
1.  Introduction
To make accurate and precise predictions of climate change, global climate models (GCMs) should realistically 
include and resolve as many physical processes as possible. However, computational power is an important 
constraint, so trade-offs must be considered, for example between grid spacing and subgrid parameterization. 
Current GCMs with grid spacings of 50 km or more can be affordably run for thousands of years, using physical 
parameterizations for subgrid-scale processes such as cumulus convection and gravity wave drag. However, these 
parameterizations are a major source of uncertainty (Shepherd, 2014), and as a result, even the same model, when 
run at finer resolution, might project different regional patterns of climate change (van der Wiel et al., 2016). 
Furthermore, spatial resolution trade-offs mean coarse-grid simulations often cannot represent important 
processes like rainfall as well as finer grid runs (e.g., Caldwell et al., 2021; Stevens et al., 2020).

Through the use of machine learning (ML), it may be possible to improve affordable coarse-grid model simula-
tions by leveraging output from finer-grid runs. This has been demonstrated in idealized settings by Brenowitz 
and Bretherton  (2019), Yuval and O’Gorman  (2020), Yuval et  al.  (2021), Yuval and O’Gorman  (2021), and 
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recently in a real-geography setting in Bretherton et al. (2022), hereafter referred to as “B22.” In Brenowitz and 
Bretherton (2019), Yuval and O’Gorman (2020), Yuval et al. (2021), Yuval and O’Gorman (2021), ML models 
were trained using coarse-grained outputs of fine resolution reference runs to fully represent the apparent sources 
(Yanai et al., 1973) of temperature, moisture, or horizontal momentum of the coarse model, while in B22 correc-
tions to the parameterized apparent sources as well as the full radiative fluxes were learned. In each of these 
studies, when run with these ML tendencies included, aspects of the coarse simulations behaved more like the 
coarsened fine resolution model.

Other recent hybrid ML approaches are also notable. Farchi et al. (2021) trained neural networks to predict state 
corrections to perturbed-parameter two-layer quasi-geostrophic simulations. The ML-corrected simulation with 
perturbed parameters more accurately matched the evolution of the simulation with the original parameters than 
a perturbed parameter simulation without ML. In addition, in a more realistic setting, Watt-Meyer et al. (2021), 
hereafter “W21,” and Arcomano et al. (2022) both learned from reanalysis data to improve the forecast skill and 
climatology of real-geography atmosphere models. In the case of W21, corrective tendencies were predicted 
using a random forest, while in the case of Arcomano et al. (2022) a reservoir computing approach was used to 
weight predictions of the dynamical atmosphere model and a corrective ML model for the state at each time-
step. Both of these approaches were able to produce hybrid simulations that could run stably for extended periods 
of time, at least one year in the case of W21, and at least 10 years in the case of Arcomano et al. (2022).

In this study we extend the corrective ML approach introduced in W21 and B22 to multi-year simulations in 
multiple climates. Based on the output of coarse-grid simulations that were nudged to spectrally truncated obser-
vational analysis or the coarsened state of a fine-grid model, W21 and B22 trained machine learning models 
to predict corrections to the physical parameterization tendencies of a full-geography coarse-grid model in the 
present-day climate. When applied in otherwise free-running prognostic simulations, these corrections brought 
the precipitation climatology of the coarse model closer to that of observations or a coarsened fine-grid reference. 
We apply similarly obtained ML corrections in free-running prognostic simulations in multiple climates, and 
we quantitatively evaluate their impact on improving selected climate metrics compared to baseline simulations 
without ML corrections. Biases are calculated with respect to the coarsened fine-grid reference simulations. 
Because this ML approach optimizes only single timestep evolution versus the fine-grid reference simulations, 
it is not guaranteed to yield stable simulations with smaller long term mean biases in all climates than for the 
baseline model.

To keep the scope manageable, our simulations use specified sea-surface temperature (SST) distributions to 
which globally uniform offsets are added to generate colder and warmer climates. We use a ∼25 km grid version 
of our climate model as our fine-grid reference, and a ∼200 km grid version of the same model with the same 
set of parameterizations serves as the coarse-grid model whose baseline (no-ML) simulations are to be improved 
using the ML. Eventually, like B22, we would like to use a global storm resolving model with a 3 km or finer 
horizontal grid as the reference model, but it is still too computationally expensive to make the multi-year simu-
lations over multiple climates that would entail.

To develop an effective multi-climate scheme, we build upon earlier findings that ML models perform best when 
making predictions within the bounds of their training data (O’Gorman & Dwyer, 2018; Rasp et al., 2018). New 
offline results suggest that it may be possible to develop ML parameterization (Beucler et al., 2021) or classifica-
tion (Molina et al., 2021) schemes that generalize to climates outside their training range. However, to minimize 
any changes to the method this work is based upon B22, we choose to focus our offline and online tests on the 
range of climates present in our training data, since application of the methods of B22 in multiple climates is 
novel in and of itself.

Our goal is to deploy ML that improves coarse resolution climate simulations of indefinite duration. Recently, an 
analogous study used the output of a present-climate superparameterized GCM to train deep neural nets to emulate 
the apparent sources of temperature and humidity generated by the cloud-resolving models running within each 
GCM grid column (Wang et al., 2021; Y. Han et al., 2020). With an extensive trial-and-error approach, they found 
an ML configuration that ran stably for 5 years with time-mean biases in temperature and precipitation relative to 
the superparameterized reference simulation that were comparable to a conventional GCM. Here, we also test the 
approach using 5 year ML-corrected runs–significantly longer than those attempted in W21 or B22–to see how 
the method performs, not just on the current climate, but also with SSTs ranging from 4 K colder to 8 K warmer.
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Section  2 presents our simulation, training, ML, and evaluation methods. Section 3 presents results for both 
offline and online skill across the selected range of climates. Section 4 presents a discussion and conclusions.

2.  Methods
As in W21 and B22, the coarse model we aim to improve is a 79-level C48 (∼200 km) resolution version of 
NOAA's FV3GFS (https://github.com/ai2cm/fv3gfs-fortran), a full-complexity atmosphere model typically 
used for numerical weather prediction (UFS Community, 2020). It is based on the FV3 dynamical core (Harris 
et al., 2021; Putman & Lin, 2007) and contains a configurable suite of physics parameterizations. The dynam-
ical core uses the same number of vertical remappings (1) per physics timestep and dynamical substeps per 
vertical remapping (6) as in W21 and B22. The number of vertical remappings refers to the frequency at which 
mass and other prognostic variables are conservatively regridded to follow an Eulerian hybrid sigma-pressure 
coordinate, a resetting mechanism for the otherwise Lagrangian vertical coordinate of the FV3 dynamical 
core, while the number of dynamical substeps refers to the frequency at which the fundamental Lagrangian 
dynamics are called (Harris et al., 2021). For this work, in terms of physical parameterizations, the model is 
configured to use the hybrid eddy-diffusivity mass flux turbulence scheme (J. Han et al., 2016), the GFDL 
microphysics (Zhou et al., 2019), the scale-aware mass flux shallow and deep convection schemes (J. Han & 
Pan, 2011), the Rapid Radiative Transfer Model for GCMs (Iacono et al., 2008), a gravity wave drag scheme 
(Alpert et al., 1988), a mountain blocking scheme (Lott & Miller, 1997), and the Noah land surface model 
(Ek et al., 2003).

These are the same schemes as those used in W21, but there are two configuration differences. The first is that 
we reduce the physics timestep to 450 s, which is needed to stabilize runs in warmer climates. The second is that 
we configure the model to be run with some microphysical processes occurring in the vertical remapping loop 
of the dynamical core in addition to the physics. This is consistent with our fine-resolution simulations. These 
are run with seven vertical remappings per physics timestep, since frequent application of microphysical adjust-
ments leads to a more accurate representation of precipitation (Zhou et al., 2019). Although the coarse-resolution 
simulations use only one vertical remapping per physics timestep, configuring the microphysics in a consist-
ent way improves the climatology of precipitation and surface radiative fluxes in baseline runs relative to the 
fine-resolution reference runs.

Our reference fine grid model is a C384 (∼25 km) version of FV3GFS. It uses the same vertical levels, physics 
timestep, and physics configuration as the coarse-grid model, making the fine and coarse model versions identical 
except for their horizontal grid spacing and dynamical substepping frequency, in the case of the C384 reference 
model seven vertical remappings per physics timestep and eight dynamical substeps per vertical remapping. 
Thus, the corrective ML is purely accounting for systematic effects of the additional spatial variability captured 
by the fine-grid simulation but not the coarse simulation. Better results might be obtainable by combining correc-
tive ML with tuning of the coarse-model namelist parameters, but we forgo this step for simplicity of compari-
son. Our fine-grid reference model has a horizontal grid spacing eight times larger compared to B22, who used 
a C3072 (∼3 km) resolution simulation completed using the NOAA Geophysical Fluid Dynamics Laboratory's 
SHiELD model (Harris et al., 2020). This choice made it computationally practical to produce years of training/
testing data for multiple climates.

Table 1 summarizes the configuration and duration of all the simulations we complete for this study. We describe 
these runs in more detail in the following subsections.

2.1.  Reference Simulations

To produce an ML scheme calibrated across the annual cycle in multiple climates, we need at least one full year 
of training data from a reference fine-grid simulation in each such climate. We include an additional independent 
year to validate the predictions of the ML models we train offline, and to compare with simulations where we 
apply the ML predictions online. Accordingly, we run 2 year C384 (25 km grid) FV3GFS reference simulations 
with climatological sea surface temperatures (SSTs) perturbed uniformly by −4 , 0 K (control climate), +4 , and 
+8 K. From these two year reference simulations, every 15 min we output restart files and diagnostics containing 
the state of the model, which is coarse-grained online following the methodology described in B22 to C48 reso-
lution. The single year of training data in each climate suffices in our case, since our simulations are run with a 

https://github.com/ai2cm/fv3gfs-fortran
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prescribed, annually repeating cycle of SSTs, limiting the interannual variability of the climate; for a more real-
istic setup, more years of training data might be required.

2.1.1.  Control Climate Reference Simulation

The control-climate simulation is forced with historical SST and sea ice conditions. The SSTs are derived from 
the 1/12° resolution Real Time Global Sea Surface Temperature (RTGSST) data set (Thiébaux et  al.,  2003), 
averaged into climatological monthly means across the period 1982–2012. For each simulation, SSTs are then 
interpolated in space and time to the model's grid and the day of the year, repeating annually. The sea ice distri-
bution is derived from 1982 to 2012 monthly means of the 0.5° resolution Climate Forecast System Reanalysis 
(Saha et al., 2014). While it was initially intended that the sea ice distribution would vary with the annual cycle, 
instead, due to a configuration error, the sea ice distribution is held fixed to its August climatological pattern in 
both the reference fine-resolution and coarse-resolution simulations. Ideally the sea ice would be consistent with 
the annual cycle, but since this error occurs in both our reference and coarse-resolution simulations, it should not 
have an impact on our conclusions regarding the ability of the ML to make a coarse-resolution simulation evolve 
more like a fine-resolution one.

In the control climate, the climatological biases in precipitable water and precipitation are substantially reduced 
with a ∼25 km grid versus a ∼200 km grid. Figure 1 shows maps of these biases in annual-mean precipitable 
water and precipitation compared to 1982–2012 averages for ERA5 reanalysis (Hersbach et al., 2019) and Global 
Precipitation Climatology Project (GPCP) (Adler et al., 2018) observations, the same years used to form the SST 
climatology used in our simulations. In both simulations, the spatial patterns of the precipitable water and precip-
itation biases are highly correlated, reflecting the strong observed relationship between the two fields (Bretherton 
et al., 2004). The finer grid results in smaller biases in mountainous terrain such as the Andes and Himalayas, as 
well as improved simulation of tropical rain belts, for example, over northwest South America and central Africa. 
Overall, by increasing the resolution, the global root mean square error (RMSE) in time-mean precipitable water 
is reduced by 48% and that of precipitation is reduced by 30%. This motivates using the 25 km simulation as a 
reference across the control and perturbed climates.

2.1.2.  Perturbed Climate Reference Simulations

For the perturbed-climate simulations, a uniform offset is added to the specified climatogical SST. We assume the 
prescribed climatological distribution of sea ice, defined as a fraction of area covered by sea ice in each grid cell, 
remains the same across all climates, a commonly made but unrealistic simplification. An additional simplifica-
tion we make is that we do not perturb the carbon dioxide concentration; instead it is prescribed to its present-day 
value in each simulation.

To efficiently spin up the land surface and atmosphere to the perturbed-climate SSTs, we initialize all C384 runs–
including the control climate case for consistency–using restart files from the end of year-long C48 simulations 

Duration (months)

Description Initial condition Resolution ΔQT, ΔQq ML 𝐴𝐴   , 𝐴𝐴 𝐴𝐴
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
 ML −4 K 0  K +4 K +8 K

Spin-up GFS analysis C48 - - 12 12 12 12

Reference End of spin-up a C384 - - 24 24 24 24

Nudged Start of reference b C48 - - 24 24 24 24

Baseline Midpoint of reference b C48 - - 63 63 63 63

ML-corrected Midpoint of reference b C48 Seed 0 NN RF 15 15 15 15

ML-corrected Midpoint of reference b C48 Seed 1 NN RF 63 63 63 63

ML-corrected Midpoint of reference b C48 Seed 2 NN RF 15 15 15 15

ML-corrected Midpoint of reference b C48 Seed 3 NN RF 15 15 15 15

Note. Their durations in months are shown in each climate in the final four columns.
 aUpsampled to C384 resolution using the chgres_cube tool (Gayno et al., 2020).  bCoarsened to C48 resolution using the method outlined in B22.

Table 1 
The Configuration Of The Simulations Used In This Study
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with the same SST perturbations (the “spin-up” simulation listed in Table 1). We upsample the restart files from 
C48 to C384 resolution using the chgres_cube tool developed at the NOAA Environmental Modeling Center 
(EMC), included in the UFS_UTILS GitHub repository (Gayno et  al.,  2020). The C48 spin-up simulations 
are started from initial conditions derived from the Global Forecasting System analysis (NCEI, 2020) for the 
date 2016-08-01 at 00Z, with SSTs perturbed uniformly depending on the climate. The coarse-grid spin-up 
and fine-grid reference simulations are run on NOAA's Gaea supercomputer using the pure Fortran version of 
FV3GFS maintained by our group. The source code can be found in the repository linked to in our Availability 
Statement.

2.2.  Baseline Coarse-Resolution Simulations

For comparison, we run 5.25 years baseline simulations with FV3GFS at C48 resolution in each climate and 
discard the first three months as a pre-analysis spinup period. Each simulation is initialized using a coarsened 
set of restart files from the end of the first year of the fine resolution reference simulations and uses the same 
sea ice and climate-specific SST climatology. These no-ML baseline simulations provide a skill benchmark for 
evaluating our ML-corrected simulations. The baseline and subsequently discussed nudged and ML-corrected 
simulations are run with cloud computing resources within a Python-wrapped version (McGibbon et al., 2021) 
of the pure Fortran version of FV3GFS.

2.3.  Generating a Training Data Set

To derive a training and testing data set of corrective tendencies for the coarse model's temperature and specific 
humidity, we extend the nudging approach described in B22. We run 2 year C48 simulations with FV3GFS in 
which we nudge the temperature, specific humidity, zonal wind, meridional wind, and pressure thickness to the 
coarsened state of the C384 reference runs, in each climate (the “nudged” simulations in Table 1). As in B22, 
“nudging” is defined as the relaxation of a prognostic field in the coarse model, a n, to its coarsened value in a 

Figure 1.  Top row: Time-mean precipitable water bias compared to ERA5 reanalysis for the (a) ∼200 km baseline and (b) ∼25 km reference simulations in the control 
climate. Bottom row: as in the top row, but time-mean precipitation bias compared to Global Precipitation Climatology Project (GPCP) observations. The time means 
are taken over the five post-spinup years of the baseline simulation, the second year of the reference simulation, and years 1982–2012 of the ERA5 reanalysis or GPCP 
observations.



Journal of Advances in Modeling Earth Systems

CLARK ET AL.

10.1029/2022MS003219

6 of 25

reference fine-grid data set, 𝐴𝐴 𝑎𝑎 , with a uniform timescale, τ, here chosen to be 3 hr. This involves adding a tendency 
of the form

Δ𝑄𝑄𝑎𝑎 = −
𝑎𝑎
𝑛𝑛
− 𝑎𝑎

𝜏𝜏
� (1)

to the governing equations of the nudged variables in the model, constraining the nudged coarse model fields to 
approximately track the reference.

Ideally, this nudging approach smoothly changes the atmospheric state such that the tendencies due to physi-
cal parameterizations and dynamics respond smoothly on timescales much longer than the nudging timescale. 
However, in practice, this is often not the case, especially in the atmospheric boundary layer or around parame-
terized moist convection. That can lead to undesirable sensitivity of the nudging tendencies and the division of 
work between parameterized physics and nudging to the somewhat arbitrarily chosen nudging timescale (Kruse 
et al., 2022).

Following B22, in our nudged runs we also prescribe several fields seen by the land surface model based on 
their values in the coarsened fine resolution reference. These fields are the downward shortwave, net shortwave, 
and downward longwave radiative fluxes, as well as the precipitation rate. B22 found that these had substan-
tial time-mean biases when predicted by the coarse model physics, which, through feedbacks between the land 
surface model and the atmosphere, altered the temperature and specific humidity nudging tendencies. As we will 
describe later, the prescribed surface radiative fluxes will be direct targets for our ML, while the precipitation rate 
will be affected by the column integrated drying tendency predicted by our ML. This will allow us to also improve 
the biases of these quantities in our ML-corrected runs.

In the un-nudged baseline coarse-grid simulations, the net surface radiative flux into the land surface in the coarse 
model, defined as

𝑅𝑅
𝑛𝑛𝑛𝑛𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠
= 𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
+ 𝐿𝐿

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
− 𝑆𝑆

𝑢𝑢𝑢𝑢

𝑠𝑠𝑠𝑠𝑠𝑠
− 𝐿𝐿

𝑢𝑢𝑢𝑢

𝑠𝑠𝑠𝑠𝑠𝑠� (2)

has a mean bias between −10 W m −2 and −18 W m −2, depending on the climate. Here Ssfc is the downward 
or upward shortwave component of the radiative flux at the surface and Lsfc is the downward or upward long-
wave component of the radiative flux at the surface. This bias is primarily due to too much cloud and too 
little downward shortwave radiative flux at the surface compared to the fine-grid reference. It has the oppo-
site sign to that found by B22, mainly due to our aforementioned inclusion of microphysical adjustment in 
the dynamical core remapping step, which increases simulated cloud formation over land. The coarse-model 
bias in downwelling surface radiative flux is a good target to correct via machine learning because it induces 
climatically important biases in the land surface skin temperature, hereafter referred to as “surface temper-
ature,” and latent heat flux.

As in B22, our machine learning targets from these simulations are the column-wise 79-level vertical profiles 
of nudging tendencies time-averaged over 3 hr intervals, with time labels at the interval centers, and the instan-
taneous downwelling surface radiative fluxes. In addition to outputting the targets as diagnostics, we output the 
features used by our ML. These are the instantaneous profiles of model temperature and specific humidity at the 
time the nudging tendencies are defined, as well as some scalar quantities, which are the surface geopotential 
(which can act in part as a continuous-valued proxy for discriminating land from ocean and sea ice), the cosine of 
the solar zenith angle (computed from the time of day, longitude, and latitude following Monteiro et al. (2018)), 
the land surface type (an integer-valued field which is zero in ocean grid cells, one in land grid cells, and two in 
sea ice grid cells), and the surface albedo.

2.4.  Predicting the Nudging Tendencies

Using the profiles of temperature and specific humidity, surface geopotential, and cosine of the solar zenith angle 
as inputs, we learn the column temperature and specific humidity nudging tendencies. B22 found that using ML 
correction of winds produces large mean state drifts in upper atmospheric temperature, so we choose not to do 
that here. In addition, B22 compared the use of a random forest or an ensemble of neural networks to predict the 
nudging tendencies, finding comparably skillful results. We choose to focus on using neural networks, because 
they require less memory to store and are computationally efficient in a variety of hardware settings, including 
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on GPUs (Yuval et al., 2021). In addition, the random seed used in their training–a parameter used in setting the 
initial weights of the model, and the order of the shuffling of the samples in a training batch–introduces some 
variability in online performance for similar offline skill, allowing selection of an ML model to minimize climate 
bias.

2.5.  Predicting the Surface Radiative Fluxes

We make ML-based predictions for the radiative flux inputs to the land surface model. These inputs are the 
downward shortwave, net shortwave, and downward longwave radiative fluxes at the surface. For predicting the 
shortwave fluxes, B22 used the cosine of solar zenith angle as a proxy feature for top-of-atmosphere downward 
solar flux. This does not account for the 7% variation of insolation with time of year due to the eccentricity of the 
Earth's orbit. That had negligible impact during the 40 days simulations of B22, but is relevant in our simulations 
which span the full annual cycle.

Thus we use a slightly different ML approach for shortwave radiative fluxes than in B22. It is based on the short-
wave transmissivity of the atmospheric column, 𝐴𝐴   , defined as the ratio of the downward shortwave radiative flux 
incident on the surface 𝐴𝐴

(

𝑆𝑆
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠

)

 to the downward shortwave radiative flux at the top of the atmosphere 𝐴𝐴
(

𝑆𝑆
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑡𝑡𝑡𝑡𝑡𝑡

)

 :

 =

𝑆𝑆
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠

𝑆𝑆
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑡𝑡𝑡𝑡𝑡𝑡

.� (3)

If we train the ML model to predict 𝐴𝐴   , we can then compute the downward and net 𝐴𝐴

(

𝑆𝑆
𝑛𝑛𝑛𝑛𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠

)

 shortwave radiative 
fluxes at the surface using FV3GFS's values for the downward shortwave radiative flux at the top of the atmos-
phere and the surface albedo (α):

𝑆𝑆
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
=  𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑡𝑡𝑡𝑡𝑡𝑡� (4)

𝑆𝑆
𝑛𝑛𝑛𝑛𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠
= (1 − 𝛼𝛼)𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑠𝑠𝑠𝑠𝑠𝑠
.� (5)

Explicitly computing the net shortwave radiative flux at the surface using the coarse model's surface albedo 
provides a less biased prediction than forcing the ML to learn this relationship, particularly over high-albedo 
regions like the Sahara and Arabian deserts or polar ice-covered regions.

To predict the shortwave transmissivity and downward longwave radiative flux at the surface, we use a random 
forest with the column temperature, column specific humidity, surface geopotential, surface type (ocean, land, 
or sea ice), cosine of the solar zenith angle, and surface albedo as input features. When predicting the full values 
for all the surface radiative flux inputs to the land surface model, B22 demonstrated that a random forest (RF) 
and a neural network (NN) with outputs appropriately rectified to be greater than or equal to zero, performed 
comparably in terms of offline skill. We use a random forest because it automatically constrains the predicted 
transmissivity to be between 0 and 1; with an appropriate activation function this constraint could also be applied 
to a neural network.

2.6.  ML Training

When training the neural networks and random forests, we use data from the first year of the nudged simulations 
in all climates. We follow a similar time-sampling approach to that of W21, who also trained models across the 
annual cycle. We randomly select 160 of the 2,920 available times to sample both the annual and diurnal cycles to 
enable efficient training (early tests indicated that training on more data did not make a material difference when 
models were used online). These times are then separated into 16 batches of 10 each. Within each batch, data 
from each of the times is loaded from each of the climates, forming a two-dimensional array with “sample” and 
“feature” dimensions. Since the machine learning problems are column-based, the sample dimension has a length 
corresponding with the total number of columns in the batch (6 × 48 × 48 = 13,824 columns per time) × (10 
times per batch) × (4 climates) = 552,960 columns, while the length of the “feature” dimension depends on the 
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inputs we are using for the model. This array is then randomly shuffled along the “sample” dimension. Since we 
train on a sequence of 16 batches, in total our models are trained on 16 × 552,960 = 8,847,360 samples.

To train neural networks for the temperature and moisture nudging tendencies, the gradient is updated every 512 
samples within each batch, and the full set of batches is repeatedly iterated over in 24 training epochs. We use the 
same implementation in Keras, and the same hyperparameters for the temperature and specific humidity nudging 
tendency network as in B22, that is, a mean absolute error loss function, two hidden layers with a width of 128, a 
learning rate of 2 × 10 −3, and an L2 regularization penalty of 1 × 10 −4. We experimented with training networks 
with a larger capacity and lower learning rate, but while these networks were able to achieve better offline skill, 
they did not lead to substantively better performance when used online.

Inputs and outputs of the neural networks are normalized or de-normalized following similar procedures to those 
in B22. Specifically, we normalize a scalar input or output 𝐴𝐴 𝐴𝐴 ∈ ℝ (e.g., temperature at a single level, cosine of the 
solar zenith angle, etc.) with 𝐴𝐴 (𝑥𝑥 − 𝑥̄𝑥)

(

𝜎̄𝜎𝑥𝑥 + 10
−7
)−1 , where 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐴𝑥𝑥 are the sample mean and standard deviation. 

The ML then predicts a normalized value 𝐴𝐴 𝐴𝐴𝐴 ∈ ℝ , and 𝐴𝐴 𝐴𝐴∶=𝑦̃𝑦 𝑦𝑦𝑦𝑦𝑦 + ̄𝑦𝑦 is the ML prediction in physical units. These 
may seem like standard methods for working with neural networks, but there are many small differences in this 
recipe across the ML parameterization literature, which, in our experience, can alter both offline and online 
performance.

For reproducibility, the random seed for all elements of randomness during the training process is a parameter 
in our training workflow. We train neural networks with four random seeds, labeled 0–3. These neural networks 
have similar offline skill, but produce different outcomes when applied online. This phenomenon was illustrated 
in a more extreme way in Wang et al. (2021), where they trained 50 ML models with comparable offline skill, but 
found only a small subset that could support stable long-term simulations.

To train a random forest model to predict the shortwave transmissivity and downward longwave radiative flux at 
the surface, like B22, we use the scikit-learn (Pedregosa et al., 2011) implementation with a mean square error 
loss function and a maximum depth of 13. The ensemble consists of 16 trees where each tree is trained on a batch 
of 10 timesteps. Like in W21, no transformations are applied to the inputs of the RF, but similar to the case of the 
NNs in this study, the ML predicts a normalized value 𝐴𝐴 𝐴𝐴𝐴 ∈ ℝ and the predictions are de-normalized to be placed 
in physical units, in the case of the RF using 𝐴𝐴 𝐴𝐴∶=𝑦̃𝑦

(

𝜎̄𝜎𝑦𝑦 + 10
−12

)

+ 𝑦̄𝑦 . While there is an element of randomness to 
training an RF, in previous work we have found empirically that this does not have a significant impact on offline 
or online results.

For offline testing, for computational efficiency, we randomly select 90 times from the second year of the nudged 
simulations, and combine all the columns associated with those times into a testing data set. These provide a set 
of samples that we can test our models against that is independent from the data the models were trained with. 
We compute offline skill both aggregated across all climates and separated into different climates to evaluate each 
model's overall skill and to ensure that the models are indeed skillful in each of the climates we train on and not 
subtly optimizing for a specific climate.

2.7.  Input Ablation and Output Tapering of Vertically Resolved Fields

For handling model inputs and outputs of the nudging tendency NN, we initially followed B22. For every verti-
cally resolved input, like temperature, we provided its values at all 79 vertical levels in the column, and for every 
vertically resolved output, like the temperature nudging tendency, we predicted its full target value at each vertical 
level. Such models worked reasonably well in 40 days simulations, but were prone to cause online drift and/or 
crashes in simulations longer than a few months, due to problematic behavior of the ML in the uppermost 25 
model levels.

As an example, the left panels in Figure 2 illustrate the time series of temperature and ML-predicted heating 
rate at a representative column in a 5 year simulation using an ML configuration similar to that used in B22. A 
high-amplitude wave-like pattern in temperature develops in the upper model levels for the first year of the run, 
driven by ML-predicted heating. As the temperature near the tropopause starts to drift cold, this signal disap-
pears. However, once the temperature sinks below the training range, indicated by the purple regions in Figure 2c, 
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the ML-predicted heating rate spikes in magnitude, leading to further temperature drift, even near the surface and 
in the mid-troposphere.

Past authors have encountered similar problems when including upper-atmospheric inputs in column-based 
machine-learning parameterizations. Coarsening in space and time creates simultaneous correlations between 
inputs (e.g., high upper-tropospheric humidity) and outputs (e.g., strong mid-tropospheric latent heating) that the 
ML unphysically encodes into causal predictions. Brenowitz and Bretherton (2019) showed that the ML-predicted 
precipitation was spuriously sensitive to stratospheric moisture offline. They stabilized online runs by excluding 
(ablating) that input. Brenowitz et al. (2020) further found analytically that upper atmospheric temperature and 
moisture inputs can develop unstable feedbacks with gravity-wave modes. Ablation is also used implicitly–even if 
not emphasized–by other related works, for example, O’Gorman and Dwyer (2018), Yuval et al. (2021). Together 
with empirical experimentation, this motivated us to ablate the inputs from the uppermost top 25 model levels.

We also see large predicted corrective temperature tendencies in the uppermost atmospheric levels, illustrated 
by Figure 2b. Parameterized physical processes provide only weak thermal damping in this region. Thus these 
corrective tendencies may derive from the training data, but they get amplified and distorted by dynamical feed-
backs, doing more harm than good. A natural solution is to reduce the magnitude of the predicted tendencies of 
our ML models, so the weak damping provided by the model physics adequately stabilizes the system. We do this 
by multiplying the target corrective tendencies by a tapering factor that exponentially decreases from 1 down to 
near zero in the top 25 model levels:

𝑓𝑓 (𝑘𝑘) =

⎧

⎪

⎨

⎪

⎩

𝑒𝑒

𝑘𝑘 − 25

5 𝑘𝑘 𝑘 25

1 𝑘𝑘 ≥ 25,

� (6)

where k is the integer-valued model level index, following FV3GFS's internal convention that k = 0 corresponds 
to the level closest to the model top, and k = 78 corresponds to the level closest to the surface. This tapering factor 
decreases by a multiple of e every five levels above level 25, reducing to e −5 ≈ 0.007 in the uppermost level. Yuval 

Figure 2.  Time series of temperature, machine learning (ML)-predicted heating rate, and flag denoting whether the temperature is inside or outside the range of 
temperatures in the training data, at a single column in a control-climate ML-corrected simulation without input ablation or output tapering (left) and a control-climate 
ML-corrected simulation with input ablation and output tapering (right). The gray dashed line in panel (e) indicates the 25th level from the top, the level at which 
ablation and tapering begins.
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and O’Gorman (2020) did something similar in that they omitted using ML to predict the radiative heating rate 
in vertical levels above 11.8 km.

The combination of ablating inputs and tapering outputs in this fashion results in ML models that reliably 
lead to stable and non-drifting ML-corrected simulations (for comparison see the column time series plots in 
Figures 2d–2f). This conclusion is based on an aggregate of 36 years of stable and non-drifting ML-corrected 
simulations discussed in this study, including four 5.25 year ML-corrected runs. While we have not run simula-
tions for longer than 5.25 years, these results suggest that so long as the climate stays within its normal bounds 
of variability, our ML is likely to remain stable. A more careful ablation study would be useful to determine 
whether input ablation and output tapering are both necessary, or whether doing just one or the other could have 
a similar effect.

2.8.  ML-Corrected Online Simulations

While we test our machine learning models offline using independent test data, the most important test comes in 
using them to correct the temperature and specific humidity tendencies and surface radiative fluxes during each 
timestep in free-running FV3GFS simulations. To do this, we run a suite of simulations in each of the four climates 
using four ML configurations, one for each of the neural networks trained with the four random seeds, keeping the 
surface radiative flux model the same across all configurations. This is a total of 16 ML-corrected simulations. 
In these runs, as in B22, the ML predictions of the tendency corrections and radiative flux overrides are inte-
grated into the time loop of the model using a Python-wrapped version of FV3GFS (McGibbon et al., 2021) that 
we run (along with the full ML workflow) on Google Cloud. To assess the configurations' performance before 
running longer simulations, we run each ML-corrected simulation for 1.25 years, and extend the simulations of 
the best-performing configuration to 5.25 years to generate five full post-spinup years of statistics. This is an 
analogous approach to that of Wang et al. (2021), though we tried far fewer candidate configurations.

2.9.  Evaluation of Skill

To determine how the ML corrections impact the quality of coarse-grid simulations, we compute error metrics 
for the climate statistics of the ML-corrected runs using the coarsened fine-grid runs as a reference, and compare 
these to the same error metrics computed using the baseline runs. To allow the baseline and ML-corrected 
coarse-grid simulations to sufficiently diverge from their initial conditions, which are derived from the fine-grid 
reference simulations, we begin our analysis after a 3 month spin-up period. Starting in month four, we partition 
each coarse simulation into as many complete non-overlapping 12 month periods as possible. Each such period 
serves as an approximately independent sample year of coarse-model climate statistics; initial ML-corrected runs 
therefore have 1 year of climatological data, while baseline runs have five. Regardless of the year in the coarse 
runs, error metrics are always computed relative to the second year of the corresponding fine-resolution run in 
each climate. This is appropriate since the sea ice and SST lower boundary conditions for the fine and coarse runs 
follow the same repeating annual cycle for all years. Generally our results are not qualitatively sensitive to this 
choice. We have computed the error metrics with respect to the first years of the fine-resolution simulations in 
each climate and have mostly found them to be similar to those we report here (we will note one slight exception). 
For future applications, longer reference simulations would be desirable to help obtain more robust measurements 
of the sometimes small impacts of the ML.

We focus on a limited set of societally relevant and climatically important metrics that we hope will be improved 
by the corrective ML:

1.	 �The root mean square error (RMSE) of the time mean spatial pattern of precipitation.
2.	 �The time and spatial mean bias of the precipitation rate over land.
3.	 �The RMSE of the diurnal cycle of precipitation over land with the mean bias removed.
4.	 �The RMSE of the time mean spatial pattern of the surface temperature over land.
5.	 �The time and spatial mean bias of the net radiative flux into the land surface.

Precipitation is affected by ML-predicted atmosphere drying. Surface temperature is affected by ML surface 
radiative flux predictions and near-surface temperature tendency corrections. The net radiative flux into the land 
surface depends on ML-predicted values for the net shortwave and downward longwave radiative fluxes at the 
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surface. We will also document the vertical structure of zonal mean biases of temperature, specific humidity, and 
the mass streamfunction.

3.  Results
3.1.  Biases in the Nudged Simulations

The primary goal of the machine learning is to bring the weather variability and the resulting climate statistics 
of coarse resolution simulations closer to those of fine resolution runs. Accordingly, our “truth” dataset–that is 
the data set that we will compute our biases against–consists of the second year of output of the ∼25 km simula-
tions in each of the climates, coarsened to ∼200 km resolution. The ML can only be as good for this purpose as 
its training methodology, which is in part based on the nudging tendencies diagnosed from the nudged runs. As 
B22 noted, that methodology is a compromise between keeping the coarse model state as close as possible to the 
fine-grid reference state, and keeping it evolving smoothly in a dynamically balanced way with a minimum of 
small-scale vertical velocity transients. While most aspects of the nudged simulations, such as temperature and 
humidity fields, remain close to the coarsened fine-grid reference data on which it is based, there are important 
aspects of the nudged simulations, notably time-mean precipitation, which are more sensitive to this method-
ology. That is, the nudged training data set does not have the same statistics as does the reference, potentially 
building biases into the ML training even if the ML itself were perfect.

To get a sense for the extent of this issue, we will examine the precipitation and surface temperature biases of the 
nudged and baseline simulations. In each case we are hoping that the nudged run bias is much smaller that the 
baseline run bias, so that the ML has a chance to correct most of the baseline bias despite possible shortcomings 
of the training approach.

3.1.1.  Precipitation

Precipitation in the nudged and ML-corrected simulations is computed as a budget-implied precipitation rate. 
This is a concept discussed in W21 and B22 and is an estimate of the precipitation rate that takes into account 
contributions from the model physics as well as the specific humidity nudging or ML-predicted tendency in the 
column. In the context of nudged runs it is computed following

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃
𝑝𝑝
− ⟨Δ𝑄𝑄𝑞𝑞⟩ ,� (7)

where P p is the precipitation rate predicted by the model physics, and ΔQq is the nudging tendency of specific 
humidity, with the angle brackets denoting a mass-weighted vertical integral. In essence if nudging is removing 
specific humidity from a column in the net, we treat that as a source of precipitation at the surface; if it is adding 
specific humidity to the column in the net, we treat it as a sink. In ML-corrected runs we take the additional step 
of rectifying this quantity such that it is always greater than or equal to zero:

𝑃𝑃𝑀𝑀𝑀𝑀−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = max (0, 𝑃𝑃
𝑝𝑝
− ⟨Δ𝑄𝑄𝑞𝑞⟩) .� (8)

We do this differently in the nudged training and ML-corrected prognostic simulations because high-frequency 
fluctuations in the nudging tendencies can rectify into a large high bias in implied precipitation. In addition we 
do not need this precipitation estimate to be positive in the nudged run, in which it is not used to force the land 
surface model. The rectification bias is unavoidable but much less important in ML-corrected prognostic runs 
(less than 0.05 mm d −1 in all simulated climates) since the ML correction is less prone to such fluctuations.

Figure 3a shows a time-mean map of precipitation biases in the nudged run with respect to the fine resolution 
run. They are reassuringly small over most of the oceans. A dipole pattern in the vicinity of the Intertropical 
Convergence Zone (ITCZ) over the Eastern Pacific suggests a slight southward shift of the ITCZ in the nudged 
run compared to the fine resolution run, while over the Atlantic a tripole pattern is present suggesting a slight 
widening of the ITCZ. There are larger grid-scale biases over land, with regional dry biases over sub-Saharan 
Africa and the Rocky Mountains. These land biases contribute to a land root mean square error (RMSE) of 
1.4 mm d −1 in the control climate.

Bias patterns are similar in the other climates, increasing in magnitude and grid-scale noisiness with increased 
SST. The mean precipitation rate over land has only a slight negative bias in all climates, with values around 
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−0.2 mm d −1, much smaller than that for the baseline model, which has values around −0.8 mm d −1, mainly 
due to dry biases over tropical South America and Africa (Figure 3b). This suggests that our specific humidity 
nudging and radiative flux prescription has the desired effect of creating a training data set with biases versus the 
reference simulation that are much smaller than those of the baseline model.

The mean diurnal cycle of precipitation over land regions between 60°S and 60°N as a function of local solar 
time is plotted in Figure 3c. The latitudinal limits are imposed to make a fair comparison with the spatial extent 
of available observations, which are derived from year 2016 of the Integrated Multi-SatellitE Retrievals for GPM 
(IMERG) (Huffman et al., 2019). The black curve shows the control-climate ∼25 km reference, which peaks 
around 14:30 local solar time, about two hours earlier and with a slightly lower amplitude than the IMERG obser-
vations, the dashed black curve. The orange curve shows the baseline run, which has a peak at a similar time to 
the ∼25 km run, but too low an amplitude, a common problem in coarse resolution climate models (Christopoulos 
& Schneider, 2021). In the nudged run, the amplitude of the afternoon peak is improved, but the budget-inferred 
precipitation rate decreases too sharply in the evening and is too large in the late morning hours; in a qualitative 
sense, however, this is more in line with the behavior of the fine-resolution reference simulation than the baseline. 
This bias is qualitatively similar in analogous nudged runs in the other climates, and will be discussed further in 
Section 3.6.1.

Overall, this analysis suggests that ML that seeks to learn the nudging tendencies and surface radiative fluxes has 
potential to make improvements to the precipitation climatology.

3.1.2.  Surface Temperature

Nudging greatly reduces surface temperature bias over land. The time-mean surface temperature bias in the 
second year of the control climate nudged run is shown in Figure 3d. Since the SSTs are prescribed, the bias 
in surface temperature over ocean is trivially zero. Over land, the surface temperature is influenced by the net 
radiative flux into the surface, which is largely prescribed in our nudging procedure, but also depends on the 
partitioning between latent and sensible heat fluxes by the land surface model, which can differ between the 
nudged coarse and reference fine simulations. The biases are generally much smaller than those of the baseline 
simulation (Figure 3e), which has predominantly warm biases in the tropics and mid-latitudes and cold biases in 
the polar regions. The spatial pattern and amplitude of the surface temperature biases in the nudged and baseline 
runs are similar across climates. As with land precipitation, this suggests that if corrective ML can retain the bias 

Figure 3.  Time-mean precipitation bias in the (a) control climate nudged and (b) baseline simulations, diurnal cycle of precipitation over land with the mean removed 
in the reference, nudged, and baseline simulations, as well as IMERG observations (c), and time-mean surface temperature bias in the (d) nudged and (e) baseline 
simulations. Biases are computed as coarse-grid run statistics minus coarsened fine-grid run statistics.
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reduction in the nudged training data, ML correction could reduce the land surface temperature biases of the 
baseline run.

3.2.  Nudging Tendencies

Despite using reference simulations with different configurations, both in terms of spatial resolution and some 
physical parameterizations, and different time periods, the time-mean nudging tendencies that emerge from the 
nudged simulations are similar to those shown in B22. Figure 4a and Figure 4c show the mean column-integrated 
heating, 𝐴𝐴 ⟨Δ𝑄𝑄𝑇𝑇 ⟩ , and moistening, 𝐴𝐴 ⟨Δ𝑄𝑄𝑞𝑞⟩ over the test data set in the control climate. In these spatial plots, as 
in B22, we can see that the nudging tendencies are largely associated with making up for missing precipita-
tion and latent heating in the nudged coarse simulation; the column-integrated temperature nudging tendency is 
generally positive, and largest in regions of greatest column-integrated drying. Similar to B22, artifacts near the 
cubed-sphere tile boundaries and wave-like patterns in the vicinity of sharp topographic features associated with 
discretization errors in the coarse model dynamics can be seen particularly in Figure 4a.

The panels in the right column of Figure 4 show the global-mean vertical profile of the nudging tendencies in 
each climate. The magnitudes of the nudging tendencies increase with warmer SSTs. In a column-integrated 
sense, for both temperature and specific humidity, this increase is approximately at a rate of 3% K −1 to 5% K −1 
increase in SST, somewhat less than the rate of increase of the column-integrated parameterized temperature 
and specific humidity physics tendencies (5%–6%), or the ∼7% K −1 Clausius-Clapeyron scaling for water vapor 
with warming (Held & Soden, 2006). The spatial patterns of the column-integrated nudging tendencies do not 
differ significantly with climate (not shown). While we do not predict them in this work, for reference the mean 
horizontal wind nudging tendencies are plotted in Figure S1 in Supporting Information S1, which have a similar 
spatial pattern to those in B22, but a slightly weaker magnitude.

3.3.  Offline Skill in Predicting the Nudging Tendencies

In individual samples, the nudging tendencies are noisy. Figures  5a and  5c show the target temperature and 
specific humidity tendencies for a representative evening in August in the control climate of the test data set for 
a vertical cross section along 0°E. These tendencies and predictions are illustrative of their character in other 
climates and at other times. The nudging tendencies are typically largest near the top of the boundary layer, and 

Figure 4.  (a) Column-integrated temperature and (c) specific humidity nudging tendencies in the control climate, averaged over the test data set, and global mean 
vertical profiles of the (b) temperature and (d) specific humidity nudging tendencies averaged over the test data in each climate. In each case the tapering of the 
tendencies in the upper 25 model levels described in Section 2.7 has been applied. The x-axis scale is the same for panels (b and d) despite representing different units.
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in regions of deep convection. The seed 1 neural network makes a prediction that is smoother than the targets for 
both ΔQT (Figure 5b) and ΔQq (Figure 5d). The other NNs make qualitatively similar predictions. Because of the 
noisiness of the target tendencies, it is difficult for the neural networks to capture all of their variance; a positive 
aspect of this is that it generally means we do not have to worry about overfitting.

Figure 6 shows the coefficient of determination (R 2) for the temperature and specific humidity nudging tenden-
cies computed offline across the 90 times of the test data set in all climates binned by latitude and pressure. For 
the temperature nudging tendency, skill is highest in the tropical boundary layer and upper troposphere, where 

Figure 6.  Coefficient of determination as a function of latitude and pressure for the offline prediction of the (a) temperature and (b) specific humidity nudging 
tendencies across the 90 times of the test data set in all four climates. The values here are for the neural network trained with seed 1, but the plots look qualitatively 
similar with neural networks trained with other seeds.

Figure 5.  Samples of the target and offline-predicted nudging tendencies at 2018-08-07 20:30:00 along 0°E in the control climate. (a and c) are the target temperature 
and specific humidity tendencies, respectively, and (b and d) are the predicted temperature and specific humidity tendencies using the neural network trained with seed 
1, respectively. For plotting purposes only, all fields are interpolated to surfaces of constant pressure after being computed.
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values reach 0.2–0.3, and decreases as one moves poleward. For the specific humidity nudging tendency, skill is 
most concentrated in the tropical boundary layer where similar to the skill for the temperature nudging tenden-
cies, R 2 maximizes around 0.25. If one were to make a plot aggregating data over all atmospheric columns instead 
of binning by latitude, the result would look similar to that of the “TquvR-NN” curve in Figures 5a and 5b of B22, 
but would be slightly smoother in the vertical and generally have lower values, here peaking around 0.2 while in 
B22 values peak around 0.3. In Figure 6 the skill is aggregated across all climates, but if one were to look at the 
skill in any one climate, it would look qualitatively similar, though skill in predicting either the temperature or 
specific humidity nudging tendency in the upper troposphere tends to be higher in the cooler climates.

3.4.  Offline Skill in Predicting the Radiative Fluxes

The random forest trained to predict the surface radiative fluxes is quite accurate when evaluated offline. When 
evaluated globally at each of the 90 times in the test data set, depending on the climate, the root mean square 
error of the time-mean pattern globally is between 4 W m −2 and 5 W m −2 for the downward longwave radiative 
flux, 10 W m −2–11 W m −2 for the downward shortwave radiative flux, and about 10 W m −2 for the net shortwave 
radiative flux. For the control climate, the statistics broken down into land and ocean/sea-ice regions can be found 
in the panel titles of Figure 7.

Figure 7 shows the time mean spatial pattern of the offline prediction bias for each surface radiative flux compo-
nent in the control climate. In the spatial mean, these are reassuringly small. Because downwelling clear-sky 
radiation is a smooth function of atmospheric temperature and humidity profiles (and solar zenith angle for 
shortwave radiation) we interpret these biases as due to the RF not fully learning the radiative effects of clouds 
in the fine-grid reference run. More cloud leads to less daytime downwelling shortwave and somewhat more 
downwelling longwave radiation. This bias is prominent over stratocumulus regions in the subtropical oceans in 
Figures 7b and 7c (to a lesser extent) Figure 7a. Since SST is specified, surface radiative biases over ocean regions 
do not feed back on our simulations, so this is not an immediate concern. Similar weaker but broad-scale biases 
are seen over the Southern Ocean and (more importantly) a land region, Siberia. These suggest the fine-grid 
reference supports more cloud in these regions than radiatively accounted for by the ML scheme. The reverse 
bias, only weaker, is seen in the subtropical oceanic shallow cumulus regimes. We interpret this as the ML 
overpredicting cloud-induced surface shortwave and longwave radiative effects. The strong radiative biases over 
the Himalayas may also involve the RF inadequately accounting for the effects of extreme surface elevation on 
clear-sky surface radiation.

Through the surface albedo, downward shortwave (Figure 7b) and net shortwave radiation (Figure 7c) are directly 
correlated (Equation 5). In most regions, the learned biases in net shortwave radiation correlate tightly with biases 
in downward shortwave radiation, as physically expected. An exception is over the Sahara and Arabian deserts, 
where we underpredict time-mean net shortwave radiation. In these regions we generally see a mild positive bias 
in downward shortwave radiative flux, which suggests a slight mismatch between the surface albedo in the coarse 

Figure 7.  Time mean bias in the offline prediction of (a) downward longwave radiative flux at the surface, (b) downward shortwave radiative flux at the surface, and 
(c) net shortwave radiation flux at the surface in the control climate in the test data set. Comma-separated spatial mean bias and spatial root mean square error statistics 
for the time-mean pattern over land and ocean/sea-ice are reported in the panel titles with units of W m −2.
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and fine-resolution simulations in these regions. Such a mismatch might result from how we coarsen different 
properties of the land surface that factor into its surface albedo.

3.5.  Results of Initial ML-Corrected Simulations

The strongest test for the machine learning approach is to see whether it improves the simulation of climate 
when used online. As discussed in Section 2.8, we start by briefly analyzing the results of 1.25 years simulations 
in each climate using neural networks trained with four different random seeds. Figure 8 shows “swarmplots” 
(Waskom, 2021) of the land-mean bias in precipitation rate and surface temperature in the five post-spinup years 
of each baseline simulation in each climate compared to the same biases during the first post-spinup years of the 
1.25 years ML-corrected simulations with each random seed. With the ablation and tapering approach described 
in Section 2.7, all of the NNs led to stable non-drifting 1.25 years simulations in each climate, so no NNs are 
immediately disqualified from being selected for extended runs.

Figure 8a shows that land precipitation bias is generally not sensitive to the random seed used to train the neural 
network. All ML-corrected simulations in all climates exhibit an improvement over the baseline simulations, 
which all have a large negative land-mean precipitation bias.

Land surface temperature bias, shown in Figure 8b, on the other hand, is sensitive to the random seed of the neural 
network. While the baseline simulations generally have only a small net land surface temperature bias, some 
ML-corrected simulations, for example, the seed 0 simulations in the −4 K, control, and +4 K climates, exhibit 
large negative biases up to about 2 K in magnitude. It is notable that in this case the ordering of the land bias by 
NN random seed tends to be similar across climates, suggesting that characteristics of the NNs when applied in 
one climate tend to be consistent with those characteristics when applied in another climate. The seed 0 NN leads 
to the most negative surface temperature biases, followed by seed 3, seed 2, and finally seed 1. The differences in 
surface temperature biases between the different ML-corrected runs can largely by attributed to differences in the 
low-level heating rate predictions in the polar regions (not shown).

We select the seed with the smallest first-post-spinup-year biases to use in multi-year runs. The results in Figure 8 
suggest that this appears to be seed 1, as seed 0 leads to large negative surface temperature biases in all climates 
and seeds 2 and 3 lead to moderate negative surface temperature biases in the +4 K and +8 K. Accordingly, we 
extend the seed 1 simulations in each climate out to 5.25 years and focus the remainder of our analysis on those 
runs.

3.6.  Results of Multi-Year ML-Corrected Simulations

In this section we will more comprehensively present the results of 5.25 years simulations completed with the 
seed 1 neural network. Table 2 summarizes our primary metrics for the baseline and seed 1 simulations. Ideally 

Figure 8.  The annual mean bias in (a) land precipitation and (b) land surface temperature in individual post-spinup years of the baseline (yellow dots) and first 
post-spinup year of machine learning (ML)-corrected simulations with neural networks trained with different random seeds (differently colored dots) in each climate.
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the corrective ML would improve these quantities without harming other aspects of the simulations; we now 
discuss them one by one.

3.6.1.  Precipitation Rate

Figure 9 illustrates the character of the annual-mean precipitation errors in the nudged, baseline, and ML-corrected 
coarse-resolution simulations. Recall that precipitation is computed by Equations 7 and 8. The maps show the 
annual mean precipitation bias patterns in the control climate baseline and ML-corrected runs. These are aver-
aged over the five post-spinup years of the runs. The swarmplots on the right treat individual years as individual 
samples, meaning that there are five datapoints per climate for the baseline and ML-corrected cases, and one 
datapoint per climate in the nudged run case. The precipitation rate in the baseline simulation is predicted purely 
by the model physics, P p.

The precipitation bias pattern in the baseline run (Figure 9a) features large dry biases over land in the deep 
tropics, particularly in South America, a large wet bias over the Western Pacific Warm Pool, and an eastward 
shift in the South Pacific Convergence Zone (SPCZ), indicated by the dipole pattern in precipitation bias in the 
southwest Pacific. Each of these biases is substantially corrected or (over the Western Pacific Warm Pool) slightly 
overcorrected, by the ML (Figure 9b). However, new precipitation biases emerge in the Indian Ocean off the east 
coast of central Africa and in the Bay of Bengal. The spatial pattern of the biases is similar in the other climates 
in the baseline configuration, though the error magnitude somewhat increases in mid-latitude ocean regions (not 
shown). Something similar can be said for the ML-corrected cases.

Figure  9c shows that the land root mean square error of the annual mean spatial pattern of precipitation is 
improved over the baseline in every year of the ML-corrected simulations in each climate. This improvement is 
on average between 8% and 28% depending on the climate (shown in last column of Table 2). The improvement 
is smallest in the +8 K climate, and less apparent when using year one of the reference simulation as validation 
instead of year two (despite the ML having been trained using year 1 as the reference simulation). Surprisingly, 
the RMSE over land of the implied precipitation in the nudged runs worsens faster as the SSTs warm than that 
of the baseline or ML-corrected runs, eventually becoming larger than in the baseline run in the +8 K climate. 
This is because as the climate warms, grid-scale noise in the column integrated drying tendency due to nudging 
over land (Figure 3d) increases; however, broad-scale precipitation biases remain small in the nudging runs for all 
four climates. The ML correction learned from the humidity nudging tendencies smooths out the grid-scale noise 

Climate

−4 K 0 K +4 K +8 K

Metric Region No-ML ML No-ML ML No-ML ML No-ML ML Range

P RMSE [mm d −1] Land 1.7 1.3 1.9 1.4 1.8 1.5 1.7 1.5 8%–28%

Ocean/sea-ice 1.2 1.1 1.6 1.7 1.8 1.9 2.1 2.2 -

P mean bias [mm d −1] Land −0.8 −0.1 −0.8 −0.1 −0.7 0.0 −0.7 0.0 85%–98%

Ocean/sea-ice 0.1 −0.2 0.1 −0.3 0.1 −0.4 0.2 −0.6 −261% to 
−141%

Ts RMSE [K] Land 3.6 2.9 3.5 2.8 3.6 2.7 3.4 2.7 19%–25%

Ts mean bias [K] Land 0.3 0.8 0.4 0.4 0.1 0.4 −0.1 0.2 -

𝐴𝐴 𝐴𝐴
𝑛𝑛𝑛𝑛𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠
 RMSE [W m −2] Land 21.7 14.7 24.8 14.6 25.6 13.5 26.8 13.7 32%–49%

Ocean/sea-ice 8.9 9.4 9.6 10.3 9.3 10.5 10.3 10.7 -

𝐴𝐴 𝐴𝐴
𝑛𝑛𝑛𝑛𝑛𝑛

𝑠𝑠𝑠𝑠𝑠𝑠
 mean bias [W m −2] Land −10.2 −5.2 −12.9 −5.2 −15.0 −3.4 −17.1 −3.3 49%–81%

Ocean/sea-ice −1.3 −2.7 −1.7 −2.6 −1.7 −1.8 −1.5 −2.0 -

Note. Mean metrics written in bold are considered to be robustly better for a particular configuration if values from each of the 5 years used to compute the mean are 
better than any of the years used to compute the mean in the other like-climate configuration. Percent difference ranges between the baseline and ML-corrected runs 
are reported only in cases where the difference in metrics is robust in all climates and has the same sign.

Table 2 
Summary of the Mean Metrics Across Individual Years in Baseline (No-Machine Learning (No-ML)) and ML-Corrected Simulations Completed With Seed 1
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when making predictions, perhaps allowing it to reduce this pattern error some in the +8 K climate, but a longer 
reference simulation might be required to robustly quantify this effect.

Figure 9d shows that the ML-corrected simulation almost eliminates the 0.7 mm d −1 land time-mean dry bias 
of the baseline simulation in all climates. As in B22, we attribute this primarily to the ML surface radiation 
correction.

Figure 9e depicts the RMSE of the annual mean spatial pattern of precipitation computed over ocean and sea ice. 
Unlike over land, the error magnitudes increase as the SSTs warm. The RMSEs of the baseline and ML-corrected 
runs are not robustly different (Table 2), indicating that the ML does not help or hurt ocean/sea-ice precipita-
tion estimates. Over the oceans, the precipitation biases of the nudged runs are smaller and less affected by 
grid-scale noise than over land, and their precipitation pattern RMSE remains much smaller than for the baseline 
or ML-corrected simulations. In other words, despite the cleaner improved precipitation signal over ocean/sea 

Figure 9.  Time-mean spatial pattern of the precipitation bias in the (a) baseline and (b) machine learning (ML)-corrected seed 1 control climate simulations. Land root 
mean square error (RMSE) in the time-mean spatial pattern of the precipitation rate during each year of baseline (orange dots), and ML-corrected seed 1 (pink dots), 
and nudged (blue dots) simulations in each climate (c). Panels (d and e) are structured similarly, but depict the mean bias over land and the RMSE over ocean/sea-ice, 
respectively.
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ice in the nudged runs, we have a more challenging time improving the precipitation climatology over that region 
with ML.

Figure 10 shows the diurnal cycle of precipitation in the fine-grid, baseline, nudged, and seed 1 ML-corrected 
simulations in each climate. For each model configuration, the mean precipitation rate over land stays relatively 
constant across climates. However, the amplitude of the diurnal cycle over land in the reference simulation is 
largest in the coldest climate (−4 K) and absent in the warmest (+8 K). The baseline runs capture this trend but 
with much-reduced amplitude in all climates. The nudged and seed 1 ML-corrected runs capture some, but not 
all, of this amplitude decrease with warming SSTs. Due to the amplitude overestimation, if we compute an RMSE 
of the diurnal cycle of land precipitation versus the 25 km reference simulations, we find that the ML-corrected 
simulations do slightly worse than the baseline ones; however they closely match the nudged simulations used 
to train the ML. Thus these diurnal cycle errors derive mainly from the nudging approach, not lack of ML skill.

The impact of our ML on precipitation variability and extremes is also of interest. Figure S2 in Supporting Infor-
mation S1 shows that the distribution of daily mean precipitation in the unperturbed climate matches fairly well 
between the baseline and fine-resolution runs, but the seed 1 ML-corrected simulation has less frequent extreme 
rainfall events. While the scale increases as climate warms, the qualitative picture remains the same in other 
climates. This can be understood by noting that in the long-term mean, the corrective ML removes a quarter of 
the water vapor from the atmosphere yet never does so at a daily mean rate of more than 10 mm d −1 in the unper-
turbed climate. The coarse-model physical parameterizations, which are responsible for extreme rainfall events, 
are thus less active.

3.6.2.  Surface Temperature

Surface temperature over land, which is an emergent property of the simulations not directly modified by our 
ML, is robustly improved in the seed 1 ML corrected run (the prescribed sea surface temperatures are trivially 
bias-free). Figure 11 shows the time-mean bias in surface temperature in the baseline and seed 1 ML-corrected 
runs in the control climate. The baseline run (Figure 11a) has 2–5 K warm biases over much of the tropics and 
mid-latitudes, and cold biases in the polar regions that intensify poleward to as much as −7.5 K. Like the baseline 
precipitation biases, the baseline land surface temperature biases have a similar spatial pattern and RMSEs in the 
other climates, with the exception of over Antarctica, where a sizable positive bias occurs in the +8 K climate 
that does not occur in the others.

Figures 11c and 11d summarize the RMSE and mean bias of surface temperature over land in each year of the 
baseline and ML-corrected simulations versus the reference fine grid simulation in each climate. In all four 
climates, surface temperature RMSE over land is improved over the baseline by the seed 1 ML-corrected runs by 
19%–25%; as in the land precipitation RMSE case, this result is robust across years (Table 2).

Positive mean biases in the tropics and mid-latitudes offset negative mean biases in the polar regions in the base-
line simulations to result in largely unbiased baseline simulations in each climate. In the ML-corrected runs, there 

Figure 10.  Diurnal cycle of precipitation over land in the ∼25 km reference (black curve), ∼200 km baseline (orange curve), ∼200 km nudged (blue curve), and 
∼200 km machine learning (ML)-corrected (pink curve) simulations in each climate, with the overall time-and-land mean removed. While the observations are not 
shown in these plots, for consistency, as in Figure 3c, the diurnal cycle is computed over land regions where the latitude is between 60°S and 60°N. The values in 
the lower left corner of each panel represent the root mean square error relative to the fine-resolution curve for the baseline, nudged, and ML-corrected simulations 
respectively.
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is more variability depending on the climate. In the −4 K climate there is a land-mean warm bias of about 0.8 K, 
which drops to 0.2 K in the +8 K climate.

3.6.3.  Net Surface Radiative Flux

As mentioned in Section 2.3, we use ML to correct the downwelling radiative fluxes used to force the underlying 
surface. Figures 12a and 12b compare the time mean bias in net surface radiative flux in the control climate in the 
baseline and seed 1 ML-corrected run. The baseline model has large negative biases in the baseline over tropical 
land regions, contributing to RMSEs over land of over 20 W m −2 in all climates. In the ML-corrected runs this 
RMSE is cut by 32%–49% (Figures 12c and Table 2), and the mean negative bias is greatly reduced (Figure 12d), 
indicating that the strong offline skill of the ML surface radiative flux model over land, illustrated in Section 3.4, 
translates well into online simulations. The large offline bias in downward shortwave radiation in the ocean 
stratocumulus regions noted in Section 3.4 persists in online simulations, and moderate negative biases in net 
surface shortwave radiation emerge online throughout the non-stratocumulus ocean regions. These biases would 
be of concern if we coupled the ML-corrected atmosphere model to a dynamical ocean model, but they have no 
impact on our prescribed-SST simulations.

3.6.4.  Temperature, Specific Humidity, and Circulation Biases

While we predict tendency corrections to the temperature and specific humidity at each level of the atmosphere 
in ML-corrected runs, these predictions do not necessarily improve the zonal mean climatological biases in these 
fields over those in the baseline simulations.

Figures 13a and 13b show the zonal mean temperature biases in the baseline and seed 1 ML-corrected simula-
tions in the control climate. The baseline simulation has a roughly 1 K warm bias in the boundary layer in all 

Figure 11.  As in Figure 9 (excluding ocean/sea-ice root mean square error (RMSE)), for the time-mean spatial pattern of the surface temperature bias.
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but the polar regions, where there is a larger cold bias and has a mid-tropospheric cold bias of about 1 K at all 
latitudes. The largest temperature bias is a vertical dipole pattern of magnitude 2–3 K in the polar stratosphere. In 
the ML-corrected simulation, the bias is reduced near the surface but is more severe in the polar mid-troposphere. 
Above 200 hPa, we are intentionally tapering the corrective tendencies, so we might expect the ML-corrected 
simulation to have similar temperature biases as the baseline. However, large warm biases develop, locally exceed-
ing 5 K. These may be associated with circulation changes induced by ML predictions lower in the atmosphere.

Specific humidity biases are shown in Figures 13c and 13d). ML again helps reduce biases of the baseline model 
in some regions but not others. The baseline model has negative specific humidity biases around −0.2 g kg −1 near 
the surface in the polar regions, positive biases in the mid-latitude troposphere around 0.3 g kg −1, negative biases 
in the deep tropics between −0.1 and −0.4 g kg −1. The ML-corrected run reduces the surface dry bias near the 
South Pole as well as the positive southern hemisphere storm-track mid-tropospheric bias and deep tropical dry 
bias, but introduces a large moist bias in the southern hemisphere subtropics of up to 1 g kg −1.

The humidity biases in the ML-corrected simulation are consistent with a change in the zonal mean overturn-
ing simulation. Figure 13g shows the bias in the zonal mean mass streamfunction for the ML-corrected case. It 

Figure 12.  As in Figure 11, for the time-mean spatial pattern of the net surface radiative flux bias.
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depicts a southward shift in the upward branch of the overturning circulation, also evident as a dipole bias in 
zonal mean precipitation (Figure 13h). Figure 9b suggests the precipitation bias is mainly coming from the West 
Pacific/Bay of Bengal region and off the east coast of Africa. The zonal mean precipitation biases in the baseline 
simulation (Figure 13f), though comparable in magnitude to those in the ML-corrected run, cannot be so easily 
explained by the relatively small and unfeatured biases in the streamfunction (Figure 13e).

4.  Discussion and Conclusion
In this study we extended the approach described in B22 to train ML models for application in multiple climates 
and around the annual cycle. The ML adds state-dependent corrections to the temperature and specific humidity 
tendencies, and predicts surface radiative fluxes, to optimally correct single timestep tendencies of the coarse 
model (including land-atmosphere interaction) to match those of a fine-grid reference simulation. Although this 
method does not guarantee good longer-term skill, we showed that with ablation and tapering of ML inputs and 
outputs in the uppermost 25 model levels, we were able to obtain robustly stable ML-corrected simulations. The 
annual mean climate biases in ML-corrected runs depend somewhat on the random seeds used to initialize the 
neural networks before training. However, each of the four NNs we tested online improve the land RMSE of the 
annual mean spatial pattern of precipitation, and three out of the four improve the surface temperature climate.

Figure 13.  Time and zonal mean biases of temperature, specific humidity, and the mass streamfunction in the baseline (top row) and machine learning (ML)-corrected 
seed 1 simulations (bottom row) relative to the fine resolution reference in the control climate (filled contours). The line contours represent the reference values of 
the fields in the fine-resolution reference data set, with contour intervals shown in the column titles. Panels (f and h) in the third column show the zonal mean bias in 
precipitation for the baseline and seed 1 ML-corrected simulations, respectively.
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We presented 5 year prognostic simulations with the seed 1 NN, selected because they had the smallest overall 
surface temperature and humidity biases over the first simulated year across the four climates. Depending on the 
climate, ML improved the land RMSE of precipitation by 8%–28%, and the land RMSE of surface temperature 
by 19%–25%, although a longer reference simulation would be required to robustly demonstrate the improvement 
in land precipitation RMSE in the +8 K climate. The ML corrections also improved the amplitude of the diurnal 
cycle of precipitation over land in the −4 K and control climates, but slightly exaggerated it in the +4 K and +8 K 
climates. In contrast to the land-surface-level metrics, ML tendency corrections generally did not improve the 
precipitation or net surface radiative flux RMSE over ocean/sea-ice, or the zonal mean bias pattern of temperature 
or specific humidity, and through dynamical feedbacks actually introduced errors into the zonal mean overturning 
circulation.

While we obtain robust improvements in precipitation and surface temperature over the baseline in the 
ML-corrected runs in the individual climates, the differences between simulated climates are generally not signif-
icantly improved or worsened (not shown). A better ML correction which made larger improvements in the indi-
vidual climates would be more likely to translate to improvements in the difference between climates.

While encouraging, the relative improvements in precipitation RMSE are not as large as the 25%–30% obtained 
by B22. Our baseline 200 km simulation in the control climate has a much lower RMSE versus the fine-grid 
reference, 1.6 mm d −1 globally compared with 3.7 mm d −1 in B22, making it more difficult to improve upon. 
Three contributors to the improved baseline skill were: first, using the same microphysics configuration (includ-
ing saturation adjustment within the dynamical core) as in the reference model, second, using a coarser resolution 
“fine” resolution target model (∼25 km resolution vs. ∼3 km resolution), which we assess skill against, and third, 
computing an RMSE for the time-mean over the full annual cycle rather than a single 40 days period.

There are still substantial differences in the surface downwelling radiation predicted by the physical parameter-
izations of the baseline and reference models; these differences can feed back on the land surface. As in B22, 
overriding the physical parameterization's predictions of these fluxes with the ML's greatly reduces surface radi-
ation bias in prognostic runs, and helps to remove land-mean precipitation biases and significantly reduce land 
surface temperature biases.

Future work on a number of aspects of the problem might improve on these results; three are discussed more 
below. First, as mentioned in B22, it would be beneficial to find a way to re-introduce ML corrections of the 
horizontal wind tendencies. This currently is an inconsistency in our approach; when producing the training data 
we nudge the horizontal winds, but we only train models to predict the temperature and specific humidity nudg-
ing tendencies, because we found in B22 (and verified in the setting of the present study) that the nudging-trained 
approach for predicting wind tendency corrections leads to large temperature biases through circulation feed-
backs. If we can find a way to re-introduce these in a way that does not lead to these large temperature biases, it 
might reduce the circulation biases noted in this study.

Second, a corrective approach similar to the way we handle temperature and moisture might improve the skill of 
the ML for predicting the downwelling radiative fluxes. We currently attribute the fine-coarse surface radiation 
differences mainly to cloud differences. If the coarse-grid clouds are more skillful predictors of the fine-grid 
clouds than are the column temperature and humidity profiles, then a corrective approach might add skill. 
Figure 12 of the present study (and a similar figure in B22) suggests this might hold in the subtropical marine 
stratocumulus regions. This might enable skill improvements over the baseline in predicting the net surface radia-
tive flux over ocean, which the current approach does not achieve (Table 2). This would become important if this 
ML approach were used as part of an ocean-coupled model.

Third, we showed that an NN trained with one random seed systematically produced different climate biases 
compared to networks trained with other seeds across all climates. It would be useful to develop a more system-
atic way of optimizing the ML models to not only reduce single timestep errors, but also reduce errors in climate 
statistics. For instance, Balogh et al. (2022) used a targeted set of online simulations to tune embedded parameters 
within an ML model to optimize climate-like statistics in an idealized model problem.

In future work it could also be interesting to address questions related to how well this existing ML approach 
might apply to an interpolation-type problem, for example, correcting a coarse-resolution simulation in a +2 K 
climate, or potentially modify the approach such that it could be applied in an extrapolation context, for example, 
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in a climate not within the bounds of the training data, something explored at least in an offline context on a 
different ML problem in Beucler et al. (2021). We also acknowledge that despite its success, the nudging method 
for generating an ML target has fundamental limitations when and where physical processes are adjusting to 
changing conditions faster than the nudging timescale (Kruse et al., 2022) and will need to be improved upon. 
One manifestation documented here was a distorted diurnal cycle of precipitation over land.

In conclusion, the results presented here are an important step toward applying corrective ML through 
coarse-graining in a model with realistic topography across the full annual cycle, and in multiple different 
climates. Substantial further improvements should be achievable using the best possible reference models, ML 
methodologies and training approaches.

Data Availability Statement
The code and configuration files used to run and analyze the results of the experiments in this study are contained 
in a GitHub repository, https://github.com/ai2cm/nudge-to-fine-25km-manuscript-workflow, which is archived 
at Zenodo (https://doi.org/10.5281/zenodo.6584121). The monthly mean GPCP precipitation data set (https://doi.
org/10.7289/V56971M6) was obtained through https://psl.noaa.gov/data/gridded/data.gpcp.html, the monthly 
mean ERA5 precipitable water data set was obtained through https://doi.org/10.24381/cds.f17050d7, and the 
half-hourly IMERG precipitation data set was obtained through https://doi.org/10.5067/GPM/IMERG/3B-HH/06.
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