00 7.13 20.06 20.83

TABLE 3. As in Table 2, but for the North America domain.

Meridional

temperature advection

std dev area mean

Meridional

temperature advection

std dev diff

Meridional

temperature advection

std dev % diff

Intraseasonal-

anom std dev

area mean

Intraseasonal-

anom std

dev diff

CFSR

1981–90 1.85 6.16

2005–14 1.73 20.12 26.49 5.37 20.79 212.82

AMIP

8190ALL 1.73 5.88

0514ALL 1.59 20.14 28.09 5.52 20.36 26.12

0514SST 1.72 20.01 20.58 5.89 0.01 0.17

0514ICE 1.60 20.13 27.51 5.55 20.33 25.61

0514CO2 1.72 20.01 20.58 5.86 20.02 20.34
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reduction within the domain than over Eurasia (Fig. 2),

and the changes could be better attributed to the sea

ice loss rather than internal variability (Fig. 4). Other

mechanisms are likely in place and require further testing

(i.e., changes in surface properties, cloud cover, vertical

temperature profiles), in addition to investigating local-

ized changes in temperature variability due to sea ice loss

in a specific region at a certain time within the 6-month

period (i.e., Hudson Bay). Our primary result regarding

larger-scale changes in temperature variability agrees

with several other published works and adds to the

growing consensus that sea ice loss can only explain re-

ductions in near-surface temperature variability over the

northern midlatitudes.

In conclusion, answers to the questions posed in sec-

tion 1 are as follows: 1) Mean seasonal-cycle differences

in the AMIP runs are not substantial, but it is shown

that, at times, all of the model simulations are capable

of reproducing the seasonal-cycle differences from the

two CFSR periods. AMIP simulations that reduce sea

ice loss (0514ALL and 0514ICE) have the greatest re-

duction in 2-m temperature anomaly variability over

the northern midlatitudes. The reduction in tempera-

ture anomaly variability is found to be significant and

representative of a long-term pattern change as a result

of sea ice conditions remaining at 2005–14 levels. 2) Sea

ice loss reduces the temperature anomaly variability

through decreasing the magnitude of both warm and

cold extremes, confirming our hypothesis at the end of

section 2. 3) While an exact pathway linking the sea ice

loss with the temperature variability decrease is difficult

to establish, it would appear that the reduced north–

south temperature gradient works to reduce tempera-

ture extremes through reductions in the variability of

meridional temperature advection.
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