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ABSTRACT

This study presents the development and testing of two statistical models that simulate tornado potential
and wind speed. This study reports on the first-ever development of two multiple regression—-based models to
assist warning forecasters in statistically simulating tornado probability and tornado wind speed in a di-
agnostic manner based on radar-observed tornado signature attributes and one environmental parameter.
Based on a robust database, the radar-based storm-scale circulation attributes (strength, height above ground,
clarity) combine with the effective-layer significant tornado parameter to establish a tornado probability. The
second model adds the categorical presence (absence) of a tornadic debris signature to derive the tornado
wind speed. While the fits of these models are considered somewhat modest, their regression coefficients
generally offer physical consistency, based on findings from previous research. Furthermore, simulating these
models on an independent dataset and other past cases featured in previous research reveals encouraging
signals for accurately identifying higher potential for tornadoes. This statistical application using large-
sample-size datasets can serve as a first step to streamlining the process of reproducibly quantifying tornado
threats by service-providing organizations in a diagnostic manner, encouraging consistency in messaging
scientifically sound information for the protection of life and property.

1. Introduction reviews including references documenting past research
that has quantified tornado threat. Within an expansive
dataset containing 22901 tornado and significant severe
thunderstorm events, of which 10753 events were torna-
does, they manually assigned a convective mode to each of
the parent storms based on WSR-88D data. Additionally,
attributes of the near-storm environment were consid-
ered, including the significant tornado parameter (STP;
Thompson et al. 2012), through the use of the Storm
Prediction Center (SPC) mesoanalysis system (Bothwell
et al. 2002). The net result of this work has been a better
understanding of the relationship between the convective
mode and the environment in which the tornadic storms
occur. Moreover, geographic variability of these tornado-
* Current affiliation: National Weather Service, Topeka, Kansas.  ,ccociated attributes was a major focus of their work.
Smith et al. (2015) extended the aforementioned
Corresponding author: Ariel E. Cohen, ariel.cohen@noaa.gov work forward to deriving conditional probabilities of

Recent significant advances have occurred in the mete-
orological community’s ability to reproducibly evaluate
and quantify the threat for tornadoes. In an age of in-
creasing need for accurate, high-precision forecasts, this
work is becoming increasingly integrated into daily
National Weather Service operations. Smith et al. (2012)
and Thompson et al. (2012) laid the initial groundwork
for relating storm-scale characteristics and near-storm
environments to tornado damage ratings with a large
sample size, while also providing detailed literature
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tornado damage ratings—conditional upon the known
occurrence of a tornado. This diagnostic approach to
quantifying tornado damage rating probabilities takes full
advantage of the attributes previously discussed, with the
addition of radar-based low-level rotational velocity, and is
one of the first known attempts to provide explicit proba-
bilistic information about tornado damage ratings based
on the presence of a tornadic storm and its interaction
with the background environment. This work pro-
vides an important level of quantification for increasing
or decreasing confidence in potential tornado impacts
from convective elements known to be producing tor-
nadoes. Accordingly, this yields reproducible guidance for
forecasters to express varying levels of potential tornado
impact in critical warnings and statements based on indi-
vidual storm-scale and environmental characteristics.
Even more recently, Thompson et al. (2017) demon-
strated that tornado damage rating probabilities can be
determined by considering many of the storm-scale and
environmental attributes that were also documented by
Smith et al. (2015). However, using a large dataset of
severe weather reports from 2014 to 2015, Thompson
et al. (2017) compared attributes associated with tor-
nadic storms to nontornadic severe thunderstorms,
yielding the first attempt at quantifying tornado damage
ratings, conditional only on the presence of a supercell
or quasi-linear convective system (QLCS) with low-
level cyclonic rotation. The Thompson et al. (2017)
sample allows quantification of tornado damage rating
probabilities through varying the peak low-level rota-
tional velocity, height above radar level, circulation
diameter, a “clear and/or tight” categorical and binary
assessment that is subjectively determined and character-
izes the visual clarity and spatial coherency of the circu-
lation, and the presence of a dual-polarization (dual-pol)
tornadic debris signature (WDTD 2016), along with other
attributes (e.g., mesoanalysis STP and convective mode).
This approach has permitted reproducible tornado
threat assessment for severe storms based on storm at-
tributes and environmental conditions. Such findings
continue to solidify our understanding of the pro-
pensity for ongoing convection to produce tornadoes.
The series of aforementioned studies (i.e., Smith et al.
2012, 2015; Thompson et al. 2012, 2017, and references
therein) outline the present state of research on tornado
quantification leading up to the present. Meanwhile, the
present study continues to extend the foundation that the
previously mentioned studies have laid, specifically in
terms of providing a multivariable analysis of tornado
probabilities and tornado wind speeds based upon dam-
age ratings. In particular, this present work will employ
multivariable regression analysis to develop linear
statistical models (Pindyck and Rubinfeld 1981) that
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simultaneously combine many of the variables that Smith
et al. (2015) and Thompson et al. (2017) found to explain
conditional and unconditional tornado probabilities. One
statistical model is constructed to simulate tornado prob-
abilities in a diagnostic manner, and another statistical
model is constructed to simulate tornado wind speeds,
based upon tornado damage ratings. The purpose of these
models is to apply the results of the previous studies that
concisely combine several factors known to influence
tornado probability and rating assessment, in order to
provide additional operational insight into assessing tor-
nado potential and impact from severe thunderstorms. By
simply providing readily ascertainable information from
WSR-88D and the SPC mesoanalysis system as input to
these models, statistical simulations of the tornado threat
can be reproducibly integrated into critical messaging.

2. Methodology

The full dataset of tornado, severe hail, and severe
wind events documented by Thompson et al. (2017)
was first separated into two datasets: tornado and non-
tornado severe events. Subsequently, each of the events
was assigned a random number, and then random-
numbered events were sorted by ascending random num-
ber within separate tornado and nontornado datasets.
Within the tornado dataset, the first 500 tornado events,
sorted by ascending random number, were assigned to an
independent tornado dataset. Likewise, within the non-
tornado dataset, the first 500 nontornado events, sorted
by ascending random number, were assigned to an in-
dependent nontornado dataset. Cases with missing signif-
icant tornado parameter information were removed,
leaving a total of 498 tornado events and 499 nontornado
events, for a total independent database size of 997 events.
The remaining tornado and nontornado events were
combined into a large training dataset comprising a total of
5206 events (tornado and severe hail/wind), serving as the
basis for the development of the tornado probability
model. The 5206 events consist of a total of 1025 tornado
events, which are considered separately in the develop-
ment of a statistical model that simulates tornado wind
speeds. As a result, the size of the independent dataset is
about 19% that of the training dataset.

The statistical model for simulating tornado wind
speed given a tornado is a basic multivariable, linear
regression form:

y= (galxi>+b, (1

where y corresponds to the tornado wind speed simulated,
and a; represents each of the regression coefficients
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corresponding to the predictors x;, used as inputs for the
model. The number of input predictors is referred to as
m, and b represents the intercept value of the model. An
important consideration here is that the regression is
performed on the average wind speed for each tornado
damage rating. This treats the tornado wind speed as the
predictand of the regression, with the regression for-
mulated by averaging the minimum and maximum wind
speeds corresponding to the damage rating for each
event. As such, enhanced Fujita (EF) tornado damage
ratings of 0, 1,2, 3,4, and 5 were assigned as tornadoes with
wind speeds of 75mih~! (averaging 65 and 85mih™"),
98mih ™! (averaging 86 and 110mih~ '), 123mih™' (av-
eraging 111 and 135mih '), 151 mih ! (averaging 136 and
165mih™'), 183mih ™' (averaging 166 and 200mih '),
and 218mih~' (averaging 201 and 234mih™'), re-
spectively. This is done to ensure that the real-number
predictand is indeed consistent with a continuous vari-
able (i.e., wind speed), as opposed to the discrete EF-
scale ratings. The simulated EF-scale ratings can then be
subsequently determined from the simulated tornado
wind speeds, if desired. The aforementioned wind
speeds are based on the operational EF scale, with the
derived EF scale used only for the upper limit of the EF5
damage rating. Wind speeds are provided in miles per
hour (mih™') herein owing to the National Weather
Service’s use of this wind speed scale for operational
forecasting means. Note the conversion between miles per
hour, knots (kt), and meters per second is as follows:
Imih™' = 0447ms™' = 0.869kt.

For simulating tornado probabilities, a binary logistic
regression equation is used:

1

e E) )

where each of the variables used in this regression model
has the same meaning as in the linear Eq. (1). The
logistic regression analysis was chosen for simulating
tornado probabilities because it binds the simulated
probabilities between 0 and 1 (multiplied by 100% to
yield units of percent) and, more importantly, be-
cause this methodology enables the conversion of
binary values (0 and 1) to a continuous range of
probabilities.

For both tornado probabilities and tornado wind
speed simulations, the regressions are performed on the
training dataset and then tested on the independent
dataset, as a simulation on a mutually exclusive dataset
from that which was used to create the model. Both Egs.
(1) and (2) are addressed in numerous statistics text-
books (e.g., Pindyck and Rubinfeld 1981).

y= (2)

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:53 PM UTC

FORECASTERS’ FORUM

1101

For the case of simulating tornado probabilities,
candidate predictors are those individual variables that
Smith et al. (2015) and Thompson et al. (2017) found to
offer utility in explaining tornado probabilities: height of
sampled circulation above radar level (arl, measured
in ft), peak average rotational velocity (v, measured
in kt), circulation diameter (dist, measured in nmi;
Inmi = 1.852km), clear/tight designation (ct), and
effective-layer significant tornado parameter (stp). Only
one of these predictors, ct, is binary (treated as 0 for a dif-
fuse circulation and 1 for a clear and tight circulation). The
probability simulation model is crafted by performing
multivariable regression of tornado occurrence on the
various predictor inputs from the training dataset. The
formulation of this model treats tornado occurrence as
binary (0 for a nontornadic event and 1 for a tornadic
event). The regression process effectively determines
an expected value for the predictand, which corre-
sponds to a probability of tornado occurrence, based on
the inputs used in creating the model. Note that the
probabilities derived from this model need to be mul-
tiplied by 100% to attain units of percent.

For the determination of simulated tornado wind
speed, the candidate inputs are the same as those used
to simulate tornado probabilities, except the dual-pol
tornadic debris signature (tds) variable is added as a
predictor for this model. We treat tds as a binary
predictor, with possible values of 0 (no tds present) or
1 (tds present). The tornado wind speed model per-
forms multivariable linear regression of actual tor-
nado wind speeds in the training dataset on the
various predictor inputs.

The choice to incorporate tds into the statistical
model for tornado wind speed, but not for tornado
probability, reflects the difference in a priori knowl-
edge of tornado occurrence between the two models.
For the tornado probability model, it is assumed that
the simulation of tornado probability makes no a
priori assumption of tornado occurrence. This effec-
tively generalizes the utility of this model to cases
where no prior knowledge of a tornado is available.
Furthermore, if a tds' were to become evident, that
would set the tornado probability to 100% in practice.
In the case of the statistical model simulating tornado
wind speeds, the regression is performed on known
tornado cases and thus this model is applicable to the
condition of tornado occurrence being met. The tds
can provide real-time evidence of meeting this condi-
tion, thus its incorporation in this model.

! A tornadic debris signature can persist just beyond the life span
of a tornado.
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TABLE 1. Regression coefficients and P values corresponding to
multiple regression analysis for deriving the tornado probability
statistical model.
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TABLE 2. Regression coefficients and P values corresponding to
multiple regression analysis for deriving the tornado wind speed
statistical model.

Regression coefficient P value Regression coefficient P value
Vrot 0.0552 <0.001 arl 5.96 x 1074 0.009
dist —0.684 <0.001 Vrot 0.588 <0.001
ct 0.835 <0.001 stp 1.50 <0.001
stp 0.0473 0.058 tds 12.2 <0.001
intercept —2.51 <0.001 intercept 60.7 <0.001

For both the tornado probability and tornado wind
speed statistical models, variables that offer little ex-
planatory power are removed from the respective
models, before creating final versions of the regression
models. This is accomplished by setting a P-value
threshold of 0.10, with predictors offering P values at or
above 0.10 being removed prior to the formulation of
the final regression model. Restricting variable in-
corporation to a P-value threshold at or below 0.10,
while arbitrarily selected, represents a level of at least
marginal significance that the variable explains the re-
gression model for which it is being fit. After each of the
statistical models is created and finalized with the asso-
ciated attributes presented, the inputs from the inde-
pendent dataset are used to statistically simulate the
tornado probability and tornado wind speed for each
constituent event. Differences between the simulation
and what actually occurred (i.e., the value of performing
the model simulation on a dataset for which actual
outcomes are known) are also subsequently presented.
Finally, these statistical models are applied to specific
cases addressed by Thompson et al. (2017), and the re-
sults are subsequently displayed.

3. Results and discussion

The tornado probability model yields the regression
coefficients and corresponding P values listed in Table 1.
The P values are determined using the standard normal
distribution (Pindyck and Rubinfeld 1981), and pre-
dictors that are retained following the P-value-based
filtration process specified earlier are v, dist, ct, and
stp. The Somers’ D statistic (Somers 1962) is used as a
measure of the goodness of fit owing to its assessment
of a probabilistic model, and this statistic can range
from —1 to 1. Somers’ D statistic values closer to 1
and —1 imply a better-fitting model, while values closer
to 0 imply a worse-fitting model. In this case, the Somers’
D statistic is found to be 0.58. While this value, in this
case, may not be considered high or strong, it may still
suggest that this regression approach could provide
some practical value, even if the exact model does not
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offer a perfect statistical fit. The approximations and
inherent error to inputs of the forecast process are as-
sociated with some degree of error in any model.

Encouragingly, the physical implications of these
regression coefficients are all reasonable and consis-
tent with the behaviors that Smith et al. (2015) and
Thompson et al. (2017) identified in their work re-
garding tornado probabilities. Specifically, an increase
in tornado probabilities can be explained by increasing
Vo, decreasing dist, a clear/tight designation, and/or
increasing stp. Based on the P values provided, v,, dist,
and ct suggest the strongest relationship to tornado
probability assessment, followed by stp.

Similar to the analysis performed for the tornado
probability model, Table 2 presents the attributes of the
tornado wind speed model. In this case, P values are
determined using the standard normal distribution
(Pindyck and Rubinfeld 1981). Predictors that are re-
tained following the P-value-based filtering process
specified earlier are arl, v, tds, and stp. The R-squared
statistic for this linear regression is 0.38. In a simi-
lar regard with the tornado probability model, the
R-squared value for the tornado wind speed model still
may not be considered high or strong, though practical
value may still be extracted from this model, even if it
does not provide exact tornado wind speeds perfectly.
Once again, the physical implications of these regression
coefficients are generally reasonable. For instance, an
increase in tornado wind speed can be explained by in-
creasing vy, increasing stp, the presence of a tds, and/or
lowering arl. Based on the P values provided, vy, stp,
and tds suggest the strongest relationship to simu-
lated tornado wind speeds, followed by arl. Also,
similar to the tornado probability model, simulated
tornado wind speeds can be appropriately scaled
within the context of traditional tornado damage rat-
ings (i.e., EF0-5).

Applying the model developed for tornado proba-
bilities with corresponding regression coefficients in
Table 1 to the independent dataset yields appreciable
separation between probabilities corresponding to
tornado events (total of 498 tornado events) and
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F1G. 1. Box-and-whisker plots corresponding to the simulated tornado probabilities from the independent dataset
for (left) tornadic and (right) nontornadic events. Boxes correspond to interquartile ranges (25th—75th percentiles)
with the embedded marker indicating the median (50th percentile) of the distributions, and whiskers extending to
the 10th and 90th percentiles of the distributions. The plotted values are in percent, following multiplication of the
tornado probabilities by 100%. Sample sizes for each of the distributions are provided below the horizontal axis in

parentheses.

probabilities corresponding to nontornado events (total
of 499 nontornado events). This is illustrated by the box-
and-whisker plots shown in Fig. 1. In fact, the 25th
percentile of the tornado probability for the tornado
events is similar to the 75th percentile of the tornado
probability for the nontornado events. This implies
meaningful separation in practice between the tornado
and nontornado events for the simulated probabilities,
as well as the utility offered by this statistical model.
While there is notable separation between the tornadic
and nontornadic distributions, especially between the
interquartile ranges, one is cautioned that there is still
some overlap between the distributions that is exacer-
bated in practice owing to the proportionally greater
number of severe thunderstorms with circulations that
do not produce tornadoes compared to those that do
produce tornadoes.

Applying the model developed to compute simulated
tornado wind speeds using the regression coefficients in
Table 2 to the independent dataset suggests that this
model is generally reasonable in simulating wind speeds,
as shown in the box-and-whisker plot presented in Fig. 2.
There is a general tendency for increasing the actual
estimated tornado peak wind speeds based on damage
to be associated with increasing computed tornado wind
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speed based on the statistical simulations. For significant
tornadoes (EF2+), this model offers a general un-
derestimate of tornado wind speeds, and this could be
explained by the small sample size of higher-end tor-
nadoes in the training dataset, yielding comparatively
minimal influence in the corresponding model. This
could be motivation for developing a model with more
similar sample sizes representing each of the tornado
wind speeds. Regardless, the application of the tornado
wind speed model on the independent dataset de-
finitively suggests a signal for trends in model output
simulations to correspond to similar trends in reality.
Additionally, both the tornado probability and tor-
nado wind speed models are applied for three of the
cases illustrated by Thompson et al. (2017). Two of these
cases, shown in their Figs. 5 and 12, provided and an-
notated further in Figs. 3 and 4, respectively, correspond
to significant tornado occurrence. In both cases, the
tornado probability model is simulated to produce
probabilities of nearly 100%, and tornado peak wind
speed estimates based on damage that represent signif-
icant tornadoes (EF2+). In both of these cases, these
models perform very well in accurately highlighting
high confidence of significant tornado occurrence. The
third case, shown in Thompson et al.’s (2017) Fig. 13,



1104

140

WEATHER AND FORECASTING

VOLUME 33

135

130

125

120

115

110

105

100 —1007

02—25%

98.3
95 —

96.5

90 -90.8 — 1

85 - 37 — 84:6

Predicted Wind Speed (mph)

80 1 LL?JBEQ-

|

75 1 75:6

70 A

65 1

60
EFO (65-85 mph; 251)

EF1 (86-110 mph; 187)

EF2(111-135 mph; 47) EF3-4 (136-200 mph; 13)

FI1G. 2. Box-and-whisker plots corresponding to the simulated tornado wind speeds from the independent dataset for tornadic events.
These tornadic events are binned along the horizontal axis by the EF scale (EF3 and EF4 grouped together), with corresponding wind
speeds and sample sizes provided in parentheses. Boxes correspond to interquartile ranges (25th—-75th percentiles) with the embedded
marker indicating the median (50th percentile) of the distributions, and whiskers extend to the 10th and 90th percentiles of the distri-
butions. Colored bars represent the range of binned tornado wind speeds that each EF rating or rating group represents: green for EF0,
yellow for EF1, orange for EF2, and red for EF3 and EF4 (extending above the plotted vertical axis range).

provided and annotated further in Fig. 5, corresponds
to a nontornado event. In this case, the simulated tor-
nado probability is minimal (i.e., 7%), suggesting an-
other accurate assessment of the likelihood of this
circulation to produce a tornado. Output from a tornado
wind speed simulation is not provided for this case, as
the tornado wind speed statistical model was developed
and conditioned on the existence of a tornado.

As a consideration regarding the quality of observa-
tions serving as the foundation for both the training and
independent datasets, there are ultimately flaws in the
tornado database that translate to a limitation of this
analysis. Such flaws include an underrating bias, which
has direct implications on the opportunity for this
regression to represent “truth.” Kingfield and LaDue
(2015), Strader et al. (2015), and Alexander and
Wurman (2008) all collectively highlight some of the
flaws of the tornado database. While this database is the
official documented source of tornado information,
corresponding results from the statistical models need
to be considered within the context of the flaws of
the tornado database. Additionally, the tornado wind
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speed model incorporates the maximum EF rating along
the entire path of each tornado event and the maximum
average rotational velocity, which are not necessarily
collocated. Some of the variability and possible error in
the simulated tornado wind speeds could be explained
by this lack of collocation. Moreover, the modest magni-
tude of the Somers’ D statistic and R-squared statistic
might serve as motivation to use a more precise matching
of v,y with damage indicators for well-surveyed tor-
nadoes in areas with sufficient damage-indicator den-
sity to reveal actual tornado intensity.

4. Conclusions

This study is the first to develop an applications-based,
multivariate statistical model based on the databases
created by Smith et al. (2012), Thompson et al. (2012),
Smith et al. (2015), and Thompson et al. (2017). In
particular, using the database from Thompson et al.
(2017), multiple regression analysis was used to develop
statistical models that simulate tornado probabilities
and tornado wind speed based on the peak average
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From Radar

FIG. 3. Figure 5 from Thompson et al. (2017), with an annotation provided at the top indicating the output from
the tornado probability model and tornado wind speed model for the circulation illustrated here. The actual es-
timated peak wind speed based on damage is also annotated. For this example, the following inputs characterize the
regression equations [Egs. (1) and (2)]: arl = 900 ft, v,o; = 92.8kt, dist = 0.1 nmi, ct = 1, tds = 1, and stp = 4.72.

rotational velocity, height of circulation above radar
level, circulation diameter, whether the circulation was
characterized as clear/tight, and the effective-layer sig-
nificant tornado parameter, with the presence or ab-
sence of a dual-pol tornadic debris signature considered
for the tornado wind speed model. These statistical
models yield relatively modest R-squared statistics
though the signs and P values corresponding to the
regression coefficients are generally consistent with
physical implications addressed by Thompson et al.
(2017) and Smith et al. (2015).

Furthermore, within the general context of the storm-
scale circulation’s and environment’s propensity to
support tornadoes and certain simulated tornado peak
wind speeds, these models offer practical insights that
can be communicated as various levels of confidence for
tornado impacts in real-time severe weather events. This
is affirmed through simulating these models on an in-
dependent dataset—separate from the training dataset
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upon which the models were constructed. The simula-
tions yield relatively strong separation between com-
puted tornado probability simulations corresponding to
tornado events and nontornado events. Additionally, it
is apparent that, with increasing actual tornado wind
speeds based on documented EF-scale rating, the statis-
tical model also simulates increasing tornado wind speeds
for the independent dataset, implying at least some de-
gree of consistency between simulation and reality. Ap-
plications of the models to specific cases addressed by
Thompson et al. (2017) reveal convincing support for
the validity of this model for the opposite ends of circula-
tion strength and impact spectra represented by these cases.

This work is intended to be a step in applying the
dataset presented by Thompson et al. (2017). The
models created from this dataset could be integrated
into an operational workflow, permitting quantifica-
tions of tornado threat. This work has also high-
lighted avenues for additional research. For example,
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FIG. 4. As in Fig. 3, but corresponding to Fig. 12 in Thompson et al. (2017). For this example, the following inputs
characterize the regression equations [Egs. (1) and (2)]: arl = 1200 ft, v, = 116 kt, dist = 0.2nmi, ct = 1,tds = 1,

and stp = 1.94.

the development of more sophisticated models could
be a focus of subsequent research. Models founded on
larger sample sizes within individual wind speed bins
may also provide an opportunity to better represent the
higher-end tornado threats. Varying sample-size con-
stituents of the training and independent datasets could
assist in building more sophisticated models via testing,
as well. Incorporation of convective mode could also
be a focus of additional model development. The notion
of developing separate models for different geographic
divisions of the country could also be considered, owing to
the spatially varying nature of the damage indications that
influence both tornado occurrence documentation and
tornado damage rating documentation. Also, since the
tornado wind speed statistical simulation was built solely
on the tornado dataset, its use is conditional upon
knowledge of a tornado’s occurrence (e.g., that associated
with a tornadic debris signature or a report). A more so-
phisticated model could mitigate the conditionality of a
known tornado occurrence to simulate a wind speed in
cases where it is unknown whether a tornado is occurring.

Ultimately, the work that Thompson, Smith, and their
collaborators have done, as cited throughout this work,
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has opened the doors for a plethora of research stem-
ming from the severe thunderstorm and tornado data-
base. This represents a first attempt at directly applying
their work into a form that can be instituted into oper-
ational practice for simulating tornado potential and
wind speed in a diagnostic manner. It is cautioned that
no attempt has been made to specify the prognostic—or
forecast—utility of these models. Rather, given the
present state of the storm circulation and near-storm
environment, these regression models provide simu-
lation utility, based on present storm-scale and envi-
ronmental conditions contextualized in terms of
event-based documentation from the past. Ultimately,
such work serves as the foundation for evolving warning
services, including such initiatives as ‘““warn on forecast”’
(Stensrud et al. 2009) and Forecasting a Continuum of
Environmental Threats (FACETs; Rothfusz et al. 2013).
These initiatives represent clear paths to build from di-
agnostic information regarding tornado potential, per-
haps following the methodology outlined in this study,
and then project forward in time and space. This would
require ensuring more stringent, reproducible bounds on
what is defined as a clear and tight circulation, for which
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FIG. 5. As in Fig. 3, but corresponding to Fig. 13 in Thompson et al. (2017) without the simulated tornado wind
speed and without the actual estimated peak wind speed based on damage, as no tornado occurred. For this ex-
ample, the following inputs characterize the regression equations [Egs. (1) and (2)]: arl = 3100 ft, v, = 29.6 kt, dist

=3.0nmi, ct =0, tds = 0, and stp = 0.

the subjectivity in the present work offers a limitation.
Automated systems could potentially permit such re-
producibility by leveraging automated rotational ve-
locity computations. The infusion of the methodologies
presented in this study with convection- and environment-
diagnosing systems may yield numerous opportunities
to enhance the spatiotemporal precision of accuracy
of high-impact weather information. It is our hope that
these statistical models applied to physically based re-
sults can become infused into infrastructure that sup-
ports accurate and consistent messaging of critical
severe weather threats.
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